233 research outputs found
Local mean-field study of capillary condensation in silica aerogels
We apply local mean-field (i.e. density functional) theory to a lattice model
of a fluid in contact with a dilute, disordered gel network. The gel structure
is described by a diffusion-limited cluster aggregation model. We focus on the
influence of porosity on both the hysteretic and the equilibrium behavior of
the fluid as one varies the chemical potential at low temperature. We show that
the shape of the hysteresis loop changes from smooth to rectangular as the
porosity increases and that this change is associated to disorder-induced
out-of-equilibrium phase transitions that differ on adsorption and on
desorption. Our results provide insight in the behavior of He in silica
aerogels.Comment: 19 figure
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
We describe an efficient Monte Carlo algorithm using a random walk in energy
space to obtain a very accurate estimate of the density of states for classical
statistical models. The density of states is modified at each step when the
energy level is visited to produce a flat histogram. By carefully controlling
the modification factor, we allow the density of states to converge to the true
value very quickly, even for large systems. This algorithm is especially useful
for complex systems with a rough landscape since all possible energy levels are
visited with the same probability. In this paper, we apply our algorithm to
both 1st and 2nd order phase transitions to demonstrate its efficiency and
accuracy. We obtained direct simulational estimates for the density of states
for two-dimensional ten-state Potts models on lattices up to
and Ising models on lattices up to . Applying this approach to
a 3D spin glass model we estimate the internal energy and entropy at
zero temperature; and, using a two-dimensional random walk in energy and
order-parameter space, we obtain the (rough) canonical distribution and energy
landscape in order-parameter space. Preliminary data suggest that the glass
transition temperature is about 1.2 and that better estimates can be obtained
with more extensive application of the method.Comment: 22 pages (figures included
Class III Obese Women's Preferences and Concerns for Cesarean Skin Incision: A Multicenter Survey
Objective This study aims to assess class III obese women's preferences and concerns regarding cesarean delivery (CD) skin incisions. Study Design Through the National Perinatal Research Consortium (NPRC), women with body mass index ≥ 40 kg/m2 at the time of enrollment completed an anonymous survey in English or Spanish. We evaluated seven domains of preferences and concerns about the cesarean skin incision. Results We surveyed 546 women at five NPRC sites. Median age (interquartile range) was 29 (25, 35) years; 364 (66%) were parous and 161 (30%) had a prior CD. Women self-identified race/ethnicity as White (31%), non-Hispanic Black (31%), Hispanic (31%), other (6%), and not reported (1%). A total of 542 women (99%) rated both delivering the baby in the best possible condition and decreasing incision opening/infection risk as important. Women were less likely to rate other domains as important (all p < 0.001), including: having least pain possible, n = 521 (95%); decreasing the risk of complications in the next pregnancy, n = 490 (90%); decreasing interference with breastfeeding, n = 474 (87%); decreasing operative time, n = 388 (71%); and having the least visible incision, n = 369 (68%). Conclusion Women with class III obesity prioritize immediate maternal and fetal safety regarding CD skin incision over other concerns including cosmetic outcome
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum
We report a first measurement for ultra-high energy cosmic rays of the
correlation between the depth of shower maximum and the signal in the water
Cherenkov stations of air-showers registered simultaneously by the fluorescence
and the surface detectors of the Pierre Auger Observatory. Such a correlation
measurement is a unique feature of a hybrid air-shower observatory with
sensitivity to both the electromagnetic and muonic components. It allows an
accurate determination of the spread of primary masses in the cosmic-ray flux.
Up till now, constraints on the spread of primary masses have been dominated by
systematic uncertainties. The present correlation measurement is not affected
by systematics in the measurement of the depth of shower maximum or the signal
in the water Cherenkov stations. The analysis relies on general characteristics
of air showers and is thus robust also with respect to uncertainties in
hadronic event generators. The observed correlation in the energy range around
the `ankle' at differs significantly from
expectations for pure primary cosmic-ray compositions. A light composition made
up of proton and helium only is equally inconsistent with observations. The
data are explained well by a mixed composition including nuclei with mass . Scenarios such as the proton dip model, with almost pure compositions, are
thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray
flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.
Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
- …