10 research outputs found

    The two phases of the Cambrian Explosion

    Get PDF
    Abstract The dynamics of how metazoan phyla appeared and evolved – known as the Cambrian Explosion – remains elusive. We present a quantitative analysis of the temporal distribution (based on occurrence data of fossil species sampled in each time interval) of lophotrochozoan skeletal species (n = 430) from the terminal Ediacaran to Cambrian Stage 5 (~545 – ~505 Million years ago (Ma)) of the Siberian Platform, Russia. We use morphological traits to distinguish between stem and crown groups. Possible skeletal stem group lophophorates, brachiopods, and molluscs (n = 354) appear in the terminal Ediacaran (~542 Ma) and diversify during the early Cambrian Terreneuvian and again in Stage 2, but were devastated during the early Cambrian Stage 4 Sinsk extinction event (~513 Ma) never to recover previous diversity. Inferred crown group brachiopod and mollusc species (n = 76) do not appear until the Fortunian, ~537 Ma, radiate in the early Cambrian Stage 3 (~522 Ma), and with minimal loss of diversity at the Sinsk Event, continued to diversify into the Ordovician. The Sinsk Event also removed other probable stem groups, such as archaeocyath sponges. Notably, this diversification starts before, and extends across the Ediacaran/Cambrian boundary and the Basal Cambrian Carbon Isotope Excursion (BACE) interval (~541 to ~540 Ma), ascribed to a possible global perturbation of the carbon cycle. We therefore propose two phases of the Cambrian Explosion separated by the Sinsk extinction event, the first dominated by stem groups of phyla from the late Ediacaran, ~542 Ma, to early Cambrian stage 4, ~513 Ma, and the second marked by radiating bilaterian crown group species of phyla from ~513 Ma and extending to the Ordovician Radiation

    An Early Triassic small shelly fossil‐style assemblage from the Virgin Limestone Member, Moenkopi Formation, western United States

    No full text
    Small shelly fossils (SSFs) are minute fossils moulded or replaced by apatite, and less commonly, other minerals like glauconite and iron oxides. This taphonomic mode is best known from Cambrian deposits, though some occurrences occur across geological time. Instances of small shelly-style preservation were found in insoluble residues from the Lower Triassic Virgin Limestone Member exposed in southern Nevada, the western United States, a second such occurrence known from this unit. Fossil steinkerns of tiny brachiopods, echinoid spines and ophiuroids are fluorapatite, with scarce phosphatic internal moulds of bivalves and two replaced ostracods. In contrast, the crinoid ossicles, almost all of which are \u3e1000 ”m, are preserved as stereomic moulds of silica or dolomite. Though the style of preservation is similar to another Virgin Limestone small shelly fossils-style assemblage, this assemblage preserves greater diversity, likely reflecting the variation in palaeocommunities across the shelf. The size selectivity of phosphatization is clear, as the majority of the fossils \u3c1000 ”m are phosphatized. Importantly, the original skeletal material does not exert the strongest control on style of preservation: crinoid ossicles are replaced or moulded by silica whilst ophiuroid and echinoid fragments are phosphatized. It is likely that the underlying phosphatization mechanisms are related to the small particle size of the skeletons or skeletal elements coupled with the local pore water environment. Early Triassic equatorial seas characterized by warm temperatures and lower oxygen levels likely fostered small shelly fossil-style preservation across the shelf during this time

    Mesozoic evolution of cicadas and their origins of vocalization and root feeding [Micro-CT Images Dataset]

    No full text
    The project contains micro-CT images of several Mesozoic cicadoid fossils and extant species. These include the adult fossils of Eunotalia emeryi (MGM2016–014), Cretotettigarcta problematica (NIGP201896), Vetuprosbole parallelica (NIGP201897), Pranwanna xiai (male, LYU–BC2001 and female, LYU–BC2002), and the cicadoid nymphal fossil species 1 (NIGP2018985) and species 2 (MGM2016–017). For extant species, the project contains CT images of the adult Tettigarcta crinita (both male and female) and Platypleura kaempferi (male and female). This dataset is a part of Jiang et al., 2023 'Mesozoic evolution of cicadas and their origins of vocalization and root feeding' published in Nature Communications.</p
    corecore