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The two phases of the Cambrian 
Explosion
Andrey Yu. Zhuravlev1 & Rachel A. Wood2

The dynamics of how metazoan phyla appeared and evolved – known as the Cambrian Explosion – 
remains elusive. We present a quantitative analysis of the temporal distribution (based on occurrence 
data of fossil species sampled in each time interval) of lophotrochozoan skeletal species (n = 430) 
from the terminal Ediacaran to Cambrian Stage 5 (~545 – ~505 Million years ago (Ma)) of the Siberian 
Platform, Russia. We use morphological traits to distinguish between stem and crown groups. Possible 
skeletal stem group lophophorates, brachiopods, and molluscs (n = 354) appear in the terminal 
Ediacaran (~542 Ma) and diversify during the early Cambrian Terreneuvian and again in Stage 2, but 
were devastated during the early Cambrian Stage 4 Sinsk extinction event (~513 Ma) never to recover 
previous diversity. Inferred crown group brachiopod and mollusc species (n = 76) do not appear until the 
Fortunian, ~537 Ma, radiate in the early Cambrian Stage 3 (~522 Ma), and with minimal loss of diversity 
at the Sinsk Event, continued to diversify into the Ordovician. The Sinsk Event also removed other 
probable stem groups, such as archaeocyath sponges. Notably, this diversification starts before, and 
extends across the Ediacaran/Cambrian boundary and the Basal Cambrian Carbon Isotope Excursion 
(BACE) interval (~541 to ~540 Ma), ascribed to a possible global perturbation of the carbon cycle. We 
therefore propose two phases of the Cambrian Explosion separated by the Sinsk extinction event, the 
first dominated by stem groups of phyla from the late Ediacaran, ~542 Ma, to early Cambrian stage 4, 
~513 Ma, and the second marked by radiating bilaterian crown group species of phyla from ~513 Ma and 
extending to the Ordovician Radiation.

The Cambrian Explosion is a phenomenon that encompasses the dramatic appearance of diverse metazoans 
with biomineralized skeletons, an increase in metazoan complexity and behaviour, a substrate revolution that 
re-organised the sedimentary record, and the development of biodiverse marine ecosystems with complex food 
webs1–5. The relative importance of external drivers, such as rise of oxygen or seawater chemistry changes6–9, bio-
logical drivers, such as the influence of metazoan irrigation10, and feedbacks between the two11, remains unclear. 
Likewise, the relationship between Ediacaran and Cambrian biotas remains unresolved, with some arguing that 
the Cambrian Explosion has a ‘deep root’ in the terminal Ediacaran12, or that the first phase of the ‘Cambrian 
Explosion’ was either the Nama assemblage (~550–541 Ma)13, or appeared even earlier at the Avalon-White Sea 
boundary at ~561 Ma14. In addition, while it has been conjectured that extinction or turnover events of metazoans 
occurred at ~551 Ma13,15 and at the Ediacaran/Cambrian boundary at ~541 - 540 Ma (e.g.13,16), there is no consen-
sus as to the precise form either of these dynamics, or indeed their timing, or causes (compare13,14,17).

The combined body and trace fossil record suggests the Cambrian Radiation of bilaterians may have fol-
lowed a progressive two-stage diversification: the terminal Ediacaran (~560 Ma) to early Cambrian Stage 2 to 
3 (mid-Tommotian to Atdabanian) interval dominated by stem groups, and after Cambrian Stage 2 to 3 when 
definitive crown group representatives of phyla appeared18. Most phylum-level body-plan evolution seems to have 
taken place well after the Cambrian Explosion, throughout the Cambrian and beyond; stem lineages are consid-
ered to have largely disappeared by the Ordovician18.

Placing extinct fossil taxa in phylogenetic order through the application of stem- and crown group concepts 
allows the order of character acquisition to be considered in both time and environmental context18. Even when 
highly problematic, all extinct taxa must have stem- or crown group relationships to extant taxa. A crown group 
is a monophyletic group consisting of the last common ancestor of all living forms and all of its descendants. A 
stem group is a paraphyletic group that lacks the defining morphological characters of the crown group, where all 
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members are extinct. This therefore consists of the primitive relatives of the crown group, along the phylogenetic 
line up to, but not including, the last common ancestor of the crown group and their nearest living relatives19.

The considerable number of characters that can define crown groups were often acquired incrementally 
over geological time20. Random, background extinctions will inevitably erode the base of a clade through time, 
whether or not basal members are particularly prone to extinction19. Hence, the older a fossil, the more likely it 
is to fall outside the phylum-level of classification. But mass extinctions may operate quite differently, as they can 
remove taxa selectively based on particular ecological or other traits21 and lead to long-lasting changes in taxo-
nomic composition and ecosystem functioning22.

Here we construct a high resolution temporal distribution of skeletal species (n = 1188) from the upper 
Ediacaran to the basal Cambrian Series 3 of the Siberian Platform in order to understand the evolutionary 
dynamics of the Cambrian Explosion (see Supplementary references). The Siberian Platform formed a separate 
province during the Ediacaran-Cambrian23–26, where the stratigraphy and age dating is relatively well known 
(Fig. 1) and the biota diverse. New coupled high-resolution δ13C and biostratigraphic data as well as improved 
U-Pb zircon dates suggests that terminal Ediacaran – early Cambrian sections on the northern and south-eastern 
Siberian Platform are more complete than previously thought, and also indicate that the Cambrian Explosion 
as shown by the record of skeletal biota may have been a more protracted event12,27. The first diverse skeletal 
assemblages of Cambrian type (including various halkieriids, chancelloriids, and hyoliths in addition to anaba-
ritids and protoconodonts), occur between levels dated from 543.9 ± 0.24 to 529.7 ± 0.3 Ma which precede the 
strong basal Cambrian negative carbon isotope excursion (BACE), and in some areas even the basal Terreneuvian 
Trichophycus pedum ichnofossil assemblage12,28–30. Additionally, Ediacaran shelly taxa (cloudinids) co-occur with 
some of the earliest Cambrian shelly taxa (anabaritids) on the south-eastern Siberian Platform, indicating a con-
tinuity of the skeletal fossil record around the Precambrian-Cambrian boundary12. The additional presence of 
late Ediacaran soft-bodied rangeomorphs, including their biomineralized holdfasts, as well as chambered pal-
aeopascichnids and Nenoxites (=Shaanxilithes) trace fossils found in immediately underlying strata of the same 
sections12,27 indicates that this record is, in turn, rooted in so-called “post-Kotlinian wormworld” (e.g.13).

In particular we consider the distribution of stem and crown group Lophotrochozoa, which is a monophy-
letic clade of protostome animals within the Spiralia, consisting of Mollusca, Lophophorata, Nemertea and 
Annelida31–33. The Lophotrochozoa constitutes a third of all modern marine animals34, and was chosen as it is 
species-rich and represented mostly by skeletal taxa in Ediacaran-Cambrian strata. Deuterostome and cnidarian 
fossils are too scarce for quantitative analysis, and putative poriferans do not allow detailed character subdivision, 
due to either an absence of diagnostic spicules (e.g. Archaeocyatha) or the frequently disarticulated preserva-
tion of spiculate classes. More importantly, neither the temporal fossil record nor comparative characters of the 
Lophotrochozoa are reliant upon exceptional preservation (Lagerstätten), as has been noted in other significant 
groups of the radiation such as euarthropods. This taphonomic bias is exemplified by the fact that crown group 
euarthropods appear before (521 Ma) stem lineage euarthropods (518 Ma), due in part to differential skeletoni-
sation35. Our study thus enables an understanding of how important phyla including the Mollusca, Brachiopoda 
and Annelida, may have been assembled, in turn informing likely selective pressures and ecological consequences.

Results
Proposed stem-group Lophotrochozoa. The soft-bodied Ediacaran taxon Kimberella (~560 to ~550 Ma) 
has been proposed to represent a stem group mollusc36–38, although this placement remains problematic17. We 
exclude this from our analysis given this controversy and the lack of skeletonized hard parts.

We assign hyoliths (both hyolithimorphs and orthothecimorphs), tommotiids (including tannuolinids, 
Sunnaginia, and Lapworthella), and Oymurania to stem group lophophorates, and sachitids (including halkieriids 
and siphogonuchitids), wiwaxiids, and, probably, maikhanellids and helcionelloids to stem group molluscs fol-
lowing the phylogenetic and morphological inferences detailed below.

Hyoliths (Fig. 2j), despite their unusual, large calcareous conical shells incorporating a U-shaped intestine and 
an extendable tentacle-bearing lophophore, have molluscan-type microstructures, a thick compound operculum 
and, sometimes in hyolithimorphs, a pair of additional curved rigid lateral bar-like supports39,40.

While both tommotiids (Fig. 2b,e) and halkieriids s.l. (Fig. 2d) possess multi-element shells (scleritomes), 
tommotiid sclerites form a narrow conical shell and penetrated by setal canals which can preserve phosphatized 
setae, and exhibit dense, and fine lamination. In some cases a bivalved larval protegulum with a colleplax-plate 
typical of the oldest linguliformean brachiopods is present41–45. Oymurania (Fig. 2f) has setigerous canals and two 
shell layers, one of which shows acrotretoid brachiopod columnar microstructure, and the other resembles the 
prismatic framework of paterinid brachiopods46. The former problematic fossil Tumulduria is now reinterpreted 
as a detached central portion of the ventral interarea of a paterinid brachiopod47.

Intact calcareous sachitid scleritomes are considered to belong to a bilateral motile organism that possessed 
a radula and sclerites with a branching, aesthete type of canal system found in some molluscs48–50. Complete 
sachitid scleritomes from the Early Ordovician are recognized as stem-group aculiferan molluscs51. Chancelloriid 
sclerites possess the same morphology and microstructure despite the presence of a markedly different scleritome 
of a sedentary radial-symmetrical animal52–54. Thus, a more basal position of sachitids among molluscs, or even 
lophotrochozoans, cannot be not excluded. Wiwaxiids, although being organic, show the same overall scleritome 
organization55.

The cup-shaped maikhanellids (Fig. 2i) consist of merged sclerites identical to co-occurring sachitids56. Their 
cross lamellar microstructure is similar to that of some gastropods and the cap-shaped protoconch is typical of 
monoplacophorans57. Bivalved calcareous stenothecoids with their paired, serially arranged muscle scars on the 
inner surfaces of both valves represent a further group of mollusc-like fossils but with a set of features uncommon 
in crown group molluscs54.
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The majority of Cambrian mollusc-like shells with essentially molluscan microstructures, protoconchs, and 
some features of torsia, are assigned to either the class Helcionelloida58, or subclass Archaeobranchia59. These 
mainly cup-shaped and low spiral, endogastrically coiled fossils are considered to be extinct lineages of the phy-
lum Mollusca58,59. However, a helcionelloid affinity suggests that their untorted anatomy is due to aperture pos-
terior emarginations, and the presence of a snorkel in some forms also suggests that helcionelloids (Fig. 2a,c) 
occupy a basal position within the phylum. The archaeobranchian hypothesis also emphasises a torted basic plan 
and ancestral gastropod affinities59. A stem group rather than crown group position for helcionelloids is further 

Figure 1. Early Cambrian time scale for the Siberian Platform, Russia, with key radiometric dates (numbered; 
Siberian radiometric dates are in bold), international chronostratigraphy (ICS), and stages and zones accepted 
for the Siberian Platform. Radiometric dates from 127,93; 294; 395, 496; 597; 698–100; 730; 8101. Right column shows 
numbered temporal units, each c. 2.5 Myr in duration. ED = Ediacaran. 3 = Cambrian Series 3, pars. Modified 
from5.
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supported by the presence of paired bristle-like clusters extending from the aperture of the Pelagiella shell which 
have a striking resemblance to the parapodial chaetae of some polychaetes60. Additionally, helcionelloids are 
characterized by a different muscle system, densely porous shells that are more common in brachiopods than 
molluscs, and calcitic semi-nacre microstructures which are more typical of lophophorates61–63. These observa-
tions suggest that the Helcionelloida were stem-group molluscs that retained a number of shared basal features 
with lophotrochozoan ancestors. Pelagiella represents the most advanced branch of helcionelloids possessing a 
spirally coiled shell and asymmetric muscle scars suggesting at least partial torsion59.

Proposed crown-group Lophotrochozoa. Early Cambrian crown-group molluscs (Fig. 2h), are rec-
ognized among bivalves as well as gastropods of the Khairkhaniidae and Onychochilidae families, belonging 
to the Divasibranchia and Dextrobranchia orders, respectively59,64. Crown group Lophophorata are represented 
in the Cambrian by 13 orders of brachiopods (Fig. 2g), only one of which (Lingulida) survived beyond the 
Palaeozoic45,65,66.

Quantitative temporal distribution. Total skeletal species diversity on the Siberian Platform increases 
from the terminal Ediacaran to the middle of Cambrian Stage 2, then declines and rises again to reach a second 
peak at the beginning of Stage 4, followed by an abrupt and rapid decline at the end of Stage 4, followed by recov-
ery around the Series 2/3 boundary (Fig. 3A). The Trilobita appears in Stage 3 and, as the most speciose group, 
mirrors this general trend. This is in contrast to the second most speciose group, the Archaeocyatha, which 
first appears in Stage 2 after which there is increase in diversity until the base of Stage 4 but then the group goes 
abruptly extinct shortly thereafter (Fig. 3A).

Total skeletal lophotrochozoan species diversity likewise increases from the terminal Ediacaran to the middle 
of Cambrian Stage 2, but then declines until the middle of Stage 3, rises again to reach a second peak at beginning 
of Stage 4, followed by an abrupt and rapid decline until the middle of Stage 4, then followed by a further rise 
(Fig. 3B).

Of these, stem group lophophorates, brachiopods, and molluscs comprise a total of 354 species, and 
crown-groups a total of 76 species through the Ediacaran to Cambrian Stage 5 interval. Stem lophoporates, 

Figure 2. Early and early middle Cambrian skeletal stem- (a–f,i–j) and crown group (g,h) lophotrochozoans 
from the Siberian Platform. (a) Aldanella attleborensis (Shaler & Foerste), stem mollusc, helcionelloid; shell 
(29, Fig. 20A1); (b) Camenella garbowskae Missarzhevsky, stem lophophorate, tommotiid; sclerite (102, Fig. 
37A); (c) Ceratoconus striatus Chen & Zhang, stem mollusc, helcionelloid; shell (29, Fig. 26A1); (d) Halkieria 
sp., stem lophotrochozoan; halkieriid; sclerite (29, Fig. 46C2); (e) Tannuolina pavlovi Kouchinsky et al., stem 
lophophorate, tommotiid; sclerite (103, Fig. 2A2); (f) Oymurania gravestocki Ushatinskaya, stem brachiopod; 
valve (104, Fig. 8A); (g) Pelmanotreta neguertchenensis (Pelman), crown brachiopod, paterinate; valve (105, 
Fig. 2i); (h) Pojetaia dentifera Kouchinsky et al., crown mollusc, bivalve; valve (106, Fig. 3A); (i) Purella antiqua 
(Abaimova), stem lophotrochozoan, maikhanellid; valve (29, Fig. 31B2); (j) Khetatheca cotuiensis (Sysoev), stem 
lophophorate, hyolith; valve (29, Fig. 50G). All photographs courtesy of Artem Kouchinsky.
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brachiopods and molluscs (halkieriids, chancelloriids and orthothecimorph hyoliths) appeared in the terminal 
Ediacaran (~542.5 Ma) and show two phases of diversification: the first through the Terreneuvian, and the sec-
ond during the end of Stage 3 to beginning of Stage 4 (Fig. 3B). The first crown species are known from the late 
Fortunian (~537 Ma – gastropods; ~535 Ma – brachiopods and bivalves), and started to radiate later during the 
early Cambrian Epoch 2 (~522.5 Ma). Stem group species were devastated during the early Cambrian Stage 4 at 
~513 Ma but crown group mollusc and brachiopod species, despite some changes in species composition, show 
no marked loss of diversity, and continued to diversify at a similar apparent rate (Fig. 3B).

Discussion
Possible taphonomic and sampling biases. Taphonomic studies have shown that the fossil record can 
test the proposition that marine community structure has changed over time67,68. Ediacaran to Cambrian skeletal 
lophotrochozoans are represented by taxa of comparable millimetric sizes, forming part of the small shelly fauna 
as shells and disarticulated sclerites. These fossils are generally either replaced by phosphate or present in the 
form of inner and outer moulds. Only lingulate brachiopods and tommotiids are preserved as original shells, and 
only rhynchonelliform brachiopods retain their original low-Mg calcite mineralogy. In the lower Cambrian of 
the Siberian Platform, such fossils are restricted to argillaceous limestones (mostly wackestones and packstones), 
and some grainstones, all of which accumulated onshore above either normal wave or storm wave base69. All 
fossils are extracted by the same method of dissolution in buffered acetic acid to isolate phosphatic and phospha-
tized shells, or moulds and steinkerns (e.g.29). Worker bias is unlikely given that the assemblages reflect multiple 
different studies and no single worker or study dominates. We infer that taphonomic biases are minimized, and 
sampling biases present are shared by all small skeletal fossils.

Trends through time. Total lophotrochozoan biodiversity increases until the middle of Stage 2, but then 
there is a notable decline that extends to approximately the middle of Stage 3 (Fig. 3B). This interval coincides 
in part with an expansion of anoxic sea floor around ~525 Ma inferred from U isotopes70. Stem- and crown 
group lophotrochozoan species show distinctly different temporal distributions, with stem group lophophorate, 
brachiopod and mollusc taxa originating and radiating first. The preferential extinction of stem group species in 
early Cambrian Stage 4, at ~513 Ma coincides with the well-known Sinsk Event, an episode of widespread shallow 
marine anoxia on the Siberian Platform and other locations globally, which also coincides with the major extinc-
tion of the Archaeocyatha71. It is probable that Archaeocyatha represent a poriferan stem group, and indeed a 
similar temporal separation of stem and crown group diversification is observed among other metazoans at phyla 
level, including the Porifera (where crown group demosponges are known by Cambrian Stage 3), Cnidaria and 
Echinodermata54,72–74.

The first probable metazoan body fossils (rangeomorphs) appeared at ~570 Ma75. Rangeomorphs are complex, 
macroscopic eukaryotes, probably stem group metazoan taxa, although an affinity higher than Porifera has been 
proposed76. Rangeomorph-dominated assemblages were devastated by the Kotlin Crisis, which marks a turnover 
event15. After this we propose two phases of the Cambrian Explosion separated by the Sinsk Event extinction. The 
first was dominated by non-bilaterians (Porifera, Cnidaria and Ctenophora) joined by indeterminate bilaterian 
stem groups at ~ 560 Ma18 and lasted until ~513 Ma. The general increase in diversity may have been interrupted 
by the global expansion of anoxic sea floor around ~525 Ma. Notably, this diversification started before, and 
continues across, the Ediacaran/Cambrian boundary and the Basal Cambrian Carbon Isotope Excursion (BACE) 
interval (~541 to ~540 Ma). The BACE has been ascribed to a possible global perturbation of the carbon cycle12.

The second phase was marked by radiating non-bilaterian and bilaterian (here determined as brachiopod and 
mollusc) crown group species, and started from ~513 Ma. This second radiation phase may have been interrupted 
or even terminated by the late Cambrian SPICE event, which marked a further minor extinction (Fig. 4). Crown 
groups brachiopod species continued to diversify during the remainder of the Cambrian and into the Ordovician. 

Figure 3. Diversity of skeletal species through the Ediacaran – early Cambrian of the Siberian Platform. 
(A) Total diversity of all skeletal species, Trilobita, and Archaeocyatha. (B) Total diversity of skeletal 
lophotrochozoan species, and stem group and crown group representatives. Ediacaran and Cambrian 
chronostratigraphic subdivisions are scaled according to Fig. 1.
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Bivalves and gastropods also formed a significant part of total global lophotrochozoan diversity and were joined 
by the appearance of bryozoans and cephalopods around the Cambrian/Ordovician boundary77,78. From that 
time onwards their diversity remained higher than stem group lophotrochozoans, which continued to decline 
dramatically during the Cambrian51,59,71,79,80. The last stem group taxa (a few hyolith genera) went extinct in the 
Permian81.

The Sinsk Event might therefore be considered a mass extinction, which appears to have preferentially 
removed skeletal stem group lophotrochozoans at a point when diversity was high. This rapid removal is in con-
trast to background extinctions that are expected to erode the base of a clade gradually through time. We note that 
crown group brachiopod and mollusc do not show a marked increase in diversity after the removal of stem group 
lophophorate, brachiopod and mollusc taxa, but continue their former diversity trajectory. This suggests that 
their radiation was not dependent upon the removal of incumbent stem group taxa, but rather that crown group 
taxa were in some way more resilient to shallow marine anoxia or other coeval environmental perturbations. Like 
other mass extinctions, the Sinsk Event led to significant and long-lasting changes in taxonomic composition and 
ecosystems22,79,82.

A similar sequential faunal replacement pattern of Phanerozoic metazoans has been established in the form of 
evolutionary marine faunas83, which are in part bounded by mass extinctions. During the Ediacaran to Cambrian 
interval, further distinguished were the Tommotian, Cambrian s.s. and Palaeozoic faunas84. All these faunas were 
discriminated by empirical and statistical analysis of family diversity patterns only without reference to phy-
logenetic relationships. Their existence was, however, challenged22 because their speciation/extinction trends 
could merely reflect replacement between major taxonomic groups that had coupled dynamics. But our analysis 
shows that evolutionary faunas may in fact be a manifestation of their composition, with the ‘Tommotian’ fauna 
being composed of mostly stem group lophotrophorates, molluscs and brachiopods, while the Cambrian s.s. and 
Palaeozoic faunas are dominated by crown group representatives of molluscs, brachiopods and many other phyla.

This pattern resembles the extinction of taxa at the Permo-Triassic boundary, when groups that originated 
in the early Palaeozoic either went extinct (tabulate and rugose corals, trilobites, cystoporates) or significantly 
declined (brachiopods, trepostomates, cryptostomates, conodonts) never to recover previous levels of diversity85. 
This is in contrast to the pattern shown by groups which appeared and diversified in the late Palaeozoic, such as 
gymnolaemates and new bivalve, gastropod and ammonoid orders85–87.

If ecological niches are relevant, the difference in maintaining the two phases of the Cambrian Explosion 
might be related to differences in ecospace that was actually “empty” for skeletal animals. During the earlier 
phase of stem taxa radiation (~543–513 Ma), speciation was most likely promoted by the lack of competition 
for existing niches. This is similar to the high rates of sympatric speciation, such as noted among modern ben-
thic caenogastropods in lakes, where high phenotypic plasticity enables evolving ecophenotypes to diversify 
into different substrates (e.g.88). A similar pattern of early diversification as a result of adaptations to different 
substrates is shown by both helcionelloid mollusc and archaeocyath sponge species during the first phase of 
the Cambrian Explosion inferred here. The helcionelloids underwent rapid morphogenesis89, and archaeocy-
aths display extremely high inter-habitat diversity (that is, beta-diversity) in reef communities on the Siberian 
Platform90, which may also reflect high speciation rates. Niche partitioning is not inferred, as the alpha-diversity 

Figure 4. Schematic of hypothesised non-Bilaterian (total group Porifera, Cnidaria and Ctenophora) and 
Bilaterian diversification during the Ediacaran-Cambrian metazoan radaition, showing the fossil record of 
probable earliest metazoans (shown by a rangeomorph reconstruction), the Kotlin crisis, followed by two phases 
of Cambrian Explosion, separated by the Sinsk Event extinction (with a possible expanded interval of anoxia 
during Phase 1) and extending to the Ordovician Radiation through the SPICE extinction. Non-bilaterian stem 
group example is a stem group archaeocyath sponge; crown group is a crown group demosponge. Bilaterian 
stem group is shown by a tommotiid; crown group by a trilobite.
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(species number per community) remains consistently low91. A similar effect as a result of low competition, and 
also correlated with a rise in beta-diversity, has been observed to be the main driver of general diversity increase 
in the early Cambrian92. This dynamic creates the unusual situation when the boundaries of even major lower 
Cambrian subdivisions have not been established due to an absence of cosmopolitan species. By contrast, even 
though stem group diversity was significantly reduced during the later crown group brachiopod and mollusc 
diversification (~513–508 Ma), older niches were not completely eliminated. Thus, in the aftermath of the Sinsk 
extinction, crown groups were able to diversify via competition for existing niches in order to incorporate into 
existing communities.

Conclusions
This quantitative analysis of lophotrochozoan skeletal stem- and crown group temporal distribution suggests that 
the Cambrian Explosion sensu lato may be redrawn as two successive phases of morphological and functional 
innovation that started in the terminal Ediacaran and were separated by an extinction event. This in turn allows 
exploration of this phenomenon as an expansion of ecological repertoires that are tractable from the fossil record.

Methods and Data
We divide the terminal Ediacaran to Cambrian Series 2 Siberian record from ~545 to ~505 Ma based on radi-
ometric dates into 16 temporal units based on either sub-division, or combination of one to three Siberian 
biostratigraphic zones to create broadly equivalent units of ~2.5 Myr each. Units start at the Ediacaran 
Cloudina-Namacalathus-Sinotubulites assemblage zone through transitional Ediacaran-lowermost Cambrian 
zones (informally named in ascending order Anabarites trisulcatus, Protohertzina anabarica, and Purella antiqua 
zones) through Terreneuvian and Cambrian Series 2 zones up to the basal Ovatoryctocara granulata Zone of the 
Cambrian Stage 5 (Series 3) (Fig. 1). We use the timescale for this interval from available radiometric dates from 
fossiliferous strata of Siberia, South China, and Avalonia93–101 (see Supplementary data).

We quantify the distribution of described skeletal species (n = 1188) from the upper Ediacaran to the basal 
Cambrian Series 3 on the Siberian Platform (see Supplementary references). This is derived from occurrence 
data of fossil taxa sampled in each time interval. In particular we quantify the temporal distribution of lophotro-
chozoan skeletal species (n = 430) (see Supplementary data). Chancelloriids, although they may belong to stem 
lophotrochozoans, are excluded from analysis due to their frequently disarticulated nature.

Data Availability
The authors declare that the data supporting the findings of this study are available within the paper and its sup-
plementary information files.
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