168 research outputs found
Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations
This study evaluates climate change impacts on water resources using an
ensemble of six regional climate models (RCMs)–global climate models (GCMs)
in the Dano catchment (Burkina Faso). The applied climate datasets were
performed in the framework of the COordinated
Regional climate Downscaling
Experiment (CORDEX-Africa) project.After evaluation of the historical runs of the climate models' ensemble, a
statistical bias correction (empirical quantile mapping) was applied to daily
precipitation. Temperature and bias corrected precipitation data from the
ensemble of RCMs–GCMs was then used as input for the Water flow
and balance Simulation Model (WaSiM) to simulate
water balance components.The mean hydrological and climate variables for two periods (1971–2000 and
2021–2050) were compared to assess the potential impact of climate change on
water resources up to the middle of the 21st century under two greenhouse gas
concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5
and 8.5. The results indicate (i) a clear signal of temperature increase of
about 0.1 to 2.6 °C for all members of the RCM–GCM ensemble;
(ii) high uncertainty about how the catchment precipitation will evolve over
the period 2021–2050; (iii) the applied bias correction method only affected
the magnitude of the climate change signal; (iv) individual climate models
results lead to opposite discharge change signals; and (v) the results for
the RCM–GCM ensemble are too uncertain to give any clear direction for
future hydrological development. Therefore, potential increase and decrease
in future discharge have to be considered in climate change adaptation
strategies in the catchment. The results further underline on the one hand
the need for a larger ensemble of projections to properly estimate the
impacts of climate change on water resources in the catchment and on the
other hand the high uncertainty associated with climate projections for the
West African region. A water-energy budget analysis provides further insight
into the behavior of the catchment.</p
Results from the first use of low radioactivity argon in a dark matter search
Liquid argon is a bright scintillator with potent particle identification
properties, making it an attractive target for direct-detection dark matter
searches. The DarkSide-50 dark matter search here reports the first WIMP search
results obtained using a target of low-radioactivity argon. DarkSide-50 is a
dark matter detector, using two-phase liquid argon time projection chamber,
located at the Laboratori Nazionali del Gran Sasso. The underground argon is
shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3
relative to atmospheric argon. We report a background-free null result from
(2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with
our previous search using an atmospheric argon, the 90 % C.L. upper limit on
the WIMP-nucleon spin-independent cross section based on zero events found in
the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43
cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).Comment: Accepted by Phys. Rev.
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
Recommended from our members
In-situ observations and lumped parameter model reconstructions reveal intra-annual to multi-decadal variability in groundwater levels in sub-Saharan Africa
Understanding temporal variability in groundwater levels is essential for water resources management. In sub-Saharan Africa, groundwater level dynamics are poorly constrained due to limited long term observations. Here we present the first published analysis of temporal variability in groundwater levels at the national scale in sub-Saharan Africa, using 12 multi-decadal (c. 1980s – present) groundwater level hydrographs in Burkina Faso. For each hydrograph, we developed lumped parameter models which achieved acceptable calibrations (NSE = 0.5–0.99). For eight sites not showing significant (p<0.001) long term groundwater level declines, we reconstructed groundwater levels to 1902, over 50 years before the earliest observations in the tropics. We standardized and clustered the eight reconstructed hydrographs to compare responses across the sites. Overall, the 12 hydrographs were categorized into three groups, which are dominated by (1) long term declines (four sites), (2) short term intra-annual variability (three sites) and (3) long term multi-decadal variability (five sites). We postulate that group 1 is controlled by anthropogenic influences (land use change and abstraction). Correlation of modelled water table depth and groundwater response times with hydrograph autocorrelation suggests that hydrogeological properties and structure control differences between group 2 and 3. Group 3 shows a small recovery in groundwater levels following the 1970/80s drought. Differences in intra-annual to multi-decadal variability in groundwater levels have implications for water management, and highlight the value of long term monitoring. Reconstructions contextualize current groundwater status, forecasts and projections. The approach developed is generic and applicable where long term groundwater level data exist
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
Use of the HEC RAS model for the analysis of exceptional floods in the Ouémé basin
The Ouémé River basin extends over almost half of Benin's territory, entirely located in a humid tropical climate. This river system includes a deltaic zone (delta of the Ouémé) known for its high agricultural potential and thus subject to a socio-economic development agenda. The Ouémé delta is facing recurrent floods that maintain rural agricultural population into a retrograding crisis with significant damages such as losses of properties. The objective of this study is to improve decision-making in the Ouémé basin through the simulation of exceptional floods using the HEC-RAS model.
The HEC RAS model is a conceptual model, which works through mathematical and physical formulas to implement environmental phenomena for forecasting, understanding and analysis purposes. The model inputs used are basin GIS data, hydro-meteorological data, characteristics of existing hydraulic structures, etc. The targeted outputs include 1D/2D/3D view plans with support of satellite images, tables, graphs and curves. It is worth mentioning that the model provides outputs compatible with other tools, such as civil engineering (Civil 3D, Revit, Infraworks, etc.) and GIS, that help to expand the valorization fields.
The implementation of the model in the Ouémé basin has made it possible to note: (i) that the recurring effect of losses and damages is justified by the settlement of the population on the river banks; (ii) that there is an important agricultural production in areas of high flood risk; (iii) that depending on the occurrence of the phenomenon, the flooded extent and the height of submersion remains variable, and more important for extreme flooding; (iv) about 12.07 % occurrence of river flood against 13.24 % for flash flood at a return period of 30 years. Moreover, it is very relevant to note that most of flood waters converge to the western part of the basin (an area with a low risk of flooding, stretched over 63.68 km2) and to the eastern part around the Damè-Wogon depression (an area at high risk of flooding, stretched over 10.49 km2).</p
Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options
<p>Abstract</p> <p>Background</p> <p>Coagulase-negative staphylococci (CoNS) are a major cause of nosocomial blood stream infection, especially in critically ill and haematology patients. CoNS are usually multidrug-resistant and glycopeptide antibiotics have been to date considered the drugs of choice for treatment. The aim of this study was to characterize CoNS with reduced susceptibility to glycopeptides causing blood stream infection (BSI) in critically ill and haematology patients at the University Hospital Tor Vergata, Rome, Italy, in 2007.</p> <p>Methods</p> <p>Hospital microbiology records for transplant haematology and ICU were reviewed to identify CoNS with elevated MICs for glycopeptides, and isolates were matched to clinical records to determine whether the isolates caused a BSI. The isolates were tested for susceptibility to new drugs daptomicin and tigecycline and the genetic relationship was assessed using f-AFLP.</p> <p>Results</p> <p>Of a total of 17,418 blood cultures, 1,609 were positive for CoNS and of these, 87 (5.4%) displayed reduced susceptibility to glycopeptides. Clinical review revealed that in 13 cases (7 in haematology and 6 in ICU), CoNS with reduced susceptibility to glycopeptides were responsible for a BSI. <it>Staphylococcus epidermidis </it>was the causative organism in 11 instances and <it>Staphylococcus haemolyticus </it>in 2. The incidence of oxacillin resistance was high (77%), although all isolates remained susceptible to linezolid, daptomycin and tigecycline. Fingerprinting of CoNS identified one clonal relationship between two isolates.</p> <p>Conclusion</p> <p>Multi-resistant CoNS with reduced susceptibility to glycopeptides, although still relatively infrequent in our hospital, are emerging pathogens of clinical concern. Surveillance by antibiotyping with attention to multi-resistant profile, and warning to clinicians, is necessary.</p
Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with n-Propylamine
We studied equilibrium adsorption and uptake kinetics and identified molecular species that formed during sorption of carbon dioxide on amine-modified silica. Bicontinuous silicas (AMS-6 and MCM-48) were postsynthetically modified with (3-aminopropyl)triethoxysilane or (3-aminopropyl)methyldiethoxysilane, and amine-modified AMS-6 adsorbed more CO(2) than did amine-modified MCM-48. By in situ FTIR spectroscopy, we showed that the amine groups reacted with CO(2) and formed ammonium carbamate ion pairs as well as carbamic acids under both dry and moist conditions. The carbamic acid was stabilized by hydrogen bonds, and ammonium carbamate ion pairs formed preferably on sorbents with high densities of amine groups. Under dry conditions, silylpropylcarbamate formed, slowly, by condensing carbamic acid and silanol groups. The ratio of ammonium carbamate ion pairs to silylpropylcarbamate was higher for samples with high amine contents than samples with low amine contents. Bicarbonates or carbonates did not form under dry or moist conditions. The uptake of CO(2) was enhanced in the presence of water, which was rationalized by the observed release of additional amine groups under these conditions and related formation of ammonium carbamate ion pairs. Distinct evidence for a fourth and irreversibly formed moiety was observed under sorption of CO(2) under dry conditions. Significant amounts of physisorbed, linear CO(2) were detected at relatively high partial pressures of CO(2), such that they could adsorb only after the reactive amine groups were consumed.authorCount :7</p
Investigation of Multiple Susceptibility Loci for Inflammatory Bowel Disease in an Italian Cohort of Patients
BACKGROUND: Recent GWAs and meta-analyses have outlined about 100 susceptibility genes/loci for inflammatory bowel diseases (IBD). In this study we aimed to investigate the influence of SNPs tagging the genes/loci PTGER4, TNFSF15, NKX2-3, ZNF365, IFNG, PTPN2, PSMG1, and HLA in a large pediatric- and adult-onset IBD Italian cohort. METHODS: Eight SNPs were assessed in 1,070 Crohn's disease (CD), 1,213 ulcerative colitis (UC), 557 of whom being diagnosed at the age of ≤16 years, and 789 healthy controls. Correlations with sub-phenotypes and major variants of NOD2 gene were investigated. RESULTS: The SNPs tagging the TNFSF15, NKX2-3, ZNF365, and PTPN2 genes were associated with CD (P values ranging from 0.037 to 7×10(-6)). The SNPs tagging the PTGER4, NKX2-3, ZNF365, IFNG, PSMG1, and HLA area were associated with UC (P values 0.047 to 4×10(-5)). In the pediatric cohort the associations of TNFSF15, NKX2-3 with CD, and PTGER4, NKX2-3, ZNF365, IFNG, PSMG1 with UC, were confirmed. Association with TNFSF15 and pediatric UC was also reported. A correlation with NKX2-3 and need for surgery (P = 0.038), and with HLA and steroid-responsiveness (P = 0.024) in UC patients was observed. Moreover, significant association in our CD cohort with TNFSF15 SNP and colonic involvement (P = 0.021), and with ZNF365 and ileal location (P = 0.024) was demonstrated. CONCLUSIONS: We confirmed in a large Italian cohort the associations with CD and UC of newly identified genes, both in adult and pediatric cohort of patients, with some influence on sub-phenotypes
The Electronics and Data Acquisition System of the DarkSide Dark Matter Search
It is generally inferred from astronomical measurements that Dark Matter (DM)
comprises approximately 27\% of the energy-density of the universe. If DM is a
subatomic particle, a possible candidate is a Weakly Interacting Massive
Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for
evidence of WIMP-nuclear collisions. DS is located underground at the
Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three
active, embedded components; an outer water veto (CTF), a liquid scintillator
veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper
describes the data acquisition and electronic systems of the DS detectors,
designed to detect the residual ionization from such collisions
- …