256 research outputs found

    Monitoring of ultrafine particles in French regional air quality network

    Get PDF
    Monitoring of ultrafine particles (UFP) in the ambient air is ongoing since 2012 in France. A national working group was created in 2014, including nowadays five French regional air quality monitoring networks. The main instrument selected to monitor UFP is the particle sizer “UFP-3031” (TSI Inc.). It measures the particle number concentration between 20 and 800 nm with six size channels. Two intercomparisons were organized in 2014 and 2015, which evaluated the accuracy of this instrument through a comparison with other techniques (such as Scanning Mobility Particle Sizer, SMPS), and through uncertainty calculations. Recently, several networks have been also equipped with CPC (condensation particle counter) to be able to measure the total UFP number concentration from 7 nm. This work presents the main results of short and long-term measurement of UFP which have been carried out in various environments: urban/traffic sites, near heavy industry zones (Dunkerque and Fos-sur-Mer in northern and southern France, respectively), near harbor area (Nice)… For urban/ traffic environment, the number concentration and size distribution are compared at the national level; it appears that they vary significantly depending on the influence of road traffic around the site. The concentration levels near traffic sites are at least twice than in the urban area, especially for UFP smaller than 50 nm. Additionally, the UFP measurement also makes it possible to improve the identification of specific sources and to understand the atmospheric physicochemical phenomena. The relationship between UFP and industrial emissions, ferries, forest fires was clearly identified in different places in France. During summer, the UFP monitoring also shows the formation of new particles (between 20-30 nm or smaller) in the afternoon, due to photochemical reactions. From 2019, the French national strategy on UFP will start putting a particular emphasis on the impact of UFP on human health

    Volatile profiling reveals intracellular metabolic changes in Aspergillus parasticus: veA regulates branched chain amino acid and ethanol metabolism

    Get PDF
    Background: Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results: Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions: 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and b-oxidation of fatty acids. 3) Intracellular chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products

    Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Filamentous fungi in the genus <it>Aspergillus </it>produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by <it>Aspergillus parasiticus </it>in an attempt to define the association of secondary metabolism with other metabolic and cellular processes.</p> <p>Results</p> <p>Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain <it>Aspergillus parasiticus </it>SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator <it>veA </it>affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a <it>veA </it>disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation.</p> <p>Conclusions</p> <p>1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3) Intracellular chemical development in <it>A. parasiticus </it>is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products.</p

    Variations in patterns of care across neonatal units and their associations with outcomes in very preterm infants: the French EPIPAGE-2 cohort study

    Get PDF
    OBJECTIVES: To describe patterns of care for very preterm (VP) babies across neonatal intensive care units (NICUs) and associations with outcomes. DESIGN: Prospective cohort study, EPIPAGE-2. SETTING: France, 2011. PARTICIPANTS: 53 (NICUs); 2135 VP neonates born at 27 to 31 weeks. OUTCOME MEASURES: Clusters of units, defined by the association of practices in five neonatal care domains - respiratory, cardiovascular, nutrition, pain management and neurodevelopmental care. Mortality at 2 years corrected age (CA) or severe/moderate neuro-motor or sensory disabilities and proportion of children with scores below threshold on the neurodevelopmental Ages and Stages Questionnaire (ASQ). METHODS: Hierarchical cluster analysis to identify clusters of units. Comparison of outcomes between clusters, after adjustment for potential cofounders. RESULTS: Three clusters were identified: Cluster 1 with higher proportions of neonates free of mechanical ventilation at 24 hours of life, receiving early enteral feeding, and neurodevelopmental care practices (26 units; n=1118 babies); Cluster 2 with higher levels of patent ductus arteriosus and pain screening (11 units; n=398 babies); Cluster 3 with higher use of respiratory, cardiovascular and pain treatments (16 units; n=619 babies). No difference was observed between clusters for the baseline maternal and babies' characteristics. No differences in outcomes were observed between Clusters 1 and 3. Compared with Cluster 1, mortality at 2 years CA or severe/moderate neuro-motor or sensory disabilities was lower in Cluster 2 (adjusted OR 0.46, 95% CI 0.25 to 0.84) but with higher proportion of children with an ASQ below threshold (adjusted OR 1.49, 95% CI 1.07 to 2.08). CONCLUSION: In French NICUs, care practices for VP babies were non-randomly associated. Differences between clusters were poorly explained by unit or population differences, but were associated with mortality and development at 2 years. Better understanding these variations may help to improve outcomes for VPT babies, as it is likely that some of these discrepancies are unwarranted

    Complete lung agenesis caused by complex genomic rearrangements with neo-TAD formation at the SHH locus

    Get PDF
    During human organogenesis, lung development is a timely and tightly regulated developmental process under the control of a large number of signaling molecules. Understanding how genetic variants can disturb normal lung development causing different lung malformations is a major goal for dissecting molecular mechanisms during embryogenesis. Here, through exome sequencing (ES), array CGH, genome sequencing (GS) and Hi-C, we aimed at elucidating the molecular basis of bilateral isolated lung agenesis in three fetuses born to a non-consanguineous family. We detected a complex genomic rearrangement containing duplicated, triplicated and deleted fragments involving the SHH locus in fetuses presenting complete agenesis of both lungs and near-complete agenesis of the trachea, diagnosed by ultrasound screening and confirmed at autopsy following termination. The rearrangement did not include SHH itself, but several regulatory elements for lung development, such as MACS1, a major SHH lung enhancer, and the neighboring genes MNX1 and NOM1. The rearrangement incorporated parts of two topologically associating domains (TADs) including their boundaries. Hi-C of cells from one of the affected fetuses showed the formation of two novel TADs each containing SHH enhancers and the MNX1 and NOM1 genes. Hi-C together with GS indicate that the new 3D conformation is likely causative for this condition by an inappropriate activation of MNX1 included in the neo-TADs by MACS1 enhancer, further highlighting the importance of the 3D chromatin conformation in human disease

    Correlation of gene expression and protein production rate - a system wide study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on <it>Saccharomyces cerevisiae </it>chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus <it>Trichoderma reesei </it>(<it>Hypocrea jecorina</it>) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype.</p> <p>Results</p> <p>We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of <it>T. reesei</it>. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response.</p> <p>Conclusions</p> <p>Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR).</p

    The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi

    Get PDF
    Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells

    Accelerated inbreeding depression suggests synergistic epistasis for deleterious mutations in Drosophila melanogaster

    Get PDF
    Epistasis may have important consequences for a number of issues in quantitative genetics and evolutionary biology. In particular, synergistic epistasis for deleterious alleles is relevant to the mutation load paradox and the evolution of sex and recombination. Some studies have shown evidence of synergistic epistasis for spontaneous or induced deleterious mutations appearing in mutation-accumulation experiments. However, many newly arising mutations may not actually be segregating in natural populations because of the erasing action of natural selection. A demonstration of synergistic epistasis for naturally segregating alleles can be achieved by means of inbreeding depression studies, as deleterious recessive allelic effects are exposed in inbred lines. Nevertheless, evidence of epistasis from these studies is scarce and controversial. In this paper, we report the results of two independent inbreeding experiments carried out with two different populations of Drosophila melanogaster. The results show a consistent accelerated inbreeding depression for fitness, suggesting synergistic epistasis among deleterious alleles. We also performed computer simulations assuming different possible models of epistasis and mutational parameters for fitness, finding some of them to be compatible with the results observed. Our results suggest that synergistic epistasis for deleterious mutations not only occurs among newly arisen spontaneous or induced mutations, but also among segregating alleles in natural populationsWe acknowledge the support by Uvigo Marine Research Centre funded by the “Excellence in Research (INUGA)” Programme from the Regional Council of Culture, Education and Universities, with co-funding from the European Union through the ERDF Operational Programme Galicia 2014-2020. This work was funded by Agencia Estatal de Investigación (AEI) (CGL2016-75904-C2-1-P), Xunta de Galicia (ED431C 2016-037) and Fondos Feder: “Unha maneira de facer Europa.” SD was founded by a predoctoral (FPI) grant from Ministerio de Economía y Competitividad, SpainS

    Bupropion for the treatment of apathy in Huntington's disease:A multicenter, randomised, double-blind, placebo-controlled, prospective crossover trial

    Get PDF
    OBJECTIVE:To evaluate the efficacy and safety of bupropion in the treatment of apathy in Huntington's disease (HD). METHODS:In this phase 2b multicentre, double-blind, placebo-controlled crossover trial, individuals with HD and clinical signs of apathy according to the Structured Clinical Interview for Apathy-Dementia (SCIA-D), but not depression (n = 40) were randomized to receive either bupropion 150/300mg or placebo daily for 10 weeks. The primary outcome parameter was a significant change of the Apathy Evaluation Scale (AES) score after ten weeks of treatment as judged by an informant (AES-I) living in close proximity with the study participant. The secondary outcome parameters included changes of 1. AES scores determined by the patient (AES-S) or the clinical investigator (AES-C), 2. psychiatric symptoms (NPI, HADS-SIS, UHDRS-Behavior), 3. cognitive performance (SDMT, Stroop, VFT, MMSE), 4. motor symptoms (UHDRS-Motor), 5. activities of daily function (TFC, UHDRS-Function), and 6. caregiver distress (NPI-D). In addition, we investigated the effect of bupropion on brain structure as well as brain responses and functional connectivity during reward processing in a gambling task using magnetic resonance imaging (MRI). RESULTS:At baseline, there were no significant treatment group differences in the clinical primary and secondary outcome parameters. At endpoint, there was no statistically significant difference between treatment groups for all clinical primary and secondary outcome variables. Study participation, irrespective of the intervention, lessened symptoms of apathy according to the informant and the clinical investigator. CONCLUSION:Bupropion does not alleviate apathy in HD. However, study participation/placebo effects were observed, which document the need for carefully controlled trials when investigating therapeutic interventions for the neuropsychiatric symptoms of HD. TRIAL REGISTRATION:ClinicalTrials.gov 01914965

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore