178 research outputs found
Hierarchical Star-Formation in M33: Fundamental properties of the star-forming regions
Star-formation within galaxies appears on multiple scales, from spiral
structure, to OB associations, to individual star clusters, and often
sub-structure within these clusters. This multitude of scales calls for
objective methods to find and classify star-forming regions, regardless of
spatial size. To this end, we present an analysis of star-forming groups in the
local group spiral galaxy M33, based on a new implementation of the Minimum
Spanning Tree (MST) method. Unlike previous studies which limited themselves to
a single spatial scale, we study star-forming structures from the effective
resolution limit (~20pc) to kpc scales. We find evidence for a continuum of
star-forming group sizes, from pc to kpc scales. We do not find a
characteristic scale for OB associations, unlike that found in previous
studies, and we suggest that the appearance of such a scale was caused by
spatial resolution and selection effects. The luminosity function of the groups
is found to be well represented by a power-law with an index, -2, similar to
that found for clusters and GMCs. Additionally, the groups follow a similar
mass-radius relation as GMCs. The size distribution of the groups is best
described by a log-normal distribution and we show that within a hierarchical
distribution, if a scale is selected to find structure, the resulting size
distribution will have a log-normal distribution. We find an abrupt drop of the
number of groups outside a galactic radius of ~4kpc, suggesting a change in the
structure of the star-forming ISM, possibly reflected in the lack of GMCs
beyond this radius. (abridged)Comment: 12 pages, 16 figures, accepted MNRA
Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation
International audienceObservations show that heavy oxygen isotope composition in precipitation (delta O-18(p)) increases from coastal southeastern (SE) China to interior northwestern (NW) China during the wet season, contradicting expectations from simple Rayleigh distillation theory. Here we employ stable isotopes of precipitation and vapor from satellite measurements and climate model simulations to characterize the moisture processes that control Asian monsoon precipitation and relate these processes to speleothem paleoclimate records. We find that delta O-18(p) is low over SE China as a result of local and upstream condensation and that delta O-18(p) is high over NW China because of evaporative enrichment of O-18 as raindrops fall through dry air. We show that delta O-18(p) at cave sites over southern China is weakly correlated with upstream precipitation in the core of the Indian monsoon region rather than local precipitation, but it is well-correlated with the delta O-18(p) over large areas of southern and central China, consistent with coherent speleothem delta O-18(p) variations over different parts of China. Previous studies have documented high correlations between speleothem delta O-18(p) and millennial timescale climate forcings, and we suggest that the high correlation between insolation and speleothem delta O-18(p) in southern China reflects the variations of hydrologic processes over the Indian monsoon region on millennial and orbital timescales. The delta O-18(p) in the drier part (north of similar to 30 degrees N) of China, on the other hand, has consistently negative correlations with local precipitation and may capture local hydrologic processes related to changes in the extent of the Hadley circulation
Monte Carlo Simulations of Globular Cluster Evolution. V. Binary Stellar Evolution
We study the dynamical evolution of globular clusters containing primordial
binaries, including full single and binary stellar evolution using our Monte
Carlo cluster evolution code updated with an adaptation of the single and
binary stellar evolution codes SSE/BSE from Hurley et. al (2000, 2002). We
describe the modifications we have made to the code. We present several test
calculations and comparisons with existing studies to illustrate the validity
of the code. We show that our code finds very good agreement with direct N-body
simulations including primordial binaries and stellar evolution. We find
significant differences in the evolution of the global properties of the
simulated clusters using stellar evolution compared to simulations without any
stellar evolution. In particular, we find that the mass loss from stellar
evolution acts as a significant energy production channel simply by reducing
the total gravitational binding energy and can significantly prolong the
initial core contraction phase before reaching the binary-burning quasi steady
state of the cluster evolution as noticed in Paper IV. We simulate a large grid
of clusters varying the initial cluster mass, binary fraction, and
concentration and compare properties of the simulated clusters with those of
the observed Galactic globular clusters (GGCs). We find that our simulated
cluster properties agree well with the observed GGC properties. We explore in
some detail qualitatively different clusters in different phases of their
evolution, and construct synthetic Hertzprung-Russell diagrams for these
clusters.Comment: 46 preprint pages, 18 figures, 3 tables, submitted to Ap
Understanding the Dynamical State of Globular Clusters: Core-Collapsed vs Non Core-Collapsed
We study the dynamical evolution of globular clusters using our H\'enon-type
Monte Carlo code for stellar dynamics including all relevant physics such as
two-body relaxation, single and binary stellar evolution, Galactic tidal
stripping, and strong interactions such as physical collisions and binary
mediated scattering. We compute a large database of several hundred models
starting from broad ranges of initial conditions guided by observations of
young and massive star clusters. We show that these initial conditions very
naturally lead to present day clusters with properties including the central
density, core radius, half-light radius, half-mass relaxation time, and cluster
mass, that match well with those of the old Galactic globular clusters. In
particular, we can naturally reproduce the bimodal distribution in observed
core radii separating the "core-collapsed" vs the "non core-collapsed"
clusters. We see that the core-collapsed clusters are those that have reached
or are about to reach the equilibrium "binary burning" phase. The non
core-collapsed clusters are still undergoing gravo-thermal contraction.Comment: 42 pages, 12 figures, 1 table, submitted to MNRA
The spatial distribution of star and cluster formation in M51
Aims. We study the connection between spatially resolved star formation and
young star clusters across the disc of M51. Methods. We combine star cluster
data based on B, V, and I-band Hubble Space Telescope ACS imaging, together
with new WFPC2 U-band photometry to derive ages, masses, and extinctions of
1580 resolved star clusters using SSP models. This data is combined with data
on the spatially resolved star formation rates and gas surface densities, as
well as Halpha and 20cm radio-continuum (RC) emission, which allows us to study
the spatial correlations between star formation and star clusters. Two-point
autocorrelation functions are used to study the clustering of star clusters as
a function of spatial scale and age. Results. We find that the clustering of
star clusters among themselves decreases both with spatial scale and age,
consistent with hierarchical star formation. The slope of the autocorrelation
functions are consistent with projected fractal dimensions in the range of
1.2-1.6, which is similar to other galaxies, therefore suggesting that the
fractal dimension of hierarchical star formation is universal. Both star and
cluster formation peak at a galactocentric radius of 2.5 and 5 kpc, which we
tentatively attribute to the presence of the 4:1 resonance and the co-rotation
radius. The positions of the youngest (<10 Myr) star clusters show the
strongest correlation with the spiral arms, Halpha, and the RC emission, and
these correlations decrease with age. The azimuthal distribution of clusters in
terms of kinematic age away from the spiral arms indicates that the majority of
the clusters formed 5-20 Myr before their parental gas cloud reached the centre
of the spiral arm.Comment: 14 pages, 21 figures, accepted for publication in A&
The type IIb SN 2008ax: the nature of the progenitor
A source coincident with the position of the type IIb supernova (SN) 2008ax
is identified in pre-explosion Hubble Space Telescope (HST) Wide Field
Planetary Camera 2 observations in three optical filters. We identify and
constrain two possible progenitor systems: (i) a single massive star that lost
most of its hydrogen envelope through radiatively driven mass loss processes,
prior to exploding as a helium-rich Wolf-Rayet star with a residual hydrogen
envelope, and (ii) an interacting binary in a low mass cluster producing a
stripped progenitor. Late time, high resolution observations along with
detailed modelling of the SN will be required to reveal the true nature of this
progenitor star.Comment: 5 pages, 2 figures, resolution of figure 1 reduced, figure 2 revised,
some revision following referee's comments, accepted for publication in MNRAS
letter
The spiral structure of the Galaxy revealed by CS sources and evidence for the 4:1 resonance
We present a map of the spiral structure of the Galaxy, as traced by
molecular CS emission associated with IRAS sources which are believed to be
compact HII regions. The CS line velocities are used to determine the kinematic
distances of the sources, in order to investigate their distribution in the
galactic plane. This allows us to use 870 objects to trace the arms, a number
larger than that of previous studies based on classical HII regions. The
distance ambiguity of the kinematic distances, when it exists, is solved by
different procedures, including the latitude distribution and an analysis of
the longitude-velocity diagram. The well defined spiral arms are seen to be
confined inside the co-rotation radius, as is often the case in spiral
galaxies. We identify a square-shaped sub-structure in the CS map with that
predicted by stellar orbits at the 4:1 resonance (4 epicycle oscillations in
one turn around the galactic center). The sub-structure is found at the
expected radius, based on the known pattern rotation speed and epicycle
frequency curve. An inner arm presents an end with strong inward curvature and
intense star formation that we tentatively associate with the region where this
arm surrounds the extremity of the bar, as seen in many barred galaxies.
Finally, a new arm with concave curvature is found in the Sagitta to Cepheus
region of the sky
The VLT-FLAMES Tarantula Survey IV: Candidates for isolated high-mass star formation in 30 Doradus
Whether massive stars can occasionally form in relative isolation or if they
require a large cluster of lower-mass stars around them is a key test in the
differentiation of star formation theories as well as how the initial mass
function of stars is sampled. Previous attempts to find O-type stars that
formed in isolation were hindered by the possibility that such stars are merely
runaways from clusters, i.e., their current isolation does not reflect their
birth conditions. We introduce a new method to find O-type stars that are not
affected by such a degeneracy. Using the VLT-FLAMES Tarantula Survey and
additional high resolution imaging we have identified stars that satisfy the
following constraints: 1) they are O-type stars that are not detected to be
part of a binary system based on RV time series analysis; 2) they are
designated spectral type O7 or earlier ; 3) their velocities are within 1\sigma
of the mean of OB-type stars in the 30 Doradus region, i.e. they are not
runaways along our line-of-sight; 4) the projected surface density of stars
does not increase within 3 pc towards the O-star (no evidence for clusters); 5)
their sight lines are associated with gaseous and/or dusty filaments in the
ISM, and 6) if a second candidate is found in the direction of the same
filament with which the target is associated, both are required to have similar
velocities. With these criteria, we have identified 15 stars in the 30 Doradus
region, which are strong candidates for being high-mass stars that have formed
in isolation. Additionally, we employed extensive MC stellar cluster
simulations to confirm that our results rule out the presence of clusters
around the candidates. Eleven of these are classified as Vz stars, possibly
associated with the zero-age main sequence. We include a newly discovered W-R
star as a candidate, although it does not meet all of the above criteria.Comment: 14 pages, 13 figures, 5 tables; Accepted for publication by A&
- …
