137 research outputs found

    Extensions to the IEEE 802.11 TSF for Efficient and Reliable Network Synchronization in Large Scale MANETs

    Full text link
    Designing new protocols for Mobile Ad hoc Networks (MANETs) is a great challenge due to their distributed and self organized nature. Though, aspects of approved algorithms for hierarchical topographies may be carried over to these flat networks. The IEEE 802.11 protocol supports ad hoc networks in small scale applications, but its performance in large scale environments is still under investigation. Besides the Distributed Coordination Function (DCF), the Timer Synchronization Function (TSF) can be significantly improved in order to increase the performance in large scale multihop networks. This paper presents systematic extensions to the TSF that allow increasing the overall reliability and disburdening the network load at the same time. The presented scheme may be tailored to specific applications and even supports mobile stations and herewith MANETs

    Extensions to the IEEE 802.11 TSF for Efficient and Reliable Network Synchronization in Large Scale MANETs

    Get PDF
    Abstract-Designing new protocols for Mobile Ad hoc Networks (MANETs) is a great challenge due to their distributed and self organized nature. Though, aspects of approved algorithms for hierarchical topographies may be carried over to these flat networks. The IEEE 802.11 protocol supports ad hoc networks in small scale applications, but its performance in large scale environments is still under investigation. Besides the Distributed Coordination Function (DCF), the Timer Synchronization Function (TSF) can be significantly improved in order to increase the performance in large scale multihop networks. This paper presents systematic extensions to the TSF that allow increasing the overall reliability and disburdening the network load at the same time. The presented scheme may be tailored to specific applications and even supports mobile stations and herewith MANETs

    Slow Spread of the Aggressive Invader, Microstegium vimineum (Japanese Stiltgrass)

    Get PDF
    Microstegium vimineum (Japanese stiltgrass) is a non-native weed whose rapid invasion threatens native diversity and regeneration in forests. Using data from a 4 year experiment tracking new invasions in different habitats, we developed a spatial model of patch growth, using maximum likelihood techniques to estimate dispersal and population growth parameters. The patches expanded surprisingly slowly: in the final year, the majority of new seedlings were still within 1 m of the original patch. The influence of habitat was not as strong as anticipated, although patches created in roadside and wet meadow habitats tended to expand more rapidly and had greater reproductive ratios. The long-term projections of the patch growth model suggest much slower spread than has typically been observed for M. vimineum. The small scale of natural dispersal suggests that human-mediated dispersal, likely influenced by forest road management, is responsible for the rapid spread of this invasive species

    Sex differences in the association of phospholipids with components of the metabolic syndrome in young adults

    Get PDF
    BACKGROUND: There are differences in the prevalence and severity of diseases between males, females not taking hormonal contraceptives (non-HC females) and females taking hormonal contraceptives (HC females). The aim of this study was to identify sex-specific differences in the metabolome and its relation to components of the metabolic syndrome in a young adult population. METHODS: The subjects analysed are from the 20-year follow-up of the Western Australian Pregnancy Cohort (Raine) Study. Two hundred fifteen plasma metabolites were analysed in 1021 fasted plasma samples by a targeted liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) metabolomics approach. Principal component analysis between males (n = 550), non-HC females (n = 199) and HC females (n = 269) was applied. Regression analysis with a sex x metabolite concentration interaction was performed on components of the MetS, namely waist circumference, systolic blood pressure, and plasma HDL-C, triglycerides and glucose concentration, as outcome to select the significant metabolites of the interaction. Those selected metabolites were used as predictors in a sex group stratified analysis to compare the different beta coefficients and therefore the sex group-dependent associations. RESULTS: Principal component analysis between males, non-HC females, and HC females showed a general discriminating trend between males and HC females. One hundred twenty-seven metabolites were significantly different between males and non-HC females, whereas 97 differed between non-HC females and HC females. Males and non-HC females mainly differed in sphingomyelin, lyso-phosphatidylcholine, acyl-carnitine and amino acid species, whilst non-HC females and HC females mainly differed in phosphatidylcholine, lyso-phosphatidylcholine and acyl-carnitine concentrations. Forty-one metabolites (phosphatidylcholines, sphingomyelines, lyso-phosphatidylcholine) were significantly differently associated with the MetS factors in the different groups. CONCLUSIONS: We have shown clear differences between plasma metabolite concentrations in males, and HC or non-HC females, especially in lyso-phosphatidylcholine, sphingomyelin and phosphatidylcholine, which have been shown to associate with obesity in other studies. The association of these metabolites differed between sexes with components of the metabolic syndrome, which means that development of diseases like obesity and diabetes may differ between the sexes. Our findings highlight the importance of considering sex differences when conducting a metabolomics study and the need to account for the effect of HC usage in females in future studies

    A Unifying Gravity Framework for Dispersal

    Get PDF
    Most organisms disperse at some life-history stage, but different research traditions to study dispersal have evolved in botany, zoology, and epidemiology. In this paper, we synthesize concepts, principles, patterns, and processes in dispersal across organisms. We suggest a consistent conceptual framework for dispersal, which utilizes generalized gravity models. This framework will facilitate communication among research traditions, guide the development of dispersal models for theoretical and applied ecology, and enable common representation across taxonomic groups, encapsulating processes at the source and destination of movement, as well as during the intervening relocation process, while allowing each of these stages in the dispersal process to be addressed separately and in relevant detail. For different research traditions, certain parts of the dispersal process are less studied than others (e.g., seed release processes in plants and termination of dispersal in terrestrial and aquatic animals). The generalized gravity model can serve as a unifying framework for such processes, because it captures the general conceptual and formal components of any dispersal process, no matter what the relevant biological timescale involved. We illustrate the use of the framework with examples of passive (a plant), active (an animal), and vectored (a fungus) dispersal, and point out promising applications, including studies of dispersal mechanisms, total dispersal kernels, and spatial population dynamics

    A Unifying Gravity Framework for Dispersal

    Get PDF
    Most organisms disperse at some life-history stage, but different research traditions to study dispersal have evolved in botany, zoology, and epidemiology. In this paper, we synthesize concepts, principles, patterns, and processes in dispersal across organisms. We suggest a consistent conceptual framework for dispersal, which utilizes generalized gravity models. This framework will facilitate communication among research traditions, guide the development of dispersal models for theoretical and applied ecology, and enable common representation across taxonomic groups, encapsulating processes at the source and destination of movement, as well as during the intervening relocation process, while allowing each of these stages in the dispersal process to be addressed separately and in relevant detail. For different research traditions, certain parts of the dispersal process are less studied than others (e.g., seed release processes in plants and termination of dispersal in terrestrial and aquatic animals). The generalized gravity model can serve as a unifying framework for such processes, because it captures the general conceptual and formal components of any dispersal process, no matter what the relevant biological timescale involved. We illustrate the use of the framework with examples of passive (a plant), active (an animal), and vectored (a fungus) dispersal, and point out promising applications, including studies of dispersal mechanisms, total dispersal kernels, and spatial population dynamics

    Epigenetic age acceleration in adolescence associates with BMI, inflammation and risk score for middle age cardiovascular disease

    Get PDF
    BACKGROUND: 'Accelerated ageing', assessed by adult DNA methylation predicts cardiovascular disease (CVD). Adolescent accelerated aging might predict CVD earlier. We investigated whether epigenetic age acceleration (assessed age 17-years) associated with adiposity/CVD-risk measured (ages 17, 20, 22-years), and projected CVD by middle-age. METHODS: DNA methylation measured in peripheral blood provided 2 estimates of epigenetic age acceleration; intrinsic (IEAA, (preserved across cell types) and extrinsic (EEAA, dependent on cell admixture and methylation levels within each cell type).Adiposity was assessed by anthropometry, ultrasound and DEXA (ages 17, 20, 22 years). CVD-risk factors (lipids, HOMA-IR, blood pressure, inflammatory markers) were assessed at age 17-years. CVD development by age 47 years was calculated by Framingham algorithms. Results are presented as regression coefficients/5-year epigenetic age acceleration (IEAA/EEAA) for adiposity, CVD-risk factors and CVD development. RESULTS: In 995 participants (49.6% female, age 17.3+/-0.6 years), EEAA (/5-years) was associated with increased BMI of 2.4% (95%CI 1.2-3.6%) and 2.4% (0.8-3.9%) at 17 and 22 years, respectively. EEAA was associated with increases of 23% (3-33%) in hsCRP, 10% (4-17%) in interferon-gamma induced protein (IP-10) and 4% (2-6%) in tumour necrosis factor receptor 2 (sTNFR2), adjusted for BMI and HOMA-IR. EEAA(/5-years) results in a 4% increase in hard endpoints of CVD by 47 years old and a 3% increase, after adjustment for conventional risk factors. CONCLUSIONS: Accelerated epigenetic age in adolescence was associated with inflammation, BMI measured 5 years later, and probability of middle-age CVD. Irrespective whether this is cause or effect, assessing epigenetic age might refine disease prediction

    Maternal haemoglobin levels in pregnancy and child DNA methylation : a study in the pregnancy and childhood epigenetics consortium

    Get PDF
    Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical conditions affecting the fetus. Evidence from animal models suggests that these associations may be partially explained by differential DNA methylation in the newborn with possible long-term consequences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for the association of maternal haemoglobin levels with offspring DNA methylation either at individual methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were within the normal range in the current study, whereas adverse perinatal outcomes often arise at the extremes. Thus, this study does not rule out the possibility that associations with offspring DNA methylation might be seen in studies with more extreme maternal haemoglobin levels.Peer reviewe

    The LifeCycle Project-EU Child Cohort Network: a federated analysis infrastructure and harmonized data of more than 250,000 children and parents

    Get PDF

    Regulation of PERK Signaling and Leukemic Cell Survival by a Novel Cytosolic Isoform of the UPR Regulator GRP78/BiP

    Get PDF
    The unfolded protein response (UPR) is an evolutionarily conserved mechanism to allow cells to adapt to stress targeting the endoplasmic reticulum (ER). Induction of ER chaperone GRP78/BiP increases protein folding capacity; as such it represents a major survival arm of UPR. Considering the central importance of the UPR in regulating cell survival and death, evidence is emerging that cells evolve feedback regulatory pathways to modulate the key UPR executors, however, the precise mechanisms remain to be elucidated. Here, we report the fortuitous discovery of GRP78va, a novel isoform of GRP78 generated by alternative splicing (retention of intron 1) and alternative translation initiation. Bioinformatic and biochemical analyses revealed that expression of GRP78va is enhanced by ER stress and is notably elevated in human leukemic cells and leukemia patients. In contrast to the canonical GRP78 which is primarily an ER lumenal protein, GRP78va is devoid of the ER signaling peptide and is cytosolic. Through specific knockdown of endogenous GRP78va by siRNA without affecting canonical GRP78, we showed that GRP78va promotes cell survival under ER stress. We further demonstrated that GRP78va has the ability to regulate PERK signaling and that GRP78va is able to interact with and antagonize PERK inhibitor P58IPK. Our study describes the discovery of GRP78va, a novel cytosolic isoform of GRP78/BiP, and the first characterization of the modulation of UPR signaling via alternative splicing of nuclear pre-mRNA. Our study further reveals a novel survival mechanism in leukemic cells and other cell types where GRP78va is expressed
    • …
    corecore