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Background:  
 ‘Accelerated ageing’, assessed by adult DNA methylation predicts cardiovascular disease 
(CVD).  Adolescent accelerated aging might predict CVD earlier. We investigated whether 
epigenetic age acceleration (assessed age 17-years) associated with adiposity/CVD-risk 
measured (ages 17, 20, 22-years), and projected CVD by middle-age.  
Methods: DNA methylation measured in peripheral blood provided 2 estimates of epigenetic 
age acceleration; intrinsic (IEAA, (preserved across cell types) and extrinsic (EEAA, 
dependent on cell admixture and methylation levels within each cell type). 
Adiposity was assessed by anthropometry, ultrasound and DEXA (ages 17, 20, 22 years). 
CVD-risk factors (lipids, HOMA-IR, blood pressure, inflammatory markers) were assessed at 
age 17-years. CVD development by age 47 years was calculated by Framingham algorithms. 
Results are presented as regression coefficients/5-year epigenetic age acceleration 
(IEAA/EEAA) for adiposity, CVD-risk factors and CVD development. 
Results: In 995 participants (49.6% female, age 17.3+/-0.6 years), EEAA (/5-years) was 
associated with increased BMI of 2.4% (95%CI 1.2-3.6%) and 2.4% (0.8-3.9%) at 17 and 22 
years, respectively.  EEAA was associated with increases of 23% (3-33%) in hsCRP, 10% (4-
17%) in interferon-gamma induced protein (IP-10) and 4% (2-6%) in tumour necrosis factor 
receptor 2 (sTNFR2), adjusted for BMI and HOMA-IR.     EEAA(/5-years) results in a 4% 
increase in hard endpoints of CVD by 47 years old and a 3% increase, after adjustment for 
conventional risk factors.   
Conclusions: 
Accelerated epigenetic age in adolescence was associated with inflammation, BMI measured 
5 years later, and probability of middle-age CVD.  Irrespective whether this is cause or effect, 
assessing epigenetic age might refine disease prediction.   

An estimate of biological age determined from peripheral blood DNA from approx. 1,000 adolescents, 
may refine prediction of cardiovascular risk above and beyond traditional risk factors. 
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INTRODUCTION 

Obesity is a major risk factor for chronic age-related diseases, of which cardiovascular 
disease (CVD) (1) is a major contributor to global mortality.(2,3)  Mortality attributable to 
obesity occurs via downstream complications, including type 2 diabetes, heart disease(1) and 
specific cancers(4).  Individuals are not equally predisposed to these complications at the 
same level of obesity or obesogenic environmental exposure.  Assigning an accurate risk 
score for development of such complications may allow individualized treatment and 
prevention of the complications leading to morbidity and mortality. 

Epigenetic age can be calculated using DNA methylation array data from peripheral 
blood samples to predict chronological age.(5,6) Epigenetic age acceleration represents 
increased methylation age compared to chronological age, and has been shown to predict all-
cause and cause-specific mortality(5,7-10).  This suggests that quantifying accelerated 
epigenetic age might contribute to the prediction of healthy ageing and to personalization of 
health care.   

To date, epigenetic age acceleration has been studied in older individuals.(5,7-10) 
Variability in DNA methylation age is heavily influenced by environmental factors, with 
heritability decreasing after birth as individuals are exposed to unique environments in 
childhood, to reach an estimated 39% by adulthood.(5)     We argue that the identification of 
epigenetic age using DNA methylation markers would allow the early identification of 
individuals at increased risk of chronic disease, permitting earlier interventions to attenuate 
the progression of cardiovascular and metabolic disease. It is known that DNA methylation 
age increases logarithmically in childhood, before slowing to linear dependence in 
adulthood.(5) Therefore, late adolescence may be an excellent time during which to screen 
for epigenetic age acceleration to predict future disease risk, when DNA methylation age is 
stabilizing and to intervene, being a dynamic period during which changes can dramatically 
change health trajectories.(11)  Assigning an accurate biological age to obesity related 
disease involves a degree of complexity.  To address this, we investigated the association 
between epigenetic age acceleration, purporting to reflect biological age in relation to obesity 
and comorbidities (fat distribution, insulin resistance, components of the metabolic 
syndrome, and inflammatory markers) at ages 17, 20 and 22 years.  We also investigated the 
association between epigenetic age acceleration and a Framingham risk predictor for CVD 
(12). 

METHODS 

Participants were from the Western Australian Pregnancy Cohort (Raine) Study.(13)  
Pregnant women (n=2900) were recruited through the public antenatal clinic at King Edward 
Memorial Hospital and nearby private clinics in Perth, Western Australia between May 1989 
and November 1991. Total of 2868 newborns were available for follow-up. The King Edward 
Memorial Hospital and Princess Margaret Hospital Ethic Committees approved the study 
protocol. The participant and/or their primary caregiver provided written consent for their 
participation in the study. A total of 995 at the 17-year-old follow-up were included for 
analysis.  All measurements were performed by research personnel trained according to the 
study protocols described below. 

Anthropometry at 17, 20 and 22 years old 
Height was measured using a Stadiometer (Holtain, Crosswell, United Kingdom) to the 
nearest 0.1 cm. Weight was measured using a Digital Chair Scale (Wedderburn, New South 
Wales, Australia) to the nearest 100 g. Body Mass Index (BMI) was calculated as weight 
(kg)/ height (m2). Waist circumference was measured to the nearest centimeter.   

Measurements of adiposity 
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Adipose tissue thickness at 17 years was measured by ultrasound (Siemens Antares, 
Mountain View, CA, USA) using validated standardized criteria.(14)  Visceral adipose tissue 
thickness was measured as the distance between the anterior wall of the aorta and the internal 
face of the rectus abdominis muscle perpendicular to the aorta. Subcutaneous fat thickness 
was measured as the thickness of the fat tissue between the skin-fat interface and the linea 
alba. Subcutaneous fat compression was avoided. A single specialist radiologist blinded to 
the clinical and laboratory characteristics of the subjects interpreted the images.(15)  At 20-
years-old, dual-energy x-ray absorptiometry (DEXA) was performed.  A Norland XR-36 
densitometer (Norland Medical Systems, Inc., Fort Atkinson, WI, USA) was used to provide 
estimates of whole body fat, lean and soft tissue mass (g).(16)  

Measures of cardiovascular risk factors 
Blood pressure was measured by oscillometric sphygmomanometer (DINAMAP vital signs 
monitor 8100, DINAMAP XL vital signs monitor or DINAMAP ProCare 100, GE 
Healthcare) after resting 5 minutes and using the appropriate cuff size.  Six readings were 
taken while the subject was supine, every 2 minutes for 10 minutes. The average value was 
calculated after excluding the first reading.  Venous blood samples were taken after an 
overnight fast. Serum insulin, glucose,  triglycerides, total cholesterol, HDL-cholesterol 
(HDL-C), LDL-cholesterol (LDL-C), high sensitivity C-reactive protein (hsCRP), leptin and 
adiponectin were measured in the PathWest Laboratory at Royal Perth Hospital as 
described.(17)  HOMA-IR (molar units) was calculated by insulin (mIU/L) x glucose 
(mmol/L)/22.5.(18)  Plasma IL-18 was quantitated with a commercially available ELISA 
method (Medical Biological Laboratories, Nagoya, Japan) and plasma IL-18 binding protein 
(IL18BP primary isoform a) was measured using a DuoSet ELISA development system 
(R&D Systems, Minneapolis, MN, USA). Plasma concentrations of IP-10, sTNFR1 and 
sTNFR2 were quantified using cytometric Bead Array (CBA) Flex sets (BD PharMingen, 
San Diego, CA) on the BD FACSArrayTM bioanalyser (BD Biosciences, San Jose, California, 
USA). Procedures followed the manufacturer’s recommendations. Individual cytokine 
concentrations were determined using FCAP Array software (BD Biosciences).  

Environmental Factors 
The effect of maternal environmental factors on the biological clock of the offspring was 
tested. Maternal smoking habits during pregnancy were ascertained from questionnaires 
answered by the mother at enrolment (16-18 weeks) and 34 weeks gestation (maternal 
smoking (yes/no)).  Maternal stress score evaluated at the same timepoints during pregnancy 
was assessed using a 11- item questionnaire derived from the Tennant and Andrews (1977) 
Life Stress Inventory collected at 16-18 and 34 weeks gestation(19).  Mothers were asked 
whether they had experienced any of 11 major life stress events (pregnancy problems, death 
of a close friend or relative, separation or divorce, marital problems, problems with children, 
job loss (involuntary), partner’s job loss (involuntary), money problems, residential move or 
another stressful event).  At 16-18 weeks gestation mothers were asked if they had 
experienced any of the events since becoming pregnant and, at 34 weeks gestation, whether 
any of the events had been experienced in the previous four months. We calculated a total 
stressful life events index score throughout pregnancy from the sum of listed events, giving 
equal weight to each.(20)   

Maternal pre-pregnancy BMI was calculated as self-reported pre-pregnancy weight (kg) 
divided by height (m)2.  Height was confirmed by standardised procedures at enrolment 
between 16-20 weeks’ gestation, using a Harpenden Stadiometer (Holtain Ltd, Crymych, 
Wales, UK).  Maternal weight was obtained from medical records at enrolment and 34 
weeks.  Gestational weight gain rate was defined as the average weekly weight gain rate 
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between the start of pregnancy and 34 weeks of gestation.  Duration of breast feeding was 
obtained retrospectively from 12 month, 2 year and 3 year follow-up questionnaires.(21) 

The offspring environmental factors tested for associations included dietary patterns, 
physical activity and adolescent smoking and alcohol consumption at age 17 years.  Habitual 
dietary intakes were estimated at 17 years of age, by a semi-quantitative 212-item food-
frequency questionnaire (FFQ) developed by the Commonwealth Scientific and Industrial 
Research Organization.(22) The FFQ assessed usual dietary intake over the previous year and 
collected information on the average frequency of consumption and usual serving sizes. Daily 
nutrient and food-group intakes were estimated using Australian nutrient-composition tables.   
The FFQ has been validated against a 3-day food diary in a sub-group of this same 
cohort.(23)  Two dietary patterns, ‘Western’ and ‘Healthy’, were identified using factor 
analysis (PROC FACTOR in SAS) (maximum likelihood method) on intakes of all 38 food 
groups to identify major dietary patterns.(24) The two major dietary patterns explained 84% 
of the total variance in food group intakes. Every subject received a score for each dietary 
pattern measured on the z-scale. Physical activity was assessed using a self-reported 
questionnaire, based on exercise outside of school hours per week, where exercise was 
defined as activity causing breathlessness or sweating (≥4 times per week, 1-3 times per week 
and <once per week).(25)  Smoking at 17 years of age was assessed by a confidential online 
questionnaire (0=never smoked, 1=smoked prior to last 12 months, 2=smoked last 12 
months, 3=smoked in last 4 weeks).   Alcohol consumption information was obtained from 
an online questionnaire that asked about the subject’s intake during the past week. Alcohol 
consumption was defined as the average number of standard drinks consumed during the last 
7 days where 1 standard drink is 10g of alcohol.   

DNA Methylation Profiling 
DNA methylation was measured in 1192 (58 technical replicates) individuals from peripheral 
blood samples from participants at age 17 years using the Illumina HumanMethylation450K 
BeadChip.  Processing of the Illumina Infinium HumanMethylation450 BeadChips was 
carried out by the Centre for Molecular Medicine and Therapeutics (CMMT) 
http://www.cmmt.ubc.ca.  We used Bioconductor packages shinyMethyl (26) and MethylAid 
(27) to perform quality control checks on the samples, and based on several diagnostic plots, 
three samples were found to be outliers and excluded. The rnb.execute.gender.prediction() 
function from the Bioconductor RnBeads package (28) revealed a single discrepancy between 
actual and predicted gender and this sample was excluded.  Four participants with 
inconsistent results and identified as outliers (n=3) or gender misclassification (n=1) were 
removed.    Intentional SNP DMCpGs (n=65), sex chromosome DMCpG (n=11,648) and 
DMCpGs with a detection p-value > 0.05 in any sample (n=10,777) were removed.  A further 
160 probes with bead counts less than 3 in more than 5% of samples were removed.  DNA 
methylation beta-values were normalized using beta-mixture quantile dilation (BMIQ)(29). 
There was little evidence of a batch effect by bisulfite conversion batch and this was 
confirmed via permutation tests of association. 

A subset of these, 995 participants (50% female, 50% male) had two parents of European 
descent. Ancestry was determined by self-report from the mother where the ancestry of both 
mother and father were reported as “Caucasian”. 

Epigenetic age acceleration calculation 
Epigenetic age acceleration was calculated using BMIQ normalized betas using the online 
epigenetic age calculator(5) (https://dnamage.genetics.ucla.edu/)  on the 12th of January 2017.  
The “Advanced Analysis for Blood Data” and “Normalize Data” options were selected.  Two 
measures of epigenetic age acceleration, intrinsic epigenetic age acceleration (IEAA) and 
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extrinsic epigenetic age acceleration (EEAA) were calculated based on the Horvath(5) and 
Hannum(6) models.   

IEAA was calculated from the epigenetic age measure defined by  Horvath et al(5) using 
353 cytosine phosphate guanine (CpG) sites which correlate with chronological age in sorted 
cell types, tissues and organs.    IEAA is derived from the residual resulting from regression 
of Horvath DNA methylation age on chronological age and estimates of plasma blasts, naïve 
and exhausted CD8+T cells, NK, monocytes and granulocytes. IEAA is designed to capture 
cell-intrinsic properties of the ageing process that are preserved across cell types and organs.   

EEAA was calculated using the predicted epigenetic age based on the 71 CpGs in 
Hannum et al., 2013(6), generalized by 4 epigenetic inputs.  The contribution of immune 
blood cell types to age estimate is increased by weighting with cytotoxic T cells, exhausted 
(CD28-CD45RA-) cytotoxic T cells, and plasmablasts using the Klemera Doubal approach 
(30).  The weights were determined by correlation between respective variable and 
chronological age. EEAA was defined as the residual variation resulting from a univariate 
model regressing the resulting age estimate on chronological age.  EEAA is driven by both 
age-related changes in blood cell composition and intrinsic epigenetic changes 

Statistical Methods 

Associations between Cardio-metabolic Risk Factors and epigenetic age acceleration  
Linear regression models were fitted, assessing associations between measures of epigenetic 
age acceleration (IEAA or EEAA) with adiposity measures and related cardio-metabolic risk 
factors adjusted for sex.  IEAA and EEAA are reported per 5 years of age acceleration unless 
otherwise stated.  The adiposity measures included anthropometric measurements (BMI, 
waist circumference) at 17, 20 and 22 years and more specialized measures of adiposity at a 
single time-points (skin folds, subcutaneous and visceral fat thickness [17 years]; DEXA 
measured fat, lean and soft tissue mass [20 years]).  Other related classical CVD risk factors 
at 17 years included SBP, DBP, HOMA-IR, fasting triglycerides, cholesterol, LDL-C, HDL-
C, systemic inflammatory markers (hsCRP, IP-10, sTNFR1, sTNFR2, IL-18, free IL-18 and 
IL-18BP) and adipokines (leptin, adiponectin).  All outcome variables were transformed by 
natural logarithm if not normally distributed.  Interactions between sex and epigenetic age 
acceleration were tested with sex specific results only reported if the interaction was 
significant p<0.05.   

The models described thus far will be considered the main models for the study.  
For these primary analyses (associations of EEAA/IEAA with either adiposity or 

cardiometabolic outcomes) a method controlling the false discovery rate (FDR) (31) to 
account for multiple testing across 54 tests was applied.  The q-value threshold was selected 
to 0.05.   

Ascertaining relationship between epigenetic age acceleration and cardiovascular risk 
prediction scores  
Due to limitations in cohort studies for predicting long term cardiovascular endpoints, we 
have applied a surrogate measure validated to predict CVD events 30 years hence(12).  The 
validated algorithm is based on data collected from the Framingham Offspring cohort when 
they were aged 20-59.  These Framingham prediction scores were calculated in the current 
cohort based on measured risk factors (sex, age, systolic blood pressure, smoking, treated 
blood pressure, history of diabetes) and either BMI or lipid level (total cholesterol level) at 17 
years old.  By each method two Risk Scores (% risk) were calculated to predict either the risk 
of hard endpoints (coronary death, myocardial infarction, fatal or non-fatal stroke) or full 
CVD outcomes, which additionally includes coronary insufficiency, angina pectoris, transient 
ischemic attack, intermittent claudication or congestive heart failure.  The four resulting Risk 
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Scores are designated hard endpoint (using lipid) full CVD (using lipid), hard endpoint (using 
BMI) and full CVD (using BMI). 

The model that used epigenetic age acceleration to predict each of these Risk Scores was 
derived by linear regression firstly adjusted for age and sex. Then, to understand if epigenetic 
age acceleration predicted the Risk Score beyond traditional CVD risk factors, we added 
covariates consisting of classical cardiometabolic risk factors (BMI or waist circumference, 
HOMA-IR, SBP and triglycerides) selected in stepwise manner.  If both BMI and waist 
circumference were independently associated with the outcome, a single measure was 
selected in the final model, to avoid high collinearity.   

Potential confounder or mediators 
There are a multitude of potential confounder and mediators for the relationships tested in 
this study, including exposures which span the periconceptional, pregnancy and postnatal 
periods.  We have ascertained many of these including socioeconomic status (family income 
measured at recruitment), measures from early life (maternal stress and smoking during 
pregnancy, pre-pregnancy BMI, pregnancy weight gain rate, and duration of breast feeding) 
and environmental factors at 17 years old (including dietary patterns, physical activity and 
adolescent smoking and weekly alcohol consumption at age 17 years).  To select for potential 
confounders, we considered variables with a significant associations with environmental 
factors judged by a nominal p<0.05, which were taken forward in stepwise fashion to assess 
their influence on the association between biological age and BMI.   

Due to variable missingness of covariates and the likelihood that unaccounted 
confounding still exists, these results were reported selectively for the major outcome of BMI 
and were not considered the main models for this analysis. 

All analyses were undertaken on R version 3.3.2 and IBM SPSS Statistics for Windows, 
Version 24.0. Armonk, NY.  Significance criteria were set at α=0.05.  (31) 

RESULTS  

Characteristics of the population (Table 1) 
Of the 1192 participants who had Infinium 450K array data, 995 participants (49.6% female,) 
had two parents of European descent.  Of these participants, at the 17-year-old follow up, 870 
(50.3% female) had fasting blood samples and 744 (49.8% female) physical measurements 
taken. (Supplemental Figure 1(32))  A subset of the 995 participants had clinical data at the 
20 (n=757;50.6% females) and 22 (n=618; 50.3% female) year-old follow-ups.  In males, 
BMI was 22.6 (95% CI=22.2 to 23.0), 24.2 (95% CI=23.7 to 24.8) and 25.1 (95% CI=24.6 to 
25.5) kg/m2 at 17, 20 and 22-year-old follow-ups respectively.     In females, BMI was 23.1 
(95% CI=22.7 to 23.5), 24.2 (95% CI=23.7 to 24.8) and 25.0 (95% CI=24.3 to 25.6) kg/m2 at 
17, 20 and 22-year-old follow-ups respectively. The percentage risk for developing any CVD 
in 30 years’ time was 2.1% (95% CI 2.0-2.2) in males and 1.4% (95% CI=1.3-1.4) in 
females. 

Chronological age ranged from 16.0-19.8 years with [mean (SD)] 17.3 (1.9) years with no 
difference between males and females.  Across both sexes, IEAA had a mean (SD) of 0.08 
(3.7) years and EEAA 0.13 (5.3) years.  Males had greater intrinsic and extrinsic EAA 
compared to females.    

Interaction terms between sex and each of the measures of DNA methylation biological 
age were tested and none were significant.  Hence for the subsequent analyses, results are 
reported with males and females combined. 

Adiposity Associations with epigenetic age acceleration  
The relationships between 17-year-old IEAA and EEAA and measures of adiposity at three 
time-points (17, 20 and 22 years old) were investigated. (Supplemental Figure 2 (33), Table 
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2)  IEAA was not associated with any measures of adiposity.  However, EEAA was associated 
with BMI, waist circumference and total lean mass.  Log transformed BMI was associated 
with increased EEAA (per 5-years) at 17 years (β=0.024, p=1.1 x 10-4), 20 years (β=0.023, 
p=0.001) and 22 years (β=0.023, p=0.002).  This is equivalent to EEAA (per 5-years) being 
associated with 2.4% (95% CI 1.2 to 3.6%), 2.3% (95% CI 1.0 to 3.6%), and 2.4% (95% 0.8 
to 3.9%) increases in BMI at 17, 20 and 22 years respectively.  It was also associated with 
1.8% (95% CI 0.7 to 2.9%), and 1.7% (95% 0.4 to 3.0%) increases in waist circumference at 
20 and 22 years respectively.    

Beyond anthropometry, two further methods of measurement of fat distribution were 
undertaken in this cohort at two timepoints; namely ultrasound measurements of fat thickness 
at 17 years of age (visceral and subcutaneous) (n=548), and DEXA at 20 years of age (lean, 
soft tissue and fat mass) (n=565).  Of these measurements, only the association of EEAA with 
(log) lean mass measured by DEXA approached significance after correction for multiple 
testing (β=0.014, 95% CI 0.010 to 0.15, p=0.005). This is equivalent to EEAA (per 5-years) 
associating with a 1.4% (95% CI 0.4 to 2.4%) increase in lean mass.  

There were no associations between EEAA or IEAA and total fat mass or visceral fat 
thickness (all p>0.25). 

Associations between associated cardiometabolic factors and epigenetic age acceleration at 17 
years  
EEAA (per 5-years) was associated with log HOMA-IR (molar units) at 17 years (β=0.061, 
95% CI 0.017 to 0.104, p=0.007) (Table 3). Therefore, intrinsic and extrinsic age acceleration 
(per 5-years) were associated with 6.1% (95% CI 1.7 to 11.0%) and 5.4% (95% CI 0.0 to 
12.1%) increases, respectively, in HOMA-IR at 17 years of age.  Associations were not 
detected with lipids or blood pressure . 

Association of adipokines and inflammatory markers with epigenetic age acceleration  
Log serum leptin was associated with IEAA (β=0.12, p=0.005) at 17 years-old, but not with 
EEAA (Table 3).   Serum adiponectin was not associated with extrinsic or intrinsic EAA at 17 
years.  

EEAA was associated with log hsCRP (β=0.28 p=4.8 x10-10) and four circulating 
cytokines, namely IP10 (β=0.10, p=0.001), sTNFR2 (β=0.05, p=4.6 x10-5), IL-18 (β=0.04, 
p=0.011) and IL-18BP (β=0.029, p=0.002).   As BMI and insulin resistance are both highly 
pro-inflammatory states, we further adjusted these models for BMI and HOMA-IR.  This 
modestly reduced the coefficient to hsCRP (β=0.21, p=1.0 x10-6).  These adjustments 
minimally altered the coefficients to IP-10 (β=0.12, p=9.5 x10-5), sTNFR2 (β=0.04, p=3.8 
x10-4), IL-18 (β=0.03, p=0.055), IL-18BP (β=0.025, p=0.008) respectively.  These adjusted 
coefficients can be interpreted as increasing hsCRP, IP10 and sTNFR2 by 23% (95% CI 13 
to 33%), 10% (95% CI 4 to 17%) and 4% (2 to 6%) respectively.   

Prediction of Cardiovascular risk using epigenetic acceleration age prediction scores 
Having identified associations between epigenetic age acceleration and cardiometabolic risk 
factors, we investigated whether epigenetic age acceleration was associated with CVD Risk 
Scores. (Figure).   EEAA was associated with (log) CVD Risk Scores for hard endpoints 
(using lipids) (β=0.052, 95% CI 0.016 to 0.089, p=0.005), full CVD outcomes (using lipids) 
(β=0.046, 95% CI 0.015 to 0.077, p=0.004), hard endpoints (using BMI) (β=0.076, 95% CI 
0.033 to 0.119, p=0.001) and full CVD outcomes (using BMI) (β=0.067, 95% CI 0.029 to 
0.105, p=0.001).   All effects were attenuated but remained significant after adding classical 
cardiovascular risk factors.  EEAA remained independently associated with (log) CVD Risk 
Scores using lipids for calculation with respect to hard endpoints (β=0.038, 95% CI 0.008 to 
0.069, p=0.014) and full CVD outcomes (β=0.033, 95% CI 0.008 to 0.058, p=0.011) after 
adjustment for additional cardiovascular risk factors.  EEAA also remained independently 
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associated with (log) CVD Risk Scores using BMI for calculation with respect to hard 
endpoints (β=0.039, 95% CI 0.003 to 0.075, p=0.035) and full CVD outcomes (β=0.034, 95% 
CI 0.002 to 0.065, p=0.035) after adjustment for additional cardiovascular risk factors. 

The results equate to an interpretation that every 5-years of EEAA results in a 4% increase 
in hard endpoints of CVD by 47 years old and a 3% increase, after adjustment for 
conventional risk factors.  There was no association between IEAA with CVD prediction 
scores. 

Associations between biological age and environmental influences early in life and at 16 years  
IEAA was not associated with socioeconomic status (family income) or any of the 
environmental influences tested (Supplemental table 1 (34)). EEAA (per 5-year) was 
positively associated with the lowest (β=0.199, p=0.005) compared to the highest income 
bracket, prepregnancy BMI of the mother (β=0.015, p=0.048), duration of breastfeeding 
(months) (β=-0.01 p=0.047) and adolescent smoking in last 4 weeks compared to never 
smoked (β=0.289, p=0.003).    

Adjusting for potential confounders 
The significant associations between accelerated biological age and environmental influences 
were considered for inclusion as covariates in the model.  Significant associations (p<0.05) 
were observed between EEAA and potential confounders (prepregnancy maternal BMI, 
breastfeeding duration, socioeconomic status (measured by family income) and smoking 
history of adolescent at 17 years).  Hence these covariates were considered in stepwise 
fashion in further models predicting BMI at 17, 20 and 22 years old, in subsets with complete 
data for these variables. 

In Supplementary Table 2 (35), modest amelioration of the coefficient for EEAA was 
noted after consideration of these covariates. The coefficients varied from between [0.019 to 
0.023] without adjustment and between [0.013 to 0.016] after adjustment for the potential 
confounders.  After stepwise selection, only prepregnancy maternal BMI consistently 
remained significant in these models.     

DISCUSSION 

This study has shown that during the period of transition from adolescence to young 
adulthood, measures of epigenetic age acceleration, determined by DNA methylation from 
whole blood DNA, were associated with anthropometric and inflammation measurements. 
IEAA, theoretically preserved across cell types and organs after accounting for cell 
subtypes(36), was associated with increased leptin; while EEAA, theoretically dependent on 
both cell admixture and methylation levels within each cell type(36), was positively 
associated with BMI, waist circumference, HOMA-IR,  hsCRP, IP-10, sTNFR2, IL-18 and 
IL-18BP. There was no evidence for associations between either epigenetic age measure and 
fat thickness or mass, lipids, blood pressure or adiponectin.   

(36)Obesity induces a highly inflammatory systemic milieu with perturbations of white 
blood cell counts in adults(37) and children (38).  This is consistent with our findings that 
markers of adiposity (waist circumference and BMI) were positively associated with EEAA, 
whose key difference from IEAA being dependence on cell type proportions.  Similarly, 
systemic inflammatory markers (hsCRP, IP-10, sTNFR2, IL-18 and IL-18BP) were 
associated with EEAA.  As expected, obesity and some related inflammatory markers have 
partial dependency on counts of white cell subtypes. (36) 

Not all inflammatory markers tested were associated with epigenetic age acceleration.  
Those that were strongly associated with extrinsic (EEAA) could be characterized as marking 
inflammation that is non-specific and systemic.  Elevated C-reactive protein (CRP) is well 
documented in children and adolescents with the metabolic syndrome(39) and within adults 
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is associated with CVD (40,41). Tumour necrosis factor (TNF-α) is produced primarily by 
mononuclear phagocytes(42). Elevated plasma levels of TNF-receptor 1 and 2 have been 
associated with cardiovascular events(43) and childhood obesity(44).  In this study, only 
TNFR2 was associated with EEAA. Interferon-gamma induced protein of 10 kDa (IP-10) is a 
monocyte-derived pro-inflammatory chemokine that promotes the recruitment of 
lymphocytes and monocytes to sites of inflammation.   IP10 is expressed in human 
atherosclerotic plaques(45)  and plasma levels are elevated in patients with diabetes(46) and 
the metabolic syndrome(47). Interleukin-18 (IL-18) and its binding protein (IL-18BP) were 
also associated with EEAA.  IL-18 regulates both the innate and acquired immune 
responses(48) with high plasma levels being associated with central obesity, the metabolic 
syndrome(49) and CVD(50).  Soluble receptors for IL-18 exist but have low affinity for IL-
18.  By contrast, a secreted inhibitor, IL-18BP binds with a high affinity effectively 
preventing signal transduction.(51)  Therefore, IL-18BP may be a useful functional marker 
for IL-18 activity. In a mouse model, in vivo electrotransfer of an expression-plasmid DNA 
encoding for murine IL-18BP induced a switch from unstable to stable aortic plaque 
phenotype.(52)  From this study, we are unable to distinguish the direction of cause and 
effect.  However, our findings are consistent with age-related changes in immune functioning 
being associated with increased susceptibility to a wide range of diseases in later life.   

In our study, leptin was associated with IEAA, but not with EEAA.  IEAA is theoretically 
preserved across cell types and organs.  Leptin is an adipokine, while produced by adipose 
tissue has a direct etiological role on multiple tissues such as pancreas, liver and muscle in 
control of insulin sensitivity (53) and resistance (54).   

In a much older population of postmenopausal women, Quach et al (55) also observed 
that EEAA was associated with CRP, and BMI, but in contrast to our study also observed 
associations with lipids and SBP.   These differences may be due to our younger population 
who may have had less exposure to potentially confounding environmental factors. However, 
Quach et al in a second younger cohort used for replication (Chianti cohort -aged 30 and 
over) did not find associations with lipid levels and SBP. (55)   These latter findings are more 
in line with ours.  The Chianti cohort is of an age between our cohort and the original Quach 
discovery cohort.  Overall, the coefficients observed in our 17-year-olds were of a smaller 
magnitude than observed in the older cohorts. This implies that associations with lipids and 
SBP occur less consistently and probably later in life, and hence EEAA may not be good 
predictors of these.   

Epigenetic age acceleration predicts future obesity and risk of CVD 
Biological age acceleration was associated with BMI and waist circumference up to 5 

years hence, and with downstream complications of obesity (insulin resistance).  Quach et al 
showed that an increase in BMI was associated with an increase in EEAA in later life.(55)  It 
is difficult to untangle whether this association may be due to the known tracking of BMI 
from childhood into adulthood(56), however, measurement of EEAA in late childhood or 
early adulthood appears to predict future obesity.     

The use of CVD risk factor calculators (12,57) have been employed in the research and 
clinical setting for secondary and primary prevention. To date their widespread use has been 
mostly in older adults where validation is quicker due to proximity to disease endpoints and 
death.    Increasingly they have been applied in younger participants, as young as 18 years of 
age. We applied a Framingham calculation(12) that has been validated on younger 
participants of similar age to the current study.   We showed that EEAA independent of a 
traditional panel of cardiovascular risk factors is associated with all Framingham risk scores. 
This suggests that epigenetic biological age may be useful in refining the prediction of risk of 
developing downstream CVD from obesity.   
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This study is limited by its observational nature, whereby causation cannot be attributed, 
but only inferred.  The lack of intervention does make it impossible to determine if lifestyle 
or pharmaceutical interventions could modify DNA methylation age, and secondly if 
modifications are a consequence or causative of changes in CVD risk.  We have attempted to 
partly address these issues by using prospectively collected (avoiding recall bias) and 
longitudinal data (permitting direct observation 5 years in the future) and use of CVD risk 
scores validated for similarly aged subjects.  We acknowledge that these CVD risk scores are 
still an estimation and that we will not be able to verify how well these scores actually 
perform in this cohort for 2-3 decades.  The longitudinal data allowed us to demonstrate that 
the associations with adiposity persist up to 5 years subsequently.   Together with this, we 
demonstrated that epigenetic age acceleration refined prediction of Framingham risk scores. 
Therefore, epigenetic age acceleration appears to be a promising tool for prediction of CVD.  
Nevertheless, confirmation of causation will require future functional and interventional 
studies.  The study was also limited by missing data for adolescent smoking and alcohol 
consumption preventing any investigation of how it affected the association between EEAA 
and obesity.  A further limitation is that DNA methylation was measured from whole blood 
samples.  This introduces complexity in interpretation of the contribution of cellular 
heterogeneity in these tissues. Nevertheless, measurement in whole blood may have 
advantages for large scale screening, being more practical as any screening requiring cell 
sorting would be cost prohibitive and impractical due to lack of widespread laboratory 
expertise.   

This study shows that epigenetic age acceleration may further refine ability to identify 
those likely to develop hard endpoints of disease as a consequence of obesity but 
confirmation will require long term follow up of cohorts and replication in other studies. 
Screening specifically at the time of transition from adolescence to adulthood, might allow 
years for prevention of end points such as acute myocardial infarction, stroke, and vascular 
disease.  Further work is required to understand how acceleration in DNA methylation age is 
partitioned between environment and fixed genetics, and mediated by inflammation, to 
enable understanding of how modifiable this measurement is over time.    
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Figure:  Linear regression models to determine association between extrinsic epigenetic age 
acceleration (EEAA) and 30 year Framingham cardiovascular risk scores(12).  The coefficient 
and 95% confidence interval pertaining to EEAA are shown.  The Cardiovascular Risk Scores 
(%) predict the occurrence within 30 years of hard endpoints (coronary death, myocardial 
infarction, fatal or non-fatal stroke) and full CVD outcomes (additionally coronary 
insufficiency, angina pectoris, transient ischemic attack, intermittent claudication or 
congestive heart failure).  Model a is a minimally adjusted model (includes covariates of age 
and sex only).   Model b includes adjustment for classical cardiometabolic risk factors at 17-
years-old, where BMI or waist circumference, HOMA-IR, SBP and triglycerides were 
considered for inclusion in model using stepwise selection. c  Included in final model were 
age, sex, systolic blood pressure, triglyceride levels, HOMA, waist circumference at 17 years 
old, duration of exclusive breastfeeding, prepregnancy BMI, pregnancy income bracket. d 
Included in final model were age, sex, systolic blood pressure, triglyceride levels, HOMA, 
BMI at 17 years old, duration of exclusive breastfeeding, prepregnancy BMI, pregnancy 
income bracket. 

Table 1: Characteristics of subjects included within the study.  For categorical variables the 
number of cases and percentage are shown (n(%)).  For continuous variables, the mean and 
95% confidence interval are shown.  Where appropriate, the geometrical mean and 95% 
confidence interval around the geometrical mean is shown and indicated by #.  * indicates a 
difference detected between males and females with p-value <0.05. 

 Males Females 
 N=995 
n 501 494 
   
General/Demographic Features   
Low annual family income during pregnancy (<$24 000) 163 (34%) 170 (34%) 
   
Chronological and Biological Age   
Chronological Age at 17 year follow up 17.3 (17.2-17.3) 17.2 (17.2-17.3) 
IEAA (years) 0.41 (0.09 to 0.74) -0.26 (-0.58 to 0.06)* 
EEAA (years) 0.90 (0.47 to 1.34) -0.66 (-1.14 to -0.17)* 
   
Environmental Exposures   
  Early life factors   
Prepregnancy BMI (kg/m2) 22.4 (22.0 to 22.8) 22.6 (22.2 to 22.8) 
Total Weight Gain Rate (g/week) 497 (480 to 514) 500 (481 to 518) 
Maternal Stress# 1.53 (1.45 to 1.62) 1.56 (1.48 to 1.65) 
Maternal Smoking at 18 weeks 110 (22%) 123 (25%) 
Maternal Smoking at 34 weeks 57 (16%) 77 (16%)* 
Age breast feeding stopped (years)# 6.1 (5.6 to 6.7) 5.7 (5.2 to 6.3) 
   
17-year-old follow up N=870 
 432 438 
Cardiometabolic Parameters   
Weight (kg)  72.5 (71.1 to 74.0) 63.8 (62.6 to 65.0)* 
Height (cm) 179.1 (178.4 to 179.9) 166.3 (165.6 to 167.0)* 
BMI (kg/m2)# 22.6 (22.2 to 23.0) 23.1 (22.7 to 23.5) 
Waist circumference (cm)# 80.7 (79.6 to 81.8) 77.5 (76.3 to 78.7)* 
Glucose (mmol/L)# 4.8 (4.78 to 4.9) 4.6 (4.6 to 4.7)* 
Insulin (mIU/L) # 7.0 (6.6 to 7.5) 8.0 (7.4 to 8.6)* 
HOMA-IR (molar units)# 1.6 (1.5 to 1.7) 1.6 (1.5 to 1.7) 
Triglycerides (mmol/L)# 0.98 (0.94 to 1.02) 0.96 (0.92 to 0.99) 
HDL-C (mmol/L) 1.20 (1.18 to 1.23) 1.38 (1.35 to 1.41)* 
LDL-C (mmol/L) 2.23 (2.17 to 2.29) 2.46 (2.40 to 2.53)* 
Systolic Blood Pressure (mmHg) 118 (117-119) 109 (108-110)* 
Diastolic Blood Pressure (mmHg) 58 (57-58) 59 (59-60)* 
Inflammatory Markers   
hsCRP (mg/L)# 0.56 (0.49 to 0.63) 1.0 (0.86 to 1.11)* 
Leptin (µg/L) # 4.0 (3.6 to 4.4) 26.6 (24.8 to 28.6)* 
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Adiponectin (mg/L)# 7.2 (6.9 to 7.6) 9.9 (9.4 to 10.3)* 
IL-18 (pg/ml)# 302 (291 to 314) 291 (280 to 303)* 
IL18BP (ng/ml)# 14.2 (13.9 to 14.6) 12.6 (12.3 to 14.6)* 
IP10  (pg/ml)# 110 (101 to 119) 99 (91 to 108)* 
sTNFR1 (pg/ml)# 363 (350 to 376) 310 (298 to 324)* 
sTNFR2 (pg/ml)# 3242 (3148 to 3339) 3153 (3054 to 3255)* 
Environmental factors at 17-years-old   
Dietary Patterns (z-score)^   

   Healthy -0.12 (-0.23 to -0.01) 0.09 (-0.01 to 0.19)* 
   Western 0.32 (0.21 to 0.43) -0.37 (-0.44 to -0.29)* 

Physical Activity∫   
≤1/week 91 (28%) 191 (51%) 

2-3 times per week 126 (38%) 108 (29%) 
≥4/week 114 (34%) 75 (20%)* 

Smoking (yes)¥ 73 (64%) 87 (62%) 
Alcohol consumption (number of standard drinks during 
the last 7 days)^^ 

12.3 (10.6 to 13.9) 7.2 (6.4 to 8.1) 

CVD risk scores   
All CVD (using lipids) (%) 2.1 (2.0 to 2.2) 1.4 (1.3 to 1.4)* 
Hard Endpoints (using lipids) (%) 0.9 (0.9 to 1.0) 0.5 (0.5 to 0.5)* 
All CVD (using BMI) (%) 2.7 (2.5 to 2.8) 1.5 (1.4 to 1.6)* 
Hard Endpoints (using BMI) (%) 1.2 (1.1 to 1.3) 0.5 (0.5 to 0.6)* 
   
20-year-old follow up N=757 
 374 383 
BMI  (kg/m2)# 24.2 (23.7 to 24.8) 24.2 (23.7 to 24.8) 
Waist circumference (cm)# 82.7 (81.5 to 83.9) 77.2 (75.3 to 78.4)* 
Fat Mass (kg)║ 15.88 (14.97 to 16.84) 25.63 (24.57 to 26.74)* 
Lean Mass (kg) 57.35 (56.54 to 58.17) 36.76 (36.25 to 37.28)* 
   
22 year old follow up N=618 
 307 311 
BMI  (kg/m2)# 25.1 (24.6 to 25.5) 25.0 (24.3 to 25.6) 
Waist circumference (cm)# 86.0 (84.7 to 87.3) 80.2 (78.6 to 81.8)* 

# Geometric mean and 95% confidence interval shown. 
*Difference detected between males and females with p<0.05 
^ n=548 
∫ n=705 
¥ n=255, percentage of those who answered the question is shown. 
^^n=677 
║ n=693 

Table 2:  Associations between epigenetic age acceleration (IEAA and EEAA) with measures 
of adiposity.  Anthropometry includes BMI and waist at 17, 20 and 22-year-old follow ups.  
Measures of adiposity include 17-year-old skin folds, ultrasound fat tissue thickness at 17 
years, and 20-year-old DEXA body composition measurements.   

  IEAA (5 years)b EEAA (5 years) 
  Β (95% CI) p Β (95%CI) p 
Anthropometry      
BMI (kg/m2)a 17 year old 0.016 0.069 0.024 1.1 x 10-4* 
  (-0.001 to 0.033)  (0.012 to 0.036)  
 20 year old 0.010 0.27 0.023 0.001* 
  (-0.008 to 0.029)  (0.010 to 0.036)  
 22 year old 0.020 0.062 0.023 0.002* 
  (-0.001 to 0.041)  (0.009 to 0.038)  
Waist (cm) a  17 year old 0.012 0.083 0.008 0.110 
  (-0.001 to 0.026)  (0.000 to 0.019)  
 20 year old 0.009 0.22 0.018 0.002* 
  (-0.005 tp 0.024)  (0.005 to 0.026)  
 22 year old 0.014 0.10 0.017 0.008* 
  (-0.002 to 0.031)  (0.004 to 0.027)  
Ultrasound measured 
thickness of fat layers 

17 year old     

Subcutaneous Fat (cm) a  0.084 0.015 0.033 0.172 
  (0.017 to 0.153)  (-0.013 to 0.084)  
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Visceral Fat (cm) a  0.008 0.73 0.004 0.788 
  (-0.034 to 0.051)  (-0.024 to 0.037)  
DEXA 20 year old     
Lean Mass (kg) a  0.000 0.98 0.014 0.005* 
  (-0.013 to 0.014)  (0.004 to 0.023)  
Soft Tissue mass (kg) a  0.009 0.38 0.070 0.037 
Fat Mass (kg) a  0.03 0.18 0.02 0.44 
  (-0.01 to 0.08)  (-0.02 to 0.05)  

* Values which remain significant after FDR correction for multiple testing are shown in bold font and indicated 
with *.  FDR was applied across 54 tests encompassing results presented in tables 2 and 3.     
a Log transformed 

Table 3: Associations between epigenetic age acceleration (IEAA and EEAA) with measured 
cardiometabolic risk factors and inflammatory markers at 17 years old.  

 IEAA (5 years)  EEAA (5 years)  
 Β (95%CI) p Β (95%CI) p 
Other cardiometabolic risk factors     
HOMA (molar Units)  a 0.052 0.097 0.061 0.007* 
 (-0.009 to 0.114)  (0.017 to 0.104)  
SBP (mm Hg) 0.27 0.60 0.5 0.11 
 (-0.60 to 1.22)  (-0.1 to 1.2)  
DBP (mm Hg) -0.08 0.80 -0.06 0.78 
 (-0.65 to 0.56)  (-0.42 to 0.42)  
Triglycerides (mmol/L) a -0.007 0.71 0.012 0.40 
 (-0.046 to 0.031)  (-0.016 to 0.039)  
Cholesterol (mmol/L) -0.014 0.70 0.029 0.24 
 -0.083 to 0.055  -0.020 to 0.078  
LDL-C (mmol/L) -0.009 0.78 0.043 0.049 
 (-0.069 to 0.052)  (0.000 to 0.086)  
HDL-C (mmol/L) -0.001 0.96 -0.022 0.014 
 (-0.025 to 0.024)  -0.040 to -0.005)  
Inflammatory Markers     
Adipokines     
Leptin a 0.120 0.005* 0.042 0.165 
 (0.037 to 0.203)  (-0.017 to 0.101)  
Adiponectin a 0.024 0.277 -0.037 0.020 
 (-0.022 to 0.066)  (-0.068 to 0.006)  
Systemic inflammatory markers     
hsCRP a -0.012 0.84 0.276 4.8 x10-10 * 
 (-0.128 to 0.104)  (0.178 to 0.340)  
Circulating cytokines     
IP-10 a -0.026 0.45 0.100 0.001* 
 (-0.106 to 0.054)  (0.0143 to 0.156)  
sTNFR1 a -0.011 0.57 0.002 0.88 
 (-0.048 to 0.027)  (-0.025 to 0.029)  
sTNFR2 -0.010 0.52 0.046 4.6  x10-5 * 
 (-0.039 to 0.020)  (0.021 to 0.063)  
IL-18 -0.023 0.24 0.037 0.011* 
 (-0.060 to 0.015)  (0.006 to 0.059)  
Free IL-18 -0.024 0.23 0.000 0.97 
 (-0.063 to 0.015)  (-0.028 to 0.028)  
IL-18 BP 0.000 1.00 0.029 0.002* 
 (-0.024 to 0.024)  (0.011 to 0.045)  

* Values which remain significant after FDR correction for multiple testing are shown in bold font and indicated 
with *.  FDR was applied across 54 tests encompassing results presented in tables 2 and 3.  a Log transformed 
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