135 research outputs found

    Ultrasound-assisted extraction of natural products

    Full text link
    Ultrasound-assisted extraction (USAE) is an interesting process to obtain high valuable compounds and could contribute to the increase in the value of some food by-products when used as sources of natural compounds. The main benefits will be a more effective extraction, thus saving energy, and also the use of moderate temperatures, which is beneficial for heat-sensitive compounds. For a successful application of the USAE, it is necessary to consider the influence of several process variables, the main ones being the applied ultrasonic power, the frequency, the extraction temperature, the reactor characteristics, and the solvent-sample interaction. The highest extraction rate is usually achieved in the first few minutes, which is the most profitable period. To optimize the process, rate equations and unambiguous process characterization are needed, aspects that have often been lacking. © 2011 Springer Science+Business Media, LLC.The authors thank the Generalitat Valenciana for their financial support in project PROMETEO/2010/062 and the Caja de Ahorros del Mediterraneo for M.D. Esclapez's pre-doctoral grant.Esclapez Vicente, MD.; García Pérez, JV.; Mulet Pons, A.; Cárcel Carrión, JA.; Esclapez, MD. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Reviews. 3(2):108-120. https://doi.org/10.1007/s12393-011-9036-6S10812032Abad Romero B, Bou-Maroun E, Reparet JM, Blanquet J, Cayot N (2010) Impact of lipid extraction on the dearomatisation of an Eisenia foetida protein powder. Food Chem 119:459–466Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715Atchley AA, Crum LA (1988) Acoustic cavitation and bubble dynamics. In: Suslick KS (ed) Ultrasound, its chemical, physical, and biological effects. VHS Publishers, Weinheim, pp 1–64Arnold G, Leiteritz L, Zahn S, Rohm H (2009) Ultrasonic cutting of cheese: composition affects cutting work reduction and energy demand. Int Dairy J 19:314–320Barbero GF, Liazid A, Palma M, Barroso CG (2008) Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta 75:1332–1337Benedito J, Carcel JA, Sanjuan N, Mulet A (2000) Use of ultrasound to assess Cheddar cheese characteristics. Ultrasonics 38:727–730Benedito J, Carcel JA, Rossello C, Mulet A (2001) Composition assessment of raw meat mixtures using ultrasonics. Meat Sci 57:365–370Bhaskaracharya RK, Kentish S, Ashokkumar M (2009) Selected applications of ultrasonics in food processing. Food Eng Rev 1:31–49Boonkird S, Phisalaphong C, Phisalaphong M (2008) Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrason Sonochem 15:1075–1079Cárcel JA, Benedito J, Bon J, Mulet A (2007) High intensity ultrasound effects on meat brining. Meat Sci 76:611–619Cárcel JA, Benedito J, Rosselló C, Mulet A (2007) Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. J Food Eng 78:472–479Cavitus (2009) Grape colour and flavour extraction (Pat. Pend.) for red must extraction http://www.cavitus.com . Crafers. Accessed 10 Jan 2011Chea Chua S, Ping Tan C, Mirhosseini H, Ming Lai O, Long K, Sham Baharin B (2009) Optimization of ultrasound extraction condition of phospholipids from palm-pressed fiber. J Food Eng 92:403–409Chena R, Menga F, Zhang S, Liu Z (2009) Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Sep Purif Technol 66:340–346Chivate MM, Pandit AB (1995) Quantification of cavitation intensity in fluid bulk. Ultrason Sonochem 2:19–25Da Porto C, Decorti D (2009) Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvone-rich) plants: comparison with conventional hydrodistillation. Ultrason Sonochem 16:795–799Da Porto C, Decorti D, Kikic I (2009) Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem 112:1072–1078Domínguez H, Núñez MJ, Lema JM (1994) Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chem 49:271–286Dong J, Liu Y, Liang Z, Wanga W (2010) Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason Sonochem 17:61–65Entezari MH, Kruus P (1994) Effect of frequency on sonochemical reactions. I: oxidation of iodide. Ultrason Sonochem 1:75–79Esclapez MD, Sáez V, Milán-Yáñez D, Tudela I, Louisnard O, González-García J (2010) Sonoelectrochemical treatment of water polluted with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010–1020Ferraro V, Cruz IB, Ferreira R, Malcata JFX, Pintado ME, Castro PML (2010) Valorisation of natural extracts from marine source focused on marine by-products: review. Food Res Int 43:2221–2233Fischer CH, Hart EJ, Henglein AJ (1986) Hydrogen/deuterium isotope exchange in the hydrogen deuteride-water system under the influence of ultrasound. Phys Chem 90:3059–3060Garcia-Noguera J, Weller CL, Oliveira FIP, Rodrigues S, Fernandes FAN (2010) Dual-stage sugar substitution in strawberries with a Stevia-based sweetener. Innovative Food Sci Emerg Technol 11:225–230García-Pérez JV, Cárcel JA, de la Fuente-Blanco S, Riera-Franco de Sarabia E (2006) Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics 44:539–543García-Pérez JV, García-Alvarado MA, Carcel JA, Mulet A (2010) Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): Influence of drying conditions. J Food Eng 101:49–58González-García J, Sáez V, Tudela I, Díez-Garcia MI, Esclapez MD, Louisnard O (2010) Sonochemical treatment of water polluted by chlorinated organocompounds. A review. Water 2:28–74Handa SS, Preet S, Khanuja S, Longo G, Rakesh DD (2008) Extraction Technologies for Medicinal and Aromatic Plants. United Nations Industrial Development Organization and the International Centre for Science and High Technology, TriesteHemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem 13:543–548Hielscher (2011) Teltow http:// www.hielscher.com . Accessed 10 Jan 2011Hu Y, Wang T, Wang M, Han S, Wan P, Fan M (2008) Extraction of isoflavonoids from Pueraria by combining ultrasound with microwave vacuum. Chem Engin Process 47:2256–2261Ince NH, Tezcanli G, Belen RK, Apikyan PG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B 29:167–176Jadhav D, Rekha BN, Gogate PR, Rathod VK (2009) Extraction of vanillin from vanilla pods: a comparison study of conventional soxhlet and ultrasound assisted extraction. J Food Eng 93:421–426Ji J-b, Lu X-h, Cai M-q, Xu C-c (2006) Improvement of leaching process of Geniposide with ultrasound. Ultrason Sonochem 13:455–462Kanthale PM, Gogate PR, Pandit AB, Wilhelm AM (2003) Mapping of an ultrasonic horn: link primary and secondary effects of ultrasound. Ultrason Sonochem 10:331–335Karki B, Lamsal BP, Jung S, van Leeuwen JH, Pometto AL III, Grewell D, Khanal SK (2010) Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J Food Eng 96:270–278Kardos N, Luche J-L (2001) Sonochemistry of carbohydrate compounds. Carbohydr Res 332:115–131Kotronarou A, Mills G, Hoffmann MR (1991) Ultrasonic Irradiation of para-Nitrophenol in Aqueous Solution. J Phys Chem 95:3630–3638Kuijpers MWA, Kemmere MF, Keurentjes JTF (2002) Calorimetric study of the energy efficiency for ultrasound-induced radical formation. Ultrasonics 40:675–678Leighton TG (2007) What is ultrasound? Prog Biophys Mol Biol 93:3–83Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49:885–900Li H, Pordesimo L, Weiss J (2004) High intensity ultrasound-assisted extraction of oil from soybeans. Food Res Int 37:731–738Liu J, Li J-W, Tang J (2010) Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process 88:215–221Lianfu Z, Zelong L (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731–737Liazid A, Schwarz M, Varela RM, Palma M, Guillén DA, Brigui J, Macías FA, Barroso CG (2010) Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds. Food Bioprod Process 88:247–252Londoño-Londoño J, Rodrigues de Lima V, Lara O, Gil A, Crecsynski Pasa TB, Arango GJ, Ramirez Pineda JR (2010) Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem 119:81–87Lou Z, Wang H, Zhang M, Wang Z (2010) Improved extraction of oil from chickpea under ultrasound in a dynamic system. J Food Eng 98:13–18Louisnard O, González-García J, Tudela I, Klima J, Sáez V, Vargas-Hernández Y (2009) FEM simulation of a sono-reactor accounting for vibrations of the boundaries. Ultrason Sonochem 16:250–259Luque de Castro MD, Priego-Capote F (2007) Analytical Applications of Ultrasound, Vol. 26, Techniques and Instrumentation in Analytical Chemistry. Elsevier Science, AmsterdamMa Y, Ye X, Hao Y, Xu G, Xu G, Liu D (2008) Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason Sonochem 15:227–232Ma Y, Chen J-C, Liu Dong-Hong, Ye X-Q (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem 16:57–62Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot. OH and. cntdot. H) by spin trapping. J Chem Soc 104:3537–3539Margulis MA, Margulis IM (2003) Calorimetric method for measurement of acoustic power absorbed in a volume of liquid. Ultrason Sonochem 10:343–345Martin CJ, Law ANR (1983) Design of thermistor probes for measurement of ultrasound intensity distributions. Ultrasonics 21:85–90Mason TJ, Lorimer JP, Bates DM, Zhao Y (1994) Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem 1:91–95Meinhardt (2011) Leipzig. http://www.meinhardt-ultraschall.de . Accessed 10 Jan 2011Montalbo-Lomboy M, Khanal SK, van Leeuwen JH, Raman DR, Dunn L Jr, Grewell D Jr (2010) Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous Systems. Ultrason Sonochem 17:939–946Mulet A, Cárcel JA, Sanjuán N, Bon J (2003) New food drying technologies. Use of ultrasound. Food Sci Technol Int 9:215–221Naguleswaran S, Vasanthan T (2010) Dry milling of field pea (Pisum sativum L.) groats prior to wet fractionation influences the starch yield and purity. Food Chem 118:627–633Orozco-Solano M, Ruiz-Jiménez J, Luque de Castro MD (2010) Ultrasound-assisted extraction and derivatization of sterols and fatty alcohols from olive leaves and drupes prior to determination by gas chromatography–tandem mass spectrometry. J Chromatogr A 1217:1227–1235Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innovative Food Sci Emerg Technol 9:147–154Price GJ (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason TJ (ed) Advances in sonochemistry, vol 1. Jai Press, Cambridge, pp 231–287Riener J, Noci G, Cronin DA, Morgan DJ, Lyng JG (2010) A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chem 119:1108–1113Riera E, Golás Y, Blanco A, Gallego JA, Blasco M, Mulet A (2004) Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason Sonochem 11:241–244Riera E, Blanco A, García J, Benedito J, Mulet A, Gallego-Juárez JA, Blasco M (2010) High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Physics Procedia 3:141–146Roldán-Gutiérrez JM, Ruiz-Jiménez J, Luque de Castro MD (2008) Ultrasound-assisted dynamic extraction of valuable compounds from aromatic plants and flowers as compared with steam distillation and superheated liquid extraction. Talanta 75:1369–1375Romdhane M, Gourdon C (2002) Investigation in solid–liquid extraction: influence of ultrasound. Chem Eng J 87:11–19Rong L, Kojima Y, Koda S, Nomura H (2008) Simple quantification of ultrasonic intensity using aqueous solution of phenolphthalein. Ultrason Sonochem 8:11–15Sáez V, Frias-Ferrer A, Iniesta J, Gonzalez-Garcıa J, Aldaz A, Riera E (2005) Chacterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods. Ultrason Sonochem 12:59–65Sáez V, Frias-Ferrer A, Iniesta J, Gonzalez-Garcıa J, Aldaz A, Riera E (2005) Characterization of a 20 kHz sonoreactor. Part II: analysis of chemical effects by classical and electrochemical methods. Ultrason Sonochem 12:67–72Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extraction–A review. J Food Eng 95:240–253Science Direct Database (2011) www.sciencedirect.com (Data of consulting: February 2011)Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331Starmans DAJ, Nijhuis HH (1996) Extraction of secondary metabolites from plant material: a review. Trends Food Sci Technol 7:191–197Sivakumar V, Lakshmi Anna J, Vijayeeswarri J, Swaminathan G (2009) Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrason Sonochem 16:782–789Stanisavljevic IT, Lazic ML, Veljkovic VB (2007) Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrason Sonochem 14:646–652Sun Y, Liu D, Chen J, Ye X, Yu D (2011) Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-b-carotene from citrus peels. Ultrason Sonochem 18:243–249Suslick KS (2001) Sonoluminescence and sonochemistry. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 17, 3rd edn. Academic Press, San Diego, pp 363–376Trabelsi F, Ait-Iyazidi H, Berlan J, Fabre PL, Delmas H, Wilhelm AM (1996) Electrochemical determination of the active zones in a high-frequency ultrasonic reactor. Ultrason Sonochem 3:125–130Veillet S, Tomao V, Chemat F (2010) Ultrasound assisted maceration: an original procedure for direct aromatisation of olive oil with basil. Food Chem 123:905–911Velickovic DT, Milenovic DM, Ristic MS, Veljkovic VB (2008) Ultrasonic extraction of waste solid residues from the Salvia sp. Essential oil hydrodistillation. Biochem Eng J 42:97–104Vercet A, Burgos J, Crelier S, Lopez-Buesa P (2001) Inactivation of proteases and lipases by ultrasound. Innovative Food Sci Emerg Technol 2:139–150Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innovative Food Sci Emerg Technol 9:161–169Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313Virot M, Tomao V, Le Bourvellec C, Renard CMCG, Chemat F (2010) Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason Sonochem 17:1066–1074Wang J, Sun B, Cao Y, Tian Y, Li X (2008) Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 106:804–810Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312Wei X, Chen M, Xiao Ja, Liu Y, Yu L, Zhang H, Wang Y (2010) Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr Polym 79:418–422Weissler A, Cooper HW, Snyder S (1950) Chemical effects of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Am Chem Soc 72:1769–1775Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz MJ, Martín-Rodríguez A (2009) Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids 23:1096–1102Yang B, Yang H, Li J, Li Z, Jiang Y (2011) Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chem 124:551–555Yang Y, Zhang F (2008) Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrason Sonochem 15:308–313Zhang Z-S, Wang L-J, Li D, Jiao S-S, Chena XD, Maoa Z-H (2008) Ultrasound-assisted extraction of oil from flaxseed. Sep Purif Technol 62:192–198Zhang H-F, Yang X-H, Zhao L-D, Wang Y (2009) Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innovative Food Sci Emerg Technol 10:54–60Zhang Q-A, Zhang Z-Q, Yue X-F, Fan X-H, Li T, Chen S-F (2009) Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem 116:513–518Zhao S, Kwok K-C, Liang H (2007) Investigation on ultrasound assisted extraction of saikosaponins from Radix Bupleuri. Sep Purif Technol 55:307–312Zhu KX, Sun X-H, Zhou H-M (2009) Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. J Cereal Sci 50:266–271Zheng L, Sun D-W (2006) Innovative applications of power ultrasound during food freezing processes—a review. Trends Food Sci Technol 17:16–23Zou Y, Xie C, Fan G, Gu Z, Han Y (2010) Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innovative Food Sci Emerg Technol 11:611–61

    An overview of tissue engineering approaches for management of spinal cord injuries

    Get PDF
    Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed

    Foam-Mat Freeze-Drying of Blueberry Juice by Using Trehalose-β-Lactoglobulin and Trehalose-Bovine Serum Albumin as Matrices

    Get PDF
    This study aimed to evaluate the effect of pure protein compounds and trehalose incorporated into blueberry juice for foam-mat freeze-drying on the foam and powder properties. Foam-mat freeze-drying (FMFD) of blueberry juice was tested at − 55 °C for 24 h. Matrices used were trehalose + β-lactoglobulin (T3BL1) and trehalose + bovine serum albumin (T3A1) and compared with maltodextrin + whey protein isolate (M3W1). Physicochemical properties of foam and powder, e.g., foam stability, foam density, moisture, rehydration time, color, particle morphology, total phenolic, and anthocyanins (total and individuals), were investigated. T3BL1 and T3A1 had more stable foam than M3W1. However, overrun of T3BL1 and T3A1 foamed were inferior to the M3W1 sample. The M3W1 sample recovered 79% powder (dry weight) and was superior to others. Rehydration time of powdered T3BL1 and T3A1, with bulk densities of 0.55–0.60 g cm−3, was the fastest (34–36 s). The blueberry powders of M3W1 showed more irregular particle size and shape, while the samples with trehalose and pure proteins generated particles of more uniform size with obvious pores. T3BL1 and T3A1 showed less redness (a*) values than the M3W1 product. All samples were considered pure red due to hue values < 90. M3W1 was superior in total phenolic content (TPC) and total monomeric anthocyanins (TMA) compared with both samples made with trehalose + β-lactoglobulin and trehalose+bovine serum albumin. Delphinidin-3-glucoside (Del3Gl) concentration was found to be higher in M3W1. Also, M3W1 had higher cyanidin-3-glucoside (Cyn3Gl) and malvidin-3-glucoside (Mal3Gl) concentration. M3W1 also prevented the degradation of these bioactive compounds better than the other FMFD samples. The use of pure proteins and trehalose as matrices in the FMFD process had little advantage compared with maltodextrin/whey protein isolate. Thus, maltodextrin/whey protein isolate seems an ideal matrix for the manufacture of FMFD blueberry

    Development and Validation of a Risk Score for Chronic Kidney Disease in HIV Infection Using Prospective Cohort Data from the D:A:D Study

    Get PDF
    Ristola M. on työryhmien DAD Study Grp ; Royal Free Hosp Clin Cohort ; INSIGHT Study Grp ; SMART Study Grp ; ESPRIT Study Grp jäsen.Background Chronic kidney disease (CKD) is a major health issue for HIV-positive individuals, associated with increased morbidity and mortality. Development and implementation of a risk score model for CKD would allow comparison of the risks and benefits of adding potentially nephrotoxic antiretrovirals to a treatment regimen and would identify those at greatest risk of CKD. The aims of this study were to develop a simple, externally validated, and widely applicable long-term risk score model for CKD in HIV-positive individuals that can guide decision making in clinical practice. Methods and Findings A total of 17,954 HIV-positive individuals from the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study with >= 3 estimated glomerular filtration rate (eGFR) values after 1 January 2004 were included. Baseline was defined as the first eGFR > 60 ml/min/1.73 m2 after 1 January 2004; individuals with exposure to tenofovir, atazanavir, atazanavir/ritonavir, lopinavir/ritonavir, other boosted protease inhibitors before baseline were excluded. CKD was defined as confirmed (>3 mo apart) eGFR In the D:A:D study, 641 individuals developed CKD during 103,185 person-years of follow-up (PYFU; incidence 6.2/1,000 PYFU, 95% CI 5.7-6.7; median follow-up 6.1 y, range 0.3-9.1 y). Older age, intravenous drug use, hepatitis C coinfection, lower baseline eGFR, female gender, lower CD4 count nadir, hypertension, diabetes, and cardiovascular disease (CVD) predicted CKD. The adjusted incidence rate ratios of these nine categorical variables were scaled and summed to create the risk score. The median risk score at baseline was -2 (interquartile range -4 to 2). There was a 1: 393 chance of developing CKD in the next 5 y in the low risk group (risk score = 5, 505 events), respectively. Number needed to harm (NNTH) at 5 y when starting unboosted atazanavir or lopinavir/ritonavir among those with a low risk score was 1,702 (95% CI 1,166-3,367); NNTH was 202 (95% CI 159-278) and 21 (95% CI 19-23), respectively, for those with a medium and high risk score. NNTH was 739 (95% CI 506-1462), 88 (95% CI 69-121), and 9 (95% CI 8-10) for those with a low, medium, and high risk score, respectively, starting tenofovir, atazanavir/ritonavir, or another boosted protease inhibitor. The Royal Free Hospital Clinic Cohort included 2,548 individuals, of whom 94 individuals developed CKD (3.7%) during 18,376 PYFU (median follow-up 7.4 y, range 0.3-12.7 y). Of 2,013 individuals included from the SMART/ESPRIT control arms, 32 individuals developed CKD (1.6%) during 8,452 PYFU (median follow-up 4.1 y, range 0.6-8.1 y). External validation showed that the risk score predicted well in these cohorts. Limitations of this study included limited data on race and no information on proteinuria. Conclusions Both traditional and HIV-related risk factors were predictive of CKD. These factors were used to develop a risk score for CKD in HIV infection, externally validated, that has direct clinical relevance for patients and clinicians to weigh the benefits of certain antiretrovirals against the risk of CKD and to identify those at greatest risk of CKD.Peer reviewe

    Methods of measuring rheological properties of interfacial layers (Experimental methods of 2D rheology)

    Full text link

    Learning to Play Board Games using Temporal Difference Methods

    No full text
    A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game position evaluation function. In this paper we examine and compare three different methods for generating training games: (1) Learning by self-play, (2) Learning by playing against an expert program, and (3) Learning from viewing experts play against themselves. Although the third possibility generates highquality games from the start compared to initial random games generated by self-play, the drawback is that the learning program is never allowed to test moves which it prefers. We compared these three methods using temporal difference methods to learn the game of backgammon. For particular games such as draughts and chess, learning from a large database containing games played by human experts has as a large advantage that during the generation of (useful) training games, no expensive lookahead planning is necessary for move selection. Experimental results in this paper show how useful this method is for learning to play chess and draughts

    Micellization and adsorption of phospholipids and soybean oil onto hydrophilic and hydrophobic surfaces in nonaqueous media

    No full text
    Micelle formation of phospholipids (PL) in bulk was investigated in nonaqueous media. Dye solubilization was used to determine the critical micelle concentration (CMC) of reverse micelles of phospholipids in a hexane-oil environment. The CMC, which represents the total PL monomer concentration in bulk, was also studied as a function of amount of water present in the system. The CMC was found to decrease with the addition of water. In addition, the sign of the surface charge of phospholipid micelles was determined in nonaqueous media using the phase analysis light scattering technique (PALS). Phospholipid reversed micelles appear to exhibit a negative charge even in nonaqueous media due possibly to a trace amount of water trapped inside the polar head center. These results are significant to the understanding of membrane separation processes since the main objective is to separate out micellar aggregates from hexane-oil mixtures. Two important factors which control the efficiency of membrane separations are: size exclusion and chemical interaction between membrane surfaces and bulk species. The micelle formation affects separation in a positive way since monomers are believed to pass through the membranes more easily than micelles. On the other hand adsorption of bulk species to membrane surfaces is frequently cited as the primary cause of fouling which results in pore plugging. Adsorption behavior of phospholipids and soybean oil onto acid (HF) treated silicon and polymer surfaces were analyzed by ex-situ FTIR/ATR and in-situ contact angle methods. In-situ contact angle measurements were found to be very efficient in detecting adsorbed oil and phospholipids on modified silicon and polymer surfaces. Results from this work reveal for the first time that hydrophobic surfaces ( > 50degrees) are more prone to phospholipid and soybean oil adsorption than hydrophilic surfaces in hexane-soybean oil media. (C) 2002 Elsevier Science B.V. All rights reserved
    corecore