57 research outputs found

    Love in the Time of COVID-19: Negligence in the Nicaraguan Response

    Get PDF
    The response of the Nicaraguan government to the coronavirus disease 2019 (COVID-19) pandemic has been perhaps the most erratic of any country in the world to date. Directly contradicting mitigation strategies recommended by WHO, President Daniel Ortega has refused to encourage any physical distancing measures. Vice President Rosario Murillo (Daniel Ortega\u27s wife) instead called on thousands of sympathisers to congregate in street marches under the slogan \u27love in the time of COVID-19\u27. By downplaying the danger of the pandemic and increasing the risk of community transmission in the second-poorest country in the western hemisphere, the Nicaraguan government is violating the human rights of its citizens

    ANCA-associated vasculitis in childhood: Recent advances

    Get PDF
    Abstract Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides are rare systemic diseases that usually occur in adulthood. They comprise granulomatosis with polyangiitis (GPA, Wegener’s), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA, Churg-Strauss syndrome). Their clinical presentation is often heterogeneous, with frequent involvement of the respiratory tract, the kidney, the skin and the joints. ANCA-associated vasculitis is rare in childhood but North-American and European cohort studies performed during the last decade have clarified their phenotype, patterns of renal involvement and their prognostic implications, and outcome. Herein, we review the main clinical and therapeutic aspects of childhood-onset ANCA-associated vasculitis, and provide preliminary data on demographic characteristics and organ manifestations of an Italian multicentre cohort

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Role of continuous glucose monitoring in diabetic patients at high cardiovascular risk. an expert-based multidisciplinary delphi consensus

    Get PDF
    Background: Continuous glucose monitoring (CGM) shows in more detail the glycaemic pattern of diabetic subjects and provides several new parameters (“glucometrics”) to assess patients’ glycaemia and consensually guide treatment. A better control of glucose levels might result in improvement of clinical outcome and reduce disease complications. This study aimed to gather an expert consensus on the clinical and prognostic use of CGM in diabetic patients at high cardiovascular risk or with heart disease. Methods: A list of 22 statements concerning type of patients who can benefit from CGM, prognostic impact of CGM in diabetic patients with heart disease, CGM use during acute cardiovascular events and educational issues of CGM were developed. Using a two-round Delphi methodology, the survey was distributed online to 42 Italian experts (21 diabetologists and 21 cardiologists) who rated their level of agreement with each statement on a 5-point Likert scale. Consensus was predefined as more than 66% of the panel agreeing/disagreeing with any given statement. Results: Forty experts (95%) answered the survey. Every statement achieved a positive consensus. In particular, the panel expressed the feeling that CGM can be prognostically relevant for every diabetic patient (70%) and that is clinically useful also in the management of those with type 2 diabetes not treated with insulin (87.5%). The assessment of time in range (TIR), glycaemic variability (GV) and hypoglycaemic/hyperglycaemic episodes were considered relevant in the management of diabetic patients with heart disease (92.5% for TIR, 95% for GV, 97.5% for time spent in hypoglycaemia) and can improve the prognosis of those with ischaemic heart disease (100% for hypoglycaemia, 90% for hyperglycaemia) or with heart failure (87.5% for hypoglycaemia, 85% for TIR, 87.5% for GV). The experts retained that CGM can be used and can impact the short- and long-term prognosis during an acute cardiovascular event. Lastly, CGM has a recognized educational role for diabetic subjects. Conclusions: According to this Delphi consensus, the clinical and prognostic use of CGM in diabetic patients at high cardiovascular risk is promising and deserves dedicated studies to confirm the experts’ feeling

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations

    Get PDF
    The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere, which-given methane's lifetime of several centuries-predicts an even, well mixed distribution of methane. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally

    Martian dust storm impact on atmospheric H<sub>2</sub>O and D/H observed by ExoMars Trace Gas Orbiter

    Get PDF
    Global dust storms on Mars are rare but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere, primarily owing to solar heating of the dust. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes, as well as a decrease in the water column at low latitudes. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons
    corecore