100 research outputs found

    Linear electric drives for constructional purposes

    Get PDF
    The paper discusses designing, modeling and application of electric drives with linear induction motors for constructional purposes: high voltage line fault localizing and shunting system of power supply for site, application of thyristors to shunt phase fault, horizontal transport systems with linear electric drives of constructional equipment for transportation of materials, and vertical transport systems with linear electric drives of constructional materials, review of design methods of special linear induction drives, transient responces of linear induction drive

    The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models – a European perspective

    Get PDF
    We compare Holocene tree cover changes in Europe derived from a transient Earth system model simulation (Max Planck Institute Earth System Model – MPI-ESM1.2, including the land surface and dynamic vegetation model JSBACH) with high-spatial-resolution time slice simulations performed in the dynamic vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator) and pollen-based quantitative reconstructions of tree cover based on the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. The dynamic vegetation models and REVEALS agree with respect to the general temporal trends in tree cover for most parts of Europe, with a large tree cover during the mid-Holocene and a substantially smaller tree cover closer to the present time. However, the decrease in tree cover in REVEALS starts much earlier than in the models, indicating much earlier anthropogenic deforestation than the prescribed land use in the models. While LPJ-GUESS generally overestimates tree cover compared to the reconstructions, MPI-ESM indicates lower percentages of tree cover than REVEALS, particularly in central Europe and the British Isles. A comparison of the simulated climate with chironomid-based climate reconstructions reveals that model–data mismatches in tree cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments indicate that the model results strongly depend on the tuning of the models regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are – like most of the parameters in the vegetation models – static and calibrated to modern conditions. However, these parameter values may not be valid for past climate and vegetation states totally different from today's. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present-day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for paleo-simulations and complicate model–data comparisons with additional challenges. Moreover, our study suggests that land use is the main driver of forest decline in Europe during the mid-Holocene and late Holocene.</p

    Causes of regional change—land cover

    Get PDF
    Anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response over the last two centuries is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects and to the biogeochemical versus biogeophysical effects. Palaeoecological studies show that the major transformation of the landscape by anthropogenic activities in the southern zone of the Baltic Sea basin occurred between 6000 and 3000/2500 cal year BP. The only modelling study of the biogeophysical effects of past ALCCs on regional climate in north-western Europe suggests that deforestation between 6000 and 200 cal year BP may have caused significant change in winter and summer temperature. There is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback. Several model studies suggest that boreal reforestation might not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes

    Modeling past human-induced vegetation change is a challenge – the case of Europe

    Get PDF
    Differences between pollen-based reconstructions and dynamic vegetation simulations of past vegetation change in Europe over the last seven millennia are interpreted as being due primarily to land-use change. Incorporating land use in climate and dynamic vegetation models requires new approaches

    Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review

    Get PDF
    International audienceInformation on the spatial distribution of past vegetation on local, regional and global scales is increasingly used within climate modelling, nature conservancy and archaeology. It is possible to obtain such information from fossil pollen records in lakes and bogs using the landscape reconstruction algorithm (LRA) and its two models, REVEALS and LOVE. These models assume that reliable pollen productivity estimates (PPEs) are available for the plant taxa involved in the quantitative reconstruc -tions of past vegetation, and that PPEs are constant through time. This paper presents and discusses the PPEs for 15 tree and 18 herb taxa obtained in nine study areas of Europe. Observed differences in PPEs between regions may be explained by methodological issues and environmental variables, of which climate and related factors such as reproduction strategies and growth forms appear to be the most important. An evaluation of the PPEs at hand so far suggests that they can be used in modelling applications and quantitative reconstructions of pastvegetation, provided that consideration of past environmental variability within the region is used to inform selection of PPEs, and bearing in mind that PPEs might have changed through time as a response to climate change. Application of a range of possible PPEs will allow a better evaluation of the results

    Mid-Holocene European climate revisited: new high-resolution regional climate model simulations using pollen-based land-cover

    Get PDF
    International audienceLand-cover changes have a clear impact on local climates via biophysical effects. European land cover has been affected by human activities for at least 6000 years, but possibly longer. It is thus highly probable that humans altered climate before the industrial revolution (AD1750e1850). In this study, climate and vegetation 6000 years (6 ka) ago is investigated using one global climate model, two regional climate models, one dynamical vegetation model, pollen-based reconstruction of past vegetation cover using a model of the pollen-vegetation relationship and a statistical model for spatial interpolation of the reconstructed land cover. This approach enables us to study 6 ka climate with potential natural and reconstructed land cover, and to determine how differences in land cover impact upon simulated climate. The use of two regional climate models enables us to discuss the robustness of the results. This is the ïŹrst experiment with two regional climate models of simulated palaeo-climate based on regional climate models. Different estimates of 6 ka vegetation are constructed: simulated potential vegetation and recon- structed vegetation. Potential vegetation is the natural climate-induced vegetation as simulated by a dynamical vegetation model driven by climate conditions from a climate model. Bayesian spatial model interpolated point estimates of pollen-based plant abundances combined with estimates of climate- induced potential un-vegetated land cover were used for reconstructed vegetation. The simulated potential vegetation is heavily dominated by forests: evergreen coniferous forests dominate in northern and eastern Europe, while deciduous broadleaved forests dominate central and western Europe. In contrast, the reconstructed vegetation cover has a large component of open land in most of Europe. The simulated 6 ka climate using reconstructed vegetation was 0-5° C warmer than the pre-industrial (PI) climate, depending on season and region. The largest differences are seen in north-eastern Europe in winter with about 4e6 C, and the smallest differences (close to zero) in southwestern Europe in winter. The simulated 6 ka climate had 10-20% more precipitation than PI climate in northern Europe and 10 -20% less precipitation in southern Europe in summer. The results are in reasonable agreement with proxy-based climate reconstructions and previous similar climate modelling studies. As expected, the global model and regional models indicate relatively similar climates albeit with regional differences indicating that, models response to land-cover changes differently

    Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe

    Get PDF
    Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca. 2 degrees C warmer in the early Holocene (11,700-7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses.Peer reviewe

    Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter

    Get PDF
    International audienceWe present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major humandisturbance on Holocene regional vegetation, features that are critical in the assessment of humanimpact on vegetation, land-cover, biodiversity, and climate in the past

    Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling

    Get PDF
    We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.Peer reviewe
    • 

    corecore