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Abstract

Anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net
direction of the climate response over the last two centuries is still not known. The uncertainty
is due to the often counteracting temperature responses to the many biogeophysical effects and
to the biogeochemical versus biogeophysical effects. Palacoecological studies show that the
major transformation of the landscape by anthropogenic activities in the southern zone of the
Baltic Sea basin occurred between 6000 and 3000/2500 cal year BP. The only modelling study
of the biogeophysical effects of past ALCCs on regional climate in north-western Europe
suggests that deforestation between 6000 and 200 cal year BP may have caused significant
change in winter and summer temperature. There is no indication that deforestation in the
Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming
in the region through a positive biogeochemical feedback. Several model studies suggest that
boreal reforestation might not be an effective climate warming mitigation tool as it might lead
to increased warming through biogeophysical processes.
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arole in the recent climate warming observed in the region? If
not, did it have any other effect on climate? If recent ALCC

This chapter addresses several major questions. Did anthro-
pogenic land-cover change (ALCC) occur in the Baltic Sea
catchment during the last two centuries, and if so, did this play
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occurred, is it unique in magnitude compared to ALCC before
AD 1850 and back to the Neolithic time (6000 cal year BP—
calendar years before present)? Did past ALCC have an effect
on past climate?

J. Bergh
Department of Southern Swedish Forest Research Centre, Swedish
University of Agricultural Sciences SLU, Umea, Sweden

J. Kaplan
Institute of Earth Surface Dynamics, IDYST, University of
Lausanne, Lausanne, Switzerland

A. Poska - A. Wramneby
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, Sweden

C. Sandstrom
Department of Wildlife, Fish and Environmental Studies, Swedish
University of Agricultural Sciences SLU, Umea, Sweden

453

The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies,

DOI 10.1007/978-3-319-16006-1_25



454

The chapter discusses the effects of ALCC on past climate
(on timescales of decades, centuries and millennia) as well as
future climate. It also reviews studies on natural climate-
induced (potential) land-cover change (CLCC) and its feed-
backs on climate, as it may help understanding of important
processes involved in land cover—climate interactions. Here,
land cover relates to vegetation cover, in particular tree cover
versus low herb and low shrub vegetation, as well as snow
cover. ALCC may be an external climate forcing, while CLCC
is part of the climate system and may cause feedbacks on
climate, whatever forcing is the cause of the initial climate
change (Fig. 25.1). A feedback can be either positive (enhances
the climate change responsible for the vegetation/land-cover
change) or negative (mitigates the climate change). Similarly, a
single forcing can enhance or mitigate the effect of other
forcings; that is, the effect of ALCC may mitigate the effect of
greenhouse gas emissions. The effects of ALCC or CLCC on
climate (as forcing and feedbacks, respectively) are due to
biogeophysical and biogeochemical processes at the boundary
between vegetation and the atmosphere (Findell et al. 2007).
When attributing causes of regional climate change at the scale
of the Baltic Sea area, the biogeophysical effects are of par-
ticular interest since they exert a direct, measurable effect on
regional climate. Biogeochemical effects are more relevant in
the context of global climate change since the timescale of
carbon dioxide (CO,) mixing in the atmosphere is very short.
Consequently, regional changes in the carbon balance affect
regional climate only indirectly by affecting the global CO,

Fig. 25.1 Schematic illustration
of interactions between land
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concentration. Therefore, this chapter focuses primarily on
biogeophysical mechanisms, although biogeochemical pro-
cesses are also described.

Sensitivity studies with global Earth System Models have
increased our understanding of interactions between land
cover and climate over the past decade (IPCC 2007).
However, the mechanisms involved in biogeophysical
feedbacks are mainly regional to local in scale; therefore, use
of regional climate models and vegetation models should
potentially provide better insights on those feedbacks.
Nonetheless, few published studies have used regional cli-
mate models, and none were specifically designed to eval-
uate the effects of ALCC on past, present and future climate
change at the scale of the Baltic Sea basin. There are also
very few attribution studies using global climate models and
focusing on ALCC as a possible forcing at both global and
regional scales. To date (2013), there is a single study on the
effect of past ALCC on climate change at 6000 and
200 cal year BP in north-western Europe using a regional
climate model (Gaillard et al. 2010; Strandberg et al. 2013).
Therefore, current understanding of the role of ALCC in
regional climate change at the scale of the Baltic Sea basin,
and in particular as a possible forcing of the warming of the
last two centuries, must rely primarily on studies at the
European or northern hemisphere scale using global climate
models. The largest model study to date focusing on the
impacts of ALCC on the climate of the northern hemisphere
is that within the Land-Use and Climate, Identification of
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25 Causes of Regional Change—Land Cover

Robust Impacts (LUCID) project (Pitman et al. 2009; de
Noblet-Ducoudré et al. 2012). This was set up to study the
robustness of modelled biogeophysical impacts of historical
ALCC on climate (roughly AD 1850 to modern time).

This chapter first explains the processes involved in land
cover—climate interactions and summarises the results from
modelling  studies  investigating  these  processes
(Sects. 25.2.1 and 25.2.2). It then reviews current under-
standing of how past and recent land-cover change, both
ALCC and CLCC, might have influenced regional climate in
the Baltic Sea region (Sects. 25.2.3 and 25.4). As none of the
chapters in the present assessment of climate change in the
Baltic Sea basin deals with Holocene ALCC, this chapter
also reviews studies on ALCC since Neolithic time (about
the last 6000 years) (Sect. 25.3). Finally, the chapter dis-
cusses the possible effects of future resource management on
land cover and, as a result, on biogeochemical and biogeo-
physical processes and future climate (Sect. 25.5). Holocene
CLCC is presented in Chap. 2.

‘Climate change’ refers to systematic changes in response
to external forcing, in accordance with Chaps. 23 and 24. In
order to avoid any confusion of concepts, ‘Land cover—cli-
mate interaction’ and ‘biogeophysical (or biogeochemical)
effect’ refer to forcing mechanisms, while the term ‘feed-
back’ is used only for the effects of CLCC on climate (i.e. as
part of the climate system). See Chap. 2 for a description of
the relationships between climate change and natural vege-
tation during the Holocene, and Chaps. 16 and 21 for a
complete account of the influence of recent climate change
on vegetation.

25.2 Land Cover-Climate
Interactions: What Are They
and What Are the Mechanisms
Involved?

25.2.1 Biogeophysical Effects/Feedbacks

Biogeophysical effects (Fig. 25.2) influence physical
exchange fluxes and the energy balance between the atmo-
sphere and land surface. The major biogeophysical feed-
backs are due to (i) land-surface characteristics such as
albedo (referred as the albedo effect; albedo is the surface
reflectivity with respect to short-wave radiation) and
roughness (e.g. smooth snow or rough forest), and (ii)
evapotranspiration (the sum of transpiration from plant sto-
mata and evaporation from other water sources at or below
ground) (Levis 2010).

Albedo is the proportion of incoming solar radiation
reflected by a surface. It strongly influences the energy
available for absorption by the land surface. The greatest
contrast in albedo occurs between open and forested land,
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especially in the presence of snow. While snow is completely
exposed on open land, it is partly covered in a forested area.
This is often referred to as the snow-masking effect. Snow
masking can cause a positive feedback on climate. For
example, a high-latitude northwards expansion of trees and
shrubs (low albedo) due to warming will hide the snow (high
albedo) on the ground and thus increase the absorption of
solar radiation, which will in turn enhance the warming and
lead to a further northwards expansion in tree cover, leading
to further warming (Fig. 25.2). This type of positive feedback
is especially strong when the forest comprises evergreen
conifers that retain their needles during winter. Modelling
experiments have shown that the albedo effect can be sig-
nificant (e.g. Bala et al. 2007; Liang et al. 2010).

Vegetation also influences the hydrological cycle. Struc-
tural changes in vegetation, such as changes in leaf area index
(LAI), roughness length, and rooting depth modify the
evapotranspiration of water from the land surface. The LAI
represents the amount of leaf material present in an ecosystem
and is geometrically defined as the total one-sided area of
photosynthetic tissue (in m?) per unit ground surface area (in
m?). Surface roughness (often just referred to as ‘roughness’)
is a measure of the texture of a surface. The roughness length
(expressed in m) depends on the frontal area of the average
element (e.g. trees in a forest) facing the wind divided by the
ground width it occupies. For instance, the roughness of
featureless terrain is 0.005 m (smooth), flat terrain with grass
or very low vegetation 0.03 m (open), and mature forest 1.0 m
(closed) (Davenport et al. 2000). While the LAI influences the
amount of intercepted water and the partitioning of energy
fluxes into sensible and latent heat, the roughness length
affects the turbulent mixing of heat into the atmosphere. The
rooting depth determines the amount of water extracted from
the soils by the vegetation; a deeper and/or more extensive
root system will enhance the ability of the vegetation to
extract soil water. In environments where neither temperature
nor water limits vegetation growth, the vegetation tends to
flourish, which increases both LAI and roughness. Since
vegetation transpires water through leaf stomata, an increase
in LAI will be associated with increasing evapotranspiration
and, as a result, an increase in latent heat at the expense of
sensible heat. Sensible heat warms the atmosphere close to the
vegetation surface, whereas latent heat is stored in the
released water vapour and warms the atmosphere only when
condensation occurs, some distance away from the vegetation
and higher up. Therefore, the hydrological cycle effect has a
dampening effect on local to regional temperature change
since stronger evapotranspiration implies that more energy is
required to vaporise water (Fig. 25.2). An increase in wood-
land cover due to climate warming or anthropogenic activities
(forest planting) will also increase the land-surface roughness
and, in turn, enhance the moisture convergence and lead to
increased precipitation. Higher water availability triggers a
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Fig. 25.2 A simplified scheme
of the biogeophysical feedback
system (after Ben Smith,
unpublished). LA/ leaf area index;
PAR photosynthetically active
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positive precipitation effect/feedback by producing higher
vegetation density and a further increase in land-surface
roughness and precipitation, etc. Higher atmospheric CO,
concentrations may also cause an increase in vegetation
density (the fertilisation effect, see Sect. 25.2.2) and produce
similar secondary biogeophysical effects such as the precip-
itation effect through an increase in roughness. As pointed out
by Levis (2010), these feedbacks (Fig. 25.2) can all be
modified or eliminated by ALCC. Moreover, it is rare that a
single feedback dominates or is the only one active. Several
feedbacks often occur together, which increases the difficulty
of interpreting the results.

The study by Zhang (2011) is one of the few investiga-
tions using observations that focus on the Baltic Sea region.
The study was based on precipitation and run-off data for
1961-2003 in southern and central Sweden and showed a
trend towards increased evapotranspiration. As the major
cause of the increased evapotranspiration was increased
winter evaporation, the author proposed this may be related
to a known land-use change in the study area, namely the
replacement of deciduous trees (lose their leaves in winter)
by planted coniferous forest (with evapotranspiration from
needles in winter, also from intercepted water, i.e. rainfall
collected on the needles).

25.2.2 Biogeochemical Effects/Feedbacks

The land surface plays a major role within the global carbon
cycle: vegetation takes up atmospheric CO, through photo-
synthesis and uses the carbon to build biomass, while the
oxygen is released to the atmosphere; some time later, the

feedback loop
—— fast response (positive)
———> fast response (negative)
slow response (positive)

vegetation dies and dead biomass builds up soils; the soil
organic matter is then decomposed by micro-organisms and
the resulting CO, released to the atmosphere, thus closing the
cycle. However, disturbance processes such as forest and
grassland fires, a climate-induced decrease in woodland and
anthropogenic deforestation will also release carbon to the
atmosphere. The land surface contains significant amounts of
carbon in vegetation (350-550 PgC, Prentice et al. 2001) and
in soils (1500-2400 PgC, Batjes 1996). Additional carbon is
stored in wetlands (200450 PgC) and in the loess soils of
permafrost areas (200-400 PgC, McGuire et al. 2009).
Owing to the general character of the Baltic Sea region
with its extensive forests and substantial wetland areas, the
carbon storage in vegetation and soils in the region is
undoubtedly significant, although no specific regional esti-
mates appear to be available. Both humans and climate may
have a significant impact on this carbon storage. The carbon
balance of the land surface depends primarily on the atmo-
spheric CO, concentration and temperature. In carbon cycle
models, such as those used in the Coupled Climate Carbon
Cycle Model Intercomparison Project (C4MIP, Friedling-
stein et al. 2006), the sensitivity of the carbon cycle to cli-
mate change can be expressed by two parameters, f and y. 8
describes the sensitivity to changes in atmospheric CO,
concentration, while y describes the sensitivity to changes in
climate, especially temperature. Vegetation experiments
with elevated CO, concentrations provide observational
evidence of enhanced net primary productivity (NPP) under
increased atmospheric CO, (Norby et al. 2005), implying a
positive B. While the experiments give a direct indication of
feedback between CO, concentration and CO, uptake, i.e.
the fertilisation effect, there is still much uncertainty about
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the universality of the results, especially since interactions
with nutrient and water availability are likely but remain
difficult to quantify (Gedalof and Berg 2010). Nevertheless,
elevated CO, concentrations probably do enhance produc-
tivity, as long as other conditions for additional growth are
met. Outputs from land-surface models (LSMs) show an
increase in carbon storage under increased atmospheric CO,
of 0.85-2.4 PgC ppm v ' in early studies (Cramer et al.
2001), while later studies that consider the limitation of
carbon uptake by nitrogen availability show a considerably
decreased enhancement (Sokolov et al. 2008; Thornton et al.
2009; Zaehle et al. 2010). In the LSM CLM4, for example,
the estimated increase in NPP when considering nitrogen
availability is only 30 % of the increase without considering
nitrogen dynamics (Bonan and Levis 2010).

Through the temperature sensitivity of both photosyn-
thesis and respiration, the terrestrial carbon balance is also
strongly influenced by changing temperature, although the
precise response is not well known. Under water-limited
conditions, an increase in temperature would lead to stronger
water stress due to enhanced evapotranspiration. In contrast,
an increase in temperature in cold regions would lead to a
longer growing season, thereby enhancing vegetation
growth. With respect to soil organic matter, an increase in
temperature will lead to increased decomposition, that is
enhanced carbon losses to the atmosphere (Davidson et al.
2006). Modelling studies suggest that warming will accel-
erate carbon losses from soils, implying a positive feedback
between warming and the carbon cycle. Friedlingstein et al.
(2006) found a range of —20 to —177 PgC per °C for the y
factor and Sitch et al. (2008) of —60 to —198 PgC per °C.
However, the models used did not consider nutrient limita-
tion and may have overestimated vy, since warming may
increase nitrogen mineralisation and availability in soils,
enhancing vegetation growth. Current climate—carbon cycle
models including a nitrogen cycle show this effect (Sokolov
et al. 2008; Thornton et al. 2009; Zaehle et al. 2010), but the
uncertainties in y remain very high.

25.2.3 Impact of Hypothetical
Land-Cover Change on Climate:

Climate Model Simulations

Ban-Weiss et al. (2011) studied climate forcing and response
to idealised changes in surface latent and sensible heat. They
found that globally adding a uniform 1 W m™ 2 source of
latent heat flux along with a uniform 1 W m™2 sink of
sensible heat leads to a decrease in global mean surface air
temperature of 0.54 + 0.04 °C, explained mainly by an
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increase in planetary albedo associated with an increase in
low-elevation cloudiness caused by increased evaporation.
The model results indicate that, on average, when latent
heating replaces sensible heating, global and local surface
temperatures decrease. Kvalevag et al. (2010) used GCM
(general circulation model) simulations to compare impacts
on climate due to vegetation and albedo changes together or
to albedo changes only; they concluded that effects due to
changes in albedo dominate in temperate regions. The
authors also claimed that divergent conclusions between
similar studies are probably due to differences in specifica-
tions of albedo. Sensitivity to albedo was also shown in a
model experiment where a hypothetical boreal forest
expansion, decreasing the surface albedo, led to an
enhancement of the summertime Arctic frontal zone and a
strengthening of the jet (Liess et al. 2011). Boreal forests are
characterised by lower albedo and a higher Bowen ratio (the
ratio of sensible to latent heat fluxes, i.e. heat loss or gain)
for similar levels of soil water availability than temperate
forests (Bonan 2008). Thus, replacing boreal forests by
grassland results in a cooling effect due to a decrease in both
the Bowen ratio (as long as soil water is available) and net
radiation (increase in albedo); the cooling effect may become
higher than the warming effect of increased carbon
emissions.

Eliseev (2011) showed that, at the global scale, changes
in surface albedo due to the replacement of natural vegeta-
tion by agricultural land would have a greater influence on
the available energy at the surface by absorbed short-wave
radiation than the influence of the albedo effect. This is
explained by relatively low insolation during winter at the
latitudes characterised by the snow-masking effect of forest
vegetation. Moreover, Cook et al. (2008) showed that
feedback mechanisms including interactive vegetation and
snow may be very sensitive to the parameterisation of the
snow fraction. For instance, a fast-growing snow fraction
produced a large-scale southward retreat of boreal vegetation
and a widespread cooling. Bathiany et al. (2010) found that
afforestation of all currently treeless areas north of 45°N
would lead to a global mean warming of 0.26 °C due to
biogeophysical effects, while the reduction in atmospheric
CO, would only be 6.5 ppm, leading to a net warming. The
albedo effect would be most significant in winter and spring
when forests mask snow, causing an additional regional
temperature rise. Earlier, similar studies of idealised, large-
scale deforestation also found that an albedo cooling would
dominate over CO, warming in boreal regions, indicating
that boreal reforestation would probably not be an effective
mitigation tool in such areas (Betts 2000; Claussen et al.
2001; Sitch et al. 2005; Bala et al. 2007).
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25.3 Reconstructing Past Land-Cover
Change

This section presents the various methods available to
reconstruct past land-cover and their changes through time
and space and describes the major ALCCs in the Baltic Sea
region over about the last 6000 years, from the Neolithic
(start of agriculture) until modern time. All ages are given in
calibrated *C years (or calendar years) BC (Before Christ)/
AD (Anno Domini = after Christ) or BP (Before Present;
present = AD1950).

25.3.1 Methodology

Attempts to reconstruct past changes in land cover have been
based on two major approaches: (i) interpretation of palae-
oecological data, fossil pollen in particular, and (ii) use of
land use and population historical records as well as
archaeological records of past settlements.

Estimates of human-induced changes in land cover based
on historical records, remotely sensed images, land census
and modelling (Ramankutty and Foley 1999; Olofsson and
Hickler 2008; Klein Goldewijk et al. 2011) were used to
provide first insights into the effects of ALCC on past cli-
mate (e.g. Brovkin et al. 2006; Olofsson and Hickler 2008).
The most frequently used database in climate modelling to
date is the History Database of the Global Environment
(HYDE) database (Klein Goldewijk et al. 2011). However,
its estimates of anthropogenic land cover during key periods
of the past show large discrepancies with more recently
developed scenarios of ALCC by Pongratz et al. (2008),
Lemmen (2009), and Kaplan et al. (2009) (see review in
Gaillard et al. 2010; Fig. 25.3).

Pongratz et al. (2008) estimated the extent of cropland
and pasture since AD 800 based on published maps of
agricultural areas for the past three centuries and, for earlier
times, a country-based method using population data as a
proxy for agricultural activity. The resulting map of agri-
cultural land was then combined with a map of potential
vegetation. One of the strengths of the study is that the
uncertainties associated with the approach were quantified,
in particular those relating to the estimates of technological
progress in agriculture and size of human populations. These
ALCC scenarios were produced at a very high time resolu-
tion and used in modelling studies (see Sect. 25.4).

Lemmen (2009) developed an independent estimate of
human population density, technological change and agri-
cultural activity during the period 9500-2000 BC based on
dynamical hindcasts of socio-economic development
(GLUES, Global Land Use and technological Evolution
Simulator; Wirtz and Lemmen 2003). The population den-
sity estimate was combined with per capita crop intensity
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from HYDE (version 3.1) to infer areal demand for cropping
at an annual resolution in 685 world regions. Comparison of
the simulated crop fraction estimate with the HYDE estimate
showed large discrepancies attributed to missing local his-
torical data in HYDE (Lemmen 2009; Gaillard et al. 2010).

Kaplan et al. (2009) created a high-resolution, annually
resolved time series of anthropogenic deforestation in Eur-
ope over the past 6000 years (referred as KK 10 scenarios) by
using (i) a model of the forest cover—human population
relationship based on estimates of human population for the
period 1000 BC to AD 1850, and (ii) a model of land suit-
ability to cultivation and pasture, assuming that high-quality
agricultural land was cleared first and marginal land next.
Alternative scenarios of deforestation were also produced by
taking into account technological developments, which led
to major differences in south-western, south-eastern and
eastern Europe (Fig. 25.3). The Kaplan et al. (2009) KK10
scenarios are also different from the HYDE database
(Fig. 25.3) and provide estimates of deforestation in Europe
around AD 1800 that compare better to historical accounts
than the HYDE scenarios (Gaillard et al. 2009; Krzywinski
and O’Connell 2009). They are also closer to pollen-inferred
land-cover change over the past 6000 years (see Sect. 25.3.3
and Figs. 25.4, 25.5, 25.6 and 25.7; Gaillard et al. 2010;
Trondman et al. 2011, 2012). This implies that previous
attempts to quantify anthropogenic perturbation of the
Holocene carbon cycle based on the HYDE and Olofsson
and Hickler’s databases may have underestimated early
human impact.

The second approach for reconstructing past land-use
changes relies on quantifying and synthesising records of
land-cover change based on palaeoecological proxy data.
Such proxy-based reconstructions complement model-based
scenarios of ALCC and are essential to evaluate and improve
their reliability.

Objective long-term records of the inferred past changes in
vegetation cover are limited. Palaeoecological data, particu-
larly fossil pollen, have been used to approximate past veg-
etation changes at sub-continental to global scales (e.g.
Prentice and Jolly 2000; Tarasov et al. 2007; Williams et al.
2008). However, these studies have focused on tree vegeta-
tion and are of little use for a quantitative assessment of
human impacts on land cover (Anderson et al. 2006; Gaillard
et al. 2010). They did not resolve problems related to (i) the
non-linearity of pollen—vegetation relationships in percent-
ages, (ii) the definition of the spatial scale of vegetation rep-
resented by pollen and (iii) the differences in pollen
productivity between plant taxa (e.g. Sugita et al. 1999;
Gaillard et al. 2008; Gaillard 2013). A new framework of
vegetation reconstruction was recently developed that
resolves these problems: the Landscape Reconstruction
Algorithm (LRA) (Sugita 2007a, b). This consists of two
separate models, Regional Estimates of VEgetation
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Fig. 25.3 Anthropogenic land
use in Europe and surrounding
areas at AD 800 simulated by
four modelling approaches:

a Kaplan et al. (2009) standard
scenario; b Kaplan et al. (2009)
technology scenario; ¢ the HYDE
3.1 database (Klein Goldewijk
et al. 2011); d Pongratz et al.
(2008) maximum scenario. From
Gaillard et al. (2010)
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Abundance from Large Sites (REVEALS) and LOcal Vege-
tation Estimates (LOVE), allowing vegetation abundance to
be inferred from pollen percentages at the regional (about
100 x 100 km) (REVEALS) and local spatial scales (LRA:
REVEALS + LOVE), respectively. The minimum size of the
area for which LRA reconstructions of local vegetation are
valid is calculated by the LOVE model and varies between
sites; it usually has a radius of about 0.5-3 km in southern
Scandinavia (Sugita et al. 1999; Hellman et al. 2009; Fredh
2012). The LOVE model requires estimates of regional
vegetation obtained using the REVEALS model. Extensive
simulations support the theoretical premise of the LRA (Su-
gita 1994, 2007a, b). In Europe, REVEALS was empirically
tested in southern Sweden (Hellman et al. 2008) and
Central Europe (Soepboer et al. 2010), and the LRA
(REVEALS + LOVE) in Denmark (Nielsen and Odgaard
2010; Overballe-Petersen et al. 2012) and in southern Sweden
(Cui et al. 2012; Fredh 2012). The LRA approach is, to date,
the best method for inferring anthropogenic land cover from
pollen data (Gaillard 2013). Human-impact pollen indicators
such as cereals, other cultivated plants, weeds and other plants
favoured by human activities and cattle grazing are used
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widely to interpret pollen records in terms of human-induced
vegetation types (such as cultivated land, fresh/dry meadows
and pastureland, ruderal land) applying the indicator species
approach. However, these interpretations can only be quali-
tative. Pollen-inferred reconstruction of past human impact on
vegetation is often complemented by information from plant
macroremains (seeds, fruits, leaves etc.), insect remains and
archaeological/historical data (e.g. Greisman and Gaillard
2009; Olsson and Lemdahl 2009, 2010).

To avoid confusion below, reconstructions of the regional
vegetation are referred to as REVEALS reconstructions
and reconstructions of the local vegetation as LRA
reconstructions.

25.3.2 Major Past Land-Use Types

in the Baltic Sea Region

The major cultural landscape/land-use types in the Baltic Sea
region in the past were wood-pasture, coppices and pollards
(trees cut in various ways to obtain wood for daily needs and
fodder for cattle, respectively), slash-and-burn cultivation,
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Fig. 25.4 Anthropogenic land-
cover change in the Baltic Sea
basin over the Holocene. The
time trend of increasing
population and agricultural land
use can be seen in this series of
maps covering the past

8000 years. KK10 scenarios
extracted for the Baltic Sea area
from Kaplan et al. (2009)
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Fig. 25.5 REVEALS estimates
of conifers, deciduous trees,
cereals, grasses and herbs in 4
southern Sweden, provinces of :
Skéane and Smaland (Gaillard
et al. 2010)
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cultivated fields, grasslands and meadows (hay making and
grazing), heathlands and summer farms (transhumance) (e.g.
Gaillard et al. 2009).

Although human impact on the environment of the Baltic
Sea area (and Europe in general) began in the Mesolithic
(pre-Neolithic, before 6000 BP in NW Europe), it is generally
accepted that farming cultures were responsible for the first

other non

Deciduous I
arboreal plants

Cerealia -
trees s I I

and Secale

Poaceae (excluding
Cerealia-t)

major impact on European natural environments. The pre-
Neolithic lowland European landscapes are generally
assumed to have been densely forested, but open land
undoubtedly existed in areas where soil conditions did not
allow the development of dense forests (Svenning 2002) and
might also have occurred through grazing by large herbivores
(e.g. Vera 2000), fire (e.g. Olsson et al. 2010; Svenning
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Fig. 25.6 Landscape openness in Denmark during the past 3000 years
(2700 years at Dallerups S as modelled by the Landscape Reconstruction
Algorithm (LRA)) (Sugita 2007a, b) using nine pollen records from small
lakes distributed in the three major contrasting regions of the country.
Pollen percentages on the left of each plot, LRA estimates of plant cover
on the right. The ages are given in calibrated years BC/AD. Landscape
openness is expressed by the LRA estimated cover (in percentages) of
herbs (here only Gramineae (grasses, light green) and Cerealia (cereals,
yellow) are shown) and low shrubs (here only Calluna (heather, violet) is

2002), and the activities of Mesolithic people. However, since
the beginning of the Neolithic, deforestation was a pre-
requisite to sow crops. Domesticated animals including cattle,

shown). The LRA estimates of tree cover (dark green) and all herb and
low shrubs (not shown here) sum up to a total of 100 %. The trees are
overrepresented in the pollen percentages, while Gramineae and Cerealia
(and herbs in general) are under-represented in the pollen percentages; that
is, landscape openness is under-represented in the pollen percentages. The
latter is true for all LRA reconstructions performed in Europe so far. In this
case, heather is slightly under-represented in the pollen percentages,
which is not always the case and depends on the overall vegetation
composition. From Nielsen and Odgaard (2010)

sheep and pigs were introduced and also contributed to
opening up the landscape. A summary of knowledge con-
cerning the major land uses in the Baltic Sea catchment area
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AL

Fig. 25.7 REVEALS estimates of grassland and arable land in north-
western Europe at 6000 BP, 3000 BP, and 200 BP after Trondman et al.
(2011, 2012). First-generation LANDCLIM maps (produced by Anna-
Kari Trondman, Florence Mazier, Anne Birgitte Nielsen, Ralph Fyfe
and LANDCLIM members for the purpose of this chapter; see Gaillard
et al. (2010) for a description of the LANDCLIM project). Left
agricultural land { AL = total Cereals [Cerealia undiff., Triticum (wheat)
type, Avena (oats) type, Hordeum (barley) type, Secale cereale (rye)]}.
Right Grassland [GL = Cyperaceae, Filipendula, Plantago lanceolata,
Plantago montana, Plantago media, Poaceae, Rumex p.p. (mainly R.
acetosa and R. acetosella, i.e. Rumex acetosa pollen-morphological

over the last 6000 years follows. For more complete reviews
and bibliography on the subject, see in particular Behre
(1988), Berglund (1991) and Gaillard et al. (2009).
Wood-pasture was of major importance until late medi-
aeval times. Coppices and pollards can be traced back
through written sources to the sixteenth century in north-
western Europe. There is evidence from archaeological
contexts for coppicing and pollarding as far back as the
Mesolithic and Neolithic, respectively. Coppices and pol-
lards were progressively abandoned during the twentieth
century and replaced by open pastures and cultivated fields
or developed into secondary, broadleaved forests. Slash-and-
burn is also a form of woodland use. Cereals (often rye) were
sown in clearings created by felling, drying and burning the
woody vegetation, which enriched poor soils with ash. In
Finland, slash-and-burn started with arable farming in the
Neolithic and lasted until the early twentieth century. In
Sweden, slash-and-burn was mainly associated with spruce
forests and was common after the expansion of spruce from
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200 BP

3000 BP

6000 BP

type)]. This first generation of LANDCLIM REVEALS estimates is
based on all available Holocene pollen records from small and large
sites (lakes and bogs) including all or part of the time windows 6000,
3000 and 200 BP (1950), and with >3 dates for the chronological
control. These pollen records were collected from the European (EPD),
Alpine (ALPADABA) and Czech (PALYCZ) pollen databases (van der
Knaap et al. 2000; Fyfe et al. 2007; Kunés et al. 2009, respectively).
The pollen productivity estimates (PPEs) used are, for each taxon, the
mean of all PPEs obtained within the project area (north-western
Europe and western Europe north of the Alps, Brostrom et al. 2008).
From Gaillard (2013)

the north (3000-1000 BP). It was practiced so intensively in
the eighteenth and nineteenth centuries that woodlands failed
to fully regenerate. For that reason and the associated fire
hazard, slash-and-burn was prohibited in many parts of
Scandinavia in the early twentieth century.

Pastoral activity has had a fundamental influence on the
landscape and vegetation of the Baltic Sea region since the
Neolithic. The major factor involved in the formation and
maintenance of pastures and meadows was the need for
fodder. Denser settlements, rising populations and increased
demand for food resulted in an increase in livestock, which
in turn demanded more grazing land and meadows. The
practice of hay making brought about the development of the
infieldloutland system that optimised the available land
resources thanks to an efficient regime for nutrient recycling.
The infield included cultivated fields and hay meadows,
while the outland was grazing land (grassland, heaths and/or
forest). Livestock was also necessary to fertilise soils for
cultivation, and the hay meadows had to be large enough to
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sustain the amount of fodder necessary for the livestock
required to fertilise the area of crop fields that would cover
the food demand of the human population. In other words,
the hay meadows were essential to the crop fields and their
size had to be three to 20 times larger than the cultivated area
depending on the soil conditions (Fogelfors 1997). Hay
making is often associated with the introduction of the
scythe in the Late Iron Age (ca. AD 1000). However, spe-
cies-rich hay meadows may have already existed in southern
Sweden at the end of the Late Bronze Age/beginning of the
Early Iron Age (from ca. 2600 years BP; Gaillard et al.
1994). Mowing (hay making) probably started with the
practice of stalling that may have first occurred in connection
with a climate cooling in north-western Europe dated to ca.
3000 BP (e.g. Berglund 2000).

The history of heathland can also be traced back to the
Neolithic. For example, in Denmark and southern Sweden,
pollen analysis of soils beneath Neolithic mounds has shown
that heathland arose from woodland clearance on poor sandy
soils. Heathland was widespread on relatively poor soils
(often in areas characterised by granitic bedrock or areas
outside the maximal ice extent of the Weichselian) in large
parts of southern Scandinavia and neighbouring countries
around the Baltic Sea (e.g. Greisman 2009; Olsson and
Lemdahl 2009). The development of wooded or treeless
pastures and hay meadows in upland and northern regions of
the Baltic Sea region is closely linked to upland summer
grazing and collection of fodder. There is still very little
known about the history of summer grazing in the region,
except in the province of Viarmland in northern Sweden (e.g.
Regnéll and Olsson 1998) where remains of summer farms
were dated to mediaeval time. During the twentieth century,
traditionally managed hay meadows, pastures, heathland and
upland summer farming decreased dramatically with the
introduction of chemical fertilisers and feed concentrates,
reclamation and afforestation.

25.3.3 Land-Use and Anthropogenic
Land-Cover Change Since the

Neolithic (6000 BP)

The account presented here is based on ALCC model sce-
narios (Figs. 25.3 and 25.4), recent REVEALS and LRA
reconstructions (Sugita et al. 2008; Gaillard et al. 2010;
Nielsen and Odgaard 2010; Nielsen et al. 2012; Trondman
et al. 2012) (Figs. 25.5, 25.6 and 25.7), earlier syntheses of
palaeoecological proxy records, of which the most important
are those by Berglund (1991), Berglund et al. (1996, 2002)
and Ralska-Jasiewiczowa et al. (2004), and a large number
of palaeoecological studies of which only a very small
fraction is cited below. Examples are provided from the
major environmental zones (according to Metzger et al.
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2005) of the region, that is (i) the Nemoral, Atlantic North
and Continental zones in the south, and (ii) the Boreal and
Alpine North zones in the north, each representing about
50 % of the total land cover of the Baltic Sea basin.

25.3.3.1 Neolithic to Iron Age (ca. 6000-1000 BP)
According to archaeological and palacoecological data,
arable farming was introduced in the loess areas of central
Germany with the Linear Pottery culture around 7700-
7500 BP (Kalis et al. 2003), which is reflected in pollen
diagrams from the area (e.g. Beug 1992; Voigt 2006).
However, along the coasts of the Baltic Sea in northern
Germany, Denmark, southern Sweden, and northern Poland
(north of the Elbe river), the Mesolithic Ertebelle culture
persisted for a long time, possibly because of the good
fishing and hunting possibilities (e.g. Regnéll et al. 1995;
Kalis et al. 2003; Richards et al. 2003). Larger scale crop
cultivation and animal husbandry occurred first with the
Neolithic Funnel Beaker culture from around 6100 BP in
north-eastern Germany and northern Poland, 5900 BP in
Denmark (Richards et al. 2003) and 5900 BP in southern
Sweden (e.g. Berglund 1991). The earliest cultural impact on
the landscape consisted mainly of a change in forest com-
position towards more early-successional species (birch,
hazel), but from Late Neolithic, (ca. 4300-3800 BP in
southern Scandinavia) anthropogenic grassland increased in
size, while the areas with arable fields were still relatively
small (e.g. Berglund et al. 2002; Odgaard and Nielsen 2009).
In most of the southern environmental zones, a gradual
differentiation of the landscape into three more or less dis-
tinct types occurred from the Late Neolithic onwards: (i) flat
areas on clay-rich moraine soils developed the most inten-
sive agricultural impact; (ii) hilly areas were more marginal
in terms of agricultural activities and, therefore, remained
rich in forest; and (iii) poor sandy soils gradually became
dominated by heathland (e.g. in Denmark and southern
Sweden, Berglund 1991; Odgaard and Rasmussen 2000;
Berglund et al. 2002; Lageras 2007; Greisman 2009; Nielsen
and Odgaard 2010). By the Mid-/Late Bronze Age (ca.
3000-2500 BP), this division was well established and the
overall pattern remained in place until around AD 1800,
although the composition and distribution of the landscape
types varied in time and space, and the total landscape
openness increased through time. In some marginal areas of
Denmark and southern Sweden, and along the Baltic Sea
coast, in particular in the north-eastern part of Germany,
northern Poland and the Baltic States, regional forest
regeneration occurred during the Migration period (ca.
1600-1450 BP or AD 400-550; Andersen and Berglund
1994).

According to the ALCC scenarios of Kaplan et al. (2009),
the earliest significant deforestation in the Baltic Sea basin
occurred in the earliest Neolithic period on fertile soils, and
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by the Viking Age (ca. 1200-1000 BP), large areas of
present-day Denmark, southern Sweden and Poland (i.e. the
southern environmental zones) were =250 % under human
use for crop and pasture land (Figs. 25.3 and 25.4). On the
other hand, the scenarios by Pongratz et al. (2008) indicate
that by 1200 BP, only about 3 % of the area potentially
covered by vegetation on the globe was transformed to
agricultural land, almost as much for cropland as for pas-
tureland, none of the Baltic Sea basin (and almost none of
Europe) was deforested by more than 50 %, and most of the
region was deforested by 20 % or less except for Denmark,
northern Germany, southernmost Sweden (Skane Province)
and Poland (Fig. 25.3). Thus, although both models identify
the same regions as the most deforested, discrepancies are
large between the estimates of the deforested land fraction
for crop cultivation and pastures. Pollen-based REVEALS
and LRA estimates of regional and local openness at 1000—
1200 BP (=50 % cover) agree with the Kaplan et al. (2009)
scenarios for the regions of Skane and Sméland (southern
Sweden) (Sugita et al. 2008; Gaillard et al. 2010; Fig. 25.5),
most of Denmark (Nielsen and Odgaard 2010; Nielsen et al.
2012; Fig. 25.6), and north-western Europe in general
(Trondman et al. 2011, 2012; Fig. 25.7), although between-
site differences may be large at the local spatial scale (e.g.
Denmark). The REVEALS-based reconstructions suggest
that changes in human impact on vegetation/land cover over
the past 6000 years were much more profound than sug-
gested by earlier interpretations of pollen percentages; that
is, the share of non-forested land through the Holocene is
strongly underestimated by percentages of non-arboreal
pollen (NAP, i.e. pollen from herbaceous plants) (Figs. 25.5
and 25.7). For instance, the REVEALS estimates of regional
openness in the southernmost province of Sweden, Skéne,
are 15-30 % for 6000-2750 BP and about 60 % for 2750-
1000 BP, compared to 5-10 % and 30 % herb pollen,
respectively, while in the province of Smaland, north of
Skéne, they are <10 % for 6000-4500 BP, 10-25 % for
4500-2000 BP and 25-30 % for 2000-1000 BP, compared
to <2 %, <5 % and about 5 % herb pollen, respectively.
These REVEALS reconstructions suggest that by the Late
Bronze Age/beginning of the Iron Age, large areas of
southern Sweden were under human use for crop cultivation
and pastures. In Denmark, LRA estimates of local vegetation
show that, on the richest soils, the openness often reached
values over 80 % from ca. 3000 BP, while hilly areas were
characterised by less openness (seldom over 40 %). On poor
sandy soils, open heathland was dominant (70 % to over
80 %) (Nielsen and Odgaard 2010; Fig. 25.6). The maps of
Fig. 25.7 clearly show the strong increase in size of the land
surfaces covered by cultivated land (here exclusively culti-
vated with cereals) and grassland (here mainly grasses)
between 6000 BP (Neolithic) and 3000 BP (Late Bronze
Age), and between 3000 and 200 BP (AD 1750-1800). The
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pollen-based REVEALS and LRA reconstructions indicate
that the ALCC scenarios by Kaplan et al. (2009) are rea-
sonable, except perhaps the degree of deforestation in the
Neolithic time (5500 BP), which in some areas are too high
compared with REVEALS reconstructions from southern
Sweden (Gaillard et al. 2010; Trondman et al. 2011, 2012;
Figs. 25.5 and 25.7) and from Denmark and northern Ger-
many (Nielsen et al. 2012).

25.3.3.2 Middle Ages (AD 1050-1500)

The ALCC scenarios of Kaplan et al. (2009) showed that
deforestation intensified in Poland and the Baltic countries
from the mediaeval period onwards. However, the major
difference is seen between AD 700 and 900 (ca. 1300-
1100 BP), in particular in the southern part of the Baltic Sea
basin (Denmark, northern Germany, Poland), which increa-
ses up to 10-20 % deforestation (Fig. 25.4). This is in good
agreement with the REVEALS and LRA-based reconstruc-
tions of regional and local vegetation that suggest increases
of deforestation in early mediaeval time up to 10-15 % in
southernmost Sweden, and up to about 20-40 % on rich
soils and marginal areas of Denmark.

According to pollen and other palaecoecological studies,
the land under agriculture expanded in area in the Middle
Ages, resulting in a significant increase in landscape open-
ness in the southern environmental zones of the Baltic Sea
catchment. This was also a period with technological
advances in agriculture (Porsmose 1999) and changes in
crop composition (e.g. Behre 1992; Robinson et al. 2009). In
Denmark for instance, open-land areas increased especially
in the period AD 1200-1400, earliest in the core agricultural
areas, and about 100 years later in the more forested areas
(LOVE estimates, Fig. 25.6; Odgaard and Nielsen 2009). In
the heathland regions in the west, the last forests disappeared
(Odgaard and Nielsen 2009). The landscape also became
more open in north-eastern Germany (Nielsen et al. 2012),
and in southern Sweden, regional openness reached 80 %
and 35 % in Skane and Smaéland, respectively (REVEALS
estimates, Fig. 25.5). Nevertheless, large parts of Smaland
were characterised by much larger openness in areas where
grazed heathland expanded (Greisman and Gaillard 2009;
Marlon et al. 2010; Cui et al. 2012).

25.3.3.3 Modern Time (AD 1500-2000)

The ALCC scenarios of Kaplan et al. (2009) indicate a
progressive increase in deforestation of the region, in par-
ticular its southern part, reaching a peak around AD 1900.
The twentieth century in the Baltic Sea basin is characterised
by a period of land abandonment that is especially marked
during the period 1980-2000, however, mainly confined to
Denmark, northern Germany, the Baltic States and Poland
(Fig. 25.4). At a global scale, the ALCC scenarios of
Pongratz et al. (2008) indicate that, around AD 1700, the



25 Causes of Regional Change—Land Cover

agricultural area had increased to about 9 % of the area
potentially covered by vegetation on the globe (PGV), of
which 3.5 % was cleared forest (85 % for cropland, 15 % for
pasture) and 5.5 % was grassland and shrubland under
human use (30 % for the cultivation of crops). Between AD
800 and 1700, the ALCC scenarios show that natural veg-
etation under agricultural use had increased by about 5
million km® (i.e. about 6 % of PGV). Within the next
300 years, the total agricultural area increased to about 50 %
of PGV (mainly pastureland), that is roughly a 5.5 times
larger area than at AD 1700. This reconstruction suggests
that global ALCC was small between AD 800 and 1700
compared to the industrial time, but relatively large com-
pared to previous millennia. During the preindustrial period
of the twentieth century, the reconstruction shows clear
between-region differences in histories of agriculture (Pon-
gratz et al. 2008). However, regional reconstructions for the
Baltic Sea region based on pollen records, other palaeo-
ecological proxies, and archaeological/historical data differ
significantly from the global picture proposed by Pongratz
et al. (2008). According to the REVEALS and LRA model-
based reconstructions, the deforested area did increase
between AD 800 and 1700, however, by not more than
about 50 % of the earlier deforestation. The increase in
deforestation between about AD 1700 and 1850/1900 does
not represent more than 50 % of the landscape openness at
AD 1700, in many areas much less (10-20 %).

The pollen-based reconstructions indicate that the per-
centage cover of cereals was very high in the eastern parts of
northern Germany and northern Poland from AD 1500
onwards, and lower in north-western Germany, Denmark
and southern Sweden, where grazed grassland and heathland
were the dominant human-induced vegetation types (Bergl-
und et al. 2002; Berglund 2006; Nielsen et al. 2012). This
agrees with the archaeological findings and historical sour-
ces indicating that cereals were imported to Denmark and
Sweden from areas south of the Baltic Sea region (e.g.
Robinson et al. 2009), while cattle were exported in large
numbers from Denmark and Schleswig-Holstein to other
parts of northern Germany and to the Netherlands from the
fourteenth to mid-eighteenth century (Gijsbers and Koolm-
ees 2001; Bruun and Fritzbgger 2002). Grazed heathlands
had their maximum extent in the entire Baltic Sea region
around AD 1500-1800. Thereafter, many heathland areas—
as well as permanent grasslands and meadows—were con-
verted into arable land or planted forests, especially with
conifers (e.g. Eliasson 2002; Dahlstrdm 2008; Frederiksen
et al. 2009; Gaillard et al. 2009). Urban areas also expanded,
especially after AD 1900 (e.g. Frederiksen et al. 2009;
Miinier 2009). In southern Sweden, southern Norway and
the Baltic states, the landscape openness was at its maximum
around AD 1850. Since then, urbanisation, abandonment of
agrarian landscapes, land-use change and modern forestry
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have led to reforestation of large areas formerly used for
agriculture (see also Chap. 21). This trend is not unique to
the Baltic Sea region, but is also characteristic of many other
regions of Europe for which the nineteenth century was the
time of most intensive land use with maximum landscape
openness, while the twentieth century was characterised by
reforestation after abandonment and/or through plantation,
as for example in southern Norway, northern Italy, central
France, the Pyrenees, central Spain and Portugal (Gaillard
et al. 2009; Krzywinski and O’Connell 2009).

254 Effects of Land-Cover Change
on Past Climate: Model

Experiments

This section reviews available studies on the effect of long-
term CLCC and ALCC on past climate in the northern
hemisphere and Europe.

25.4.1 AD 1850 to Modern Time

The LUCID project compares responses to historical ALCCs
in various climate models in a series of studies (Pitman et al.
2009; de Noblet-Ducoudré et al. 2012). Pitman et al. (2009)
concluded that there was general agreement on the signifi-
cant effect of vegetation patterns and land-cover change on
regional climate, while their role on global climate was still
under debate. In particular, the effect of teleconnections
related to land-cover change was considered questionable;
that is, whether a change in the climate in a given region
could be related to land-cover change in other regions. Some
climate modelling studies suggest that such teleconnections
exist (Henderson-Sellers et al. 1993; Zhang et al. 1996;
Gedney and Valdes 2000; Werth and Avissar 2002, 2005),
while others indicate they do not (Findell et al. 2007, 2009;
Pitman et al. 2009). The following text reviews some of the
earlier studies addressing these questions.

At the global scale, Sheng et al. (2010) identified hot
spots of climate-induced change in surface energy fluxes
during the period 1948-2000, although these were not
related to land-cover change but rather to variability in
atmospheric—surface interactions. The hot spots were pri-
marily found in northern high-latitude areas. Based on
observations, Teuling et al. (2010) investigated how differ-
ences in water and energy exchange due to the differences in
land cover in the temperate forest zone affected the European
heatwave in August 2003. They concluded that grassland
and forest areas react differently to changes in soil water
availability. As long as water availability is high, woodland
exerts a warming effect compared to grassland due to higher
Bowen ratios over woodland; that is, more of the available
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net radiation energy at the surface is used for vertical heat
transfer than for evapotranspiration (see also Bonan 2008).
However, woodland can also sustain its evapotranspiration
rate when water availability is low, which leads to lower
Bowen ratios than in grassland in dry conditions; that is,
grassland becomes the source of excess heating instead of
woodland.

There are still important problems in relation to how
ALCCs are explored in numerical experiments using climate
models. Pielke et al. (2011) concluded that most studies
were based on only one or two models, which did not reflect
the uncertainty between models in their responses to
increased CO, levels or in the strength of their land—atmo-
sphere interactions, an uncertainty that is evident in the
LUCID multi-model study of Pitman et al. (2009). That
study mainly focused on the Northern Hemisphere summer
season, and the key result was a statistically significant
impact of ALCC on the simulated latent heat flux and air
temperature over the regions where anthropogenic land
cover changed, but the direction of the change in summer
temperature was inconsistent among the models. In terms of
rainfall, four of the coupled atmosphere-land models used
showed a significant impact on rainfall over regions with
ALCC, while three models did not show impacts greater
than the expected random variability of model outputs
(Seneviratne et al. 2010). In their review, Pitman et al.
(2009) did not find statistically significant impacts of ALCC
on latent heat flux, temperature or rainfall remote from the
actual ALCC, that is no teleconnections. The authors also
suggested that robust conclusions on the effects of ALCCs
on climate can only be drawn from multi-model experi-
ments. Studies based on a single model only provide indi-
cations of possible feedback mechanisms and their
implications.

The goal of the most recently published part of the LUCID
project (de Noblet-Ducoudré et al. 2012) was to provide a
detailed examination of why the LSMs diverge in their
response to ALCC. For this purpose, the authors used seven
atmosphere-land models with a common experimental
design. For the vegetation distribution, each model used as a
starting point the same distribution of crop and pasture, at a
resolution of 0.5° x 0.5°, as extracted from Ramankutty and
Foley (1999), combined with the pasture areas from Klein
Goldewijk et al. (2011) (Fig. 25.8). However, as there are
between-model differences in (i) the way land information
was represented, (ii) sources of information to describe
present-day and potential vegetation, and (iii) strategies to
implement ALCC in the model, the resulting land-cover dis-
tribution (including natural vegetation) used in each model
differed (de Noblet-Ducoudré et al. 2012; Fig. 25.8).
Although the areas covered by crops increased from AD 1870
to AD 1992 in all land-cover data sets used, the increase
varied; all LSMs describe temperate deforestation, but at
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varying degrees. Within the Eurasian region studied in
LUCID, western Europe is characterised by reforestation (i.e.
land abandonment and forest planting) rather than deforesta-
tion, and the Baltic Sea catchment area by mixed deforestation
and reforestation, while the entire Eurasian region exhibits
overall deforestation (Figs. 25.8 and 25.9). These differences
in ALCC implementations between the LUCID model runs
had an influence on how ALCC affected the near-surface
climate in the models’ results; that is, there is no consistency
in how ALCC influenced the partitioning of available energy
between latent and sensible heat fluxes at a specific time
(Boisier et al. 2012; de Noblet-Ducoudré¢ et al. 2012).

These results highlight the urgent need to evaluate LSMs
more thoroughly. However, there are some robust common
features shared by all models: the amount of available
energy used for turbulent fluxes and the almost linear rela-
tionship between the climate response to ALCC and the
amount of trees removed. All models simulated a systematic
increase in surface albedo in all seasons. For most models,
this increase (7 % for a full transition from forest to crop/
grassland) was proportional to the amount of deforestation
imposed on the individual models. Moreover, the larger
surface albedo was shown to cause a decrease in QA
(computed as the sum of absorbed solar energy and incident
atmospheric infrared radiation); QA decreased in all seasons
everywhere in the temperate regions and was also propor-
tional to the amount of deforestation imposed on a given
model. In most cases, crops and grasslands were less effi-
cient than trees in transferring energy to the atmosphere in
the form of turbulent fluxes due to a lower aerodynamic
roughness length. All models that underwent a change in
their forest fraction that was greater than 15 % simulated
cooler ambient air temperature in all seasons. These common
features and their dependence on the ALCC descriptions
prescribed in each model suggest that, for a specified amount
of deforestation occurring over specific periods, the disper-
sion among the models would be significantly smaller if the
ALCC descriptions had been exactly the same in all models.
LUCID also compared the biogeophysical impacts of ALCC
with the impact of elevated greenhouse gas concentrations
on sea surface temperatures and sea-ice extent. The results
show that ALCC had an impact of similar magnitude—but
of opposite sign—to increased greenhouse gases and warmer
oceans. However, it should be stressed that although this
result is valid for the entire Eurasian region, this is not
necessarily the case for individual parts of that large region,
such as the Baltic Sea catchment area. Moreover, in view of
the dominant reforestation of the catchment’s western part
and deforestation of its eastern part, it is not possible to
predict the net effect of ALCC at the scale of the entire
catchment area without modelling the effects of deforestation
and reforestation at the regional scale using regional climate
models.



25 Causes of Regional Change—Land Cover 467

60N 4.

40N -

20N -

EQ -

205 4

405 -

120W 60w 0 60E 120€
[ . ]

-60 -40 -20 -5 5 20 40 60

Fig. 25.8 Changes in the extent of agricultural land (crops and the extent of agricultural land since AD 1870. The two contours on the
pastureland) between pre-industrial time (AD 1870) and present day  map indicate the regions used for specific analysis (North America and
(AD 1992). Yellow and red indicate an increase, and blue a decrease, in ~ Eurasia) (de Noblet-Ducoudré et al. 2012)

Fig. 25.9 Vegetation (a) VEGETATION FRACTION IN 1870
descriptions used in the LUCID NORTH AMERICA EURASIA

project (de Noblet-Ducoudré et al. 1.+

2012). a Vegetation fraction in

AD 1870 in the studied Eurasian

region (shown in Fig. 25.8). 0.8

Surface (in fraction of total area)

covered by crops (grey), 06

grassland types (orange), '

evergreen trees (green),

deciduous trees (blue) and desert 0.4}

(white) for all seven models used

in the LUCID project (for details _ B Lo N 1
on the seven models, see de 0.2+

Noblet-Ducoudré et al. 2012);

b Fraction difference (AD 1992— P 1 Z B "I = 2

AD 1870) (in fraction of total ECE SPE IPS ARP CCA CCS ECH  ECE SPE IPS ARP CCA CCS ECH
area) for each of the vegetation

types shown in (a). The dashed

black line in both graphs (a) and (b) FRACTION DIFFERENCE (1992-1870)
(b) shows the crop fraction that NORTH AMERICA ] EURASIA
was finally implemented in all
seven models (de Noblet- 0.4}
Ducoudré et al. 2012) | .

ECE SPE IPS ARP CCA CCS ECH ECE SPE IPS ARP CCA CCS ECH



468

25.4.2 Before AD 1850
There are few studies of land cover—climate interactions
before AD 1850, although the number has increased rapidly
since 2009. To date, there are no published modelling
studies on the possible feedbacks of CLCC on past natural
climate warming such as the well-known Early Holocene
increase in mean annual temperatures and on the effects of
Late Holocene CLCC and/or ALCC on later climate changes
such as the Medieval Climate Anomaly (warming) and the
Little Ice Age (cooling, see also Chap. 3), except that of
Pongratz et al. 2009b. However, simulations of the north-
wards expansion of trees due to a warmer climate showed
that such climate-induced vegetation changes produced a
positive feedback on climate (e.g. Cheddadi et al. 1997).
There is only one study of the effect of past ALCC on
regional climate in Europe using a regional climate model,
the LANDCLIM project (Gaillard et al. 2010; Strandberg
et al. 2013). The aim of the study was to evaluate the direct
effects of anthropogenic deforestation on simulated climate
at two contrasting times of the Holocene ~6000 BP and
~200 BP in Europe applying RCA3, a regional climate
model with 50 km spatial resolution (Samuelsson et al.
2011). Three alternative descriptions of the past vegetation
were used: (i) potential natural vegetation (V) simulated by
the dynamic vegetation model LPJ-GUESS (Smith et al.
2001), (ii) potential vegetation with anthropogenic land
cover (deforestation) as simulated by the HYDE model
(V + H), and (iii) potential vegetation with anthropogenic
land cover as simulated by the KK model (V + K). The
climate model results show that the simulated effects of
deforestation depend on both local/regional climate and
vegetation characteristics (Strandberg et al. 2013). At
~ 6000 BP, the extent of simulated deforestation in Europe
is generally small, but there are areas where deforestation as
simulated by Kaplan et al. (2009) (V + K) is large enough to
produce significant differences in summer temperature of
0.5-1 °C, which is the case in southern Sweden and eastern
Poland. However, the KK model overestimates deforestation
in these areas compared to the pollen-based REVEALS
reconstructions. At ~200 BP, simulated deforestation is
much more extensive than previously assumed, in particular
according to the pollen-based REVEALS reconstructions
(see Sect. 25.3.3.3) and the KK model. This leads to sig-
nificant temperature differences in large parts of Europe. In
winter, deforestation leads to lower temperatures because of
the differences in albedo between forested and unforested
areas, particularly in the snow-covered regions. In summer,
deforestation leads to higher temperatures in Central and
eastern Europe since evapotranspiration from unforested
areas is lower than from forests (hydrological cycle effect).
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Summer evaporation is already limited in the southernmost
parts of Europe under potential vegetation conditions and,
therefore, cannot become much lower. Accordingly, the
albedo effect dominates also in summer, which implies that
deforestation causes a decrease in temperature. Differences
in summer temperature due to deforestation range from
—1 °C in south-western Europe (cooling) to +1 °C in eastern
Europe (warming). In the Baltic Sea area, the effects of
deforestation at 200 BP are much weaker than in south-
western and eastern Europe. The effect is strongest in
southern Sweden where deforestation leads to lower winter
temperatures by only 0.2-0.4 °C, but there is no effect in
summer. The choice of anthropogenic land-cover estimate
was shown to have a significant influence on the simulated
climate. But the climate proxy data available for the two
time windows are not precise enough to evaluate the results
of the climate model runs in quantitative terms effectively.

Earlier studies also show that the albedo effect of his-
torical deforestation was probably dominant among the
effects of deforestation in the northern atmosphere. How-
ever, most studies suffer from the drawback that the grid
resolution is rather coarse and far coarser than the scale
necessary to capture local to regional processes (Hibbard
et al. 2007). Brovkin et al. (2006) used the scenarios of past
deforestation produced by Ramankutty and Foley (1999) for
the period AD 1800 to present-day and the HYDE database
to reconstruct the effects of ALCC on climate over the past
1000 years. The outputs from six different climate models
showed a cooling of 0.1-0.4 °C over the Northern Hemi-
sphere due to the biogeophysical effects (mainly increased
albedo) of the estimated decrease in forest cover between
AD 1000 and 2000. They also found a warming of similar
magnitude due to the biogeochemical effects of ALCC,
therefore a net effect close to zero. Pongratz et al. (2009b)
investigated the influence of historical land-use changes on
radiative forcing (RF). For all of Europe, except Scandina-
via, a decrease of 0.3 W m 2 was found between AD 800
and 1700. At the global scale, the RF was small throughout
the pre-industrial period (negative with a magnitude less
than 0.05 W m™?) and not strong enough to explain the
cooling reconstructed from climate proxies between AD
1000 and 1900 (Little Ice Age).

To date, there are few estimates of CO, emissions due to
historical ALCC at the sub-continental scale and none using
regional climate models. In the context of this review, the
most interesting study so far is that of Pongratz et al. (2010)
that separated the relative strength of biogeochemical versus
biogeophysical effects from ALCC during the past millen-
nium using a coupled atmosphere—ocean general circulation
model (AOGCM) and applying the reconstruction of his-
torical ALCC of Pongratz et al. (2008). They found that
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biogeophysical effects had a slight cooling influence on
global mean temperature (—0.03 °C in the twentieth cen-
tury), while biogeochemical effects led to a strong warming
(0.16-0.18 °C). During the industrial era, both effects caused
significant changes in certain regions, but only a few regions
experienced a biogeophysical cooling strong enough to
dominate the overall temperature response. The authors
concluded that the climate response to historical ALCC, both
globally and in most regions, was dominated by the rise in
CO, caused by ALCC emissions. However, the biogeo-
physical temperature response at the regional scale was
greater than suggested by its global mean. For example, in
Europe, the annual mean temperature decreased by 0.3—
0.5 °C, and the cooling in northern high and mid-latitudes
was found to be largely albedo-driven, leading to a winter
cooling of up to 0.9 °C in north-eastern Europe, in general
accordance with previous studies (e.g. Betts 2001). How-
ever, the albedo dominance over hydrological aspects in the
Pongratz et al. (2010) study is only significant for the annual
mean temperature, whereas transpiration effects are in some
cases seasonally offsetting. The authors also concluded that
strong local biogeophysical effects could substantially
influence the spatial pattern of the net temperature response,
as in eastern Europe for example. The global versus local
effectiveness of biogeochemical versus biogeophysical
effects was also demonstrated by the fact that, at the global
scale, the entire land area was more strongly influenced by
biogeochemical warming than the ocean, while biogeo-
physical cooling is particularly pronounced over agricultural
areas. Pongratz et al. (2011) also quantified the contribution
of local ALCC to historical global warming and showed the
importance of past land-use decisions in influencing the
mitigation potential of reforestation on these lands. In these
simulations, they found that CO, warming dominated over
albedo cooling at the global scale because past land-use
decisions resulted in the use of the most productive land with
larger carbon stocks and less snow than on average.
Therefore, land-use decisions led to CO, warming in most
agriculturally important regions of the world. This suggests
that, in most places, reversion of past land-cover change may
often be the most feasible step of implementing ALCC as a
mitigation tool. However, because the amount of CO,
emissions and the change in biophysical properties vary
across regions and types of land-cover change, detailed
analysis—that is, simulation of the regional climate response
to local occurrence of ALCC—is needed for specific refor-
estation projects. The climate effect of past ALCC is likely to
be a good indicator of the mitigation potential of reversing
the area to its natural state.
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The rest of this section summarises other studies of glo-
bal-scale carbon emissions. Pongratz et al. (2009a) per-
formed transient simulations over the entire last millennium
with a GCM that couples the atmosphere, ocean and land
surface with a closed carbon cycle. By applying the ALCC
of Pongratz et al. (2008) as the only forcing to the climate
system, they showed that the terrestrial biosphere experi-
enced a net loss of 96 Gt C over the last millennium, leading
to an increase in atmospheric CO, by 20 ppm. The bio-
sphere—atmosphere coupling led therefore to a restoration of
37 and 48 % of the primary emissions over the industrial
period (AD 1850-2000) and pre-industrial period (AD 800—
1850), respectively. Atmospheric CO, rose above natural
variability by late mediaeval times, but global mean tem-
peratures were not significantly altered until strong popula-
tion growth in the industrial period. Pongratz et al. (2009a)
also found that only long-lasting epidemics or wars led to
carbon sequestration because emissions from past ALCC
compensate carbon uptake in ‘regrowing’ vegetation for
several decades. Reick et al. (2010) derived the CO, emis-
sions associated with ALCCs since AD 800 as reconstructed
by Pongratz et al. (2008) and compared them with the pre-
industrial development of atmospheric CO, known from
Antarctic ice cores. They concluded that pre-industrial traces
of CO, emissions from ALCC before AD 1750 was
obscured by other processes of similar magnitude, while the
steep increase in atmospheric CO, after AD 1750 and until
AD 1850 (i.e. before the rise of fossil fuel emissions to
significant values) was largely explained by rising emissions
from ALCC. These results partly contrast with those of
Kaplan et al. (2010) who found that by AD 1850, at the
global scale, the cumulative CO, emissions due to defores-
tation since 6000 BC were 137-189 Pg C (using the HYDE
scenarios of ALCC) and 325-357 Pg C (using the KK
ALCC scenarios of Kaplan et al. (2009)). Kaplan et al.
(2010) concluded that their results support the hypothesis
that anthropogenic activities led to the stabilisation of
atmospheric CO, concentrations at a level that made the
world substantially warmer than it would otherwise have
been. Similarly, Boyle et al. (2011) showed by using new
model assumptions that the quantity of terrestrial carbon
release due to early farming, even using the most conser-
vative assumptions, greatly exceeds the net terrestrial carbon
release estimated by inverse modelling of ice core data by
Elsig et al. (2009). However, the conclusions of both Kaplan
et al. (2010) and Boyle et al. (2011) remain an open question
as the emission estimates are not compatible with current
understanding of the global carbon cycle and records from
ice cores.
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25.5 Potential Future Trends in Land
Cover and Associated Effects
on Future Climate

25.5.1 Future Land-Cover Change Due

to Anthropogenic Climate Change
and Possible Feedbacks

Many of the existing scenarios of future trends in land-cover
change are based on observations of vegetation change due to
the recent climate warming, but also on socio-economic
assumptions. Studies on future climate-induced (potential
natural) vegetation change and related biogeophysical feed-
backs to regional climate provide some indication of what to
expect in the future, since the underlying mechanisms are
likely to be similar for human-induced vegetation change.
Such studies in Europe indicate a boreal treeline advance into
the tundra regions of the northern latitudes of both the Barents
Sea region (Gottel et al. 2008) and northernmost Europe
(Wramneby et al. 2010; Smith et al. 2011). The most sig-
nificant feedback associated with forest expansion at these
latitudes is expected to be the albedo feedback (warming) that
is likely to be strong enough to offset the climate gains from
the increased carbon sequestration in these forests. Using the
coupled regional climate—vegetation model RCA-GUESS
(Smith et al. 2011) at the European scale, Wramneby et al.
(2010) also showed that a future rise in the altitudinal limit of
deciduous trees in the Scandinavian mountains due to
increased temperature would lead to enhanced warming
through the positive snow—vegetation—albedo feedback.
While the albedo feedback and its amplifying effect on
climate warming is expected to be the most important bio-
geophysical feedback in boreal regions such as northern
Europe (Strengers et al. 2010), an increase in forest cover
also implies a contrasting biogeophysical feedback mecha-
nism due to enhanced evapotranspiration. This feedback
may, however, be of minor importance in boreal forests
dominated by evergreen trees, since these forests have a
comparatively low evapotranspiration rate (Bonan 2008).
For the part of the Baltic Sea region characterised by a more
temperate climate, the role of evapotranspiration might,
however, be of greater importance due to the dominance of
more strongly transpiring broadleaved deciduous forests,
although authors disagree on the role of temperate forests in
climate change (South et al. 2011). Significant feedbacks
from such changes in the hydrological cycle were identified
by, for example, Wramneby et al. (2010), but primarily in
Central Europe. Meanwhile, there was no evidence that
variations in cloudiness and precipitation over Europe could
be attributed to vegetation dynamics. The lack of an estab-
lished relationship between increased/reduced evapotrans-
piration, precipitation and cloud formation over Europe
could be because these are strongly determined by the
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advection of moisture from the Atlantic. This is likely to
overwhelm any feedback signal from vegetation-mediated
changes in evapotranspiration. In addition, the ratio between
sensible and latent heat exerts a strong local control on
surface temperature, but effects on cloud formation and
precipitation will take place at the site of condensation,
further away and higher up in the atmosphere, diffusing the
signal (Wramneby et al. 2010).

Climate—vegetation feedbacks not only influence the
mean climate but can also affect climate variability. Sene-
viratne et al. (2006) performed a suite of climate model
sensitivity simulations with and without soil moisture
responses to infer the role of the land surface; a substantial
fraction of the future temperature variability in Europe was
attributed to land-surface processes mediated by soil-mois-
ture feedbacks. In some respect, climate variability provides
a better understanding of climate change, since its concrete
consequences might be extreme climate events such as
floods and droughts. For the European domain, and the
Baltic Sea countries, such events already have severe con-
sequences (Della-Marta et al. 2007).

25.5.2 Resource Management and Future
Land-Cover Change Scenarios:

Possible Effect on Future Climate

Today, the total land area of the Baltic Sea coastal countries
(Russia excluded) is roughly 160 million ha, of which 79
million ha is forest and 46 million ha is agricultural land
(FAO 2009a). Sweden and Finland are mainly covered by
forest and constitute approximately 63 % of the total forest
area in the Baltic Sea coastal countries, while Germany and
Poland are dominated by agricultural land and represent
about 71 % of the total agricultural land area (FAO 2009a,
see also Chap. 21). In the past 20 years, forest areas have
increased in western and eastern Europe (FAO 2009b).
Production of food is extremely valuable for the European
Union as well as forest raw material for pulp, paper and
construction material. One of the most immediate challenges
facing the forest and agricultural sector in EU countries is to
meet the anticipated rise in demand for raw materials
resulting from the promotion of renewable energy sources
(e.g. EC 2009).

The forces driving future land use in Europe include
agricultural policy and international markets. Other issues
include global food security/scarcity; the possible develop-
ment of new, alternative agricultural products; the preser-
vation of agricultural and forest land; and urbanisation.
Moreover, future climate change may also influence land
use. Globally, a number of future land-use change scenarios
have been explored, and over recent decades, regional sce-
narios have emerged for different parts of the world (Alcamo
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et al. 2008). Regional studies pinpointing future changes in
the Baltic Sea region are very limited, but over the European
domain, a growing number of future land-use scenarios are
becoming available. The difficulty in moving focus from
global to regional land-use scenarios lies in the variety of
possible outcomes, since more details and locally specific
questions need to be considered (Carter et al. 2007; Alcamo
et al. 2008; Metzger et al. 2010). Scenarios on the future
development of European land use generally rest on two
assumptions (Alcamo et al. 2008): an increase in agricultural
productivity and a decrease in European population.
According to the United Nations projections, a population
decline by 8 % is expected by 2030 (UN 2005), with a
further decline likely for later years. At the same time,
agricultural productivity is expected to increase by between
25 and 163 % depending on the technological developments
assumed (Ewert et al. 2005). The net result of these trends is
a decrease in the agricultural area required for food pro-
duction. For Europe as a whole, the scenarios show a decline
in cropland of 28-47 % by AD 2080 and a decline in
grassland of 6-58 % (Rounsevell et al. 2006), the abandoned
areas being reclaimed by either urban development or for-
estry, although some areas may be used to cultivate bioen-
ergy crops. Bergh et al. (2010) argued that the expected
climate conditions during the twenty-first century (according
to IPCC SRES; Naki¢enovi¢ and Swart 2000) are likely to
imply improved growing conditions in boreal and cold
temperate climates, but a decrease in production both in
agriculture and forestry in Central and southern Europe
(Lindner et al. 2010; Masters et al. 2010), which would
result in increased pressure on both agriculture and forestry
in northern Europe especially in the latter half of the century.
The demand for crops and the importance of food security
might imply that forests would need to be replaced by
agricultural land. A few other studies have also indicated a
sustained or even expanded agricultural fraction for some
Baltic Sea countries (e.g. Denmark and Finland; by Audsley
et al. 2006) during the twenty-first century.

The effect on climate of possible future regional land-use
changes is to a large extent unexplored. Biogeochemical
feedbacks from regional land-use changes have been dis-
cussed in the context of global climate change in some
studies (Carter et al. 2007; Rounsevell and Reay 2009), but
the direct biogeophysical feedbacks from expected land-use
changes are yet to be addressed. Given that the majority of
available future land-use scenarios at the European scale
assume increasing fractions of forested areas in parallel with
a reduction in agricultural land, it would imply a positive
(warmer climate) albedo-mediated effect in winter when
previously snow-covered agricultural land is replaced by
snow-masking forested areas and, at least potentially, a
negative (colder climate) effect from an enhanced hydro-
logical cycle in summer due to higher LAl (Wramneby et al.
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2010). It could also imply an increased CO, sink. Whether
the net effect would be a warming or a cooling is not pos-
sible to assess without extensive modelling experiments. On
the other hand, if future land-use change in the Baltic Sea
region happens to be an increase in area of agricultural land
as suggested by some studies, the different effects mentioned
above would be of opposite sign, and so the net effect
probably of different magnitude.

The International Union of Forest Research Organizations
(IUFRO) has highlighted the immense potential for the
forest sector to mitigate climate change at low cost, while
agricultural production would have much smaller potential.
Forestation/reforestation has been suggested as a tool to
mitigate global warming because a growing forest takes up
and stores carbon from the atmosphere (UNFCCC 2005).
However, the scientific challenge is to understand how dif-
ferent land-use strategies can contribute to mitigation bene-
fits (e.g. Canadell and Raupach 2008). Pongratz et al. (2011)
have shown that reversion of past land-cover change may
often be the most feasible step for implementing ALCC as
mitigation tool, but that careful analysis of the possible
effects of ALCC at the regional scale should be performed
for each forestation/deforestation project (see Sect. 25.4.2).
It is also debated whether carbon sequestration in forests is
the most effective way of mitigating climate change and,
therefore, whether forest management should be optimised
to increase the carbon stock. Various forms of carbon-related
land-use strategies, as well as carbon-accounting mecha-
nisms, increasingly enter agricultural and forest politics and
policy. Bioenergy, carbon sinks and raw wood products as
substitutes for fossil-based materials (Sathre and O’Conner
2010) add to the traditional list of products and services that
forests may provide. Ranges of energy-associated industry,
in particular the bioenergy industry, together with other
climate- and energy-related organisations, are now entering
the forest sector with hopes of realising their strategies.
However, it is important to note that many of the socio-
economic factors and assumptions controlling future land-
use policies take indirect biogeochemical processes into
consideration while neglecting direct biogeophysical pro-
cesses (Jackson et al. 2008), presumably because the number
of studies on CO, is substantially larger. In other words,
current understanding of land-cover changes and their bio-
geophysical feedbacks in regional climate change is limited
in comparison with the large-scale carbon cycle feedbacks.

25.6 Conclusion

1. ALCC is one of the few climate forcings for which the
net direction of the climate response (warming or cool-
ing) over the last two centuries is still not known with
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certainty. The major uncertainty is due to the often
counteracting temperature responses to biogeochemical
versus biogeophysical effects, but also to the difficulty of
quantifying the counteracting effects of changes in albedo
and hydrological cycle (both biogeophysical effects), as
well as obtaining precise land-cover data for the past.
However, it is recognised that it is important to attempt to
quantify the contribution of local/regional ALCC to past
regional and global climate change. This information is
necessary (i) to identify ALCC as a forcing of past cli-
mate change (over centuries and millennia), (ii) assuming
that agricultural expansion continues in many regions of
the world, to understand whether it will lead to similar
climatic consequences as in the past, and (iii) to under-
stand how land-use strategies may mitigate future climate
warming.

Deforestation or reforestation by humans may have a
series of contrasting effects on regional climate, of which
the net result in terms of temperature and precipitation is
still not possible to establish from existing modelling
studies. Although the biogeochemical effect of historical
ALCC on climate is theoretically well understood, the
magnitude of the increase/decrease in the forcing is not
accurately quantified to date. In contrast, the influence of
the biogeophysical effects of ALCC is still not fully
understood because it is far more complex. While the
land-surface modelling community generally agrees that
ALCC may affect climate through physical effects—in
particular by affecting the albedo and therefore the sur-
face—energy balance—there is no consensus on what this
proposition implies. Even though the estimated global-
scale impact of historical ALCC on RF through land-
surface albedo changes is small relative to the CO,-
related RF (Forster et al. 2007), it does not imply that
ALCC has no significant impact on regional climate (e.g.
Pielke et al. 2002; Davin et al. 2007). There is common
agreement that, provided ALCC is spatially coherent at a
sufficiently large scale, this would affect the regional-
scale climate significantly. However, to date, three fac-
tors could not be quantified yet: (i) the scale of ALCC
required to produce a significant effect on climate on
global and regional spatial scales (when compared to
other forcings of climate change), (ii) how large the
resulting change in the regional climate can be expected
to be, and (iii) how much the nature of the existing cli-
mate over a region might suppress or amplify the initial
impacts of ALCC. Increased concentration of greenhouse
gases in the atmosphere and the subsequent changes in
sea-surface temperatures and sea-ice extent are consid-
ered today to be the main drivers of climate change also
over land. However, such an assumption leads to erro-
neous conclusions regarding the land-surface impacts on
climate change in regions where ALCCs have been
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significant. ALCCs have the potential to mask a regional
warming signal, with the resulting risk that detection and
attribution studies may miss a clear greenhouse signal or
misattribute a greenhouse signal if the ALCCs are poorly
accounted for in the model.

. For most of Europe, and the southern zone of the Baltic

Sea basin in particular, palaeoecological studies clearly
show that the major transformation of the landscape by
anthropogenic activities occurred between 6000 BP and
3000/2500 BP with major deforestation during the Late
Bronze Age or Early Iron Age, depending on the area. The
deforested area did increase between AD 800 and 1700,
however, by not more than about 50 % of the earlier
deforestation. Similarly, the increase in deforestation
between about AD 1700 to AD 1850/1900 did not rep-
resent more than 50 % of the landscape openness at AD
1700, in many areas much less. The effect of this long-
term deforestation on past climate, at global and regional
scales, is not fully understood and still much debated.

. There do not appear to be any model studies looking

specifically at both the effects of biogeophysical and
biogeochemical processes related to historical (ca. AD
1850—modern) ALCC on climate change at the scale of
the Baltic Sea region. The only modelling study of the
biogeophysical effects of past ALCC on regional climate
in north-western Europe suggests that deforestation
between 6000 and 200 BP may have produced significant
changes in winter and summer surface temperatures (of
the order of +0.5-1 °C) through biogeophysical pro-
cesses that vary in size and direction (decrease or
increase) depending on the geographical area and season.
In the Baltic Sea area, the major effect is seen as a slight
cooling of 0.2-04 °C during winter in southern Sweden
primarily due to the albedo effect. The net effect of
anthropogenic deforestation and reforestation through
carbon sources versus sinks (warming vs. cooling) and
biogeophysical cooling versus warming is not yet quan-
tified. Reforestation has been suggested as a tool to
mitigate global warming. However, several model studies
of large-scale reforestation/deforestation indicate that in
boreal regions, the magnitude of the positive albedo
forcing following reforestation could be larger than the
magnitude of the negative forcing from CO, uptake,
therefore leading to warming. The latter would imply that
boreal reforestation might not be an effective climate
warming mitigation tool as it could lead to increased
warming through biogeophysical processes.

. A conclusion from available modelling studies reviewed

here is that there is no indication to date that deforesta-
tion in the Baltic Sea area since AD 1850 would have
been a major cause of the recent climate warming in the
region through a positive biogeochemical feedback
(release of CO,). Moreover, the southern part of the
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Baltic Sea area was reforested after AD 1900, which
should have resulted in a different net effect on regional
climate than deforestation. The ALCC scenarios do
suggest a significant increase in land use at this time, but
this does not agree with palaeoecological reconstructions
indicating that openness was at its maximum in many
parts of Europe—and in the southern part of the Baltic
Sea region—around AD 1850-1900. The question is
whether the change in land cover over the transition to
the industrial period was large enough to make a sig-
nificant contribution to the climate warming. Theoreti-
cally, the tendency towards reforestation from the end of
the nineteenth century and through the twentieth century
could have implied a cooling if the biogeochemical effect
was the largest of all effects or a warming if the albedo
effect in winter was dominant over other biogeophysical
effects and the biogeochemical cooling effect. However,
the respective magnitude of each potential effect and their
net result are still unknown for the Baltic Sea region.
Therefore, there is still an urgent need to better under-
stand the biogeophysical effects of reforestation in this
region because of the idea still prevailing that planting
trees will mitigate climate warming. Hibbard et al. (2010)
recognised the importance of an accurate representation
of land-use and land-cover change to understand and
quantify the interactions and feedbacks between climate
and socio-economic systems, respectively, and high-
lighted recent and innovative methods that integrate
observations and modelling analyses of regional to global
aspects of biogeophysical and biogeochemical interac-
tions of land-cover change with the climate system. To
conclude, a quote from de Noblet-Ducoudré et al. (2012):
‘the appropriate question is not whether ALCC has a
globally averaged significant impact, but is rather whe-
ther ALCC has an impact on regions that have undergone
intensive ALCC (such as North America, Europe, India,
China, Russia, Japan, and Indonesia) that is worth
accounting for when exploring the impact of other human
forcings on regional climate’.

Open Access This chapter is distributed under the terms of the Creative
Commons Attribution Noncommercial License, which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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