127 research outputs found

    Molecular mechanisms of inflammation and tissue injury after major trauma-is complement the "bad guy"?

    Get PDF
    Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and experimental studies have brought increasing evidence for activation of the innate immune system in contributing to the pathogenesis of trauma-induced sequelae and adverse outcome. As the "first line of defense", the complement system represents a potent effector arm of innate immunity, and has been implicated in mediating the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen elimination and immediate response to danger signals, complement activation may exert detrimental effects after trauma, in terms of mounting an "innocent bystander" attack on host tissue. Posttraumatic ischemia/reperfusion injuries represent the classic entity of complement-mediated tissue damage, adding to the "antigenic load" by exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately contribute to remote organ injury and death. Numerous experimental models have been designed in recent years with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present review provides an overview on the current understanding of the cellular and molecular mechanisms of complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may provide the rationale for a "bench-to-bedside" approach in the design of future pharmacological strategies

    A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response

    Get PDF
    Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group) were anesthetized and exposed to chest trauma (ChT), closed head injury (CHI), or Tib/Fib fracture including a soft tissue trauma (Fx + STT) or to the following combination of injuries: (1) ChT; (2) ChT + Fx + STT; (3) ChT + CHI; (4) CHI; (5) polytrauma (PT = ChT + CHI + Fx + STT). Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL) fluid samples. Results. Polytraumatized (PT) rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma

    Association of Complement and MAPK Activation With SARS-CoV-2-Associated Myocardial Inflammation

    Get PDF
    IMPORTANCE Myocardial injury is a common feature of patients with SARS-CoV-2 infection. However, the cardiac inflammatory processes associated with SARS-CoV-2 infection are not completely understood. OBJECTIVE To investigate the inflammatory cardiac phenotype associated with SARS-CoV-2 infection compared with viralmyocarditis, immune-mediatedmyocarditis, and noninflammatory cardiomyopathy by integrating histologic, transcriptomic, and proteomic profiling. DESIGN, SETTING, AND PARTICIPANTS This case serieswas a cooperative study between the Ludwig Maximilian University Hospital Munich and the Cardiopathology Referral Center at the University of Tubingen in Germany. A cohort of 19 patients with suspectedmyocarditis was examined; of those, 5 patients were hospitalized with SARS-CoV-2 infection between March and May 2020. Cardiac tissue specimens from those 5 patients were compared with specimens from 5 patients with immune-mediatedmyocarditis, 4 patients with non-SARS-CoV-2 viralmyocarditis, and 5 patients with noninflammatory cardiomyopathy, collected from January to August 2019. EXPOSURES Endomyocardial biopsy. MAIN OUTCOMES AND MEASURES The inflammatory cardiac phenotypeswere measured by immunohistologic analysis, RNA exome capture sequencing, and mass spectrometry-based proteomic analysis of endomyocardial biopsy specimens. RESULTS Among 19 participants, the median age was 58 years (range, 37-76 years), and 15 individuals (79%) were male. Data on race and ethnicity were not collected. The abundance of CD163+ macrophages was generally higher in the cardiac tissue of patients with myocarditis, whereas lymphocyte counts were lower in the tissue of patients with SARS-CoV-2 infection vs patients with non-SARS-CoV-2 virus-associated and immune-mediatedmyocarditis. Among those with SARS-CoV-2 infection, components of the complement cascade, including C1q subunits (transcriptomic analysis: 2.5-fold to 3.6-fold increase; proteomic analysis: 2.0-fold to 3.4-fold increase) and serine/cysteine proteinase inhibitor clade G member 1 (transcriptomic analysis: 1.7-fold increase; proteomic analysis: 2.6-fold increase), belonged to the most commonly upregulated transcripts and differentially abundant proteins. In cardiac macrophages, the abundance of C1q was highest in SARS-CoV-2 infection. Assessment of important signaling cascades identified an upregulation of the serine/threonine mitogen-activated protein kinase pathways. CONCLUSIONS AND RELEVANCE This case series found that the cardiac immune signature varied in inflammatory conditions with different etiologic characteristics. Future studies are needed to examine the role of these immune pathways inmyocardial inflammation

    The GOLMePsA study protocol: an investigator-initiated, double-blind, parallel-group, randomised, controlled trial of GOLimumab and methotrexate versus methotrexate in early diagnosed psoriatic arthritis using clinical and whole body MRI outcomes

    Get PDF
    Background: Psoriatic arthritis (PsA) is a chronic inflammatory arthritis which impacts significantly on the quality of life and work capacity of affected individuals. Recent evidence has shown that early control of inflammation in PsA leads to improved long-term outcomes. It is postulated that prompt intervention after diagnosis using a remission-induction treatment strategy will lead to improved outcomes and optimal disease control of PsA. The aim of the present study was to compare the clinical efficacy of a treatment strategy in newly diagnosed, treatment naïve PsA subjects, using the combination of golimumab (GOL), methotrexate (MTX) and steroids versus standard care (MTX monotherapy plus steroids). Methods/design: GOLMePsA is an investigator initiated, phase IIIb, single-centre, randomised, double-blind, placebo-controlled, two-armed, parallel-group, imaging-supplemented study. Eighty-eight PsA patients, diagnosed within 24 months prior to screening and treatment naïve, will be randomised at baseline to receive: (arm 1) the combination of intramuscular/intra-articular prednisolone, MTX and GOL or (arm 2) the combination of intramuscular/intra-articular prednisolone, MTX and placebo for 24 weeks (interventional period). Primary outcome measure is clinical improvement (at least 1 unit difference) in the Psoriatic ArthritiS Disease Activity Score (PASDAS) composite index. Reflecting a “step down” therapeutic approach, all participants successfully completing the interventional period will be followed up for a further 28 weeks. During this observational period, stable maintenance MTX monotherapy will continue for both arms, unless in case of intolerance or PsA relapse. In the latter case, additional treatment will be provided. Overall, the GOLMePsA study length is planned to be 52 weeks. Discussion: The hypothesis underlining this study is that very early treatment with first-line GOL reduces disease activity in PsA, in comparison to conventional therapy. Trial registration: EudraCT 2013–004122-28. 24/09/2013

    Cohort comparison study of cardiac disease and atherosclerotic burden in type 2 diabetic adults using whole body cardiovascular magnetic resonance imaging

    Get PDF
    BACKGROUND: Whole body cardiovascular MR (WB CVMR) combines whole body angiography and cardiac MR assessment. It is accepted that there is a high disease burden in patients with diabetes, however the quantification of the whole body atheroma burden in both arterial and cardiac disease has not been previously reported. In this study we compare the quantified atheroma burden in those individuals with and without diabetes by clinical cardiovascular disease (CVD) status. METHODS: 158 participants underwent WB CVMR, and were categorised into one of four groups: (1) type 2 diabetes mellitus (T2DM) with CVD; (2) T2DM without CVD; (3) CVD without T2DM; (4) healthy controls. The arterial tree was subdivided into 31 segments and each scored according to the degree of stenosis. From this a standardised atheroma score (SAS) was calculated. Cardiac MR and late gadolinium enhancement images of the left ventricle were obtained for assessment of mass, volume and myocardial scar assessment. RESULTS: 148 participants completed the study protocol—61 % male, with mean age of 64 ± 8.2 years. SAS was highest in those with cardiovascular disease without diabetes [10.1 (0–39.5)], followed by those with T2DM and CVD [4 (0–41.1)], then those with T2DM only [3.23 (0–19.4)] with healthy controls having the lowest atheroma score [2.4 (0–19.4)]. Both groups with a prior history of CVD had a higher SAS and left ventricular mass than those without (p < 0.001 for both). However after accounting for known cardiovascular risk factors, only the SAS in the group with CVD without T2DM remained significantly elevated. 6 % of the T2DM group had evidence of silent myocardial infarct, with this subcohort having a higher SAS than the remainder of the T2DM group [7.7 (4–19) vs. 2.8 (0–17), p = 0.024]. CONCLUSIONS: Global atheroma burden was significantly higher in those with known cardiovascular disease and without diabetes but not in those with diabetes and cardiovascular disease suggesting that cardiovascular events may occur at a lower atheroma burden in diabetes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12933-015-0284-2) contains supplementary material, which is available to authorized users

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link

    Antimicrobial Strategies and Economic Considerations for Polymeric Medical Implants.

    Get PDF
    Healthcare acquired infections (HAI's) are a worldwide problem that can be exacerbated by surgery and the implantation of polymeric medical devices. The use of polymer based medical devices which incorporate antimicrobial strategies are now becoming an increasingly routine way of trying to prevent the potential for reduce chronic infection and device failure. There are a wide range of potential antimicrobial agents currently being incorporated into such polymers. However, it is difficult to determine which antimicrobial agent provides the greatest infection control. The economics of replacing current methods with impregnated polymer materials further complicates matters. It has been suggested that the use of a holistic system wide approach should to be developed around the implantation of medical devices which minimises the potential risk of infection. However, the use of such different approaches is still being developed. The control of such infections is important for individual patient health and the economic implications for healthcare services
    corecore