237 research outputs found
B.E.S.T: Basic Emotion & Sentiment Tracking
The emergence of depression, personality disorders, serious emotional disturbance & social anxiety disorder among children in our modern society is now alarming. Lack of interaction & communication is a major aspect of it. Nowadays, in nuclear family children aren’t able to get much of interaction with elders which leaves them most of the time by themselves, this affects their emotional development & expressiveness. So, our primary focus is on development of a system which can be fitted into any preferable or favourite toy which will ease the process of developing a child-toy emotional bond. Later the same will help for tracking of emotion & sentiments as the relation which child develops with the companion toy helps the child to be expressive about his/her thoughts, feelings & day to day events. A subsidiary goal is to improve communication & interaction between child and parents
High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician
It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate
Interferon β-1a in relapsing multiple sclerosis: four-year extension of the European IFNβ-1a Dose-C omparison Study
Background: Multiple sclerosis (MS) is a chronic disease requiring long-term monitoring of treatment. Objective: To assess the four-year clinical efficacy of intramuscular (IM) IFNb-1a in patients with relapsing MS from the European IFNb-1a Dose-C omparison Study. Methods: Patients who completed 36 months of treatment (Part 1) of the European IFNb-1a Dose-C omparison Study were given the option to continue double-blind treatment with IFNb-1a 30 mcg or 60 mcg IM once weekly (Part 2). Analyses of 48-month data were performed on sustained disability progression, relapses, and neutralizing antibody (NA b) formation. Results: O f 608/802 subjects who completed 36 months of treatment, 493 subjects continued treatment and 446 completed 48 months of treatment and follow-up. IFNb-1a 30 mcg and 60 mcg IM once weekly were equally effective for up to 48 months. There were no significant differences between doses over 48 months on any of the clinical endpoints, including rate of disability progression, cumulative percentage of patients who progressed (48 and 43, respectively), and annual relapse rates; relapses tended to decrease over 48 months. The incidence of patients who were positive for NAbs at any time during the study was low in both treatment groups. Conclusion: C ompared with 60-mcg IM IFNb-1a once weekly, a dose of 30 mcg IM IFNb-1a once weekly maintains the same clinical efficacy over four years
Toward catchment hydro-biogeochemical theories
Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well-mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro-biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human- and climate-induced perturbations. Although integration has started and co-located measurements are well under way, tremendous challenges remain. In particular, even in this era of "big data," we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model-informed data collection strategies and to maximize data usage; (2) adopt a "simple but not simplistic," or fit-for-purpose approach to include essential processes in process-based models; (3) blend the use of process-based and data-driven models in the framework of "theory-guided data science." Within the framework of hypothesis testing, model-data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro-biogeochemistry, but also enable hind- and fore-casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.This article is categorized under:Science of Water > Method
Minimizing Incision in Living Donor Liver Transplantation: Initial Experience and Comparative Analysis of Upper Midline Incision in 115 Recipients
Living donor liver transplantation (LDLT) needs “Mercedes Benz” or “J-shaped” incision, causing short and long-term complications. An upper midline incision (UMI) is less invasive alternative but technically challenging. Reporting UMI for recipients in LDLT vs. conventional J-shaped incision. Retrospective analysis, July 2021 to December 2022. Peri-operative details and post-transplant outcomes of 115 consecutive adult LDLT recipients transplanted with UMI compared with 140 recipients with J-shaped incision. Cohorts had similar preoperative and intraoperative variables. The UMI group had significant shorter time to ambulation (3 ± 1.6 vs. 3.6 ± 1.3 days, p = 0.001), ICU stay (3.8 ± 1.3 vs. 4.4 ± 1.5 days, p = 0.001), but a similar hospital stay (15.6±7.6 vs. 16.1±10.9 days, p = 0.677), lower incidence of pleural effusion (11.3% vs. 27.1% p = 0.002), and post-operative ileus (1.7% vs. 9.3% p = 0.011). The rates of graft dysfunction (4.3% vs. 8.5% p = 0.412), biliary complications (6.1% vs. 12.1% p = 0.099), 90-day mortality (7.8% vs. 12.1% p = 0.598) were similar. UMI-LDLT afforded benefits such as reduced pleuropulmonary complications, better early post-operative recovery and reduction in scar-related complaints in the medium-term. This is a safe, non-inferior and reproducible technique for LDLT
Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights
Human ectopic pregnancy (EP) remains a common cause of pregnancy-related first trimester death. Nitric oxide (NO) is synthesized from L-arginine by three NO synthases (NOS) in different tissues, including the Fallopian tube. Studies of knockout mouse models have improved our understanding of the function of NOS isoforms in reproduction, but their roles and specific mechanisms in infection-induced tubal dysfunction have not been fully elucidated. Here, we provide an overview of the expression, regulation and possible function of NOS isoforms in the Fallopian tube, highlighting the effects of infection-induced changes in the tubal cellular microenvironment (imbalance of NO production) on tubal dysfunction and the potential involvement of NOS isoforms in tubal EP after Chlamydia trachomatis genital infection. The non-equivalent regulation of tubal NOS isoforms during the menstrual cycle suggests that endogenous ovarian steroid hormones regulate NOS in an isoform-specific manner. The current literature suggests that infection with C. trachomatis induces an inflammatory response that eventually leads to tubal epithelial destruction and functional impairment, caused by a high NO output mediated by inducible NOS (iNOS). Therefore, tissue-specific therapeutic approaches to suppress iNOS expression may help to prevent ectopic implantation in patients with prior C. trachomatis infection of the Fallopian tube
Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB0E02, doi:10.1029/2012GB004299.While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3−) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3−. We explored landscape-level controls on DOC and HCO3− flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3− flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3− yields, while increasing permafrost extent was associated with decreases in HCO3−. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.Funding for this work was provided through
NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to S.E.T.
was provided by an NSERC Postdoctoral Fellowship.2013-02-2
- …