65 research outputs found

    Fractal and stereological analyses of insulin-induced rat exocrine pancreas remodelling

    Get PDF
    Background: The effect of insulin on the endocrine pancreas has been the subject of extensive study, but quantitative morphometric investigations of the exocrine pancreas are scarce. This study was therefore undertaken to investigate the effect of acute and chronic insulin administration (two doses, 0.4 IU and 4 IU) on the morphology of rat pancreas acini. Materials and methods: Semi-fine sections stained with methylene blue and basic fuchsine or haematoxylin and eosin-stained 5-micrometer thick paraffin sections were used for fractal and stereological analysis of exocrine acini. Acute insulin treatment, independent of applied doses increased fractal dimension in line with decreased lacunarity of pancreas acini. Chronic low dose insulin decreased fractal dimension and increased lacunarity of pancreas acini, but a high dose had the opposite effect. The volume densities (Vv) of cytoplasm, granules and nucleus are affected differently: acute low dose and high chronic dose significantly decreased granules Vv, and in line increased cytoplasmic Vv, whereas other examined structures showed slight changes without statistical significance. Results: The results obtained from this investigation indicate that insulin treatment induced structural remodelling of the exocrine pancreas suggesting a substantial role of insulin in its functioning. Conclusions: Additionally, we showed that fine architectural changes in acini could be detected by fractal analysis, suggesting this method as an alternative or addition to routine stereology

    Endothelial cell apoptosis in brown adipose tissue of rats induced by hyperinsulinaemia: the possible role of TNF-α

    Get PDF
    The aim of the present study was to investigate whether hyperinsulinaemia, which frequently precedes insulin resistance syndrome (obesity, diabetes), induces apoptosis of endothelial cells (ECs) in brown adipose tissue (BAT) and causes BAT atrophy and also, to investigate the possible mechanisms underlying ECs death. In order to induce hyperinsuli-naemia, adult male rats of Wistar strain were treated with high dose of insulin (4 U/kg, intraperitonely) for one or three days. Examinations at ultrastructural level showed apoptotic changes of ECs, allowing us to point out that changes mainly but not exclusively, occur in nuclei. Besides different stages of condensation and alterations of the chromatin, nuclear fragmentation was also observed. Higher number of ECs apoptotic nuclei in the BAT of hyperinsulinaemic rats was also confirmed by propidium iodide staining. Immunohistochemical localization of tumor necrosis factor-alpha (TNF-α) revealed increased expression in ECs of BAT of hyperinsulinaemic animals, indicating its possible role in insulin-induced apoptotic changes. These results suggest that BAT atrophy in hyperinsulinaemia is a result of endothelial and adipocyte apoptosis combined, rather than any of functional components alone

    Ki67 index is an independent prognostic factor in epithelioid but not in non-epithelioid malignant pleural mesothelioma: a multicenter study

    Get PDF
    BACKGROUND: Estimating the prognosis in malignant pleural mesothelioma (MPM) remains challenging. Thus, the prognostic relevance of Ki67 was studied in MPM. METHODS: Ki67 index was determined in a test cohort of 187 cases from three centres. The percentage of Ki67-positive tumour cells was correlated with clinical variables and overall survival (OS). The prognostic power of Ki67 index was compared with other prognostic factors and re-evaluated in an independent cohort (n=98). RESULTS: Patients with Ki67 higher than median (>15%) had significantly (P<0.001) shorter median OS (7.5 months) than those with low Ki67 (19.1 months). After multivariate survival analyses, Ki67 proved to be-beside histology and treatment-an independent prognostic marker in MPM (hazard ratio (HR): 2.1, P<0.001). Interestingly, Ki67 was prognostic exclusively in epithelioid (P<0.001) but not in non-epithelioid subtype. Furthermore, Ki67 index was significantly lower in post-chemotherapy samples when compared with chemo-naive cases. The prognostic power was comparable to other recently published prognostic factors (CRP, fibrinogen, neutrophil-to-leukocyte ratio (NLR) and nuclear grading score) and was recapitulated in the validation cohort (P=0.048). CONCLUSION: This multicentre study demonstrates that Ki67 is an independent and reproducible prognostic factor in epithelioid but not in non-epithelioid MPM and suggests that induction chemotherapy decreases the proliferative capacity of MPM

    Disturbance indicator values for European plants

    Get PDF
    Motivation Indicator values are numerical values used to characterize the ecological niches of species and to estimate their occurrence along gradients. Indicator values on climatic and edaphic niches of plant species have received considerable attention in ecological research, whereas data on the optimal positioning of species along disturbance gradients are less developed. Here, we present a new data set of disturbance indicator values identifying optima along gradients of natural and anthropogenic disturbance for 6382 vascular plant species based on the analysis of 736,366 European vegetation plots and using expert-based characterization of disturbance regimes in 236 habitat types. The indicator values presented here are crucial for integrating disturbance niche optima into large-scale vegetation analyses and macroecological studies. Main types of variables contained We set up five main continuous indicator values for European vascular plants: disturbance severity, disturbance frequency, mowing frequency, grazing pressure and soil disturbance. The first two indicators are provided separately for the whole community and for the herb layer. We calculated the values as the average of expert-based estimates of disturbance values in all habitat types where a species occurs, weighted by the number of plots in which the species occurs within a given habitat type. Spatial location and grain Europe. Vegetation plots ranging in size from 1 to 1000 m(2). Time period and grain Vegetation plots mostly sampled between 1956 and 2013 (= 5th and 95th quantiles of the sampling year, respectively). Major taxa and level of measurement Species-level indicator values for vascular plants. Software format csv file

    Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.The EU-ROS consortium (COST Action BM1203) was supported by the European Cooperation in Science and Technology (COST). The present overview represents the final Action dissemination summarizing the major achievements of COST Action BM1203 (EU-ROS) as well as research news and personal views of its members. Some authors were also supported by COST Actions BM1005 (ENOG) and BM1307 (PROTEOSTASIS), as well as funding from the European Commission FP7 and H2020 programmes, and several national funding agencies

    Ferroptosis in Different Pathological Contexts Seen through the Eyes of Mitochondria

    No full text
    Ferroptosis is a recently described form of regulated cell death characterized by intracellular iron accumulation and severe lipid peroxidation due to an impaired cysteine-glutathione-glutathione peroxidase 4 antioxidant defence axis. One of the hallmarks of ferroptosis is a specific morphological phenotype characterized by extensive ultrastructural changes of mitochondria. Increasing evidence suggests that mitochondria play a significant role in the induction and execution of ferroptosis. The present review summarizes existing knowledge about the mitochondrial impact on ferroptosis in different pathological states, primarily cancer, cardiovascular diseases, and neurodegenerative diseases. Additionally, we highlight pathologies in which the ferroptosis/mitochondria relation remains to be investigated, where the process of ferroptosis has been confirmed (such as liver- and kidney-related pathologies) and those in which ferroptosis has not been studied yet, such as diabetes. We will bring attention to avenues that could be followed in future research, based on the use of mitochondria-targeted approaches as anti- and proferroptotic strategies and directed to the improvement of existing and the development of novel therapeutic strategies

    Targeting the nitric oxide/superoxide ratio in adipose tissue: relevance in obesity and diabetes management

    No full text
    Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilise excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of superoxide (capital O, Cyrillic2 *- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species (ROS/RNS) in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimics in obesity and experimental diabetes models. This review summarises the role of NO in adipose tissue and highlights the impact of NO/capital O, Cyrillic2 *- ratio "teetering" as a promising pharmacological target in metabolic syndrome. This article is protected by copyright. All rights reserved
    corecore