105 research outputs found
A Landscape Perspective on Climate-Driven Risks to Food Security: Exploring the Relationship between Climate and Social Transformation in the Prehispanic U.S. Southwest
Spatially and temporally unpredictable rainfall patterns presented food production challenges to small-scale agricultural communities, requiring multiple risk-mitigating strategies to increase food security. Although site-based investigations of the relationship between climate and agricultural production offer insights into how individual communities may have created long-term adaptations to manage risk, the inherent spatial variability of climate-driven risk makes a landscape-scale perspective valuable. In this article, we model risk by evaluating how the spatial structure of ancient climate conditions may have affected the reliability of three major strategies used to reduce risk: drawing upon social networks in time of need, hunting and gathering of wild resources, and storing surplus food. We then explore how climate-driven changes to this reliability may relate to archaeologically observed social transformations. We demonstrate the utility of this methodology by comparing the Salinas and Cibola regions in the prehispanic U.S. Southwest to understand the complex relationship among climate-driven threats to food security, risk-mitigation strategies, and social transformations. Our results suggest key differences in how communities buffered against risk in the Cibola and Salinas study regions, with the structure of precipitation influencing the range of strategies to which communities had access through time
Genetic Architecture of Type 2 Diabetes: Recent Progress and Clinical Implications
Review. Introductory paragraph: With the exception of rare monogenic disorders, most type 2 diabetes results from the interaction of genetic variation at multiple different chromosomal sites with environmental exposures experienced throughout the lifespan (1). This complex genetic architecture has important consequences for understanding the pathophysiology of type 2 diabetes, both for researchers seeking mechanistic insight into disease progression and for clinicians hoping to translate this new genetic information into more effective patient management. With nearly two dozen genes associated with type 2 diabetes, including some genetic variants that appear to modify responses to commonly prescribed diabetes medications and lifestyle interventions, we may be on the verge of a new era in which a patient’s individual genetic profile can add useful information to clinical care. Indeed, commercial companies are already offering genome-wide genetic profiling that includes information related to diabetes risk (2). Further advances in type 2 diabetes genetic discovery hold the promise, as yet unrealized, of enabling clinicians to individualize care for their patients by basing their clinical decisions on patient risk for disease progression, propensity to develop specific complications, and likely response to different medication classes. At present it is unknown whether individual genetic information may also serve to effectively motivate patient behavior change, a cornerstone of diabetes and pre-diabetes management. In this review of polygenic type 2 diabetes, we focus on recent discoveries made via linkage analyses, candidate gene association studies and genome-wide association (GWA) scans and highlight potential clinical applications of new genetic knowledge to risk prediction, pharmacologic management, and patient behavior. Monogenic diabetes has recently been reviewed elsewhere (3)
Genetički polimorfizmi u dijabetesu: Utjecaj na terapiju oralnim antidijabeticima
Due to new genetic insights, etiologic classification of diabetes is under constant scrutiny. Hundreds, or even thousands, of genes are linked with type 2 diabetes. Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to be predisposed to type 2 diabetes mellitus across many large studies. Individually, each of these polymorphisms is only moderately predisposed to type 2 diabetes. On the other hand, monogenic forms of diabetes such as MODY and neonatal diabetes are characterized by unique clinical features and the possibility of applying a tailored treatment.
Genetic polymorphisms in drug-metabolizing enzymes, transporters, receptors, and other drug targets have been linked to interindividual differences in the efficacy and toxicity of a number of medications. Mutations in genes important in drug absorption, distribution, metabolism and excretion (ADME) play a critical role in pharmacogenetics of diabetes.
There are currently five major classes of oral pharmacological agents available to treat type 2 diabetes: sulfonylureas, meglitinides, metformin (a biguanide), thiazolidinediones, and α-glucosidase inhibitors. Other classes are also mentioned in literature.
In this work, different types of genetic mutations (mutations of the gene for glucokinase, HNF 1, HNF1ß and Kir6.2 and SUR1 subunit of KATP channel, PPAR-γ, OCT1 and OCT2, cytochromes, direct drug-receptor (KCNJ11), as well as the factors that influence the development of the disease (TCF7L2) and variants of genes that lead to hepatosteatosis caused by thiazolidinediones) and their influence on the response to therapy with oral antidiabetics will be reviewed.Dijabetes tipa 2 dosegao je proporcije epidemije u SAD (> 18 milijuna) i cijelom svijetu (170 milijuna oboljelih osoba) te ima tendenciju daljnjeg dramatičnog rasta. Stoga se u posljednje vrijeme ulažu napori da se otkriju i razviju novi farmakološki agensi za liječenje ove bolesti. Klasifikacija šećerne bolesti proširena je uspjesima istraživača na području genetike. Da bismo razumjeli farmakogenetiku antidijabetika neophodno je razumjeti genetiku samog dijabetesa. Kao što će biti prikazano u ovom radu veliki broj gena koji su povezani s razvojem dijabetesa takođe utječu i na odgovor na terapiju antidijabeticima. S druge strane, mutacije gena koji utječu na ADME (apsorpcija, distribucija, metabolizam i ekskrecija) lijeka imaju značajan utjecaj na farmakogenetiku oralnih antidijabetika.
Utvrđeno je da je dijabetes genetički heterogena bolest. Uobičajeni oblici dijabetesa su gotovo uvijek poligenski i za razvoj same bolesti vrlo su značajne snažne interakcije među različitim genima kao i između gena i okoliša. Zbog toga mutacije ili polimorfizmi koji u manjoj mjeri utječu na funkciju gena mogu postati klinički značajni samo u slučaju kada se kombiniraju s drugim faktorima odnosno genima. Smatra se da u razvoju dijabetesa mogu sudjelovati stotine pa čak i tisuće gena. Do 2006. identificirano je nekoliko uobičajenih alela koji povećavaju rizik za razvoj dijabetesa, od kojih su najznačajniji PPARG (Pro12), KCNJ11 (Lys23) i TCF7L2 (T na rs7903146). Do danas je najveći uspjeh postignut u identifikaciji gena odgovornih za razmjerno rijetke oblike ove bolesti poput ”Maturity-onset diabetes of the young” (MODY) i neonatalnog dijabetesa. Monogenske oblike dijabetesa odlikuju jedinstvene kliničke karakteristike i mogućnost primjene individualnog tretmana. Genetički polimorfizmi enzima koji utječu na metabolizam lijekova, transportera, receptora i drugih ciljeva djelovanja lijekova povezani su s interindividualnim razlikama u efikasnosti i toksičnosti mnogih lijekova. Vrlo je važno da se na temelju farmakogenetičkih istraživanja mogu predvidjeti neki neželjeni efekti lijekova.
Trenutačno postoji pet glavnih klasa oralnih antidijabetika: sulfoniluree, meglitinidi, metformin (bigvanid), tiazolidindioni i inhibitori α-glukozidaze. U literaturi se također spominju inhibitori dipeptidil peptidaze IV (DPP-IV), selektivni antagonisti kanabinoidnog receptora 1 (CB-1), glukagonu slični peptid 1 mimetici i amilin mimetici.
Razumijevanje mehanizama koji rezultiraju disfunkcijom β stanica na fiziološkom i molekularnom nivou neophodno je za napredak u razumijevanju tretmana dijabetesa. U ovom radu dat je pregled različitih genetičkih mutacija (mutacije gena za glukokinazu, HNF 1, HNF1ß, Kir6.2 i SUR 1 podjedinicu KATP kanala ß stanica, PPAR-γ, OCT1 i OCT2, citohrome, KCNJ11, faktore koji utječu na razvoj bolesti (TCF7L2) i varijante gena koji dovode do hepatosteatoze uzrokovane tiazolidindionima) te njihov utjecaj na odgovor na terapiju oralnim antidijabeticima
Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children
Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl
Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe
Physical activity attenuates the influence of FTO variants on obesity risk : a meta-analysis of 218,166 adults and 19,268 children
BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.Peer reviewe
Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery
- …