701 research outputs found

    ABS at CRYRING

    Get PDF

    A model-based analysis identifies differences in phenotypic resistance between in vitro and in vivo: implications for translational medicine within tuberculosis.

    Get PDF
    Proper characterization of drug effects on Mycobacterium tuberculosis relies on the characterization of phenotypically resistant bacteria to correctly establish exposure-response relationships. The aim of this work was to evaluate the potential difference in phenotypic resistance in in vitro compared to murine in vivo models using CFU data alone or CFU together with most probable number (MPN) data following resuscitation with culture supernatant. Predictions of in vitro and in vivo phenotypic resistance i.e. persisters, using the Multistate Tuberculosis Pharmacometric (MTP) model framework was evaluated based on bacterial cultures grown with and without drug exposure using CFU alone or CFU plus MPN data. Phenotypic resistance and total bacterial number in in vitro natural growth observations, i.e. without drug, was well predicted by the MTP model using only CFU data. Capturing the murine in vivo total bacterial number and persisters during natural growth did however require re-estimation of model parameter using both the CFU and MPN observations implying that the ratio of persisters to total bacterial burden is different in vitro compared to murine in vivo. The evaluation of the in vitro rifampicin drug effect revealed that higher resolution in the persister drug effect was seen using CFU and MPN compared to CFU alone although drug effects on the other bacterial populations were well predicted using only CFU data. The ratio of persistent bacteria to total bacteria was predicted to be different between in vitro and murine in vivo. This difference could have implications for subsequent translational efforts in tuberculosis drug development

    Phosphorylated Nucleolin Interacts with Translationally Controlled Tumor Protein during Mitosis and with Oct4 during Interphase in ES Cells

    Get PDF
    BACKGROUND: Reprogramming of somatic cells for derivation of either embryonic stem (ES) cells, by somatic cell nuclear transfer (SCNT), or ES-like cells, by induced pluripotent stem (iPS) cell procedure, provides potential routes toward non-immunogenic cell replacement therapies. Nucleolar proteins serve as markers for activation of embryonic genes, whose expression is crucial for successful reprogramming. Although Nucleolin (Ncl) is one of the most abundant nucleolar proteins, its interaction partners in ES cells have remained unidentified. METHODOLOGY: Here we explored novel Ncl-interacting proteins using in situ proximity ligation assay (PLA), colocalization and immunoprecipitation (IP) in ES cells. PRINCIPAL FINDINGS: We found that phosphorylated Ncl (Ncl-P) interacted with translationally controlled tumor protein (Tpt1) in murine ES cells. The Ncl-P/Tpt1 complex peaked during mitosis and was reduced upon retinoic acid induced differentiation, signifying a role in cell proliferation. In addition, we showed that Ncl-P interacted with the transcription factor Oct4 during interphase in human as well as murine ES cells, indicating of a role in transcription. The Ncl-P/Oct4 complex peaked during early stages of spontaneous human ES cell differentiation and may thus be involved in the initial differentiation event(s) of mammalian development. CONCLUSIONS: Here we described two novel protein-protein interactions in ES cells, which give us further insight into the complex network of interacting proteins in pluripotent cells

    Evaluation of critical parameters in the hollow-fibre system for tuberculosis: A case study of moxifloxacin

    Get PDF
    AimsThe hollow‐fibre system for tuberculosis (HFS‐TB) is a preclinical model qualified by the European Medicines Agency to underpin the anti‐TB drug development process. It can mimic in vivo pharmacokinetic (PK)–pharmacodynamic (PD) attributes of selected antimicrobials, which could feed into in silico models to inform the design of clinical trials. However, historical data and published protocols are insufficient and omit key information to allow experiments to be reproducible. Therefore, in this work, we aim to optimize and standardize various HFS‐TB operational procedures.MethodsFirst, we characterized bacterial growth dynamics with different types of hollow‐fibre cartridges, Mycobacterium tuberculosis strains and media. Second, we mimicked a moxifloxacin PK profile within hollow‐fibre cartridges, in order to check drug–fibres compatibility. Lastly, we mimicked the moxifloxacin total plasma PK profile in human after once daily oral dose of 400 mg to assess PK–PD after different sampling methods, strains, cartridge size and bacterial adaptation periods before drug infusion into the system.ResultsWe found that final bacterial load inside the HFS‐TB was contingent on the studied variables. Besides, we demonstrated that drug–fibres compatibility tests are critical preliminary HFS‐TB assays, which need to be properly reported. Lastly, we uncovered that the sampling method and bacterial adaptation period before drug infusion significantly impact actual experimental conclusions.ConclusionOur data contribute to the necessary standardization of HFS‐TB experiments, draw attention to multiple aspects of this preclinical model that should be considered when reporting novel results and warn about critical parameters in the HFS‐TB currently overlooked
    • 

    corecore