21 research outputs found

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Bovine Coronavirus 5′-Proximal Genomic Acceptor Hotspot for Discontinuous Transcription Is 65 Nucleotides Wide

    No full text
    Coronaviruses are positive-strand, RNA-dependent RNA polymerase-utilizing viruses that require a polymerase template switch, characterized as discontinuous transcription, to place a 5′-terminal genomic leader onto subgenomic mRNAs (sgmRNAs). The usually precise switch is thought to occur during the synthesis of negative-strand templates for sgmRNA production and to be directed by heptameric core donor sequences within the genome that match an acceptor core (UCUAAAC in the case of bovine coronavirus) near the 3′ end of the 5′-terminal genomic leader. Here it is shown that a 22-nucleotide (nt) donor sequence engineered into a packageable bovine coronavirus defective interfering (DI) RNA and made to match a sequence within the 65-nt virus genomic leader caused a template switch yielding an sgmRNA with only a 33-nt minileader. By changing the donor sequence, acceptor sites between genomic nt 33 and 97 (identical between the DI RNA and the viral genome) could be used to generate sgmRNAs detectable by Northern analysis (∼2 to 32 molecules per cell) by 24 h postinfection. Whether the switch was intramolecular only was not determined since a potentially distinguishing acceptor region in the DI RNA rapidly conformed to that in the helper virus genome through a previously described template switch known as leader switching. These results show that crossover acceptor sites for discontinuous transcription (i) need not include the UCUAAAC core and (ii) rest within a surprisingly wide 5′-proximal “hotspot.” Overlap of this hotspot with that for leader switching and with elements required for RNA replication suggests that it is part of a larger 5′-proximal multifunctional structure

    Evaluation of the cell culture based and the mouse brain derived inactivated vaccines against Crimean-Congo hemorrhagic fever virus in transiently immune-suppressed (IS) mouse model.

    No full text
    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus in the Nairoviridae family within the Bunyavirales order of viruses. Crimean-Congo hemorrhagic fever (CCHF) is the most widespread among tick-borne human viral diseases. It is endemic in many areas of Africa, Asia, the Middle East, in the Balkans, Russia and countries of the former Soviet Union. The confirmed CCHF cases were seen in Spain in 2016 to signify expansion of the virus into new geographical areas. CCHFV causes a viral human disease characterized by sudden onset of fever, headache, abdominal pain, nausea, hypotension, hemorrhage, and hepatic dysfunction with fatality rates up to 30%. Currently, there are no spesific treatments or licensed vaccines available for CCHFV. The absence of a susceptible animal model for CCHFV infection was severely hindered work on the development of vaccines. However, several animal models of CCHFV infection have been recently developed and used to assess vaccine efficacy. In this study, we have used the transiently immune-suppressed (IS) mouse model that MAb-5A3 was used to block IFN-I signaling in immune intact, wild-type mice at the time of CCHFV infection to evaluate the immune response and efficacy of the cell culture based and the mouse brain derived inactivated vaccines against CCHFV. Both vaccine preparations have provided complete protection but the cell culture based vaccine more effectively induced to CCFHV spesific antibodies and T cell responses. This is the first comparison of the cell culture based and the mouse brain derived vaccines for assessing the protective efficacy and the immunogenicity in the IS mouse CCHFV model
    corecore