198 research outputs found

    An Electron-Tracking Compton Telescope for a Survey of the Deep Universe by MeV gamma-rays

    Get PDF
    Photon imaging for MeV gammas has serious difficulties due to huge backgrounds and unclearness in images, which are originated from incompleteness in determining the physical parameters of Compton scattering in detection, e.g., lack of the directional information of the recoil electrons. The recent major mission/instrument in the MeV band, Compton Gamma Ray Observatory/COMPTEL, which was Compton Camera (CC), detected mere 30\sim30 persistent sources. It is in stark contrast with \sim2000 sources in the GeV band. Here we report the performance of an Electron-Tracking Compton Camera (ETCC), and prove that it has a good potential to break through this stagnation in MeV gamma-ray astronomy. The ETCC provides all the parameters of Compton-scattering by measuring 3-D recoil electron tracks; then the Scatter Plane Deviation (SPD) lost in CCs is recovered. The energy loss rate (dE/dx), which CCs cannot measure, is also obtained, and is found to be indeed helpful to reduce the background under conditions similar to space. Accordingly the significance in gamma detection is improved severalfold. On the other hand, SPD is essential to determine the point-spread function (PSF) quantitatively. The SPD resolution is improved close to the theoretical limit for multiple scattering of recoil electrons. With such a well-determined PSF, we demonstrate for the first time that it is possible to provide reliable sensitivity in Compton imaging without utilizing an optimization algorithm. As such, this study highlights the fundamental weak-points of CCs. In contrast we demonstrate the possibility of ETCC reaching the sensitivity below 1×10121\times10^{-12} erg cm2^{-2} s1^{-1} at 1 MeV.Comment: 19 pages, 12 figures, Accepted to the Astrophysical Journa

    CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44

    Get PDF
    Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov Telescope has detected extended emission of TeV gamma rays in the vicinity of the pulsar PSR B1706-44. The strength of the signal observed as gamma-ray-like events varies when we apply different ways of emulating background events. The reason for such uncertainties is argued in relevance to gamma-rays embedded in the "off-source data", that is, unknown sources and diffuse emission in the Galactic plane, namely, the existence of a complex structure of TeV gamma-ray emission around PSR B1706-44.Comment: 10 pages, 13 figures, to be published in Ap

    CANGAROO-III observation of TeV gamma rays from the unidentified gamma-ray source HESS J1614-518

    Get PDF
    We report the detection, with the CANGAROO-III imaging atmospheric Cherenkov telescope array, of a very high energy gamma-ray signal from the unidentified gamma-ray source HESS J1614-518, which was discovered in the H.E.S.S. Galactic plane survey. Diffuse gamma-ray emission was detected above 760 GeV at the 8.9 sigma level during an effective exposure of 54 hr from 2008 May to August. The spectrum can be represented by a power-law: 8.2+-2.2_{stat}+-2.5_{sys}x10^{-12}x (E/1TeV)^{-Gamma} cm^{-2} s^{-1} TeV^{-1} with a photon index Gamma of 2.4+-0.3_{stat}+-0.2_{sys}, which is compatible with that of the H.E.S.S. observations. By combining our result with multi-wavelength data, we discuss the possible counterparts for HESS J1614-518 and consider radiation mechanisms based on hadronic and leptonic processes for a supernova remnant, stellar winds from massive stars, and a pulsar wind nebula. Although a leptonic origin from a pulsar wind nebula driven by an unknown pulsar remains possible, hadronic-origin emission from an unknown supernova remnant is preferred.Comment: 9 pages, 7 figures, accepted for publication in Ap

    Searches for very high energy gamma rays from blazars with CANGAROO-III telescope in 2005-2009

    Full text link
    We have searched for very high energy (VHE) gamma rays from four blazars using the CANGAROO-III imaging atmospheric Cherenkov telescope. We report the results of the observations of H 2356-309, PKS 2155-304, PKS 0537-441, and 3C 279, performed from 2005 to 2009, applying a new analysis to suppress the effects of the position dependence of Cherenkov images in the field of view. No significant VHE gamma ray emission was detected from any of the four blazars. The GeV gamma-ray spectra of these objects were obtained by analyzing Fermi/LAT archival data. Non-simultaneous wide range (radio to VHE gamma-ray bands) spectral energy distributions (SEDs) including CANGAROO-III upper limits, GeV gamma-ray spectra, and archival data are discussed using a one-zone synchrotron self-Compton (SSC) model in combination with a external Compton (EC) radiation. The HBLs (H 2356-309 and PKS 2155-304) can be explained by a simple SSC model, and PKS 0537-441 and 3C 279 are well modeled by a combination of SSC and EC model. We find a consistency with the blazar sequence in terms of strength of magnetic field and component size.Comment: 11 pages, 8 figures, Accepted for publication in Astroparticle Physic

    A step towards mobile arsenic measurement for surface waters.

    Get PDF
    Surface modified quantum dots (QDs) are studied using a bio-inspired cysteine rich ligand (glutathione, GSH) and their quenching response and selectivity to arsenic examined. As predicted from As(3+) binding with highly crosslinked phytochelatin-(PCn)-like molecules, better arsenic selectivity is obtained for a thicker more 3-dimensional GSH surface layer, with exposed sulfhydryl groups. A detection limit of at least 10 μM can be achieved using CdSe/ZnS core-shell QDs capped with this GSH structure. The system is also demonstrated using a mobile phone camera to record the measurement, producing a detection limit of 5 μM. However, copper remains the main interferent of concern. Water-soluble CdTe QDs show little sensitivity to As(3+) even with a GSH surface, but they remain sensitive to Cu(2+), allowing a copper baseline to be established from the CdTe measurement. Despite anticipating that spectrally non overlapping fluorescence would be required from the two types of QDs to achieve this, a method is demonstrated using RGB channels from a mobile phone and processing the raw data for CdTe QDs, with an emission wavelength of 600 nm, and CdSe/ZnS QDs, with emission maximum of 630 nm. It is shown that As(3+) measurement remains feasible at the WHO guideline value of 10 μg L(-1) up to a copper concentration of around 0.3 μM Cu(2+), which corresponds to the highest recorded level in a selection of large rivers world-wide.This is the author accepted manuscript. The final version is available via RSC at http://pubs.rsc.org/en/Content/ArticleLanding/2015/AN/c4an02368d#!divAbstract

    A Bayesian assessment of an approximate model for unconfined water flow in sloping layered porous media

    Get PDF
    The prediction of water table height in unconfined layered porous media is a difficult modelling problem that typically requires numerical simulation. This paper proposes an analytical model to approximate the exact solution based on a steady-state Dupuit–Forchheimer analysis. The key contribution in relation to a similar model in the literature relies in the ability of the proposed model to consider more than two layers with different thicknesses and slopes, so that the existing model becomes a special case of the proposed model herein. In addition, a model assessment methodology based on the Bayesian inverse problem is proposed to efficiently identify the values of the physical parameters for which the proposed model is accurate when compared against a reference model given by MODFLOW-NWT, the open-source finite-difference code by the U.S. Geological Survey. Based on numerical results for a representative case study, the ratio of vertical recharge rate to hydraulic conductivity emerges as a key parameter in terms of model accuracy so that, when appropriately bounded, both the proposed model and MODFLOW-NWT provide almost identical results

    Readout technologies for directional WIMP Dark Matter detection

    Get PDF
    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies
    corecore