194 research outputs found

    Left ventricular remodeling in elite and sub-elite road cyclists.

    Get PDF
    Marked adaptation of left ventricular (LV) structure in endurance athletes is well established. However, previous investigations of functional and mechanical adaptation have been contradictory. A lack of clarity in subjects' athletic performance level may have contributed to these disparate findings. This study aimed to describe structural, functional, and mechanical characteristics of the cyclists' LV, based on clearly defined performance levels. Male elite cyclists (EC) (n = 69), sub-elite cyclists (SEC) (n = 30), and non-athletes (NA) (n = 46) were comparatively studied using conventional and speckle tracking 2D echocardiography. Dilated eccentric hypertrophy was common in EC (34.7%), but not SEC (3.3%). Chamber concentricity was higher in EC compared to SEC (7.11 ± 1.08 vs 5.85 ± 0.98 g/(mL)2/3 , P < .001). Ejection fraction (EF) was lower in EC compared to NA (57 ± 5% vs 59 ± 4%, P < .05), and reduced EF was observed in a greater proportion of EC (11.6%) compared to SEC (6.7%). Global circumferential strain (GCε) was greater in EC (-18.4 ± 2.4%) and SEC (-19.8 ± 2.7%) compared to NA (-17.2 ± 2.6%) (P < .05 and P < .001). Early diastolic filling was lower in EC compared with SEC (0.72 ± 0.14 vs 0.88 ± 0.12 cm/s, P < .001), as were septal E' (12 ± 2 vs 15 ± 2 cm/s, P < .001) and lateral E' (18 ± 4 vs 20 ± 4 cm/s, P < .05). The magnitude of LV structural adaptation was far greater in EC compared with SEC. Increased GCε may represent a compensatory mechanism to maintain stroke volume in the presence of increased chamber volume. Decreased E and E' velocities may be indicative of a considerable functional reserve in EC

    Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes

    Get PDF
    Nitric oxide (NO), an important endogenous pulmonary vasodilator is synthetized by the endothelial NO synthase (NOS3). Reduced NO bioavailability and thus the Glu298Asp polymorphism of NOS3 may enhance right ventricular (RV) afterload and hypertrophic remodeling and influence athletic performance. To test this hypothesis world class level athletes (water polo players, kayakers, canoeists, rowers, swimmers, n = 126) with a VO2 maximum greater than 50ml/kg/min were compared with non-athletic volunteers (n = 155). Cardiopulmonary exercise tests and cardiac magnetic resonance imaging (cMRI) were performed to determine structural or functional changes. Genotype distribution of the NOS3 Glu298Asp polymorphism was not affected by gender or physical performance. Cardiac MRI showed increased stroke volume with eccentric hypertrophy in all athletes regardless of their genotype. However, the Asp allelic variant carriers had increased RV mass index (32+/-6g versus 27+/-6g, p<0.01) and larger RV stroke volume index (71+/-10ml versus 64+/-10ml, p<0.01) than athletes with a Glu/Glu genotype. Genotype was not significantly associated with athletic performance. In the non-athletic group no genotype related differences were detected. The association between the NOS3 Glu298Asp polymorphism and RV structure and dimension in elite athletes emphasizes the importance of NOS3 gene function and NO bioavailability in sport related cardiac adaptation

    Single beat 3D echocardiography for the assessment of right ventricular dimension and function after endurance exercise: Intraindividual comparison with magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our study compares new single beat 3D echocardiography (sb3DE) to cardiovascular magnetic resonance imaging (CMR) for the measurement of right ventricular (RV) dimension and function immediately after a 30 km run. This is to validate sb3DE against the "gold standard" CMR and to bring new insights into acute changes of RV dimension and function after endurance exercise.</p> <p>Methods</p> <p>21 non-elite male marathon runners were examined by sb3DE (Siemens ACUSON SC2000, matrix transducer 4Z1c, volume rates 10-29/s), CMR (Siemens Magnetom Avanto, 1,5 Tesla) and blood tests before and immediately after each athlete ran 30 km. The runners were not allowed to rehydrate after the race. The order of sb3DE and CMR examination was randomized.</p> <p>Results</p> <p>Sb3DE for the acquisition of RV dimension and function was feasible in all subjects. The decrease in mean body weight and the significant increase in hematocrit indicated dehydration. RV dimensions measured by CMR were consistently larger than measured by sb3DE.</p> <p>Neither sb3DE nor CMR showed a significant difference in the RV ejection fraction before and after exercise. CMR demonstrated a significant decrease in RV dimensions. Measured by sb3DE, this decrease of RV volumes was not significant.</p> <p>Conclusion</p> <p>First, both methods agree well in the acquisition of systolic RV function. The dimensions of the RV measured by CMR are larger than measured by sb3DE. After exercise, the RV volumes decrease significantly when measured by CMR compared to baseline.</p> <p>Second, endurance exercise seems not to induce acute RV dysfunction in athletes without rehydration.</p

    The Female Athlete's Heart: Facts and Fallacies.

    Get PDF
    Purpose of the review For many years, competitive sport has been dominated by men. Recent times have witnessed a significant increase in women participating in elite sports. As most studies investigated male athletes, with few reports on female counterparts, it is crucial to have a better understanding on physiological cardiac adaptation to exercise in female athletes, to distinguish normal phenotypes from potentially fatal cardiac diseases. This review reports on cardiac adaptation to exercise in females. Recent findings Recent studies show that electrical, structural, and functional cardiac changes due to physiological adaptation to exercise differ in male and female athletes. Women tend to exhibit eccentric hypertrophy, and while concentric hypertrophy or concentric remodeling may be a normal finding in male athletes, it should be evaluated carefully in female athletes as it may be a sign of pathology. Although few studies on veteran female athletes are available, women seem to be affected by atrial fibrillation, coronary atherosclerosis, and myocardial fibrosis less than male counterparts. Summary Males and females exhibit many biological, anatomical, and hormonal differences, and cardiac adaptation to exercise is no exception. The increasing participation of women in sports should stimulate the scientific community to develop large, longitudinal studies aimed at a better understanding of cardiac adaptation to exercise in female athletes

    International criteria for electrocardiographic interpretation in athletes: Consensus statement.

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD

    Speckle Tracking Echocardiography for the Assessment of the Athlete's Heart: Is It Ready for Daily Practice?

    Get PDF
    PURPOSE OF REVIEW: To describe the use of speckle tracking echocardiography (STE) in the biventricular assessment of athletes' heart (AH). Can STE aid differential diagnosis during pre-participation cardiac screening (PCS) of athletes? RECENT FINDINGS: Data from recent patient, population and athlete studies suggest potential discriminatory value of STE, alongside standard echocardiographic measurements, in the early detection of clinically relevant systolic dysfunction. STE can also contribute to subsequent prognosis and risk stratification. Despite some heterogeneity in STE data in athletes, left ventricular global longitudinal strain (GLS) and right ventricular longitudinal strain (RV ɛ) indices can add to differential diagnostic protocols in PCS. STE should be used in addition to standard echocardiographic tools and be conducted by an experienced operator with significant knowledge of the AH. Other indices, including left ventricular circumferential strain and twist, may provide insight, but further research in clinical and athletic populations is warranted. This review also raises the potential role for STE measures performed during exercise as well as in serial follow-up as a method to improve diagnostic yield

    The Role of Cardiovascular Magnetic Resonance in Sports Cardiology; Current Utility and Future Perspectives.

    Get PDF
    Cardiovascular magnetic resonance (CMR) is frequently used in the investigation of suspected cardiac disease in athletes. In this review, we discuss how CMR can be used in athletes with suspected cardiomyopathy with particular reference to volumetric analysis and tissue characterization. We also discuss the finding of non-ischaemic fibrosis in athletes describing its prevalence, distribution and clinical importance.The strengths of CMR include high spatial resolution, unrestricted imaging planes and lack of ionizing radiation. Regular physical exercise leads to cardiac remodeling that in certain situations can be clinically challenging to differentiate from various cardiomyopathies. Thorough morphological assessment by CMR is fundamental to ensuring accurate diagnosis. Developments in tissue characterization by late gadolinium enhancement and T1 mapping have the potential to be powerful additional tools in this challenging clinical situation. Using late gadolinium enhancement, it is also possible to detect non-ischaemic fibrosis in athletes who do not have overt cardiomyopathy. The mechanisms of this fibrosis are unclear; however, it does appear to be clinically important. We also review data on the prevalence of non-ischaemic fibrosis in athletes. CMR is a powerful tool to aid in the diagnosis of cardiomyopathy in athletes. It may also have a future role in assessing fibrosis related to long-term participation in sport

    Preventing the adverse cardiovascular consequences of allogeneic stem cell transplantation with a multi-faceted exercise intervention: the ALLO-Active trial protocol

    Get PDF
    Background: Allogeneic stem cell transplantation (allo-SCT) is a potentially lifesaving treatment for high-risk hematological malignancy, but survivors experience markedly elevated rates of cardiovascular disease and associated functional impairment. Mounting evidence suggests regular exercise, combined with a reduction in sedentary time through replacement with light exercise may be a useful therapeutic strategy for the prevention of cardiovascular comorbidities. However, this type of intervention has yet to be evaluated in patients undergoing allo-SCT. The ALLO-Active study will evaluate the efficacy of a ~ 4 month multi-faceted exercise intervention, commenced upon admission for allo-SCT, to preserve peak oxygen uptake (VO2peak) and peak cardiac output, compared with usual care. The study will also evaluate the effect of the intervention on functional independence, quality of life, and symptoms of fatigue. Methods: Sixty adults with hematological malignancy scheduled for allo-SCT will be randomly assigned to usual care (n = 30) or the exercise and sedentary behaviour intervention (n = 30). Participants assigned to the intervention will complete a thrice weekly aerobic and progressive resistance training program and concomitantly aim to reduce daily sedentary time by 30 min with short, frequent, light-intensity exercise bouts. Participants will undergo testing prior to, immediately after inpatient discharge, and 12 weeks after discharge. To address aim 1, VO2peak and peak cardiac output (multiple primary outcomes, p < 0.025) will be assessed via cardiopulmonary exercise testing and exercise cardiac magnetic resonance imaging, respectively. Secondary outcomes include functional independence (defined as VO2peak ≥ 18.mL.kg−1.min−1), quality of life, and fatigue (assessed via validated questionnaire). Exploratory outcomes will include indices of resting cardiac, vascular, and skeletal muscle structure and function, cardiovascular biomarkers, anxiety and depression, transplant outcomes (e.g., engraftment, graft-versus-host disease), and habitual physical activity, sedentary time, and sleep. Discussion: Multi-faceted exercise programs are a promising approach for ameliorating the cardiovascular consequences of allo-SCT. If this intervention proves to be effective, it will contribute to the development of evidence-based exercise guidelines for patients undergoing allo-SCT and assist with optimising the balance between acute cancer management and long-term health. Trial Registration: Australian New Zealand Clinical Trials Registry (ANZCTR), ID: 12619000741189. Registered 17 May 2019

    The Effect of Prolonged Physical Activity Performed during Extreme Caloric Deprivation on Cardiac Function

    Get PDF
    Background: Endurance exercise may induce transient cardiac dysfunction. Data regarding the effect of caloric restriction on cardiac function is limited. We studied the effect of physical activity performed during extreme caloric deprivation on cardiac function. Methods: Thirty-nine healthy male soldiers (mean age 2060.3 years) were studied during a field training exercise lasted 85– 103 hours, with negligible food intake and unlimited water supply. Anthropometric measurements, echocardiographic examinations and blood and urine tests were performed before and after the training exercise. Results: Baseline VO2 max was 5965.5 ml/kg/min. Participants ’ mean weight reduction was 5.760.9 kg. There was an increase in plasma urea (11.662.6 to 15.863.8 mmol/L, p,0.001) and urine osmolarity (6926212 to 10946140 mmol/kg, p,0.001) and a decrease in sodium levels (140.561.0 to 136.662.1 mmol/L, p,0.001) at the end of the study. Significant alterations in diastolic parameters included a decrease in mitral E wave (93.6 to 83.5 cm/s; p = 0.003), without change in E/A and E/E9 ratios, and an increase in iso-volumic relaxation time (73.9 to 82.9 ms, p = 0.006). There was no change in left or right ventricular systolic function, or pulmonary arterial pressure. Brain natriuretic peptide (BNP) levels were significantly reduced post-training (median 9 to 0 pg/ml, p,0.001). There was no elevation in Troponin T or CRP levels. On multivariate analysis, BNP reduction correlated with sodium levels and weight reduction (R = 0.8, p,0.001)

    International criteria for electrocardiographic interpretation in athletes: Consensus statement

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD
    corecore