75 research outputs found
Galaxy And Mass Assembly: galaxy morphology in the green valley, prominent rings, and looser spiral arms
Galaxies broadly fall into two categories: star-forming (blue) galaxies and quiescent (red) galaxies. In between, one finds the less populated “green valley . Some of these galaxies are suspected to be in the process of ceasing their star-formation through a gradual exhaustion of gas supply or already dead and are experiencing a rejuvenation of star-formation through fuel injection. We use the Galaxy And Mass Assembly database and the Galaxy Zoo citizen science morphological estimates to compare the morphology of galaxies in the green valley against those in the red sequence and blue cloud. Our goal is to examine the structural differences within galaxies that fall in the green valley, and what brings them there. Previous results found disc features such as rings and lenses are more prominently represented in the green valley population. We revisit this with a similar sized data set of galaxies with morphology labels provided by the Galaxy Zoo for the GAMA fields based on new KiDS images. Our aim is to compare qualitatively the results from expert classification to that of citizen science. We observe that ring structures are indeed found more commonly in green valley galaxies compared to their red and blue counterparts. We suggest that ring structures are a consequence of disc galaxies in the green valley actively exhibiting characteristics of fading discs and evolving disc morphology of galaxies. We note that the progression from blue to red correlates with loosening spiral arm structure
A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA
Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA
Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
By combining metal nodes with organic linkers we can potentially synthesize
millions of possible metal organic frameworks (MOFs). At present, we have
libraries of over ten thousand synthesized materials and millions of in-silico
predicted materials. The fact that we have so many materials opens many
exciting avenues to tailor make a material that is optimal for a given
application. However, from an experimental and computational point of view we
simply have too many materials to screen using brute-force techniques. In this
review, we show that having so many materials allows us to use big-data methods
as a powerful technique to study these materials and to discover complex
correlations. The first part of the review gives an introduction to the
principles of big-data science. We emphasize the importance of data collection,
methods to augment small data sets, how to select appropriate training sets. An
important part of this review are the different approaches that are used to
represent these materials in feature space. The review also includes a general
overview of the different ML techniques, but as most applications in porous
materials use supervised ML our review is focused on the different approaches
for supervised ML. In particular, we review the different method to optimize
the ML process and how to quantify the performance of the different methods. In
the second part, we review how the different approaches of ML have been applied
to porous materials. In particular, we discuss applications in the field of gas
storage and separation, the stability of these materials, their electronic
properties, and their synthesis. The range of topics illustrates the large
variety of topics that can be studied with big-data science. Given the
increasing interest of the scientific community in ML, we expect this list to
rapidly expand in the coming years.Comment: Editorial changes (typos fixed, minor adjustments to figures
Galaxy And Mass Assembly:galaxy morphology in the green valley, prominent rings, and looser spiral arms
Galaxies fall broadly into two categories: star-forming (blue) galaxies and quiescent (red) galaxies. In between, one finds the less populated ‘green valley’. Some of these galaxies are suspected to be in the process of ceasing their star formation through a gradual exhaustion of gas supply, or already dead and experiencing a rejuvenation of star formation through fuel injection. We use the Galaxy And Mass Assembly (GAMA) database and the Galaxy Zoo citizen science morphological estimates to compare the morphology of galaxies in the green valley with those in the red sequence and blue cloud. Our goal is to examine the structural differences within galaxies that fall in the green valley, and what brings them there. Previous results found that disc features such as rings and lenses are more prominently represented in the green-valley population. We revisit this with a similar sized data set of galaxies with morphology labels provided by the Galaxy Zoo for the GAMA fields based on new Kilo-Degree Survey (KiDS) images. Our aim is to compare the results from expert classification qualitatively with those of citizen science. We observe that ring structures are indeed found more commonly in green-valley galaxies compared with their red and blue counterparts. We suggest that ring structures are a consequence of disc galaxies in the green valley actively exhibiting the characteristics of fading discs and evolving disc morphology of galaxies. We note that the progression from blue to red correlates with loosening spiral-arm structure
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data
This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
New insights into the functioning and structure of the PE and PP plastispheres from the Mediterranean Sea
Plastic debris are accumulating in the marine environment and aggregate microorganisms that form a new ecosystem called the plastisphere. Better understanding the plastisphere is crucial as it has self-sufficient orga- nization and carries pathogens or organisms that may be involved in the pollutant adsorption and/or plastic degradation. To date, the plastisphere is mainly described at the taxonomic level and the functioning of its microbial communities still remains poorly documented. In this work, metagenomic and metaproteomic analyzes were performed on the plastisphere of polypropylene and polyethylene plastic debris sampled on a pebble beach from the Mediterranean Sea. Our results confirmed that the plastisphere was organized as self-sufficient eco- systems containing highly active primary producers, heterotrophs and predators such as nematode. Interestingly, the chemical composition of the polymer did not impact the structure of the microbial communities but rather influenced the functions expressed. Despite the fact that the presence of hydrocarbon-degrading bacteria was observed in the metagenomes, polymer degradation metabolisms were not detected at the protein level. Finally, hydrocarbon degrader (i.e., Alcanivorax) and pathogenic bacteria (i.e., Vibrionaceae) were observed in the plas- tispheres but were not very active as no proteins involved in polymer degradation or pathogeny were detected. This work brings new insights into the functioning of the microbial plastisphere developed on plastic marine debris
- …