7 research outputs found

    Optimized culture conditions for tissue explants of uterine leiomyoma

    Get PDF
    Background: Uterine leiomyomas are the most common benign tumours in women, which arise from smooth muscle cells of the uterine myometrium and usually are multicentric. In spite of their frequency pathogenesis is widely unknown, mainly due to the absence of a suitable model system. We describe the systematic optimization of culturing leiomyoma tissue explants in an economical and effective ex vivo system. Methods: Different concentrations of oxygen, different media, sera, hormones, and growth factor supplements were tested. Immunohistochemical stainings with antibodies against hormone receptors as well as specifying proliferation and apoptotic indices and real-time PCR were performed. Results: Main parameters for culturing myoma tissue explants were tested for finding an optimal protocol. Standard medium D-MEM-F12 in combination with the use of horse serum in a reduced concentration of 1% turned out to be optimal for these tissue cultures as well as the addition of estradiol and epidermal growth factor EGF to media. Reduced oxygen content in the incubator air showed no positive effect. Conclusions: For culturing tissue explants of uterine leiomyoma several conditions were optimized. The established tissue culture model allows examining the effects of known and potential therapeutic substances and the influence of immune competent cells in the process of tumour formation to find new targets for medical treatmen

    Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays

    Get PDF
    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFκB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFα, and interferon), and we demonstrate scalability by printing a chip with ∼4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability

    Functional analysis and identification of cis-regulatory elements of human chromosome 21 gene promoters

    Get PDF
    Given the inherent limitations of in silico studies relying solely on DNA sequence analysis, the functional characterization of mammalian promoters and associated cis-regulatory elements requires experimental support, which demands cloning and analysis of putative promoter regions. Focusing on human chromosome 21, we cloned 182 gene promoters of 2500 bp in length and conducted reporter gene assays on transfected-cell arrays. We found 56 promoters that were active in HEK293 cells, while another 49 promoters could be activated by treatment of cells with Trichostatin A or depletion of serum. We observed high correlations between promoter activities and endogenous transcript levels, RNA polymerase II occupancy, CpG islands and core promoter elements. Truncation of a subset of 62 promoters to ∼500 bp revealed that truncation rarely resulted in loss of activity, but rather in loss of responses to external stimuli, suggesting the presence of cis-regulatory response elements within distal promoter regions. In these regions, we found a strong enrichment of transcription factor binding sites that could potentially activate gene expression in the presence of stimuli. This study illustrates the modular functional architecture of chromosome 21 promoters and helps to reveal the complex mechanisms governing transcriptional regulation

    Diversity in Genetic In Vivo

    No full text
    corecore