3 research outputs found

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Elliptic Flow of Charged Particles in Pb-Pb Collisions at root s(NN)=2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at root s(NN) p = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar < 0.8) and transverse momentum range 0.2 < p(t) < 5.0 GeV/c. The elliptic flow signal v(2), measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 +/- 0.002(stat) +/- 0.003(syst) in the 40%-50% centrality class. The differential elliptic flow v(2)(p(t)) reaches a maximum of 0.2 near p(t) = 3 GeV/c. Compared to RHIC Au-Au collisions at root s(NN) = 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at √sNN=2.76 TeV

    No full text
    We report on the first measurement of the triangular v3, quadrangular v4, and pentagonal v5 charged particle flow in Pb–Pb collisions at √sNN= 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2 and v3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients
    corecore