12 research outputs found

    The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats

    Get PDF
    The role of Histamine H3 receptors (H3Rs) in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD) is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP) and novel object recognition (NOR) task in adult male rats, using donepezil (DOZ) as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p.) significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7). The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p.) was reversed when rats were co-injected with the H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.) (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6). In the NOR paradigm, DL77 (5 mg/kg, i.p.) counteracted long-term memory (LTM) deficits induced with MK801 (P < 0.05, n = 6–8), and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6–8), and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p.) (p = 0.877, n = 6, as compared to the (MK801)-amnesic group). However, DL77 (5 mg/kg, i.p.) did not alter short-term memory (STM) impairment in NOR test (p = 0.772, n = 6–8, as compared to (MK801)-amnesic group). Moreover, DL77 (5 mg/kg) failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM) (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6), demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating neurotransmitters related to neurodegenerative disorders, e.g., AD

    The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats

    No full text
    The role of Histamine H3 receptors (H3Rs) in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD) is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP) and novel object recognition (NOR) task in adult male rats, using donepezil (DOZ) as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p.) significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7). The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p.) was reversed when rats were co-injected with the H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.) (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6). In the NOR paradigm, DL77 (5 mg/kg, i.p.) counteracted long-term memory (LTM) deficits induced with MK801 (P < 0.05, n = 6–8), and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6–8), and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p.) (p = 0.877, n = 6, as compared to the (MK801)-amnesic group). However, DL77 (5 mg/kg, i.p.) did not alter short-term memory (STM) impairment in NOR test (p = 0.772, n = 6–8, as compared to (MK801)-amnesic group). Moreover, DL77 (5 mg/kg) failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM) (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6), demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating neurotransmitters related to neurodegenerative disorders, e.g., AD

    Structural Basis of Drug Binding to CYP46A1, an Enzyme That Controls Cholesterol Turnover in the Brain*

    No full text
    Cytochrome P450 46A1 (CYP46A1) initiates the major pathway of cholesterol elimination from the brain and thereby controls cholesterol turnover in this organ. We determined x-ray crystal structures of CYP46A1 in complex with four structurally distinct pharmaceuticals; antidepressant tranylcypromine (2.15 Å), anticonvulsant thioperamide (1.65 Å), antifungal voriconazole (2.35 Å), and antifungal clotrimazole (2.50 Å). All four drugs are nitrogen-containing compounds that have nanomolar affinity for CYP46A1 in vitro yet differ in size, shape, hydrophobicity, and type of the nitrogen ligand. Structures of the co-complexes demonstrate that each drug binds in a single orientation to the active site with tranylcypromine, thioperamide, and voriconazole coordinating the heme iron via their nitrogen atoms and clotrimazole being at a 4 Å distance from the heme iron. We show here that clotrimazole is also a substrate for CYP46A1. High affinity for CYP46A1 is determined by a set of specific interactions, some of which were further investigated by solution studies using structural analogs of the drugs and the T306A CYP46A1 mutant. Collectively, our results reveal how diverse inhibitors can be accommodated in the CYP46A1 active site and provide an explanation for the observed differences in the drug-induced spectral response. Co-complexes with tranylcypromine, thioperamide, and voriconazole represent the first structural characterization of the drug binding to a P450 enzyme

    The role of cortical and hypothalamic histamine-3 receptors in the modulation of central histamine neurotransmission: an in vivo electrophysiology and microdialysis study

    No full text
    The current study aimed to investigate the effect of histamine-3 (H3) receptors, expressed in the tuberomammillary nucleus (TMN) of the hypothalamus and in the prefrontal cortex (PFC), on histamine neurotransmission in the rat brain. The firing activity of histamine neurons in the TMN was measured using in vivo extracellular single-unit electrophysiology, under propofol anesthesia. Extracellular histamine levels were determined using the dual (PFC and TMN) probe microdialysis, in freely-moving animals. Histamine levels in dialysates were determined using high-performance liquid chromatography (HPLC) and fluorescence detection. It was found that systemic administration of the selective H3-agonist, immepip, decreases, and the reverse H3/H4-agonist, thioperamide, increases the firing activity of histamine neurons in the TMN and the release of histamine in TMN and PFC. Local perfusion of immepip into the TMN increased, and thioperamide decreased, histamine levels in the TMN but not in the PFC. Local perfusion of immepip into the PFC, however, decreased extracellular histamine levels in both TMN and PFC. It can be concluded that brain H3 receptors, and especially those expressed in the PFC, play an important role in the autoregulation of histamine neurotransmission. It is possible that H3 receptors in the PFC are expressed on pyramidal neurons projecting to the TMN, and activation of these receptors diminishes glutamate excitatory input from PFC to the TMN. As the brain histamine system has a role in pathophysiology of psychotic, affective, cognitive, sleep and eating disorders, H3 receptors are potential targets for future CNS medications

    Histamine H-4 Receptor Ligands: Future Applications and State of Art

    No full text
    Histamine is a chemical transmitter found practically in whole organism and exerts its effects through the interaction with H-1 to H-4 histaminergic receptors. Specifically, H-4 receptors are found mainly in immune cells and blood-forming tissues, thus are involved in inflammatory and immune processes, as well as some actions in central nervous system. Therefore, H-4 receptor ligands can have applications in the treatment of chronic inflammatory and immune diseases and may be novel therapeutic option in these conditions. Several H-4 receptor ligands have been described from early 2000's until nowadays, being imidazole, indolecarboxamide, 2-aminopyrimidine, quinazoline, and quinoxaline scaffolds the most explored and discussed in this review. Moreover, several studies of molecular modeling using homology models of H-4 receptor and QSAR data of the ligands are summarized. the increasing and promising therapeutic applications are leading these compounds to clinical trials, which probably will be part of the next generation of blockbuster drugs.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)UNIFESP, Inst Ciencias Ambientais Quim & Farmaceut, Dept Ciencias Exatas & Terra, Diadema, BrazilUNIFESP, Inst Ciencias Ambientais Quim & Farmaceut, Dept Ciencias Exatas & Terra, Diadema, BrazilWeb of Scienc
    corecore