4 research outputs found

    EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals).

    Get PDF
    A risk ranking process identified Salmonella spp. and pathogenic verocytotoxin-producing Escherichia coli (VTEC) as current high-priority biological hazards for meat inspection of bovine animals. As these hazards are not detected by traditional meat inspection, a meat safety assurance system for the farm-to-chilled carcass continuum using a risk-based approach was proposed. Key elements of the system are risk-categorisation of slaughter animals for high-priority biological hazards based on improved food chain information, as well as risk-categorisation of slaughterhouses according to their capability to control those hazards. Omission of palpation and incision during post-mortem inspection for animals subjected to routine slaughter may decrease spreading and cross-contamination with the high-priority biological hazards. For chemical hazards, dioxins and dioxin-like polychlorinated biphenyls were ranked as being of high potential concern; all other substances were ranked as of medium or lower concern. Monitoring programmes for chemical hazards should be more flexible and based on the risk of occurrence, taking into account the completeness and quality of the food chain information supplied and the ranking of chemical substances, which should be regularly updated to include new hazards. Control programmes across the food chain, national residue control programmes, feed control and monitoring of environmental contaminants should be better integrated. Meat inspection is a valuable tool for surveillance and monitoring of animal health and welfare conditions. Omission of palpation and incision would reduce detection effectiveness for bovine tuberculosis and would have a negative impact on the overall surveillance system especially in officially tuberculosis free countries. The detection effectiveness for bovine cysticercosis, already low with the current meat inspection system, would result in a further decrease, if palpation and incision are removed. Extended use of food chain information could compensate for some, but not all, the information on animal health and welfare lost if only visual post-mortem inspection is applied

    Mycotoxin contamination of sorghum and its contribution to human dietary exposure in four sub-Saharan countries

    No full text
    <p>This research aimed at evaluating the safety, and the type, level and prevalence of mycotoxins in grain sorghum of four sub-Saharan African (SSA) countries (Burkina Faso, Ethiopia, Mali and Sudan). A multi-analyte LC-MS/MS method for quantification of 23 mycotoxins (nivalenol, deoxynivalenol, fusarenon X, neosolaniol, 3-acetyl deoxynivalenol, 15-acetyl deoxynivalenol, diacetoxyscirpenol, roquefortine C, HT-2 toxin, alternariol, T-2 toxin, FB1, FB2, FB3, zearalenone, aflatoxin G<sub>1</sub>, aflatoxin G<sub>2</sub>, aflatoxin B<sub>1</sub>, aflatoxin B<sub>2</sub>, sterigmatocystin, OTA, altenuene, alternariol monomethylether) was applied to different sorghum matrices. Of the 1533 analysed samples, 33% were contaminated with at least one of the following mycotoxins: aflatoxins, fumonisins, sterigmatocystin, <i>Alternaria</i> toxins, OTA and zearalenone. Country of origin, colour, source and collection period of sorghum samples significantly influenced the type, level and prevalence of mycotoxins. Sterigmatocystin (15%), fumonisins (17%) and aflatoxins (13%) were the most prevalent. FB1 (274 ± 585 µg/kg) had the highest mean concentration followed by FB2 (214 ± 308 µg/kg) while diacetoxyscirpenol (8.12 ± 19.2 µg/kg) and HT-2 (11.9 ± 0.00 µg/kg) had the lowest concentrations. Neosolaniol, fusarenon-X, 3-acetyl deoxynivalenol, 15-acetyl deoxynivalenol, T-2 toxin, nivalenol and roquefortine C were not detected in any of the samples. Sudan had the lowest prevalence and mean concentration of all mycotoxins. Pink sorghum had the highest concentrations of fumonisins and aflatoxins. Mycotoxins from <i>Aspergillus</i> spp. and <i>Alternaria</i> spp. are the mycotoxins of concern in SSA grain sorghum with regard to prevalence, concentration and possible health risk from exposure. Based on the performed risk characterisation, daily consumption of sorghum containing aflatoxins, alternariol, alternariol monomethyl ether, sterigmatocystin and OTA could result in exceeding the established health-based guidance values for these toxins.</p
    corecore