4,871 research outputs found

    Programmable Trigger Logic Unit Based on FPGA Technology

    Get PDF
    A programmable trigger logic module (TRILOMO) was implemented successfully in an FPGA using their internal look-up tables to save Boolean functions. Up to 16 trigger input signals can be combined logically for a fast trigger decision. The new feature is that the trigger decision is VME register based. The changes are made without modifying the FPGA code. Additionally the module has an excellent signal delay adjustment.Comment: 4 pages, 4 figure

    v. 2, no. 3, November 1946

    Get PDF

    v. 2, no. 5, February 1947 [publication says 1946]

    Get PDF

    Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

    Get PDF
    Nighttime vegetative uptake of carbonyl sulfide (COS) can exist due to the incomplete closure of stomata and the light independence of the enzyme carbonic anhydrase, which complicates the use of COS as a tracer for gross primary productivity (GPP). In this study we derived nighttime COS fluxes in a boreal forest (the SMEAR II station in Hyytiälä, Finland; 61°51′ N, 24°17′ E; 181 m a.s.l.) from June to November 2015 using two different methods: eddy-covariance (EC) measurements (FCOS-EC) and the radon-tracer method (FCOS-Rn). The total nighttime COS fluxes averaged over the whole measurement period were −6.8 ± 2.2 and −7.9 ± 3.8 pmol m−2 s−1 for FCOS-Rn and FCOS-EC, respectively, which is 33–38 % of the average daytime fluxes and 21 % of the total daily COS uptake. The correlation of 222Rn (of which the source is the soil) with COS (average R2  =  0.58) was lower than with CO2 (0.70), suggesting that the main sink of COS is not located at the ground. These observations are supported by soil chamber measurements that show that soil contributes to only 34–40 % of the total nighttime COS uptake. We found a decrease in COS uptake with decreasing nighttime stomatal conductance and increasing vapor-pressure deficit and air temperature, driven by stomatal closure in response to a warm and dry period in August. We also discuss the effect that canopy layer mixing can have on the radon-tracer method and the sensitivity of (FCOS-EC) to atmospheric turbulence. Our results suggest that the nighttime uptake of COS is mainly driven by the tree foliage and is significant in a boreal forest, such that it needs to be taken into account when using COS as a tracer for GPP

    Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling

    Get PDF
    Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high-frequency data sampled at high-variability stations. Others implications are discussed at the end of the paper

    How can consumer trust in organic products be enhanced?

    Get PDF
    The study presented explores consumer trust in organic food and the effectiveness of enhancing consumer trust by communication strategies on traceability. The research is based on the general finding that trust is one of the most crucial aspects when consumer decide whether to buy or not to buy organic products. However, there are hardly any empirical works which analyse in detail consumer trust in organic food and the ways it can be enhanced. First, based on a quantitative inquiry of 600 persons in Germany the study presented investigates consumer trust in the different actors involved in the organic supply chain (farmers, processors, traders, labels), in distinct attributed qualities such as benefits for health, ecology and animal welfare as well as the customers’ criteria for assessing trustworthiness of the organic products. Empirical data is analysed by multivariate statistics such as cluster analysis to identify distinct consumer segments with respect to their trust characteristics. In a second step there will be a qualitative research method using interviews combined with a visualizing technique. The aim of this method is to understand the consumers’ attitudes towards the supply chain of organic food and the complex construct of trust better. The results shall help to develop communication strategies for enhancing consumer trust in organic food

    Commencement Exercises Program, August 8, 1947

    Get PDF
    Commencement Exercises Program, August 8, 1947

    Formation of undulating seafloor bedforms during the Minoan eruption and their implications for eruption dynamics and slope stability at Santorini

    Get PDF
    The Minoan eruption of Santorini is one of the largest Holocene volcanic events and produced several cubic kilometers of pyroclastic flows emplaced on the submerged flanks of the volcano. Marine geophysical surveys reveal a multitude of undulating seafloor bedforms (USBs) around Santorini. While similar structures are known from other volcanoes worldwide, Santorini offers the unique opportunity to relate USB formation with volcanic processes during one of the best-studied volcanic eruptions worldwide. In this study, we combine high-resolution seismic reflection data with multibeam echosounder bathymetry to reveal the internal architecture of USBs around Santorini and to relate their morphological characteristics to formational processes. The USBs around Santorini were formed during the Minoan eruption and represent the seafloor expression of mass transport deposits. Three types of deposits differ in composition or origin. (1) Depositional USBs, which can only be found to the north of the island, where Minoan eruption ignimbrites reach their maximum thickness and the undulating topography is the result of thrusting within the deposit. (2) USBs related to slope failures of volcaniclastics from the entire Thera Pyroclastic Formation, which can be found east, south, and west of the island. (3) USBs associated with deep-seated deformation, which occurs on the southwestern flank along an area affected by rift tectonics and extends to a depth of more than 200 m below the seafloor. In cases (2) and (3), the USBs are formed upslope by block rotation and downslope by thrusting. Our study indicates that these processes may have contributed to the generation of the devastating Minoan tsunami. Since Santorini is located in one of the most tectonically active regions in the Mediterranean, capable of producing earthquakes with magnitude M7+, our study has important implications for hazard assessment. A strong earthquake located close to the island may have the potential to reactivate slope instabilities posing a previously undetected but potentially significant tsunami hazard
    corecore