213 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Haptic feedback from human tissues of various stiffness and homogeneity

    Get PDF
    This work presents methods for haptic modelling of soft and hard tissue with varying stiffness. The model provides visualization of deformation and calculates force feedback during simulated epidural needle insertion. A spring-mass-damper (SMD) network is configured from magnetic resonance image (MRI) slices of patient’s lumbar region to represent varying stiffness throughout tissue structure. Reaction force is calculated from the SMD network and a haptic device is configured to produce a needle insertion simulation. The user can feel the changing forces as the needle is inserted through tissue layers and ligaments. Methods for calculating the force feedback at various depths of needle insertion are presented. Voxelization is used to fill ligament surface meshes with spring mass damper assemblies for simulated needle insertion into soft and hard tissues. Modelled vertebrae cannot be pierced by the needle. Graphs were produced during simulated needle insertions to compare the applied force to haptic reaction force. Preliminary saline pressure measurements during Tuohy epidural needle insertion are also used as a basis for forces generated in the simulation

    Patient-specific simulation environment for surgical planning and preoperative rehearsal

    Get PDF
    Surgical simulation is common practice in the fields of surgical education and training. Numerous surgical simulators are available from commercial and academic organisations for the generic modelling of surgical tasks. However, a simulation platform is still yet to be found that fulfils the key requirements expected for patient-specific surgical simulation of soft tissue, with an effective translation into clinical practice. Patient-specific modelling is possible, but to date has been time-consuming, and consequently costly, because data preparation can be technically demanding. This motivated the research developed herein, which addresses the main challenges of biomechanical modelling for patient-specific surgical simulation. A novel implementation of soft tissue deformation and estimation of the patient-specific intraoperative environment is achieved using a position-based dynamics approach. This modelling approach overcomes the limitations derived from traditional physically-based approaches, by providing a simulation for patient-specific models with visual and physical accuracy, stability and real-time interaction. As a geometrically- based method, a calibration of the simulation parameters is performed and the simulation framework is successfully validated through experimental studies. The capabilities of the simulation platform are demonstrated by the integration of different surgical planning applications that are found relevant in the context of kidney cancer surgery. The simulation of pneumoperitoneum facilitates trocar placement planning and intraoperative surgical navigation. The implementation of deformable ultrasound simulation can assist surgeons in improving their scanning technique and definition of an optimal procedural strategy. Furthermore, the simulation framework has the potential to support the development and assessment of hypotheses that cannot be tested in vivo. Specifically, the evaluation of feedback modalities, as a response to user-model interaction, demonstrates improved performance and justifies the need to integrate a feedback framework in the robot-assisted surgical setting.Open Acces

    Pedicle Screw Insertion Surgical Simulator

    Get PDF
    Scoliosis is a sideway spinal deformity. If the curvature is measured to be more than 50 degrees, the patient can feel significant discomfort. In such cases, surgery is required to straighten the spine. Pedicle screw insertion is a common procedure for scoliosis surgery. The technique requires the placement of screws from the pedicle into the spine. A rod is used to connect all the pedicle screws. The spine is straightened during the connection process. One of the most common techniques used for pedicle screw insertion is called the free hand technique. During free hand surgery, the surgeon creates a screw channel by manually probe into the spine. The lack of visual aid requires the surgeon to rely strongly on haptics feedback. Due to the spine sensitivity and the limited operating range, small changes in force or direction can cause the probe to breach out of the spine. If the breach reaches the spine medial, the spinal cord could be damaged. Even experienced surgeons can not prevent breach. Studies have found that surgeons with 5 or more years of surgical experience have a breach rate of 10.8 %. In this thesis, pedicle screw insertion simulator is developed and examined in detail. The simulator combines visual and haptics sensation to recreate the channel creation process of the surgery. A 2DOF mechanical device is used for the haptics sensation. The device includes a linear actuator and a rotary motor. The simulator was tuned to four different surgical scenarios by 2 expert surgeons. The scenarios are soft probing, hard probing, lateral breach, and in-out-in breach. 10 additional surgeons were asked to participant in a clinical study. Measurements were collected for analysis. The focus of the study is to find if the surgeon can recognize the simulated breach scenarios. Four research questions were examined, and they are: 1. Can experience help the surgeon improve correct breach recognition rate? 2. Can experience help the surgeon improve overall correct recognition rate? 3. Is there any performance difference between surgeons with different experience level? 4. Can the simulation trials become a learning tool for the simulation tasks? Each question has its own null hypothesis and statistical analysis is used to determine if the null hypothesis is rejected. The main conclusion is that there is no statistically significant relationship between the wrong breach or total wrong recognition rate and surgical experience. Furthermore, there is statistically significant in hard probing scenario between surgical experience and vertical force variance. Lastly, ANOVA analysis showed that the breach force and velocity in three trials are close to statistically significant, more data may prove that the simulator can be a training tool for the tasks

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation

    Full text link
    Modeling the liver deformation forms the basis for the development of new clinical applications that improve the diagnosis, planning and guidance in liver surgery. However, the patient-specific modeling of this organ and its validation are still a challenge in Biomechanics. The reason is the difficulty to measure the mechanical response of the in vivo liver tissue. The current approach consist of performing minimally invasive or open surgery aimed at estimating the elastic constant of the proposed biomechanical models. This dissertation presents how the use of medical image analysis and evolutionary computation allows the characterization of the biomechanical behavior of the liver, avoiding the use of these minimally invasive techniques. In particular, the use of similarity coefficients commonly used in medical image analysis has permitted, on one hand, to estimate the patient-specific biomechanical model of the liver avoiding the invasive measurement of its mechanical response. On the other hand, these coefficients have also permitted to validate the proposed biomechanical models. Jaccard coefficient and Hausdorff distance have been used to validate the models proposed to simulate the behavior of ex vivo lamb livers, calculating the error between the volume of the experimentally deformed samples of the livers and the volume from biomechanical simulations of these deformations. These coefficients has provided information, such as the shape of the samples and the error distribution along their volume. For this reason, both coefficients have also been used to formulate a novel function, the Geometric Similarity Function (GSF). This function has permitted to establish a methodology to estimate the elastic constants of the models proposed for the human liver using evolutionary computation. Several optimization strategies, using GSF as cost function, have been developed aimed at estimating the patient-specific elastic constants of the biomechanical models proposed for the human liver. Finally, this methodology has been used to define and validate a biomechanical model proposed for an in vitro human liver.Martínez Martínez, F. (2014). Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39337TESI
    • …
    corecore