134 research outputs found

    An Evolutionary Variable Neighborhood Search for Selecting Combinational Gene Signatures in Predicting Chemo-Response of Osteosarcoma

    Get PDF
    In genomic studies of cancers, identification of genetic biomarkers from analyzing microarray chip that interrogate thousands of genes is important for diagnosis and therapeutics. However, the commonly used statistical significance analysis can only provide information of each single gene, thus neglecting the intrinsic interactions among genes. Therefore, methods aiming at combinational gene signatures are highly valuable. Supervised classification is an effective way to assess the function of a gene combination in differentiating various groups of samples. In this paper, an evolutionary variable neighborhood search (EVNS) that integrated the approaches of evolutionary algorithm and variable neighborhood search (VNS) is introduced.It consists of a population of solutions that evolution is performed by a variable neighborhood search operator, instead of the more usual reproduction operators, crossover and mutation used in evolutionary algorithms. It is an efficient search algorithm especially suitable for tremendous solution space. The proposed EVNS can simultaneously optimize the feature subset and the classifier through a common solution coding mechanism. This method was applied in searching the combinational gene signatures for predicting histologic response of chemotherapy on osteosarcoma patients, which is the most common malignant bone tumor in children. Cross-validation results show that EVNS outperforms the other existing approaches in classifying initial biopsy samples

    The Use Of Heuristic Ordering And Particle Swarm Optimization For Nurse Scheduling Problem

    Get PDF
    The scheduling of nurse has been the important management functions and directly affected the hospital services and the patient care as well. The challenge of nurse scheduling is the substantial amount of time for assigning shifts to a set of nurses that involves a large set of constraints. To satisfy all the constraints cannot be applied directly due to variability preferences and conflicting interest and objectives between nurses and hospital. The main objective of this research study is to find the optimal solution that can deal with varying preferences in term of skill categories, flexible constraint parameters, flexible coverage and varying the size of nurses. A combination of heuristic ordering and particle swarm optimization (HOPSO) has been proposed to achieve the objectives. The capability of PSO algorithm is enhanced by emphasizing the use of information on the constraints and heuristic ordering for searching optimal solution in both the feasible and infeasible solution spaces. The constraints are adapted to the evaluation function that iteratively evaluates all the solutions. The solution with lowest violation penalty cost is selected and will compare to a new solution. Before the particles update its position, variable neighborhood search (VNS) is applied in order to enhanced the diversity before being trapped in a local optima. The performance of the proposed method is tested on the real problem benchmark dataset in Malaysia public hospital, Universti Kebangsaan Malaysia Medical Centre (UKMMC) that had 8 datasets with the different number of nurses. The comparison of the result of HOPSO, harmony search algorithm (HSA) and heuristic variable neighborhood search (HVNS) is presented. The result show that the proposed HOPSO can generate the schedule in the range between one to twenty-six seconds computational time, followed by the HSA which range between one hundred and eighty-five to three hundred and forty-five seconds and HVNS takes one hundred and thirty-one to eight hundred and twenty seconds. HOPSO can decrease the penalty cost into ninety seven percent improvement than the HSA which is less than fifty percent of improvement. Computational results show that the proposed HOPSO based algorithm is performed better than HSA and HVNS in order to provide a practical solution to the problem

    AN INTERACTIVE APPROACH FOR MULTIPLE CRITERIA SCHEDULING IN A CROATIAN HOSPITAL

    Get PDF
    This paper proposes a decision support system for building and choosing a daily schedule of medical treatments in a hospital according the available resources and following multiple criteria. It uses a Scatter Search metaheuristics empowered by enabling interaction with the decision maker in order to collect his/her preference information and to guide the search to the areas of particular interest. A preference model is built, composed of all general additive monotone non-decreasing value functions compatible with the obtained information using method called Generalized Regression with Intensities of Preference. The set of functions is then applied to a small subset of the set of Pareto optimal solutions, resulting in two rankings: the necessary and the possible one

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems

    Bus driver rostering by hybrid methods based on column generation

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2018Rostering problems arise in a diversity of areas where, according to the business and labor rules, distinct variants of the problem are obtained with different constraints and objectives considered. The diversity of existing rostering problems, allied with their complexity, justifies the activity of the research community addressing them. The current research on rostering problems is mainly devoted to achieving near-optimal solutions since, most of the times, the time needed to obtain optimal solutions is very high. In this thesis, a Bus Driver Rostering Problem is addressed, to which an integer programming model is adapted from the literature, and a new decomposition model with three distinct subproblems representations is proposed. The main objective of this research is to develop and evaluate a new approach to obtain solutions to the problem in study. The new approach follows the concept of search based on column generation, which consists in using the column generation method to solve problems represented by decomposition models and, after, applying metaheuristics to search for the best combination of subproblem solutions that, when combined, result in a feasible integer solution to the complete problem. Besides the new decomposition models proposed for the Bus Driver Rostering Problem, this thesis proposes the extension of the concept of search by column generation to allow using population-based metaheuristics and presents the implementation of the first metaheuristic using populations, based on the extension, which is an evolutionary algorithm. There are two additional contributions of this thesis. The first is an heuristic allowing to obtain solutions for the subproblems in an individual or aggregated way and the second is a repair operator which can be used by the metaheuristics to repair infeasible solutions and, eventually, generate missing subproblem solutions needed. The thesis includes the description and results from an extensive set of computational tests. Multiple configurations of the column generation with three decomposition models are tested to assess the best configuration to use in the generation of the search space for the metaheuristic. Additional tests compare distinct single-solution metaheuristics and our basic evolutionary algorithm in the search for integer solutions in the search space obtained by the column generation. A final set of tests compares the results of our final algorithm (with the best column generation configuration and the evolutionary algorithm using the repair operator) and the solutions obtained by solving the problem represented by the integer programming model with a commercial solver.Programa de Apoio à Formação Avançada de Docentes do Ensino Superior Politécnico (PROTEC), SFRH/PROTEC/67405/201

    Gestión logística de sistemas de hospitalización domiciliaria: una revisión crítica de modelos y métodos

    Get PDF
    RESUMEN: Los servicios de Hospitalización Domiciliaria (HD) se basan en una red de distribución, en la cual los pacientes son hospitalizados en sus casas y los prestadores de servicios de salud deben entregar cuidados médicos coordinados a los pacientes. La demanda de estos servicios está creciendo rápidamente y los gobiernos y proveedores de servicios de salud enfrentan el reto de tomar un conjunto de decisiones complejas en un sector con un componente logístico importante. En este artículo se presenta una revisión crítica de los modelos y métodos utilizados para darle soporte a las decisiones logísticas en HD. Para esto se presenta primero un marco de referencia, con el objetivo de identificar las oportunidades de investigación en el campo. Con base en dicho marco, se presenta la revisión de la literatura y la identificación de brechas en la investigación. En particular, se hace énfasis en la necesidad de desarrollar e implementar metodologías más integradas para dar soporte a las decisiones estratégicas y tácticas y de considerar puntos clave de los sistemas reales.ABSTRACT: Home Health Care (HHC) services are based on a delivery network in which patients are hospitalized at their homes and health care providers must deliver coordinated medical care to patients. Demand for HHC services is rapidly growing and governments and health care providers face the challenge to make a set of complex decisions in a medical service business that has an important component of logistics problems. The objective of this paper is to provide a critical review of models and methods used to support logistics decisions in HHC. For this purpose, a reference framework is proposed first in order to identify research perspectives in the field. Based on this framework, a literature review is presented and research gaps are identified. In particular, the literature review reveals that more emphasizes is needed to develop and implement more integrated methodologies to support decisions at tactical and strategic planning levels and to consider key features from real systems

    Dynamic vehicle routing problems: Three decades and counting

    Get PDF
    Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing a real explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the nature of the dynamic element, (10) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit linkages of methodology to technological advances and analysis of worst case or average case performance of heuristics.© 2015 Wiley Periodicals, Inc

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems
    corecore