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Abstract

This thesis is concerned with aotated personnel scheduling in healthcare
organisations; in particular, nurse rostgri©ver the past forty years the nurse
rostering problem has received a large amount of research. This can be mostly
attributed to its practical applications and the scientific challenges of solving such
a complex problem. The benefits of automating the rostering process include
reducing the planner’s workload and associated costs and being able to create
higher quality and more flexible schedules. This has become more important
recently in order to retain nurses and attract more people into the profession.
Better quality rosters also reduce fatigue and stress due to overwork and poor
scheduling and help to maximise the udeleisure time by satisfying more
requests. A more contented workforce will lead to higher productivity, increased
quality of patient service and a better level of healthcare.

Basically stated, the nurse rostering probiequires the assignment of shifts to
personnel to ensure that sufficient employees are present to perform the duties
required. There are usually a number ohgiraints such as working regulations
and legal requirements and a number of objectives such as maximising the nurses
working preferences. When formulated mathematically this problem can be
shown to belong to a class of problemiich are considered intractable. The
work presented in this éisis expands upon the research that has already been
conducted to try and provide higher quality solutions to these challenging
problems in shorter computation times.

The thesis is broadly strused into three sections.

1) An investigation into a nurse rosteg problem provided by an industrial

collaborator (ORTEC): A hybrid heutis ordering and variable neighbourhood



search is developed and tested usomgnmercial nurse rostering data. The
efficiency and strength of the approach is demonstrated through experimental
comparisons with an existing commercially implemented genetic algorithm. The
genetic algorithm is part of ORTEC’s Harmony software package and it operates
successfully in a number of real worktenarios. The results of the research
presented in this thesis are now incorporated in the latest product versions of
Harmony.

2) A framework to aid research in nursestering: A number of research tools
have been created and are presented in this thesis. They have been made publicly
available (including source code) in order to facilitate the establishing of
benchmark nurse rostering instances and results. Practically oriented benchmark
instances have been requested by the nurse rostering research community for
some time. This work fills the void and provides a solid foundation for future
research.

3) The development of a number of advanced algorithms for solving highly
complex, real world problems. A number of search neighbourhoods previously
used in local search and metaheurisgipraaches to nurse rostering are examined
and tested using the benchmark data sets.r@$ults of this investigation are then
used to create a variable depth seawtiich effectively chains together moves

and swaps from the most successful neighbourhoods. A variety of heuristics were
developed to efficiently find improvinghains. The algorithm also accepts a
predefined computational time limit and dynamically adjusts in order to use its
time more effectively. When compared against previously published algorithms
(even when dynamically adjusting to their run times), the variable depth search is

shown to be very successful.

viii



In an attempt to produce even higher quality solutions, the variable depth search
was incorporated as the improvementtmoe into an evolutionary algorithm:
scatter search. The scatter search was found to be competitive with other

evolutionary approaches and particlylatrong on some problem instances.
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1 Introduction

1 Introduction

Personnel scheduling belongs to a wide class of timetabling problems which
includes educational timetabling [67, 68, 212], sports timetabling [95] and
transport timetabling [154]. Personnel timetabling problems are found in a wide
variety of industries and environments. The employees can range from airline
crew [19] to ambulance officers [97], frofactory [38] to fast food restaurant
workers [121], from police [230] to call centre staff [108] and many more. This
thesis is concerned with personnel scheduling in healthcare, in particular, nurse
rostering. The nurse rostering problem is not only one of the more commonly
occurring problems (the UK's NHS alone currently employs approximately
400,000 nurses [236]) but it is also one of the most complex. This high
complexity is due to a number of factors, some of which (but rarely all) may be

found in other employee scheduling problems. These factors include:

= Hospitals operate for twenty four hours a day, seven days a week. This
introduces a number of legal constraints and working preferences relating to
night shifts, minimum rest times, working on weekends and national holidays

and so on.

= The workforces consist of nurses withryiag skills and grades which need to

be considered when constructing rosters.

= A variety of shifts. Even the more basic problems usually have a minimum of

three shift types (e.g. early, late and night). More frequently, there are a
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number of other shift types to assign, each with varying durations and

associated constraints.

Large numbers of employees.

Cover requirements may not be uniform but vary from day to day.

Long planning horizons. They can range to twelve weeks or even a year

for some instances.

Many, often conflicting constraintnd objectives. For example, constraints

or objectives relating to:

— Cover requirements.

— Day on/off and shift on/off requests.

- Minimum and maximum length stretches of days on, off, or specific
shifts.

— Minimum and maximum hours and/or shifts worked during certain
periods.

— Shift rotations.

— Desirable and undesirable work patterns.

— Minimum and maximum numbers of specific shift types (possibly during
certain periods).

— Minimum and maximum ratios of shift types worked.

— Tutorship or oppositely ensuring certain employees do not work at the

same time.
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These features make the problem not drdyd to solve but also to model. The
effort required is worthwhile though when high quality rosters are produced, as

these provide a number of significant benefits which can be outlined as follows:

= Reduced hospital expenditure. Nurse salaries are a significant proportion of
a hospital’'s running costs. Better scheduling can reduce this expense in a

number of ways:

— Through minimising over coverage (not assigning more nurses than are
required for a shift).

— Via cutting the reliance on expensive agency nurses to fill gaps in
schedules when it may appear to be the only solution.

— Through increased work performance due to reduced fatigue and stress
amongst nurses caused by poor scheduling (e.g. overwork, insufficient

rest, bad shift combinations etc).

= Higher staff retention and a recruiting aid. A number of countries have
experienced a reduction in the number of people training to become nurses
and/or an increase in the number of nurses leaving the profession. As the
populations of these countries age, the demand for healthcare will increase
and these nurse shortage problems will become more acute. In order to
encourage more people to become nurses and to reduce the number of people
leaving the nursing profession, various initiatives have been proposed. One of

these is to allow more part time contracts and to provide thesnwigemore
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flexibility and input on when they work. This allows, for example, more

parents with young children to remain in nursing.

= Reduction in absenteeism and tardiness. Many organisations incur a
reduction in productivity due to staff absenteeism and tardiness. Hospitals are
no exception. The reasons for nurses arriving late or taking days off are
various. This can partly be attributed, though, to dissatisfaction with their
schedules or fatigue due to bad schedulirhis can be reduced through better
rostering and giving the nurses more say in their work patterns. For example,

a nurse is less likely to be absent for a shift which they actually requested.

= Personal preferences: Increasing the nurses’ satisfaction with their schedules
by providing them with more choice and allowing them to better plan and use
their leisure time can also increase general morale levels. This, in turn, can
lead to benefits such as higher productivity and lower staff turnover with its

associated costs.

= Increased patient safety and quality of service. Nurses are able to spend
more time with patients if they are not overworked or the ward is not
understaffed as a result of poor scheduling. In the worst case, fatigue and
stress can result in medical error endangering the patient’s health and safety

and damaging the hospital’s reputation.

Constructing high quality rosters, hoveeyis a challenging process which is
made more difficult by providing increased flexibility and a variety of work

contracts. In many hospitals though thieestules are still produced by hand. This
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unwelcome and time consuming assignment typically falls to senior nurses and
can distract them from their primary duty of looking after patients. Often they end
up reluctantly taking the work home. The task can also be stressful and
frustrating. The planner is presenteth a number of requests and scheduling
requirements which can rarely be fully satisfied. They are required to ensure that
all legal and binding rules are obeyed whitying to grant as many requests as
possible. Often, unfavourable shifts must be assigned and requests denied whilst

trying to maintain fairness and impartiality.

By using a computer to automaticallyeate schedules, it is possible not only to
remove this chore and the associated costs but also to create much higher quality
rosters. The scheduling is performed with a fraction of the effort and the
schedules are usually better than ekgeiman planners can achieve. Legal
requirements can be checked, which anpker may miss, and more requests and
working preferences are satisfied. The nuis® was previously assigned this
work now has more time to care for patients. This is especially noticeable when
regular rescheduling is required duestaff sickness and unpredicted absences.

As the schedules are computer generated, the nurses also feel less victimised if

they believe that their schedule is worse than a colleague’s.

Using a computer in the scheduling process provides a number of additional

benefits other than reduced laboodaetter rosters. These include:

= Collecting management statistics and report generation (e.g. average hours
worked per week, the number of sick days etc).

= Linking the schedules to payroll and accounting systems.
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= Publishing the schedules on the web or sending them to the nurses via email.

= Allowing the nurses to make their requests via web interfaces.

Nurse scheduling software is also oftesed as a decision support tool, allowing
planners to test different scenarié®r example, how would the quality of the

schedules change if nurses were assigned to or removed from wards?

1.1 Research Objectives

The research presented in this thesis focuses on algorithms used to automatically
construct nurse rosters. Most publisheades of the nurse rostering problem are
NP-hard. For the interested, most nurgstering problems can be shown to be
NP-hard through a polynomial-time reduction of the set covering problem or
3SAT [157]. It is likely (although not proven) that P and NP are not the same.
This actually means that there airestances of the problem for which no
algorithm can guarantee to produce Yieey besiwhatever definition obestwe

might employ) solution within a practical time limit. For example, it is possible to
produce an instance of the nurse rostepraplem which, even if the best known
algorithm for solving it used the computing power of every computer on Earth, it
may still take many millions of years to produce lestsolution. In practice, we

need to heuristically produce solutions to the problem. This means that optimality
cannot be guaranteed. However, for many real world instances, very high quality
solutions can be produced within feasitilme limits. This thesis is concerned
with analysing existing approaches and developing improved methods of
achieving this. The main objectives of this PhD programme can be summarised as

follows:
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Review and critically examine the development of nurse rostering problem

solvers from initial related work in the 1950’s to the state of the art in 2007.

Collaborate with our commercial partner, ORTEC, and focus on solving real
world problems. ORTEC is a supplier of software products and consulting in
the field of advanced planning and scheduling. They have direct experience of
working with (and have provided) practical and challenging nurse rostering

problems.

Develop improved, powerful and robustseh methodologies to address real

world problems.

Thoroughly and fairly analyse these new methods and evaluate against the
state of the art and commercial strength algorithms through structured and

well designed experimentation.

Create a variety of benchmark nursstering problems based on real world
scenarios. This includes developiagformat for describing complex nurse
rostering problems in order to share and make publicly available the

benchmark data sets.

Provide research tools and source ctmteworking with the nurse rostering
problems. For example, parsers, datacstires, user interfaces, visualisations.
This will provide a foundation for ture research and encourage more

research into highly practical nurse rostering problems.
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= Investigate and test a variety of histics and search neighbourhoods, with a
focus on the balance between intensification and diversification during

computational search.

= Examine trade offs between computation time/solution quality and develop
methods which adapt to predefined, maximum run time parameters. These
algorithms will more accurately meetaugequirements and scale with future
increases in technology. For example, algorithms which, as recently as a few
years ago, took minutes can now be performed in seconds on today’s average
PCs. However, there is no easily accessible mechanism provided for
extending these searches when a longer computation time is acceptable in

order to produce better solutions.

These objectives were defined in order to answer the main research question of
the thesis: To what extent can the staftehe art metaheuristic approaches to
nurse rostering be improved upon, particulaolyneet today’s real world needs in
complex operating environments? In order to answer this question the following

hypotheses will be tested:

Hypothesis 1: Based on recent advanoesnetaheuristic approaches to nurse
rostering, improvements can be made the genetic algorithm in ORTEC's
software HarmonyThe genetic algorithm is a commercial strength algorithm that
has operated successfully for a number of years. However, since its development

a large amount of research on metahéugshas been conducted. It may be
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possible to use some of this knowledge to develop a better algorithm. The new
algorithm will be compared against the genetic algorithm using statistically

evaluated tests.

Hypothesis 2: The research community will significantly benefit from the
development of a collection of real world benchmark data s$etsill not be
possible to completely test this hypothesis as it would have to be tested over a
long time frame. The data sets and related software will be developed though in

order to initiate this test.

Hypothesis 3: Very large scale neighbourhood search techniques can be
successfully applied to nurse rosterinthese methods have been very effective

in other problem domains (see [9] for a recent survey) and although their
application to nurse rostering has been limited, there is no obvious reason why
they should not succeed here. The approach will be compared against previously

published algorithms and the results statistically analysed.

Hypothesis 4: A successful time predefined algorithm can be developed for the
nurse rostering problemAgain, these algorithms have been useful and effective
on other problems [47, 48]. An investigation will be conducted to see if a similar

approach be developed for nurse rostering.

Hypothesis 5: A class of search gi@ourhoods that are known to be very
effective for the nurse rostering problem but are computationally intensive to use,

can now be applied equally successfully but with much shorter computation
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times.A number of search neighbourhoods have been identified recently which
can be used to produce very high quality rosters. The disadvantage of these
neighbourhood operators is the large computation times they require. An
investigation will be conducted to discowenether recent increases in computing
power have made it possible to use these neighbourhoods more intensively within
practical execution times. The efficacy of these neighbourhoods will also be

analysed.

Hypothesis 6: If a successful very large scale neighbourhood search algorithm
can be developed, it will be possibleit@orporate it in a novel evolutionary
algorithm for increased robustnesa. number of evolutionary algorithms have
previously been developed for nurse rostering. Scatter search is an evolutionary
algorithm which has worked well on other problems but had little application to
nurse rostering. A scatter search which uses a very large scale neighbourhood
search technique as the improvementhoé between generations could be very
effective. The scatter search will sempared against other metaheuristic and

evolutionary approaches to test this hypothesis.

1.2 Thesis Structure

Chapter 2 examines different categories of nurse scheduling problems. Terms and
expressions that are frequently used irsawgcheduling contexts are also defined.
The majority of the publications concerning automated nurse rostering that have
appeared over the past forty years or so are then reviewed. The papers are

grouped according to the methodologies used.

10
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Chapter 3 presents a nurse rostering algorithm developed to solve a commercial
problem provided by ORTEC. The approach hybridises heuristic ordering with
variable neighbourhood search. When compared with the genetic algorithm of
ORTEC’s Harmony software, the method proved to be much more effective. The
results of this research are incorporatethe latest product versions of Harmony.
Chapter 4 describes a software framdwagveloped to provide benchmark nurse
rostering problems and reduce the gapvben research and practice in nurse
rostering. A number of tools have been created to help, encourage and strengthen
research in automated nurse rostering. This work provides a solid platform for
future research.

Chapter 5 begins by testing and analysing the efficiency of a variety of
neighbourhood operators that have been usddcal search and metaheuristic
approaches to solving nurse rostering problems. The analysis is performed using
the real world, benchmark problems introduced in chapter 4. A variable depth
search is then developed based on the results of the investigation. The algorithm
heuristically chains together moves and swaps which define the more effective
search neighbourhoods. A number of hdiassfor creating these chains were
developed and the results of experimdntsducted to identify the best ones) are
presented. As end users vary in how long they are willing to wait for solutions, a
particular goal of this research was to create an algorithm that accepts a user
specified computational time limit and uses it effectively. When compared against
previously published approaches the hssshow that the algorithm is very
successful.

Chapter 6 presents an investigation into combining the variable depth search into

an evolutionary algorithm in order to provide higher quality solutions and a more

11
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robust approach. Scatter searslmvestigated due to its success in other problem
domains and its potential promise déspthe scarcity of any previous
applications to personnel scheduliny. number of different parameters and
settings are tested and the best setup compared to the variable depth search on its
own and the successful, hybrid memetic algorithm of Burke et al. [49].

Chapter 7 concludes the thesis. The cbations of the research are summarised

and possible future directions discussed.

12
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2 Literature Review

Personnel scheduling has received a large amount of research coverage. A recent
annotated bibliography of employee scheduling compiled by Ernst et al. [98]
contains roughly seven hundred references dating from as early as 1954 [83, 96].
The size of the bibliography gives an indication of the breadth of study that has
been conducted in this area, especially when noting that it is far from exhaustive.
A large proportion of the studied personnel scheduling problems come from
healthcare organisations such as hospéats$ clinics and require the scheduling

of nurses. The significant presence of nurse scheduling problems is due to their
importance, scientific challenge and complexity (as discussed in chapter 1). The
most commonly researched nurse schedyliroblems can be broadly placed into

one of two categories: staffing and rostering. In the first section of this chapter
these two general problems are introduced and discussed. The second section of
this chapter reviews the models and methods that have been used to solve nurse
rostering problems of varying complexity, in a number of environments around
the world. As this thesis is primarigoncerned with the nurse rostering problem,

this is where we will focus most of our attention in this chapter.

The publications reviewed and discussed in the second section of the chapter are
categorised according to solution methodology in a similar manner to the
literature review of Burke et al. [60] although with the addition of two new
categories (hyperheuristics and casesdaseasoning). Many of the papers
reviewed here are also reviewed in [60] and [98]. To provide a new contribution
to the research community though, an effort has been made to highlight key and

interesting points which have not been previously mentioned. Although this was

13
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not always possible, on the whole there is a large number amount of additional
information. In the years following the publication of [60] and [98] a number of
related publications have appeared. These have also been reviewed here. The
conclusions drawn in [60] are also shared by the author here. In fact much of the
research presented in this thesis was directed by and based upon these
conclusions. For example, Burke et abnclude that parameter-less or time-
predefined algorithms would have sigo#nt benefits as would the development

of benchmark data sets.

2.1 Vocabulary

Before continuing it is necessary to provide a very short glossary of some of the
key terms and expressions that are frequently used in the nurse scheduling
literature (but which are often assumedbe known). Many specialist subjects
develop a vocabulary or jargon which can make them unintelligible to outsiders
and nurse scheduling is no exception. There is one distinction though which is
non-standard and which will be used throogt this thesis. That is, the difference
between schedule and roster. In practice, the two words are often used
interchangeably. However, a schedule is sometimes also used to describe an
individual work pattern for a single employee as well as to describe an entire
roster. To avoid confusion, in this thesis, the tsghedulewill only be used to
represent a single employee’s work pattern whereager will be used to

represent a set of employees’ work patterns.

Agency andbank nurses are temporary staff that may be employed to cover gaps

due to absences in the permanent employees.

14
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Cover requirementsrepresent the number of nurses required at work each day or
at specific times (i.e. during shifts) each day. This may also be hifdor

cover age demand.

Float nurses move between units and departments to cover gaps in staff cover

due to absences e.g. sick, vacation leave etc.

Hard constraints are rules which must be satisfied for the roster to be feasible.

They may also be callddnding constraints or imperative planning rules.

Scheduling horizon is the time period over which the roster is provided. It may

also be called thplanning period.

Shift rotation is the situation when an employee works a different shift to the one
they worked previously. Depending on whether the start time is earlier or later

than before, it is called backwardforward rotation.

Soft constraints are rules which should ideally be satisfied but in order to
provide a feasible solution may be broken. They may also be caifebinding
constraints, floppy constraints, preference planning rules or aversion costs.

Soft constraints are often given priorities which are relative to each other. If the
priorities are assigned using weights treerhigher priority constraint may be

violated if it means a number of lower priority constraints will be satisfied.
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Split weekend is the situation where an employee works on only one day of the
weekend (i.e. Saturday or Sunday)c@mplete weekend is the opposite (i.e. the

employee works on neither or both days of the weekend).

A stand alone shift or stand alone day is aff-on-offwork pattern. It may also

be called amnsolated work day.

A work pattern is an individual’'s schedule over a planning period. That is, the
days they have on and off and possibly also the shifts they have on the days on.

Predefined patterns may also be cafiedts.

2.2 Staffing, Demand Modelling and Workforce Scheduling

One of the first steps in the entire employee scheduling process is to determine
the required workforce size and structure. That is, to identify how many
employees are required and which skills are needed over a specific period in order
to achieve certain goals. This is generally known as the staffing, demand
modelling or workforce scheduling problem. In most scenarios the goals tend to
be to minimise costs (wages) and to maximise service levels. In thbchea
organisation context, for example, the standard of service may be measured by
nurse to patient ratios or whether carteaquirements can be satisfied. To model
and solve these problems, a number of predictions may have to be made (possibly
based on past data). For example, the expected number of patients and the
severity of their illnesses, the availability and cost of bank/agency nurses,
predicted absenteeism, sick and annual leave and the available budget. Employee

productivity may also need to be estimatedvarious workforce sizes (if there is
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understaffing, then individual productivity may increase but may be
unsustainable).

Although workforce scheduling problems do occur in hospitals they tend to be
solved less frequently due to the preference for longer term contracts and the
adverse effects of a constantly changing workforce. They are more common in
environments with rapidly changing service requirements such as call centres (see

[98, 99]).

2.3 Rostering

In comparison to the staffing problem,stering is requiredn hospitals more
frequently. Like the staffing problem though, many different methods have been
used to solve it. There are two general approaches to nurse rostering: cyclical and
non cyclical scheduling. Each method hasdsantages and disadvantages and is

suitable for different situations.

2.3.1 Cyclical Scheduling

In cyclical scheduling (sometimes calledtational scheduling) a single
schedule for a fixed planning period is created that can be assigned to all
employees. The schedule is designed so that it restarts once the end of the
planning period is reached (hence, the teytlical). The schedule is offset (e.g.

by a week) before assigning to each employee. This ensures that the cover
requirements, which need to be considered when creating the schedule, are
satisfied. Cyclical scheduling has a number of advantages. As everyone has the
same schedule, nurses cannot feel their schedule is worse than anyone else’s.
Secondly, once a good cyclical schedule is produced, it can be reused until the

scheduling requirements change. In theory, this means the nurses can know their
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schedule a long time in advance and therefore plan holidays and other events for
days off. Cyclical scheduling does have disadvantages though. For example, it
becomes a more challenging problem when cover requirements are less uniform
or fluctuate from week to week. The largest drawback with this approach,

however, is the fact that individual requests and preferences are very difficult to

take into consideration and satisfy. As such, cyclical scheduling is less popular
with nurses and planners. Examples of cyclical scheduling approaches include [8,

168, 192, 216].

2.3.2 Non Cyclical Scheduling

Non cyclical scheduling (sometimes callecefer ence scheduling), as the name
suggests, is the opposite to cyclical scheduling. In theory, each nurse can have a
unique schedule which satisfies as masfytheir personal preferences and
requests as possible. Due to its flexipjlpreference scheduling is more popular

with nurses. However, it is generally a much more complex problem to solve and
needs to be addressed each new scheduling period (which is not necessarily the
case with cyclical scheduling). The preiris examined in this thesis are all non
cyclical. Therefore, the publications reviewed in this chapter are all related to non

cyclical nurse rostering.

Rostering problems can be further categorised by whether they require the
assignment of just days on and off for a given planning period or whether they
also require the decision of which shift to assign for the days on. The latter are
generally more difficult. If the shifts areot defined beforehand, that is, the days
on/off for each employee and the start, end and rest times for the days on need to

be determined, this is commonly called the (labaauy scheduling problem.
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The termtour schedulingis also sometimes applied even if the shift types are
fixed and known beforehand. This definitiis less frequently used however and
therefore appears less in the nurse rostering literature as the shift types are
normally predefined. A review of publications post 1990 which specifically
address tour scheduling can be found in [17]. Tour scheduling is not necessarily
cyclical and is more often used in sitions where service demand fluctuates and

minimising employee costs is important.

2.4 Personnel Rostering Methods

This section collects and reviews the miyoof publications that have addressed
non-cyclic nurse rostering problems. Tinethods used to solve the problems can

be placed in one of two broad catege: exact and heuristic optimisation
methods.Exact methods (e.g. mathematical programming [43] and constraint
programming [106]) have the advantage that they will guarantee to produce
optimal solutions. The disadvantage, however, is that for many real world nurse
rostering problems the time required to produce these solutions is unfeasible. As a
result, most exact optimisation methods applied to real world nurse rostering

problems do one or more of the following:

1. Solve a relaxation of the problem.
2. Use a number of heuristics (suchhasv to branch in the search trees).

3. Terminate before the optimal solution is found.

Exact optimisation techniques are still very successful, however, and have other
advantages. For example, often it is only necessary to model the problem and then

use a highly developed system such as CPLEX [136] to solve it. On the other
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hand, designing the model or formulation is not always trivial and can have a
critical effect on the success of the algorithms. Also, CPLEX licences can be

expensive and possibly beyond the buddet hospital’s IT department.

Approaches which do not guarantee to produce optimal solutions are broadly
categorised abeuristic methods. Included in this category are some methods
which under certain conditions will promise optimal solutions e.g. simulated
annealing [147] but obviously these too have exponential worst case time
complexity. Heuristic approaches arerooonly applied to and are particularly
suited to nurse rostering problems for a bemof reasons. Firstly, it is actually
very difficult to define what would be an optimal solution. The problem
formulations are often based on subjeztecisions and vague preferences so
that an “optimal” solution may not actually be the best or most preferable
solution. For example, an employee might say “l would quite like a day off on...”
or “l don't really want a night shift on...”. These sort of statements are difficult to
translate into exact mathematical exggiens. Secondly, users are often impatient
and want short waiting times for solutions. As such they are willing to trade “high
quality” solutions for lower quality soluins in order to reduce running times.
This is particularly the case for nurse rostering which may need new solutions at
short notice due to absences and sick leave. The other advantage of heuristics is
that they are successful at exploiting pewblspecific information or structure to
obtain higher quality solutions (the importance of this is highlighted by the no
free lunch theorem [246]). One criticism of heuristic approaches, however, is that
they can be inconsistent betweerolgem instances and may require more

programming. Another major criticism is, oburse, that you cannot, in general,
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guarantee optimality. On the other hand, complicated objective functions may be

easier to handle with higher level programming languages.

241 Mathematical Programming

Included in this section are publications which use linear programming and
integer linear programming methods [43]. The most well known algorithm for
linear programming problems is Dantzig’s simplex method [84]. If the linear
program has too many variables to define explicitly then column generation may
be used. If all the variables are requirethéantegers (integrality constraint) then

the problem is known as an integer programming problem. If only some of the
variables are required to be integer then the term mixed integer programming is
used. If they must be 0 or 1 then the term 0-1 integer programming is employed.
Integer programming problems are usually solved using branch and bound or
branch and cut approaches. The design of the model or formulation and how to
branch in the tree are often critical to success. For further reading on

mathematical programming, one of the most frequently cited references is [194].

One of the first nurse rostering problento be approached with an exact

optimisation method was that presented by Warner and Prawda [243]. The
authors formulate a staffing problem as a mixed integer quadratic programming
problem. A solution to the problem represents a staffing pattern which specifies
the number of nurses with specific skills to cover the shifts for six wards. The
goal is to minimize shortage costs while satisfying constraints which cover the
total number of skilled nurses in employment and shift coverage. The model

allows for some substitution of tasks among skill classes.
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Warner [242] later develops a mathematical programming approach for solving
shift allocation problems at other U.S. hospitals. Solutions to this problem
allocate preferable working patterns to wards of up to 47 nurses over planning
periods of 4 or 6 weeks (the problemdiscomposed into 14 day periods during
solving though). The nurses are first askedltocate all, or a portion, of a fixed
number of points to a small set of schedule properties to describe their
preferences for these different propestighe number of points a nurse has to
allocate is related to the number of hotiney work and points not used may be
carried over to the next planning period). For example, a nurse may specify a
stronger preference for non-isolated working days to a 7 day work stretch by
allocating 10 points to the former and 5 points to the latter. These point
allocations (and also day off requests) are then used to allocate a score for
different working patterns for each nurse. The objective is to maximise the sum of
the scores for each assigned pattern whilst meeting coverage demands and so
increase the quality of the overall schedule. The number of possible working
patterns is reduced by using fixed shift rotations. The overall system was
welcomed by the nursing administration, especially the head nurses. The software
later evolved into a system called ANSOS (Automated Nurse Scheduling Office
System) which provided additional features such as staffing, management

reporting and short term scheduling [244].

Miller et al. [182] use mathematicalggramming to define a nurse rostering
problem but actually solve it using a cyclic descent (local search) algorithm. The
solutions, although not guaranteed to be optimal, are found quickly and are close

to the optimal solutions produced by a branch and bound method. The system
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only takes one shift type into consideration and does not consider part time
employees. However, feasible extensions are suggested which could allow the
system to include shift rotations and other work contracts.

Hard constraints such as the maximum number of working days and the
maximum and minimum numbers of consecutive working days are used to reduce
the number of 14 day work patterns to examine during the search. However, these
hard constraints can be overruled if they conflict with a requested day off. Soft
constraints with weights oaversion coefficientare used along with desired
staffing levels to formulate the objective function. The quality of a nurse’s
previous schedules is also considerethyand maintain a level of fairness over
longer time periods. The soft consits that are employed include maximum

weekends worked, split weekends and maximum consecutive free days.

Bailey and Field [23] propose an alternative to the traditional, fixed start time, 8-
hour shifts for meeting personnel demands in any 24-hour work environment (not
just hospitals). 6, 8 and 10-hour shifts are used with variable start times to define
a problem which is then relaxed andvsd using linear programming. If the
solutions are non-integer then another algorithm is used to convert them into
optimal integer solutions to the general problem. The authors found that their
‘flexshift’ model outperformed the fixed 8 hour shift model with a reduction in
staff size, overstaffing and idle time. They also suggest that this model provides
more choice to employees in their wgolitterns. A self-scheduling method for
assigning the shifts is suggested but not implemented or tested.

In another paper, Bailey [22] preseais approach which combines the problem

of shift planning (where hourly demandidtuates) and the assignment of those
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shifts to employees whilst considering some basic work pattern constraints. The
objective is to minimise understaffing subject to a fixed workforce size and
overtime restrictions. Linear programming is sufficient to identify the optimal
shifts and on-off patterns. The shifts are then matched to the patterns
heuristically, aiming to minimise the difference in a nurse’s shift start times over
the period. Ozkarahan and Bailey [208}er extended this model using goal
programming. The new approach allows gderset their own priorities for goals

related to understaffing, overstaffing and total workforce utilisation.

Thornton and Sattar [232] use branch and bound integer programming to solve a
nurse rostering problem in an Australian hospital. The model requirsg to
feasible scheduleassignments for full time employees andrse to shift
assignments for part time employees. gt time employees have fewer and
simpler constraints, they have too mangsiéle schedules to enumerate them all.
The problem can be decomposed by not differentiating between late and early
shift assignments until a final phase whistsolved separately. The objective is

to minimise undesirable consecutive day on/off stretches and optionally

under/over coverage also.

Mason and Smith [169] describe colungeneration methods for efficiently
solving a nurse rostering problem using linear and integer programming
techniques. Columns are generated by solving dynamic programming shortest
path problems concerning the nurse’s preferences for different shifts, consecutive
on/off patterns and the transition beewn different work start times each

consecutive day. The cover demands are fixed and the approach was able to
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satisfactorily solve problems with 86 nurses, 7 skill types and 5 shift types over

planning periods of 28 days.

Jaumard et al. [142] solve a nurse rostering problem with the objective of
reducing salary costs, improving nurse preference satisfaction and improving the
ratio of experienced to less experienced staff in teams. Again, column generation
techniques are used with the columns corresponding to individual schedules for
each nurse but this time they are gated by solving a resource constrained
shortest path problem. The constraintstfos auxillary problem are related to the
individual nurse’s requirements. For example, the maximum and minimum hours
worked per week, the number of consecutive weekends on and then off, shift
rotation constraints, the minimum amedaximum number of consecutive days
worked and the ratios of shift types worked. Nodes in the branch and bound tree
are linear relaxations of the master problem which are solved using the column
generation (i.e. branch and price). Branching in the tree is performed by
progressively fixing or not allowing shift assignments to nurses. Preliminary tests
showed that good solutions could be found within acceptable time limits after

partially completing the branch and bound.

Millar and Kiragu [181] model a cyclic and non-cyclic nurse rostering problem
using networks. Instead of using single shift assignments for each day as nodes in
the network, the nodes are actually shortguatt of consecutive shifts or days off
(called stints). The problem is decomposed by then allowing each node to be one
of only seventeen unique stints. The number of stints can be reduced as there are

only two, 12 hour shifts and the stints can be no longer than four days. Arcs
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between these nodes are then assigned penalty costs to model certain soft
constraints or the arcs may be removed if they violate hard constraints, e.g. a
nurse requesting not to work on a specific day. The objective of the non-cyclic
problem is to minimise the sum of the soft constraint related penalties and the
imbalance of day and night shifts worked by each nurse. The network based
formulation of the problem is solved using the CPLEX mixed integer solver
(branch and bound). Although optimal sotus could not be found in a feasible

time period, acceptable solutions could be produced quickly.

Eveborn and Ronngvist [100] combine integer programming techniques (in the
form of branch and price) with heuristi to solve non-cyclical tour scheduling
problems. The algorithms are part of a commercial staff scheduling software
package. The problem objective is to minimise schedule costs (a combination of
total schedule hours and the violation st&ff preferences) and the deficit or
excess of staff covering each task. Particularly bad individual schedules can
optionally be minimised too, to increase perceived overall fairness. The results of
using the system to solve the scheduling needs of call centres and a zoo are

provided.

Bard and Purnomo [26] combine heuristic and integer programming methods to
solve a nurse rostering problem with topl00 nurses and approximately 13 hard

and soft constraints. The objective of the problem is to minimise the costs
incurred through employing outside nurses and to maximise the satisfaction of
nurses’ working preferences. High quality individual nurse schedules are created

using a single or double shift swappihguristic on a base schedule. These
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columns are then used to form a set covering-type problem which is solved using
branch and bound. The authors found that, for most of the instances the algorithm
was tested on, the majority of the computation time was being spent on
generating the columns (executing swaps, checking for constraint violations and
duplicate schedules) rather than the branch and bound. The overall rosters
produced were of high enough quality for the initiation of system deployment in a
number of U.S. hospitals. The authorabelrate with methods and results for
including downgrading in this model in [25]. More recently, Bard and Purnomo
proposed a nurse rostering model whicombines cyclic and preference
scheduling. They solved it in [27] using (amongst other mathematical

programming techniques) Lagrangian relaxation and branch and price in [210].

As can be seen from the publications d&sed above, column generation is often

and increasingly being used in mathematical programming approaches to nurse
rostering. The columns in nurse rostering problems represent possible work
patterns for individual nurses. Due to computational limitations, in the earlier
publications, a restricted set of columns is predefined for assignment e.g. [242].
More recently, for example in [26], the columns are generated heuristically by
modifying other columns via swapping assignments. The alternative approach is
to generate columns using an exact approach, such as a shortest path algorithm,
and incorporate the column generationairmore sophisticated method such as

branch and price e.g. [142, 169, 210].

2.4.2 Constraint Programming

The word ‘programming’ in linear programming is related to the planning and

scheduling problems it was originally used on (i.e. to create a program or
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schedule for a specific task). In contrast, ‘programming’ in constraint
programming is from the more familiar definition relating to computational
methods and computer languages. Castrprogramming problems are usually
defined in terms of variables, domains (possible values) for these variables and
constraints which restrict the simultaneous values that the variables can take. A
solution is an assignment to each variable from its domain such that all the
constraints are satisfied. Most of the searches used to solve these problems make
use of constraint propagation and domain reduction. That is, assigning values to
the variables and then using the constraints to reduce the domains for unassigned
variables. For the more difficult problems, it is often necessary to develop
efficient heuristics for navigating the search tree, e.g. which variables to assign
first. [28, 106] provide nice introductions to constraint programming and list

references for further reading.

Darmoni et al. [85] use constraint pragiming to solve scheduling problems in a
French hospital. The system allows a wide range of constraints and rules to be
imposed. The search strategy (that is, how to branch) is based on trying to ensure
equally fair schedules among nurses. For example, they each work similar
numbers of Sunday mornings and hamnilar numbers of requests satisfied.
Branching is also guided by trying to ensure complete weekends and avoiding too
frequent a shift rotation. The approaghs able to produce satisfactory schedules
over planning horizons of up to 6 weeks. The authors also found that using an
automated interactive system was able to save significant labour time for the head

nurses who previously had the burden of producing the schedules.
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Weil et al. [245] use ILOG’s constraint programming engine [137] to solve a
nurse scheduling problem with a numbeitygdical constraints such as minimum
rest time/days off and shift type successions. Although employees with different
skills and part time employees are roansidered, example instances of the

problem were solved very quickly. Theasch uses the smallest domain heuristic.

Meisels et al. [172] present a number of rules and heuristics for processing
constraint networks in order to solve seiischeduling problems. The algorithm is
part of a commercial employee timetabling software package and is tested on data
from an lIsraeli hospital. The heuritstiand knowledge-based rules are mostly
either inspired by manual scheduling methods, designed to produce more fair and
balanced schedules or interactively speditby head nurses to reflect scheduling
preferences and priorites. More information on the design of the software from
the user’s perspective is provided in [173].

Using the same model, Meisels and Lusternik [174] developed a random test bed
of problem instances to investigate how various parameters affect the difficulty of
solving them using constraint processimgthods. They found that it is not only

the size of the instance that appearsftecaits difficulty but also the structure,
especially if it is close to the border between the solvable/insolvable instances.
The results are similar to th@hase transitioninvestigations for other

combinatorial optimisation problems [74, 131, 183].

Cheng et al. [76, 77] present a constraint programming method for solving a week

long nurse scheduling problem in a Hong Kong hospitakdundant modelling

idea is described which involves formutet the same problem in two distinct
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ways 6hift to nurseand nurse to shift-typeassignments). As the search
progresses, both formulations are simutausly updated and fedback into each
other. The authors found that this approach, although slightly increasing memory
overheads, can provide significant computation time improvements in finding
solutions for some instances. The problem contains some common, but also a few
unusual, constraints. For example, the nurses prefer frequent shift rotation, that is,
alternating consecutive A.M. and P.M. shifts (in most other problems, nurses
prefer minimal shift rotation). Branching decisions are made in the search tree

based on the relative priorities of the soft constraints.

Meyer auf'm Hofe [178] combines heuristiocal search ideas with constraint
programming techniques to create an automated nurse rostering system tested in a
German hospital. Hard constraints ie timodel are based on legal regulations and
working time restrictions. Soft constnds are organised into hierarchies of
different priorities to reflect their importance. For example, providing a minimal
coverage is a higher priority than pidwg a preferred number of staff which in

turn is a higher priority than guarantegia nurse’s requests. A higher priority
constraint may not be violated even if its violation allovadconstraints of

lower priority to be satisfied. This is the key difference between weights and
priorities. A constraint with a high weight may be violated if it permits a number
of constraints with smaller weights to be satisfied. Weights are assigned to each
constraint within the hierarchies.

The constraints are used to defineoastraint satisfaction optimisation problem
which is addressed using branch and bound. However, problem instances of any

magnitude cannot be solved solely by gdinis exact approach. So, heuristics are
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added to help produce high quality schedules in acceptable time limits. The
heuristics are based on identifying and repairing violations. For example, they
assign more or less shifts to improve coverage constraint satisfaction.

In [179], Meyer auf’'m Hofe extends the previous work to provide a more flexible,
powerful and robust system. A new consttdiierarchy is defined which allows
better interaction with the end-user and fuzzy constraints (i.e. constraints which
may be partially satisfied and partially violated) are introduced. The paper also
highlights the disadvantages of some of the basic local search algorithms (which
change one variable or assignmentaatime) and how this hybrid heuristic
approach overcomes this problem, effectively by simultaneously making multiple

changes.

Abdennadher and Schlenker [3, 4] present a system which is used interactively
for the semi-automatic creation of nurssters. A partial constraint satisfaction
problem is formulated and a multi step method combined with standard constraint
programming techniques is used to solve it. At each phase or step only certain
shift types (e.g. night, morning, day, free shifts) are assigned, mimicking a
manual approach. The problem is further decomposed by using the assignment of
good sequences of shifts rather thanlsimgsignments. The software is designed

to allow the user to interrupt the search and make any modifications to the current
partial schedule and then allow it to continue again with these manual
assignments in place. This sometimes helps create more satisfactory rosters

and/or reduce computation times.
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Chun et al.[79] developed a nurse rostering system which was deployed in 250
wards in multiple hospitals in Hong Kong. Although the authors do not provide
full details on the algorithms developed, heuristics are combined with constraint
programming. The software is flexible enough to accommodate a variety of hard
and soft constraint and the number of wards in which the system is used suggests
a successful approach. Wong and Chun [247] solve a simplified week long nurse
rostering problem using constraintogramming methods. Tsang et al. [235]
model a nurse rostering problem using constraint programming and solve it using
guided local search. The approach is able to solve tightly constrained instances of

the test problem used.

2.4.3 Goal Programming and Multiobjective Optimisation

Most nurse rostering problems have a number of objectives. However, as many of
these objectives conflict with each other, a feasible solution which simultaneously
satisfies all of them rarely exists. Instead, the objectives are often treated as goals
or soft constraints with user specified priorities or weights. The objectives are
then often combined into a single (often weighted) sum.

An alternative approach is Pareto optimisation, which aims to return the Pareto
optimal front for a multiobjective problem. The Pareto optimal front consists of
all the non-dominated solutions (a solution is non-dominated if there is no other
solution which is better than it for all objectives). The user can then select a
solution from this front which best represents their trade-off preference for the
objectives. A good introduction to Pareiptimisation approaches to scheduling

and timetabling can be found in [87, 156].
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Arthur and Ravindran [20] solve aurse rostering problem using goal
programming followed by heuristic assignment. In the first phase, a goal
programming model is used to assiglyslan/off to nurses over weekly periods.

One of three shift types is then assigned to each nurse for the on days using
heuristics based on minimising under-cover. Although the approach does not
permit the substitution of different grade/class nurses for each other or consider
part time workers, feasible extensions are suggested to accommodate these

requirements.

Musa and Saxena [191] use a zero-one integer goal programming method to solve
a very basic nurse rostering problem.halagh the problem includes full and part
time nurses of different grades, the only instance tested had eleven nurses, a two
week scheduling horizon and one shift type. Seven goals are defined relating to
cover requirements, weekends and consecutive days off and minimum/maximum

number of days worked.

Franz et al. [105] use integer goal programming to solve a slightly different health
personnel scheduling problem. In this scenario, nurses can be assigned to a
number of different clinics with different geographical locations. This
complicates the problem as travel costs and nurse preferences for working in
different locations have to be considér The problem is simpler in another
respect though as cover only has to be provided at each clinic Monday-Friday,
8:00am-9:00pm. Each clinic has a varying skill mix and staff number
requirements to provide a satisfactory service for the predicted patient numbers.

The objectives or goals of the problem are to maximise staff to patient ratios in
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order to reduce waiting times, minimigavel costs for thetaff and maximise

staff preferences for working in specific clinics at certain times. Although integer
solutions to the problem could not be produced in acceptable computation times,
a number of modifications to the problem are considered, one of which enables
the fast production of solutions which are comparable to the manually created

ones.

Berrada et al. [39] test three techniques for solving a nurse scheduling problem
with multiple objectives. Although the problem is simplified by not considering
shift rotations, a number of common soft constraints or objectives are included.
For example, no isolated working days, a maximum length of consecutive
working days, grouping days off together and personal shift and day off requests.
The objectives are assigned a priority omig to reflect scheduling preferences.
Two mathematical programming techniques are tested to produce (loosely) non-
dominated solutions with respect to the objectives used. A tabu search with a
neighbourhood based on swapping a working and non-working day for an
individual nurse is also applied (this swap is possible as cover requirements for a
specific day do not represent a strict hard constraint). All three techniques
produced schedules of a similar satbry quality although the tabu search
required more computation time. Furtleperiments with tabu search on a very

similar problem formulation can be found in [102].

Jaszkiewicz [141] uses a metaheurigigproach to solve a multiple objective

nurse scheduling problem for a surgery unit in a Polish hospital. The five

objectives defined are similar to thosedlissed in other nurse rostering problems
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in the form of constraints or objectis. For example, preferred lengths of
consecutive working days, non-working days, shift rotations, balance of shift
types worked and equal assignments of surplus nurses over the week. A
population of initial solutions is creataising a constraint programming method
and then a simulated annealing appro&temployed to identify the Pareto
optimal front, or at least a good approximation to it. The algorithm uses
dynamically altered weights for each objective to guide the search over the trade
off surface. A randomly selected move (from three) may be applied to a solution
and the move accepted probabilistically. The approach was able to fairly quickly

produce solutions that dominated those produced manually.

Gascon et al. [109] developed a goal programming model to solve a problem
requiring the scheduling of flying squad nurses. Rather than always working in
the same care unit, a flying squad nurse can be assigned to one of a number of
units in order to meet cover demand. Working in different care units helps the
nurses maintain the skills required to operate in that unit but frequent movement
between units is undesirable as it lesséhe quality of service provided.
Solutions to the problem must allocate days on and off to the nurses as well as
specifying which unit they are stationed at on their working days. Although the
model assumes that the nurses work the same shift type, there are a number of
objectives and constraints to satisfy. A combined priority ordering and weighted

method for the objectives is used in solving the problem.

Through surveys, feedback from head nurses, hospital regulations and analysing

published recommended work practices for nurses, Azaiez and Al Sharif [21]
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formulate a goal programming model for a nurse scheduling problem in a Saudi
Arabian hospital. Initially, the problem was too large to solve, so a heuristic was
introduced to decompose the problem. The nurses were split into groups
(ensuring a balance of skills), schedules for these groups were found separately
and then the overall schedule was formed by recombining the individual group
schedules. The authors found that for the majority of instances, this method was
able to produce optimal schedules (gdlals completely satisfied). After the
system was tried and the diverse workétypical in Saudi Arabian hospitals
was surveyed for a second time, an improvement in the rosters was generally
noticed. Cost savings through reducecertimme (one of the goals) was also
introduced but a few of the nurses did rappreciate this achievement as it

prevented them from having the opportunity of earning more money.

2.4.4 Decision Support and Expert Systems

Smith and Wiggins [226, 227] created an interactive system to simplify the
rostering process and to reduce its baordehe devised methodology consists of
three phases. In the first phase staffadeficies due to holidays and vacations are
highlighted to encourage reassignmefitnurses to understaffed units. Next,
preliminary schedules are generatedngissome simple heuristics based on
reducing assignment conflicts and nursssdtisfaction. Finally, the schedules are
improved manually with the aid of the system revealing violations, under
coverage and over coverage. The authors found that the system reduced the time

spent producing schedules and the sigftilerks had little trouble using it.

Bell et al. [36] produced a decision supmystem that constructed basic cyclical

schedules and which enabled the head nurse to modify the rosters as required
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through a user interface which was quite sophisticated at the time. They selected
this approach as they felt that the real world problem they were examining
contained severalcomplexities which would be difficult to incorporate into a

formal algorithni such as varying cover requirements and work contracts.

Ozkarahan [202] describes a support system for formulating nurse scheduling
problems which can then be solved using goal programming. The system allows a
number of factors to be incorporated into the problems including fluctuating

cover demand, nurse preferences, skill substitution and the movement of nurses

between units.

Chen and Yeung [75] created a nurse scheduling system which uses zero-one goal
programming and an expert system to aid the creation of rosters. Firstly a
working pattern (i.e. days on and off) is generated using the goal programming by
only considering constraints which are relevant to the working pattern e.g.
minimizing overtime, preventing stand-alone shifts, satisfying vacation and day
off requests and providing sufficient daily coverage. Fixed 8 hour shifts are then
assigned to these work patterns usingxrert system consisting of 37 rules. The
rules are designed to improve schedyliality and are based on constraints and
preferences such as limiting the lengths of consecutive night shifts, forward
rotation and providing supervision for inexperienced nurses. By comparing the
rosters created using this approachhe ones produced manually by the head
nurse, the authors found that the computerisystem was able to significantly
reduce the time needed to create the rosters as well as being able to satisfy more

constraints, requests and working preferences.

37



2 Literature Review

Begur et al. [34] successfully developed a spatial decision support system to help
schedule and route homedii-care nurses (who visit a number of different
patients at their homes each day). The nurse to patient assignments and routes are

improved by using heuristic methods.

245 Case-based Reasoning

The basic idea behind case-based reasadsitguse past experiences in solving

new problems. Previous solutions to pevhk and related information are stored

as cases. When a new problem is encountered, relevant cases are retrieved and
used to provide solutions to the problem by making any required adaptations.
When the new solution is found, a new case describing the problem and solution
is created for future use.

Case-based reasoning has been applied to other scheduling problems such as
university exam and course timetabling [65, 69, 206] but its application to

personnel rostering is quite novel and so there are fewer relevant publications.

Scott and Simpson [222] use a caseedaseasoning method for the automated
construction of nurse rosters. The case-base contains good, week long, patterns of
shift assignments. The number and type of employees and personal requests in
the current instance are used to heuristically select the patterns and to assign
them. Under or over coverage is then repaired by removing and/or making extra
assignments and this final solution may then be used to update the case-base for

later use.
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Petrovic et al. [204, 205] have writtennumber of papers which explore the use

of case-based reasoning for solving nurse rostering problems in a UK hospital.
The approach is novel in that no objective function, search space or search
mechanism is employed. Instead, the aim is to capture the knowledge and
experience of expert schedulers in a dasse and reuse it to repair, improve and
solve new problem instances. Initially, a partially complete and infeasible
schedule is created by the nurses aftetfaagering process (see [224] for more
information on self rostering). Violations in this schedule are identified and the
case-base consulted to find the best way of repairing the violation by analysing
similar violations which were previousigentified and repaired. Once the best
repair is selected, adapted and exectiteslis recorded as a new case and the
case-base is updated for future referedte case-base is initially populated by
analysing past partial rosters and the corresponding final roster produced by the
human expert.

Repairing one violation may generate amemore new violations and so it is
possible to enter a non-terminating loop or cycle of violation repairing. To avoid
this, Beddoe and Petrovic [31, 33] experimented with combining tabu list
mechanisms with the case-based reasoning methodology and found that it made
the approach more robust. They also experimented with adding an objective
function (the number of violations) to the case-based reasoning approach and
found that it further improved the quality of the rosters produced. In [32], they
also successfully developed a genetic algorithm to identify the best subset of
violation features and their relative importance to use in classifying violations.
This led to an improvement in the accuraéyhe case retrieval and subsequently

an increase in the quality of the schedules produced.

39



2 Literature Review

More recently, Le and Landa Silva [158] also solved a multiobjective formulation

of this problem using an evolutionary algorithm.

2.46 Heuristic and Local Search

The largest proportion of approaches in the literature can be categorised as
heuristic, local search or metaheudsthethods. Heuristics may be constructive
and build solutions from scratch or be improving, for example, repairing
violations in rosters. Local searcimda metaheuristics draw upon the idea of
neighbourhood searches. Identifying @&t neighbourhood operators can often
have a significant impact on the perfmnce of these algorithms. This is
discussed further in the context of nurse rostering in chapter 5. For more

information on local search and metaheuristics see [2, 62, 123, 199, 241].

Blau and Sear [41] use Miller et al's [182] local search approach to solve a
similar problem which also considers pmine shift type and a scheduling period

of 14 days. The objective is to minimise a weighted sum of under coverage, over
coverage, requested days off not granted, excessively long work stretches, on-off-

on and off-on-off work patterns.

Anzai and Miura [18] use heuristic methods which involve swapping shifts
between nurses to repair violations inosters. The model used takes into
consideration constraints such as maximum working days per month, individual
requests for specific shifts and days off, minimum cover requirements and
maximum consecutive night shifts. A constraint which prevents inexperienced
nurses from being unsupervised during nigtifts by more experienced nurses is

also included. The system is limited, however, by assuming all the nurses have
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the same work contracts and constraints other than their shift on and day off

requests.

Okada and Okada [198] developed a systesing Prolog and heuristic ordering
which automatically follows general rules manually construct rosters. As some

of the rules are quite complex, the system relieved the manual scheduler’s
workload considerably. One of the more complicated objectives is to try and
ensure each nurse works with as many different colleagues as possible. Okada
[197] later extended this approach to give users flexibility in defining and
modifying some of the rules/constraints so the system could be used in a variety

of departments with different requirements.

Kostreva and Jennings [148] describe a two phase algorithm for solving a nurse
scheduling problem. In the first step, a set of feasible schedules that ensure
minimum shift coverage is satisfied, nstructed by assigning blocks of
consecutive shifts. In the next step, each nurse’s aversion to working each of
these fortnight long schedules is edited as a cost based on the nurse’s
previously specified preferences falifferent schedule characteristics. The
schedules are then optimally assignedniaimise total aversion costs using the
Hungarian method. These two steps carepeated as many times as required by
generating a different set of schedulegha first step each time. The type of
schedule characteristics considered when calculating aversion costs include types
of shifts assigned before days off, lengths of consecutive work stretches, single

days on/off and types of shifts assigned at weekends.
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Randhawa and Sitompul [213] present a two step algorithm for solving a nurse
rostering problem. In the first phase day on/off working patterns are generated for
the scheduling period. Each pattern is assigned a score corresponding to soft
constraint violations such as exceeding maximum lengths of consecutive days on
and off. Shifts are then assigned to a set of the best working patterns trying to
match cover requirements as closely assiibs. The shift assignments are such
that every nurse works the same type of shift in a seven day period The system
also provides a user interface for entering parameters such as the soft constraint

penalties and cover requirements.

Khoong et al. [146] use heuristic and exact search techniques to provide an
automated rostering system which is suitable for a variety of workforces. The
software (called ROMAN) can produce both cyclic and non-cyclic schedules and
allows for the consideration of many of the common constraints (e.g.
minimum/maximum length work stretches for on and off days, shift rotation etc)

and objectives (e.g. reducing costs, improving cover provided).

Liao and Kao [162] present a heuristanstructive approach for solving a month
long nurse rostering problem in a Taiwanese hospital. The problem requires the
consideration of full and part-time employees, two skill levels and 8 hour and 12
hour shifts. Soft constraints include satisfying cover, preferred lengths of
consecutive work days, sufficient rest time between shifts, avoiding stand alone
shifts and granting requested days, holddagd weekends off. Some decisions in
the schedule construction phase may be made randomly. This allows the

algorithm to be executed a number of times and the best schedule from all the
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executions is the one returned. The moet is able to quickly produce higher
quality schedules than those which took approximately 4 hours to create

manually.

Burke et al. [54, 56] present a valiameighbourhood search which uses a small
neighbourhood defined by reassigning singlefts between nurses and larger
neighbourhoods (called shuffling) defined s$yapping blocks of adjacent shifts
between nurses (See chapter 5 for more details). A number of heuristics and
methods for introducing diversification intbe search are also used. Best results
were all produced when the ‘shuffle’ neighbourhoods were included. However, it
was more efficient to use these larger neighbourhoods towards the end of the
algorithm on higher quality solutions. This was because they are time consuming
to search and produce less improving moves on better solutions. The problem
addressed and the methods describedhis paper are discussed further in

chapters 4 and 5.

Schaerf and Meisels [176, 221] perfoang number of experiments using local
search and constraint programming methods on employee timetabling problems
including nurse rostering. A basic hill climber which uses a neighbourhood
defined by reassigning single shifts is compared to a more advanced method. In
addition to including moves which add or remove single shifts at a time (and so
allowing partial solutions), the more advanced method allows certain constraints
to, in effect, be relaxed by dynamically adjusting associated violation weights.
The search is further guided by a heuristic which estimates how difficult it will be

to complete a partial solution. The constraint programming method adequately

43



2 Literature Review

solves easier instances but the local semr¢particularly the simpler method) are

more effective on the larger and more difficult instances.

Ikegami and Niwa [135] use a heuristic decomposition method to solve nurse
rostering problems in Japanese hospitdhe instances feature a number of
typical constraints such as minimum/rmaym numbers of shift types, day off
requests, minimum/maximum length work and non-work stretches etc. Atypically
though, frequent shift rotation during a week appears to be acceptable and
common in practice. The approach is successfully applied to a 2-shift and a 3-
shift problem. For the more complex 3fslproblem it was necessary to extend

the search with a branch and bound pdoce. Experiments were performed to
compare the algorithm against Millar and Kiragu's [181] and Nonobe and
Ibaraki’'s [195] solvers. Although it is difficult to make exact comparisons due to
differences in machines used for the tests, the results suggest their approach is

competitive.

Aickelin and Li [14, 160, 161] test a Bayesian optimisation approach on the nurse
rostering problem examined in [12, 91]. Working patterns for assigning to nurses
are selected according to one of four rules. The algorithm aims to find the best
rule to use for each different nurse (éerstring) to construct the highest quality
overall schedule. A population of rule strings is used to construct a Bayesian
network which reflects the frequency of the application of each rule to each nurse.
A new set of rule strings is created using this network and the current population
of rule strings is updated with these new ‘solutions’ according to the quality of

the schedules they create. The population is used to create a new Bayesian
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network and so on until a termination condition is satisfied such as a maximum
number of generations. The rules for selecting a pattern to assign are designed to
either avoid local optima, increase the quality of the schedule in terms of nurse
preferences and/or increase cover satisfaction and feasibility. This is the first
application of Bayesian networks to personnel scheduling. Aickelin et al. [11]
later improved this approach by additvgp more rules and using an ant colony

optimisation algorithm to improve rule strings between generations.

247 Tabu Search

Tabu search is often used as a label for any algorithm which escapes local optima
in a neighbourhood search by moving to a worse solution and then uses a list of
“tabu” moves to reduce the chance of returning to the local optimum. Tabu search
as proposed by Glover [112, 113, 116] however includes a number of other

features which may also be used:

* Intensification (concentrating ggood areas of a search space).

» Diversification (ensuring a wide cover of the search space).

» Aspiration criteria (accepting moves to solutions currently in the tabu list
if the solution displays a particular quality).

» Candidate lists (not examining all solutions in the current neighbourhood).

» Strategic oscillation (moving between feasible and infeasible solutions).

» Path relinking (exploring paths betwesvo or more solutions in a search
space).

 Compound moves (chaining moves for a particular neighbourhood

together to escape local optima with respect to that neighbourhood).
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Nonobe and Ibaraki [195] use tabu s#aito solve a number of problems
modelled as a constraint satisfactiproblem. The problems tested range from
graph colouring to set covering to timetabling and also include a nurse scheduling
problem. The length of the tabu list is dynamically altered during the search to try
to improve its performance. Although it is designed as a general problem solver,
the results across the variety of problems are competitive. Feasible solutions are
also produced for the Japanese nurse rostering problem tested. The problem
features a number of common constraints such as maximum lengths of
consecutive shift type assignments and no isolated shifts. Two skill levels or

grades are also considered.

Dowsland [91] developed a tabu search method for solving a nurse rostering
problem in a major UK hospital. The problem required the production of weekly
schedules consisting of only day or night shifts. The complexity of the problem is
increased by the inclusion of different qualification levels for the nurses and the
cover requirements and part time nurgdthough the approach is based on the
tabu search framework, tabu lists play a minor role in the algorithm. Instead, a
key feature of the algorithm is strategic oscillations between two phases of trying
to minimise cover violation and then minimising penalty costs corresponding to
the quality of the schedules from the nurses’ perspectives. In both phases, ejection
chains of moves are used. The chains consist of either single on/off day swaps or
the exchange of whole weekly patterns between nurses. The schedules produced
by this method were able to match the quality of those produced by a human

expert.
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Dowsland and Thompson [92] later improved the model to provide a number of
extra rostering requirements. Two major changes needed the addition of new pre-
and post-processing phases to the tabicke@he pre-processing phase examines
whether there are sufficient nurses to satisfy the cover requirements and, if not,
outputs the number of bank nurses that are needed. The problem is modelled as a
knapsack problem which can be efficiently solved using a branch and bound
method. The post-processing phase optimally allocates early and late shifts on the
day shift assignments according twrse working preferences and cover
requirements. It is possible to perform this after the tabu search as its overall
effect on the solution quality is relatively low. Network flow models are used to
represent this problem which again can be solved quickly. The vast majority of
the solutions produced by the tabu search were also proven to be optimal after

modelling and solving the problem using integer programming.

Burke et al. [58] present a tabu search which uses a neighbourhood of reassigning
single shifts. This is combined with a diversification step based on repairing
complete weekend constraint violatioaed schedule improvements using the
large shuffle neighbourhoods (see deap5 for a discussion of this
neighbourhood). The basic tabu search outperforms a steepest descent method
and when extended usirghuffle neighbourhoods, the results improve further
although at the expense of extra computation time. This approach is later
extended in [57] to allow coverage constraints to be specified in time intervals
rather than fixed shift types. Although this increases the size of the search space,

the quality of the nurses’ schedules can be improved. This approach has been

47



2 Literature Review

implemented in over 40 hospitals in Belgium. An overview of this research is

provided in [59].

Valouxis and Housos [237] modelled a nurse rostering problem using integer
programming but found the problem instances too large and intractable. The
model was therefore simplified to make it easily solvable using integer
programming techniques. These solutions for the approximate model are then
used as initial solutions to the comeleproblem for subsequent improvement
using local search and tabu search techniques. The searches are based on
swapping blocks of shifts and/or yda off between nurses. The approach
successfully solved instances with 16sas, 3 shift types and a planning horizon

of 28 days and also compared favourably to a constraint programming method.

Li et al. [159] present a hybrid appabafor solving a nurse rostering problem

with a smaller number of hard and soft constraints. In the first phase of the
algorithm, constraint programming techniques are used to find a solution to a
relaxation of the problem. The problemrédaxed by removing personal requests

that would cause coverage (a hard constraint) to be violated if they were granted.
This ensures that it is not over-congted and a feasible initial solution can be
found. In the second phase the solution is improved with regard to the satisfaction
of soft constraints by a tabu search using a neighbourhood based on swapping
shifts between nurses on single days. The method was successful when tested on

a case study.
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Bellanti et al. [37] use a heuristic local search approach to solve a rostering
problem in an Italian hospital. The authors found that the integer programming
model of the problem contained too many variables and constraints even for a
small instance and the linear relaxation could not provide satisfactory bounds
either. The problem contains a number of constraints and objectives which
include the minimisation of cover shortage. The nature of the hard constraints
makes it difficult to define a search neighbourhood which operates over feasible
solutions only. Therefore, a neighbourhood involving the movement of night
shifts between nurses in partial solutiaesused. The partial solutions contain
only the assignment of holidays, requested days off and night shifts. Partial
solutions are then completed by heuristically assigning morning and afternoon
shifts. This neighbourhood is incorporated into a tabu search and an iterated local

search which both produce better solutions than those found manually.

Louw et al. [166] use tabu search tdveoa nurse rostering problem in a South
African hospital. The objective is to minimise a weighted combination of total
wage costs and nurse dissatisfaction from not receiving preferred day on/off
requests. A minimum cover for each nurse rank (or skill) per shift is a hard
constraint along with a minimum and maximum number of shifts worked in the
planning period and a maximum numberaainsecutive shifts. These are user
definable parameters for each nurse r&very three months, the nurses alternate
between working only day or night shifts so that the problem can be decomposed
into only assigning one shift type to each nurse. The search uses compound
moves (ejection chains) which identifyistly feasible neighbour solutions. The

chains of moves are formed by swapping on/off days in individual schedules such
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that the next link in the chain correcte thixcess coverage caused by the previous

move. The final move in the chain corrects the under coverage caused by the first
move in the chain. Results showed that these compound moves were more
effective than single moves and swaps. A user interface was also developed to

allow manual changes and short notice repair to the schedules.

2.4.8 Simulated Annealing

The idea of simulated annealing is dtways accept improving moves and to
accept un-improving moves with a probability which decreases during the
algorithm’s execution and is proportional to the change in solution quality
produced by the move. In effect, many moves which cause large decreases in the
current solution quality may be accepted at the beginning of the algorithm and at
the end, few un-improving moves are gueel and those that are, produce very
small decreases in quality. Parameter selection can have a large influence on
performance. The algorithm was introduced by Kirkpatrick et al. [147] and is so
called because the framework was provitdgdn analogy to annealing in solids.

Isken and Hancock [139] define antager programming model for a tour
scheduling problem from a hospital care unit. The coverage demands for each
half hour of the day are known and the objective is to determine a set of shifts for
assignment each day such that over and under coverage costs will be minimised.
Each shift can vary in start time andshane of three durations (8h, 10h and 12h).
Additional constraints are added to endin&t a suitable work pattern over a ten

day period can be easily created for each employee in a separate phase. The
problem is solved by using a rounding heuristic on a solution to the linear

relaxation. This initial solution is then improved by applying simulated annealing
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which uses a simple swap neighbourhood. In the example instance described, the

final solution was within 19% of the linear program lower bound.

2.4.9 Evolutionary Algorithms

Like most metaheuristics, there is nodtand universally accepted definition for

evolutionary algorithms and so a large number of publications could arguably fall
into this category. However, evolutionary algorithms are sometimes loosely
inspired by natural or biological processes and often use one or more of the

following:

* Generations (algorithmic iterations).

» Populations (multiple concurrent solutions).

* Crossover (combining features from two solutions to produce new
solutions).

» Mutation (random changes to solutions).

» Population management (e.g. elitism, survival of the fittest, diversification

strategies).

These features are not exclusive to evolutionary algorithms though and may
appear in other metaheuristics in one famanother too. For example, ‘shuffles’
or ‘kicks’ in variable neighbourhood seareind iterated local search could be
described as mutations. Examples oblationary algorithms include genetic
algorithms [104, 124, 132], memetic algbms (genetic algorithms plus local

search) [187] and genetic programming [149].
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Tanomaru [229] uses a genetic algorithm to solve a staff scheduling problem
which has no predefined shift types. Instead of standard shifts with fixed start and
end times (e.g. early, late, night etc), the planning horizon is split into uniform
time intervals and a minimum cover requirement for each time interval is
specified. Employees are categorized into groups with each group having
different working constraints. Cover requirements are further broken down by
giving a minimum number of employees required from each group. Wages vary
between employees and the objective is to minimise the combination of
employment costs and constraint viadas. At each generation after a standard
reproduction and crossover stage, a numbéeafistic procedures are applied to
further increase the quality of the schedules. An optimal solution is found for a
smaller instance and good solutions are produced within a few minutes for

moderate sized instances.

Jan et al. [140] evaluate the use of a genetic algorithm to solve a nurse scheduling
problem. Although the authors note that gineblem is simplified slightly as they

are conducting preliminary tests, some common hard (cover and personal
requests) and soft constraints (mostly related to night shifts) are still present. The
objectives are to minimise the total penalty incurred due to soft constraint
violations and to minimise the variance in the individual nurse schedule penalties
S0 ensuring fairness. A population of non-dominated solutions according to these
two objectives is maintained. New solutions are not produced via crossover
between solutions in this population however, but rather by mutating a single

schedule. This aids the maintenance of only feasible solutions. The authors also
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suggest a method for allowing a decision maker to adjust the schedule and guide

the search during its execution.

Cai and Li [70] present a genetic algorithm for solving a staff scheduling problem

with three objectives of decreasing importance:

1. Minimize total costs in satisfying cover demands (each feasible schedule
has a different cost).

2. Maximise the staff surplus (inhe case of underestimated cover
requirements).

3. Minimise the variation in surplus over the planning periods.

Feasible weekly schedules with varying costs are predefinddage assigned
when the best number of workers for each schedule is found. The employment of
fitness values for selecting parents is agpld with a ranking scheme according to
the objectives. When comparing the objectives, an extra parameter is included to
allow slightly different objective function values to be treated as equal if
preferred. Crossover is performed using carefully constructed masks aiming to
maintain diversity but not to create overly infeasible offspringpdXs are
performed heuristically by repeatedly idiéying the most violated constraint and
assigning an additional schedule to satisfyuibject to other constraints. If there

is more than one possible schedule performing the repair, the best one
according to the objectives is used. The results were of sufficient quality for the

approach to be included in an existing scheduling system.
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Aickelin and Dowsland [10, 12] developed and tested a genetic algorithm in place
of the tabu search method in [92]. They were able to achieve a similar
performance with the genetic algorithm and felt it was more robust when applied
to a greater variety of instances. To achieve this success, the genetic algorithm
required a lot of adapting to the problem (as did the tabu search also) to exploit its
structure. This was done by splitting the population into a hierarchy of sub-
populations based on nurse grades and then strategically using crossover on these
better building blocks. Also, if a sdlan exhibits an under/over coverage
structure, which is difficult for the genetagorithm to repair, it is more severely
penalised. To improve solution quality further, a basic hill climber involving
testing a different work pattern for eadirse and accepting it if it increases
fitness is also applied to some solutions.

In [13] they also tested an indirect genetic algorithm on the same problem. This
time, the genetic algorithm is used to identify permutations of nurses which are
then passed to a decoder which appliesriggc rules to this permutation to
assign work patterns and to construct tbster. In effect, the decoder acts as a
fitness function for the genetic algorithm. Using this method removes, from the
genetic algorithm, the complications afealing with the problem specific
constraints and infeasibility. Three decrlare experimented with, each having a
different bias between producing feasible solutions and solutions which maximise
nurse satisfaction. After fine tuning ehheuristics and penalty weights, the
algorithm was capable of slightly better results than the direct genetic algorithm.
Aickelin and White [15] later presented an improved method for fine tuning

algorithms which is superior to their manual attempts in selecting the best

54



2 Literature Review

parameters. They discuss the difficulties in comparing results which may contain

feasible and infeasible solutions and suggest a method for handling them.

Burke et al. [49] present a number of memetic algorithms for nurse scheduling.
Experiments are conducted combining different crossover operators and local
improvements methods. The best approachhigbridisation of a tabu search [58]

and a crossover operator based on selgdtie ‘best’ events from each parent.
Although the best memetic algorithm required a greater computation time than
the tabu search, the solutions produced are nearly always of a higher quality. This

research is discussed further in chapter 6.

Dias et al. [88] developed a tabu search and a genetic algorithm for solving
rostering problems in Brazilian hospitals. Generally, each employee only works
one type of shift (morning, evening or night) which helps simplify the problem.
However, there are still a number of soft constraints such as minimum and
maximum working days, a required numbef days and weekends off and
minimum and maximum cover for each day. These constraints are weighted and
used to form the objective function. Tests showed the genetic algorithm slightly
outperformed the tabu search but, in pgtboth approaches were welcomed by
the hospital users without preference as they were both significantly superior to
manual efforts. A user interface which easily allowed small changes to the

schedule by hand was also appreciated by the staff.

Inoue et al. [138] argue that evaluatiomctions for nurse rostering problems are

not always accurate enough as it is difft for head nurses to describe all the
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qualities they wish to see in a high quality schedule. To overcome this, they
describe an interactive scheduling approach. A fitness function based on a
measure of the violation of easily deftheonstraints such as cover requirements
(including skill mixes), forbidden shift pi@rns and personal gaests is used in

an evolutionary algorithm. However, at each generation, the user may modify and
fix parts of the schedules in the population to increase their quality based on the
user's perception. The results of wgivarious combinations of crossover,
mutation and heuristics faepairing the crossover in the genetic algorithm are

presented.

Ozcan [201] presents a number of mutation, crossover and hill climbing operators
in a memetic approach to solving a nurse rostering problem. Two different shift
types must be assigned over a planning period of a fortnight. There are a
relatively small number of hard and soft constraints. The hill climbing method
examines one constraint at a time and treesepair violations by changing shift
assignments. Experiments are performed on randomly generated instances to

determine the best types of mutation and crossover.

2.4.10 Hyperheuristics

Hyperheuristics are designed for problems where good quality solutions are
required within reasonable time limits but finding optimal or very close to
optimal solutions is not critical. Instead it is more important to implement the
algorithm quickly and cost effectively without spending large amounts of time
fine tuning and adapting the algorithm to the problem. A key motivation of
hyperheuristics is the ability to operate on different problems i.e. raising the level

of generality. To achieve this, hyperheuristics generally operate by intelligently
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selecting a heuristic or algorithm for thext step in improving or constructing a

solution to a given problem. See [61, 217] for an introduction to hyperheuristics.

In [63], Burke et al. successfully applied a hyperheuristic to the nurse rostering
problem studied in [12, 91]. The main aim of the research was to show the
algorithm could successfully operate on two different problems, as the same
hyperheuristic was also effective on a university course timetabling problem. The
algorithm manages a competition of the heuristics against each other by
rewarding points to a successful heuristic and penalising an ineffective one. The
heuristic with most points is the one applied at each iteration and it is then
penalised or rewarded according to its affect on the current solution quality. The
results of this hyperheuristic compared favourably to a choice function
hyperheuristic [80] applied to the same problem. The choice function
hyperheuristic uses a statistical recofdhe individual and joint performance of

the heuristics.

2.5 Surveys, Overviews and Bibliographies
A number of literature reviews reé&d to personnel scheduling and nurse

rostering have also been published.

In 1976, Fries [107] compiled an early bibliography of applications of operations
research methods in health care systems. It includes some nurse staffing and

scheduling approaches.

Tien and Kamiyama [233] consider an entire manpower scheduling process and

decompose it into five stages or quioblems. General models for each problem
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are defined and a review is conductedlgforithms which have been developed

to solve one or a combination of these problems. The five stages for a fixed
planning period are: 1) determine the number of staff required for each shift, 2)
determine the total number of staff remui, 3) identify day-off blocks for

assignment, 4) assign the days off, 5) assign shifts for the days on.

In 1990, Sitompul and Randhawa [225] produced a state of the art review of nurse
scheduling models. The problems are categdrinto cyclical and non-cyclical
scheduling and the methods for solving them are classified as optimising or
heuristic techniques. According to the classification scheme, the optimising
approaches use an objective function whereas the heuristic methods do not. The
non-cyclical problems reviewed are mosslyived using an optimising approach

and the majority of the cyclical problems have a heuristic technique applied to
them. Decision support systenare also examined. Tlaithors suggest future
nurse scheduling systems may be more effective if they provide increased
flexibility and adaptability. A decision support system is proposed as a possible

solution.

In 1991, Siferd and Benton [223] reviewed the literature relevant to a wide range
of nurse staffing and scheduling issuésst reducing and containment pressures
on American hospitals and their managers at the time were examined and the
effect of these forces on nurse staffing and scheduling were discussed with
reference to the relevant literature a thme. A few papers describing solutions

to specific nurse staffing and rosterimgpblems were reviewed. The authors also

provided the results from a survey they conducted of 348 nursing managers which
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included questions related to nurse scheduling. For example, at the time, 59% of
the managers performed scheduling without computer help and 37% rated the

task as highly complex

Bradley and Martin [44] reviewed a nier of personnel scheduling algorithms
published before 1991. The problems examiaezl classified as either staffing,
rostering or short term scheduling. Tlater, for example, includes assigning
nurses to other wards to reduce under coaesed by short notice events such as
staff illness or an unexpected increase in the number of patients. The algorithms
are identified as heuristic or matherat programming approaches and further
grouped according to whether they proeluryclic or non-cyclic rosters. The
authors highlight the dependencies between the staffing and rostering phases and

suggest that it may be beneficial to consider these links in future models.

In 1995, Hung [134] produced a bibliography of publications mostly related to

experiments with different nurse scheduling policies.

In 2003, Cheang et al. [73] wrote a bibliographic survey of nurse rostering
problems and methodologies used to solve them. The paper details the common
models used to define nurse rostering problems and lists frequently used
constraints. A number of previously digpl exact and heuristic approaches for
solving the problems are reviewed. Other relevant issues such as evaluating the
performance of different algorithms is also discussed. Concluding the paper, the
authors argue in favour of the benefitat the existence of benchmark nurse

rostering problems would have for future research.

59



2 Literature Review

In 2004, Burke et al. [60] conducted a review of the state of the art of nurse
rostering. The paper contains a thorough examination of the most successful
nurse rostering systems over the poegi 40 years and compares them based on
the objectives used and constraints considlebtaffing and cyclical scheduling is
briefly observed but the paper concerdgsabn non-cyclical rostering problems.

The approaches are categorised according to the solution methods used e.g.
mathematical programming, expert systems, metaheuristics etc. The paper
concludes with recommendations on futurgeggch directions in nurse rostering.

These include:

 The development of benchmark nurse rostering problems with an
emphasis on representing real world scenarios.

» Algorithms which produce more robustdaflexible schedules with regard
to scheduling uncertainty and changes at short notice.

* More user friendly systems to imase user uptake and provide better

human interaction with the scheduling process.

The authors also suggest that algorithms which are less dependent on parameter
tuning, decompose problems and/or expproblem specific knowledge may be

promising research ideas.

Ernst et al. [99] review staff schedulingpdels and algorithms over a very wide

range of industries. A complete scheduling process is broken down into six steps

or modules. The majority of the literagucan then be classified according to
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which of these steps it examines. Coomy used models and algorithms are
reviewed along with their advantages and disadvantages. The authors conclude
that near future research directions in personnel scheduling may include the
development of more generalised and flexible models which simultaneously
consider more than one step in the overall scheduling process. For example, if
possible, combining the staffing (or demand modelling) and shift assignment may
yield benefits. It is also suggested that future rostering solutions may give more
consideration to the requests and prefeesrof individual employees rather than
treating them anonymously.

Using the same classification schemes, Ernst et al. [98] also compiled an
impressive bibliography of 700 referendesm the field or personnel scheduling

and rostering. Each reference was briefly summarised and whenever possible

checked with the publication’s author.

2.6 Related Research

The papers reviewed in this chapter have focussed on nurse rostering problems
and the methods used to solve them. There are, however, many other publications
that examine some of the other Opemasi Research problems related to nurse
scheduling. For example, Kwak and Lee [153] use goal programming to solve a
staffing problem involving physicians, ra@&s and technicians in three different
hospital departments. Nooriafshar [196] developed a decision support system for
solving a trainee nurse staffing problem. Staffing requirements must be met in
different wards while giving different trainee nurses the required experience and
training from working in the various departments. Wright et al. [248] investigate
how different policies such as nurse to patient ratios affect total wage costs and

work schedule quality. Punnakitikashem et al. [209] developed a stochastic
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integer programming model for the problem of assigning nurses to patients before
a shift starts so as to minimise excess workloads for nurses. Al-Zubaidi and
Christer [16] use simulations to predite effect of different management and
operational policies on maintenance mangowequirements in a UK hospital.

Moz and Vaz Pato [188-190] developed a number of methods for solving the
nurse rerostering problem. Re-rostering ies adjusting rosters to cope with
unexpected absences when there is no reserve pool of nurses available. Gutjahr
and Rauner [126] use an ant colony optimisation approach to assign a pool of
nurses to a number of hospitals withie tienna region, Austria. The hospitals
make requests for extra nurses on cerdays due to excess demand. The nurses
are then allocated to the hospitals, taking into consideration the nurses’ working
preferences, the hospitals’ requirements and cost constraints. Belién and
Demeulemeester [35] combine a nursstedng and surgery scheduling problem

and successfully solve it using column generation.

Blake and Carter [40] used goal programming to determine patient level targets at
a hospital that was about to experienaggaificant reduction in funding. Patient
requirements, operating costs and doctors’ preferred incomes and level and type
of workload all needed to be considered.

Abernathy et al. [7] present a stochastic programming model for solving staffing
problems in hospitals which have highly variable personnel demands. The three
planning stages that the process cardbeomposed into are: policy decisions
such as the number of nurses allocated to each ward over a scheduling period,
staff planning such as the number of nurses needed in employment and short term

scheduling using the decisions from the previous stages.
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Trivedi and Warner [234] describe a method for optimally allocating float nurses
among nursing units at the start of shifts. A model for representing the head
nurse’s perception on the need for additlomarses at specific units is used to
form the objective of a problem which is then solved using a branch and bound
algorithm. Factors considered for describing the shortage severity include patient
load, patient classifications and staff absences.

Musliu et al. [193] handle weekly shift scheduling problems using local search
techniques. Thompson [231] solves a general employee shift scheduling problem
using a simulated annealing based approach. Glover et al. [122] outline local
search ideas for solving a week long employee scheduling problem in which
employee availability and cover requirements fluctuate. Baker et al. [24] present
an optimal constructive approach to a very simplified rostering problem.

Easton et al. [94] observe that in orderretain higher numbers of nurses and
reduce nurse turnover and the associatstsceome hospitals are providing more
attractive work schedules. Some of these scheduling policies include preferable
shift rotations, less weekend assignments and higher wages for undesirable shifts.
To examine the effects of some of thesheduling rules on the changes to total
nurse wage costs and workforce sizeguneed, the authors conduct simulations
and solve nurse scheduling problems using these new scheduling rules. The
results suggest that although more restrictive scheduling policies may be more
attractive to the nurses, the costs incurred to the hospital through higher total

wages and larger workforces shibyplerhaps be considered too.

There are also a number of papers which do not present a specific method for

nurse rostering but discuss different ways of modelling problems or ideas which
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may be applicable to a number of approaches. For example in [55], Burke et al.
suggest an alternative approach to the evaluation function which reduces the
knowledge required by the user of the system when setting weights for soft
constraints. In [53], Burke et al. describe a fast implementation of the evaluation
function for a nurse rostering problem. Due to the large number of complex
constraints which are typical in nurse rostering problems, the evaluation function
is often a bottleneck. Therefore any gain in the speed of evaluation functions will
increase the efficiency of the algorithnisstead of writing individual evaluation
functions for each soft constraint, they developed a single evaluation function.
This function accepts certain data stures (called numberings and counters)
which are cleverly initialised for each constraint. Performance gains occur due to
the fact that certain soft constraints are able to share these data structures, hence
reducing the number of evaluation function calls. For instances in which these
data structures are significantly sharetlis method is very efficient. De
Causmaecker and Vanden Berghe [86] present algorithms for improving roster
quality by manipulating coverage constraints. The algorithms mimic the way
expert human planners sometimes alter coverage constraints in order to increase
the quality of the nurses’ work patterns.

Blochliger [42] provides a tutorial onadelling a nurse scheduling problem with
three objectives: minimize employment costs, maximize fairness by evenly
distributing unpopular shifts and minimize soft constraint violations. No method

for solving the problem is given but potential general approaches are suggested.

It is worth mentioning that there is also a very large body of research around the

effects of different nurse scheduling policies. Examples include:
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» The health risks of shift work, sues the disruption of circadian rhythms
and sleep disorders [207].

» The benefit of providing flexible working in order to encourage
commitment to nursing [45].

» The effect of longer shifts on performance [103].

= Stress due to shift working [171] and so on.

Finally, the publications reviewed in this chapter have primarily focussed on
nurse rostering. It is worth noting though that the physician scheduling problem
can be very similar and methods which are effective for this problem may also

have applications in nurse rostering. See for example [29, 72, 110, 150, 218].

2.7 Conclusion

A number of approaches have been used to address the problem of automated
nurse rostering. In this chapter, these methods have been placed in ten different
categories. Arguably, these categories dddve been further divided and in the
future, novel methods for solving this problem are likely to appear. Most of the
approaches have been shown to produce high quality rosters. There is no way of
knowing which the ‘best’ method is. Implementing and comparing all the
different algorithms over all the published problems would be an impractical task.
In the author’'s experience, many researchers have a favourite method and will
argue its strengths (occasionally even @smg all other techniques). In reality,

it is likely that different methodill dominate on different instances and
variations of the problem. Also, it is well known that any algorithm is only as

good as its implementation. It can also be significantly improved by ‘tailoring’ it
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to the problem at hand with heuristiasdaother operators that can exploit some
structure or knowledge of the prebh (or even problem instance).

It is also interesting to see how the approaches used are highly dependent on the
technology available at the time. Early systems were severely constrained in
terms of the problem complexity that was examinable by computational
limitations and also by user interface restrictions. For example, in some of the
early approaches punch cards were ugeithput data and paper forms were
needed for data collection. As computing power has increased, the scheduling
approaches have become more flexible and take into account more working
preferences. For example, in 1983, Béand Sear [41] suggest that the 1-2 hours
run time could be reduced through use af Hard disk integrated with this
microcomputer and a ‘microprocessor with a clock speed of 4MHz instead of
2MhZ. Some of the current state of the art approaches to automated nurse
rostering require similar run timesn personal computers with 3000MHz
processors and numerous other improvesienhis highlights either a serious
lack of progress over the past 25 years, or more likely, the limitations on the size
and complexity of the problems that could be solved in the past, and the increase
in complexity of the problems that are solved now. This increase in computing
power is also set to continue in the future so we should expect even better

solutions produced more quickly on even harder real world problems.

All the publications reviewed in this chapter make a contribution of some degree
to the collective body of personnel scheduling research. However a number of
papers are particularly noteworthy eithir their originality, quality and/or

practical impact. These include:
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[242] : Warner provides not only aarly nurse rostering paper but also
one of the first mathematical programming models. A number of
subsequent researchers build on this work.

[92] : Dowsland and Thompson provide an excellent example of
combining Operations Research thmxologies to produce high quality
rosters. Later research on the sanmabj@m confirmed the strength of this
approach.

[178, 179] : Meyer aufm Hofe’s publications are notable for a very
effective constraint programming approach and for the rostering
software’s commercial success.

[59] : Burke et al. contributed a number of novel metaheuristic approaches
for a very flexible and practically oriented rostering model. The software
and algorithms were successfully used in a large number of hospitals.

[30, 32] : Petrovic and Beddoe’s woik significant as being entirely
novel and the first real application of case based reasoning to personnel
scheduling. Even though the approach removes many of the familiar
features of search and optimisation algorithms (such as objective
functions, branching methods, search neighbourhoods etc), it is still able

to produce high quality rosters.

Although automated rostering systems are becoming more common in hospitals,

in the author’s opinion, they will not become pervasive until a number of goals

are achieved. Firstly, user interfaces need to be significantly improved. They

should be more attractive and more usendly. Entering new data, changing
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constraints and modifying schedules should be as intuitive, fast and easy as
possible. Developing software which allows this is not a simple task, but there
appear to be no reasons to suggest that it is impossible. It will also become easier
as users become more technologically capable and aware. Secondly, the
algorithms need to become more powerful to solve a wider range of problems
more quickly. This goal is being madeasier by increases in hardware
performance but there is also a significant level of potential for improvement in
the algorithms themselves. Benchmarbklpems from real world environments
would be particularly useful as a means for improving and validating the
algorithms. Creating useful real wotbénchmark instances is not easy, however,

as they are nearly always very compleghiproblems. Chapter 4 of this thesis
discusses this issue further and presents a viable way forward. The rest of the
thesis is concerned with developing improved nurse rostering algorithms, in

particular, with harnessing the computing power currently available.
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3 A Hybrid Heuristic Ordering and Variable
Neighbourhood Search

This chapter describes a new approach for solving a complex and challenging nurse
rostering problem. The algorithm was developed in collaboration with ORTEC, a
major supplier of software products and consultancy in the field of advanced
planning and scheduling. One of the main goals of the research described in this
chapter was to develop an effective and efficient search approach to improve upon
the genetic algorithm based technique that is currently gl within ORTEC'’s
commercially available Harmony softwarés such, the methodology has to be able

to handle all the requirements and constraimis are inherent in the nurse rostering
problems that appear in the modern compmeavironments that are represented by

today’s hospitals.

The developed algorithm combines a variable neighbourhood search with a method
of heuristically unassigning shifts and thepairing rosters using heuristic ordering.
Variable neighbourhood search (VNS) & metaheuristic first proposed by
Mladenovt in 1995 [184]. It has proved to be very popular with successful
applications to a number of problems. Idisscribed in detail in [127-129]. Its main
feature, however, is a simple but effective idea: that of changing neighbourhood
operators during a search. If a local optimis reached using one neighbourhood, it

is possible that this optimum can éscapedrom by examining solutions in another
neighbourhood. This basic principle is exfadi by the approach presented here. The

search is extended, though, by a heuristically guided solution disruption and repair

! The results of this research are incorporated in the latest product versions ofiydarmo
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phase. The approach is evaluated using commercial data against Harmony’s

commercial strength genetic algorithm.

3.1 ORTEC Problem Description

The data for this problem was provided®RTEC. They support hospitals and other
organisations all over the world with automated workforce management solutions.

The number of nurses in the problem instances tested ranges from 12 to 30, the ratio
of full to part time nurses also varies betem wards. For example, one ward consists

of 16 nurses, where 12 of the nurses are full time and work 36 hours per week. One
nurse works 32 hours per week and the other 3 are also part time and work 20 hours
per week. Each instance also has a nunabespecific personal requests such as
particular shifts and/or days requested off or on. All the other constraints that need to
be satisfied are presented in sectior’s &xd 2.3. The scheduling period for each
instance is exactly one month.

The data was provided by ORTEC as a challenging real world problem and is very
typical of their clients’ needs. An approach which is successful in dealing with a
problem as complex as this will provide direct benefits in a number of real world

personnel scheduling scenarios.

3.1.1 Shiftsand Shift Demand

There are 4 different shift types in the problem: day, early, late and night shifts. All

the shifts except night shifts cover 9 hours including one hour of rest time. So the
actual number of working hours for each shift type is 8. Night shifts last 8 hours but
include no rest time and so are counted as 8 working hours. The total cover

requirements for each shift for each day varies between instances. Generally, larger
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wards require more nurses on duty during each shift but similar sized wards can also

have different cover requirements.

Table 3.1 shows the daily demand for these shifts in the instance described earlier

with 16 nurses.

Shift Start End Mon Tue Wed Thu Fri Sat Sun
time Time

Day(D) 08:00 17:00
Early(E) 07:00 16:00
Late(L) 14:00 23:00
Night (N) 23:00 07:00

P WwWwww
R WwWwww
R WwWww
R Wwww
R WwWww
P NNDN
P NNN

Table 3.1 Shift types and example weekly demand
3.1.2 Hard Constraints

The following rules must be met at all times, otherwise the roster is considered to be

infeasible and unacceptable.

= Shift cover requirements need to be $ets Over coverage is not permitted.

= A nurse may start only one shift per day.

= The maximum overtime assigned to each nurse per month is 4 hours.

= The maximum hours worked per week is on average 36 hours over a period of 13
consecutive weeks which do not include night shift assignments.

= The maximum number of night shifts in any period of 5 consecutive weeks is 3.

= A nurse must receive at least 2 weekeafisn any 5 week period. A weekend
off lasts 60 hours including Saturday 00:00 to Monday 04:00.

= Following 2 or more consecutive night shifts, a 42 hour rest is required.

= During any period of 24 hours, at least 11 hours rest is required. A night shift has
to be followed by at least 14 hours rest. Once in a period of 21 days, however, the

rest period may be reduced to 8 hours.
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= The maximum number of consecutive night shifts is 3.

= The maximum number of consecutive days worked is 6.

3.1.3 Soft Constraints

Ideally these requirements should be fulfilled. However, to obtain a roster that meets
all the hard constraints it is usually necessary to break some of the soft rules. A
weight is assigned to each soft constraint to reflect its importance (especially in
comparison to the other soft constraints). A weighting is simply a number. The higher
the number, the more strongly desired is the constraint or request. The weights are set
either by the head nurses or throughdfesck from the nurses about what qualities
they desire in their schedules. As a roggiide, the weights could be described as

follows:

Weight 1000 : The constraint should not be violated unless absolutely necessary.
Weight 100 : The constraint is strongly desired.
Weight 10 : The constraint is preferred but not critical.

Weight 1 . Try and obey this constraint if possible but it is certainly not essential.

In practice, exponentially scaled weighlike these are most commonly used.
However, the users do have the option of setting and changing the weight for each

constraint to any positive integer value.
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Constraint Weight Penalty Violation measurement
Function factor
From Friday 22:00 to Monday 0:00 a 1000 Linear Number of incomplete
nurse should have either no shifts or at weekends
least 2 shifts (‘complete weekend’).
No stand-alone shifts i.e. a day off, day 1000 Linear Number of isolated shifts

on, day off sequence.

The length of a series ofight shifts 1000

should be within the range 2-3.

Quadratic Differendeetweerength

of series and acceptable
length. e.g. if 1 night shift,
factor = 1, if 2 or 3 night
shifts, factor = 0, if 4 night
shifts, factor = 1, if 5 factor
= 2 etc.

A minimum of 2 days rest after a series of 100 Linear Factor is one if only one day
day, early or late shifts. of rest otherwise zero
Employees with availability of 30-48 10 Quadratic Differenchetweemumber
hours per week, should receive a of shifts received and
minimum of 4 shifts and a maximum of 5 acceptable number per week
shifts per week.

Employees with availability of 0-30 hours 10 Quadratic Differencketweemumber
per week, should receive a minimum of 2 of shifts received and

shifts and a maximum of 3 shifts per acceptable number per week
week.

For employees with availability of 30-48 10 Quadratic Differencbetweerlength
hours per week, the length of a series of of series received and

shifts should be within the range of 4-6. acceptable series length.

For employees with availability of 0-30 10 Quadratic Differencbetweerlength
hours per week, the length of a series of of series received and

shifts should be within the range 2-3. acceptable series length.
The length of a series ogarly shifts 10 Quadratic Differencbhetweerlength
should be within the range 2-3. It could be of series received and

within another series. acceptable series length.
The length of a series tdte shifts should 10 Quadratic Differencbetweerlength

be within the range of 2-3. It could be of series received and

within another series. acceptable series length.

An early shift after aday shift should be 5 Linear Number of early shifts after
avoided. days shifts

A night shift after arearly shift should be 1 Linear Number of night shifts after

avoided.

early shifts

Table 3.2 Soft Constraints

3.1.4 Evaluation Function

The evaluation function is the sum of all the penalties incurred due to soft constraint

violations. The penalty for each soft constraint is calculated either linearly or

gquadratically using the violation measarent factors listed in Table 3.2. The
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violation measurement factor is the degresvioch the constraint is violated or the
excess of the violation. The use of eitligradratic or linear evaluation functions
arises from practices in Harmony ih were developed based on customer
preferences and feedback.

A soft constraint with a linear penalty function is simply calculated as: The violation
measurement factor multiplied by the weight. For example, it is preferable to have at
most zero stand-alone or isolated shiftsisTik a soft constraint with weight 1000.
However, to produce a feasible roster (i.e. one in which all the hard constraints are
fulfilled) it may be necessary to allocate a nurse to an isolated shift. This is one more
than is preferred so a penalty of 1000 is med. If the nurse had two isolated shifts,
they would have a penalty of 2000 (2 * 1000) .

A quadratic penalty function is calculdteas: The violation measurement factor
squared and multiplied by the weight. For example, it is preferable that during a
period of five weeks, a nurse performs no mibi@n three night shifts. This is a soft
constraint with a weight of 1000. However, it may be necessary to assign five night
shifts in the five week period (i.e. 2 more than preferred), then the penalty for this
soft constraint violation would be 40007 (21000).

It is now possible to define the objective of the problem: To find a feasible roster
with the lowest possible penalty caused dmft constraint violations. From the
perspective of the head nurse, of course, the actual penalty hides a lot of information
about the solution but it is not totally meaningless. By examining the penalty for each
schedule it is possible to gain some idea of the schedule quality. For example, if the
penalty is less than 1000 then we know that all the constraints with weight 1000 have
been satisfied. However, the key toogucing satisfactory schedules is obviously

setting the correct weights and ensuring #iathe required constraints are defined.
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Therefore, it is essential that the end user either has a good understanding of how to
set the weights and define constraints ar ¢laarly described the requirements to the

software administrator.

To further clarify the problem and provide a more formal description it will now be
presented as an integer programming model. The model was originally produced by

Jingpeng Li and can be found in [64].

Parameters:

| = Set of nurses available.

I, |t0{123} = Subset of nurses that work 20, 32, 36 hours per week respedtiwely,
1+ +1s.

J = Set of indices of the last day of each week within the scheduling period = {7, 14,
21, 28, 35}.

K = Set of shift types = {Harly), 2(day), 3(ate), 4(nhight)}.

K'= Set of undesirable shift type successions = {(2,1), (3,1), (3,2), (1,4)}.

di = Coverage requirement of shift typen dayj, jO0{L...,73} .

m = Maximum number of working days for nuiiseithin the scheduling period.

n; = Maximum number of consecutivgght shifts within the scheduling period.

n, = Maximum number of consecutive working days within the scheduling period.
¢k = Desirable upper bound of consecutive assignments of shifktype

o: = Desirable upper bound of weekly working days forttttesubset of nurses.

h: = Desirable lower bound of weekly working days for title subset of nurses.
Decision variables:

Xjk = 1 if nursei is assigned shift typlefor dayj, O otherwise
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The soft constraints are formulated as goals. The overall objective function is:

MinG() = Y wg, (9,

i=1
Where the goals are:

1. Complete weekends (i.e. Saturday and Sunday are both working days or both off).

gl(x) = ZZLZ:[Xi(j—l)k - Xijk]

ol 30k K

2. Avoid isolated shifts (i.e. a working day preceded and followed by a day off).

1
gz(X) = Z Z maX{O'Z[_Xi(j—l)k + Xy ~ Xi(j+1)k]}

ol j=2 KK

3. A minimum number of days off after a series of shifts.

=t
§3(X) = z zmaX{O'Z[Xi(j—l)k - Xijk + Xi(j+1)k] _1}

o j=2 KK
4. A maximum number of consecutive shifts of a specific type.
73 r+3
g,00=>.> > max0,> x; —¢
i0 r=1 kO{1,3} j=r

5. A minimum number of consecutive shifts of a specific type.

V1

05(x) = Z z z max{ov_xi(j—l)k Xy ~ Xi(j+1)k}

i0l j=2 k'D{1,3}

6. A minimum and maximum number of working days per week.

t=1 i0; wil j=7w—6 kK j=7Tw-6 kK

gG(x):iZ§{max{O, f > % —gt}+max{0,h[— f ijkH

7. A maximum number of consecutive working days for part time nurses.

3 r+3
g,.(0=>> max{o, D% - 3}

ity r=1 j=r kX

8. Avoiding certain shift rotation (e.g a&arly shift after aday shift).
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W
0s(X) = Z z z max{O, X F X (i, _é
i0 j=1 KOK'

The constraints are:

1. Shift cover requirements.

D % =d,,  0j0{L...730 kOK

idl
2. A nurse may not start more than one shift each day.

D% <1 001, jO0{L,...79p

kOK

3. Maximum number of working days.

7]

> X sm, 00l

=1 KK

4. Maximum of three working weekends.

D> x, <3 ool

j0J K K

5. Maximum of three night shifts.

79|

D> x,<3 00l
=
6. A minimum of two consecutive night shifts.
X one = Xia T X e 20, 001, 0{2,...,719]| -1}
7. A minimum of two days off after a series of consecutive night shifts. This
constraint is equivalent to the follovgnthree sub-constraints which rule out the

sequences of ‘NO1’, ‘N10’ and ‘N11’ respectively, where ‘N’ denotesgat shift,

‘0’ an off-duty day and ‘1’ an on-duty day:

X opa = 2% T 2 Xigep O 0i01, j042,...79] -1}
kOK kK K

X opa ¥ 2 X = 2 Xy SO, 0i01, j0{2,...719] -1}
kOK kK K
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X st 2 X T X <2 001, j0{2,...73|-1}

kOK K K

8. Maximum number of consecutive night shifts.

f)gﬂsnl, 0i01,r 0fL,...73| -n}

J=r

9. Maximum number of consecutive working days.

r+n,

DD % sn,  Oi01,r0{L,...73|-n}

j=r kX
As discussed earlier and the weights (given in Table 3.2) are set based on user

preferences.

As mentioned previously, a feasible roster is a roster that satisfies all the hard
constraints. A penalty for an infeasible roster can still be calculated but, in our
system, a feasible roster is always consideécede better than an infeasible roster
regardless of penalty values. The only infeasible rosters that may be introduced
during the search or returned afterwards are those that provide insufficient cover.
This is ensured by never assigning a shiti tarse if it will violate a hard constraint.

For example, at certain points in the algorithm, shifts may be unassigned in a roster
and so the coverage constraint will be violated. These shifts will then only be
reassigned if no hard constraint viotais occur in doing so. If the quality of
infeasible rosters need to be compared, the rosters with the lowexien of
unassigned shifts (i.e. minimum shift coverage violation) are ranked higher regardless
of their penalties. If infeasible rosters have the same number of shifts unassigned,
then the penalty function is used.

For all the instances we tested, we were able to produce feasible rosters. It is possible

though that there may be an instance for which a feasible roster does not exist. In
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practice, if a feasible roster cannot be found (either because one does not exist or it is
too difficult to find) then the head nurse or manager decides whether to work with the
best infeasible roster or relax some of ¢bastraints or hire extra personnel and/or to
assign some extra nurses to the ward (usually agency or float nurses) and then restart

the search.

3.2 The Hybrid Variable Neighbourhood Search Algorithm

The algorithm presented in this section represents an iterative process in which
variable neighbourhood search is followedabsoster disruption and repair strategy.
The repairing of the roster is perforchaising a heuristic ordering technique.
Backtracking is also carried out to further improve the quality of the produced

schedules.

The overall process is illustrated by the pseudocode in Figure 3.1.

. Create Initial Roster
REPEAT
Variable Neighbourhood Search
IF current penalty < best penalty THEN
SET best roster to current roster
SET best penalty to current penalty
ELSE
SET current roster to best roster (i.e. backtrack one step)
ENDIF
10. Unassign shifts of a set of nurses
11. Repair roster (using heuristic ordering method)
12. UNTIL search terminated

CENOURWNE

Figure 3.1 Pseudocode of the overall hybrid VNS algorithm
3.2.1 Initialisation

A heuristic ordering is used to create the initial roster. In the experimentation section,
the approach is compared against a commercial genetic algorithm developed by
ORTEC and in use in real hospital environments. The commercial genetic algorithm
that this hybrid variable neighbourhood search is evaluated against uses a similar

heuristic ordering method to create its initial population of rosters.
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The aim of the heuristic ordering process is to sort all the shifts in order of the
estimated difficulty of assigning them or by how likely they are to cause high
penalties (by using the criteria shown in Table 3.3). Using the weighted sum to
identify them, the more troublesome shifts are then assigned earlier on in the roster
construction process.

Once the shifts have been sorted in the order in which to try and assign them, they are
in turn assigned to each nurse to calculate the penalty that would be incurred if the
shift was assigned to that nurse. The shift is then assigned to the nurse that gains the
least penalty in receiving that shift.

The attributes of a shift that are examingden ranking the shifts in the order of
possible difficulty to assigare described in Table 3.3 along with the functions used

to assign its total weight for ranking.

Shift Criteria Evaluation Function Weight
Night Shift Weight 100
Weekend Shift Weight 50
Number of valid (NumValidNurses / TotalNumNurses) * Weight 70

nurses

Shift Date Weight * (Roster.EndDate — Shift.BeginDate) 20

Table 3.3 Heuristic ordering shift evaluation criteria

The first two criteria in Table 3.3 are obvious to examine as there are high penalties
associated with night shift and weekend shift constraints. The third criterion used is
to deduce how many nurses are able to fulfil this shift. If there are many nurses able
to undertake it, then it can be scheduled later but if there are very few then it is a
good idea to assign it early on in the process. The shift date criteria is used to try and
ensure that the shifts in the early days in the scheduling period are assigned earlier on
in the process. This is useful as these shifts are more likely to conflict with the
previous schedule’s assignments. The dtiéte evaluation function is in units of

days.
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3.2.2 Variable Neighbourhood Search

When the initial roster has been createdgithe heuristic ordering method described
above, a variable neighbourhood searchapplied. This makes use of two
neighbourhoods. Both of these neighbourhca@scommonly used by metaheuristic
and other approaches and have been destibefore, see, for example, [141, 159,
176, 204]. The two neighbourhoods are defined by the following moves or changes to

a roster:

1. Assigning a shift to a different nurse.

2. Swapping the nurses assigned to each of a pair of shifts.

The first neighbourhood is a lot smaller than the second neighbourhood. However, it
is observed that moves in the second neighbourhood can improve the quality of the
roster quite significantly.

Our variable neighbourhood approach is aalde neighbourhood descent. As can be
seen from Figure 3.2, the smaller neighbourhood (neighbourhood 1) is repeatedly
examined for an improving move and the move is executed if found. When there are
no improving moves left in neighbourhood 1, then the much larger neighbourhood 2
is examined. If a move in neighbourhood 2 is used then neighbourhood 1 is examined
again. This is repeated until there are no improving moves left in neighbourhood 1

and 2.
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1. SET MoveMade to TRUE
2. WHILE MoveMade is TRUE

3.  SET MoveMade to FALSE

4.  FOR each move in neighbourhood one
5. IF an improving move THEN

6. make this move

7. END IF

8. END LOOP

9.  FOR each move in neighbourhood two
10. IF an improving move THEN

11. make this move

12. SET MoveMade to TRUE

13. END IF

14. END LOOP

15. ENDWHILE

Figure 3.2 Pseudocode of VNS

Initially, the variable neighbourhood search was implemented in a steepest descent
manner. That is, for each of the moves in the neighbourhood, identify the move or
swap that would bring the most improvement and then perform that move or swap.
The disadvantage in steepest descent is the extra time required to examine every
move and swap, especially in a highly constrained problem like this in which there
are many constraints to check and penalties to calculate at each move. This was
especially noticeable in the second neighbourhood, which is quite large.

In an attempt to decrease the running time of the algorithm, a quickest descent form
of VNS was tested. That is, until no more improving moves are found, examine each
move and swap and execute the move or swap if it decreases the roster’s overall
penalty at all.

It was interesting to discover that, for this problem, using these neighbourhoods, the
quickest descent method was not only faster than steepest descent but it was usually
at least as good and sometimes bettercamparison. This was an interesting
observation that was initially difficult to undgand. On closer investigation, though,

a possible explanation became apparent. The heuristic ordering is very effective at
satisfying the constraints with the highest penalties. This means that the soft

constraint violations that the VNS needgépair are often ones with smaller similar
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sized penalties. If there is a high probability that all the possible improving moves
will yield a similar sized improvement, it is not efficient to be examining all of them
to find the absolute best if it will only be slightly larger than the average of all the

available improving moves.

3.2.2 Roster Feasibility

After the creation of the initial roster described earlier, or the larger movements in the
search space which are described later, the roster may be infeasible in that the shift
cover may not yet have been fulfilled. Therefore, during the VNS, if there are still
unassigned shifts, then after a successful move or swap an attempt is made to see if it
is now possible to assign any of the unassigned shifts without creating hard constraint

violations.

3.2.3 Roster Disruption and Repair

Generally, at the end of the VNS phase, the roster not only has a lower penalty than
before but the roster is also usually n@adible by satisfying the cover requirements,

if it was not before.

The heuristic ordering and VNS is capable of producing high quality schedules in a
number of minutes. However, for most instances it is more likely that a good local

optimum rather than the global optimum has been found. Some users may wish to
continue the search for a longer time period to try and produce an even higher quality
roster e.g. running the search during a lubceak or over night. Also, as computers

get faster and more powerful, it is practical to have an approach which can scale with

these increases. A one hour search todayongylast one minute in five years or so.
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To extend the search, a heuristic restart mechanism was developed. The idea is to
select sections of the overall roster which could possibly be improved and to then
attempt to improve them.

This is done by selecting a fixed numbemnofses who have the worst schedules (the
penalty is calculated just for their sche) and then unassigning all the shifts
assigned to this set of nurses. Using the heuristic ordering method, these shifts are
then reassigned (over all available nurses) and the VNS is performed to try and
produce a better roster. This roster disrupéiod repair cycle is used repeatedly until

the user terminates the search.

The algorithm was initially implemented to unassign shifts from the current roster
after the VNS. However, on some occasiahsyas observed that the current roster
could be significantly worse than the best found so far and it could take a number of
iterations to get the current roster penalty back close to the best found. To reduce this
effect it was found to be more efficient to return to the best found (if the current
roster is worse than the bésund) before the disruption phase.

As stated, the shifts selected for unassigrare those belonging to a fixed number of
nurses with the worst individual schedules i.e. those with the highest individual
penalties. To prevent cycling though, armfethese nurses is selected randomly and
replaced with another randomly selectease not belonging to this set.

To identify the best number of nurses from which to unassign shifts, a number of
experiments were conducted on each instance in which this number ranged between 1

and 14. The results are provided in section 3.3.1.
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3.2.4 Genetic Algorithm

Harmony uses a genetic algorithm to produce rosters. This existing algorithm
provides a benchmark upon which to compare the performance of the algorithm
described here.

The genetic algorithm of Harmony is desginto be robust and effective for a wide
variety of rostering problems. To achieve this, like our algorithm, it does not heavily
rely on problem specific knowledge or use detailed knowledge of the problem
instance’s structure. An algorithm designed for a specific problem instance which
heavily exploits its particular structure is likely to be more effective but less useful
when other instances are considered. géeetic algorithm has, however, already
performed in a more than satisfactory manner for a number of clients with varying
requirements.

The algorithm has a number of phases. Firstly, the initial population of rosters is
created using a similar heurtsordering method to the one described in this chapter
but ensuring that each individual (roster) is different enough to introduce sufficient
diversity in the population. Successive gaiens are created using roulette wheel
parent selection, two types of crossover and three types of mutation. The particular
crossover and/or mutations used are rmieiteed statistically by measuring their
success in previous use between generations. The genetic algorithm terminates when
a minimum threshold of improvement between generations is reached. After the
genetic algorithm phase, a local search is performed to further improve the best roster

found.

3.3 Results
To develop this algorithm, the workforce management and planning software

ORTEC Harmony [208] was used. Using Harmony provided a number of advantages
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from a research point of view. The software has a highly developed user interface
with which a large number and wide variety of nurse rostering problems can be
defined and created. All data structures and methods for manipulating the problem
instances themselves already exist with many hours of work already performed to
increase their access and use. This meant that we were able to concentrate on
creating, testing and improving an efficient algorithm for a wide variety of nurse
rostering instances. Obviously the software also provides a clear visual display of the
rosters and with precise breakdowns of why each employee receives the penalty they
have. It was also particularly useful to have an existing commercial strength
algorithm with which to compare against our work.

The experiments were performed using a PC with a Pentium 4, 2.4GHz processor.

3.3.1 Varying the Number of Nursesto Unassign Shifts From

Table 3.4 presents the results of varying the number of nurses from which to unassign
shifts in the disruption and repair phase. The ‘penalty after first VNS’ column is the
penalty of the roster after the VNS is first applied to the initial roster. The columns
‘1’ to ‘14’ show the penalty of the best roster found after the search has been applied
for one hour when that number of nurses were selected for shift unassignment during
the disruption.

The results show the best number of nurses to use for unassignment is between three
and five. Using these settings, the penalty of the final roster is, on average, 14%
lower than the roster found after the first VNS. Using two nurses can also generate
some improvement but using one nurse alsngenerally ineffective and does not
provide sufficient diversification in theearch. Using six and seven nurses can also

provide some good results but, above seven, the performance deteriorates with eleven
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to fourteen providing little improvement suggesting that there is too much
diversification.

There does not seem to be any correlation between the size of the instance, in terms
of the number of nurses, and the optimal number of nurses to use for unassignment.
Three to five appears to be the basige for instances with varying sizes.

The success of the disruption and repair also varies between instances. For example,
on instance thirteen, using three, foar five nurses provides almost 70%
improvement on the roster after one VNS whereas, on instance one, the final

improvement is less than 1%.
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GeneticPenalty after
first VNS

Number of nurses selected for unassignment

Instance Nursesalgorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 30 3626 3766 3766 3721 3746 3751 3766 3751 3766 3766 3766 3766 3766 3766 3766 37
2 30 2381 2390 2375 2330 2285 2285 2295 2390 2390 2390 2390 2390 2390 2390 2390 23
3 28 4325 4687 4557 4476 4687 4687 4687 4687 4301 4687 4687 4687 4687 4687 4687 46
4 26 1301 1366 1311 1246 1231 1216 1151 1081 1186 1035 1191 1176 1366 1366 1366 13
5 24 5230 6575 6450 5340 5291 6545 5465 6575 6575 6350 6575 6575 6575 6297 6575 65
6 24 25406 32171 31986 31896 31971 27038 29931 28826 28826 28821 29857 28941 32141 32171 29925 2!
7 22 15661 22602 22602 21476 15550 16601 21756 15276 18325 21055 16348 15437 16455 19480 18551 2.
8 22 22877 25829 25824 23694 24808 23678 24799 24843 22991 22822 23926 23851 23716 23926 24717 2
9 20 22478 24297 24277 24174 24228 24163 23298 24284 23394 23334 24297 24297 24297 24297 24297 2:
10 18 Infeasible Infeasible Infeasible Infeasible 15706 15696 Infeasibdasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible Ideasib
11 18 4525 4546 4546 4530 4460 4506 4546 4546 4546 4546 4546 4546 4546 4546 4546 45
12 16 775 996 905 831 760 690 805 830 862 996 951 996 996 996 996 99
13 14 1757 5026 4951 2741 1596 1591 1597 1740 1770 5026 3951 5026 5026 5026 5026 50
14 14 760 800 755 591 556 645 621 700 650 790 800 800 800 800 800 80
15 13 1500 1626 1345 1275 1365 1401 1341 1550 1610 1626 1626 1626 1626 1626 1626
16 12 18202 18873 18873 14746 18822 15867 11850 13000 16121 16991 18873 16052 18873 18873

Average improvement in penalty on roster
foundafterfirst VNS (%) 2.7 11.4 13.6 13.9 13.7 12.4 11.1 45 5.1 4.9 2.2 1.6 1.9 0.9

Table 3.4 Results for the Hybrid VNS
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3.3.2 Comparison of the Hybrid VNS with the Genetic Algorithm

If the number of nurses selected in thergjption phase is three or four, then the
hybrid VNS outperforms the genetic algorithm on nine of the sixteen instances.
Using the Sign test and the Wilcoxon signed rank test (both are non-parametric)
this is not however statistically signiéint at the 0.05 level. (The null hypothesis
(Ho) tested was that the difference in objective values of the solutions produced
by the two algorithms are symmetrically distributed around the central point of
zero. Note this is a two tailed test. For the ranked test, the difference between an
infeasible and feasible solution is radKeigher than the difference between two
feasible solutions.)

Interestingly, the hybrid VNS appears to be more effective on the instances with
less than twenty nurses. For examplethie experiments in which four nurses are
selected, all the rosters found for instaneeth less than twenty nurses have
lower penalties than the genetic algorithm (this was not significant at the 0.05
level using the Sign test and the Wilcoxon signed rank test though). If three are
selected, the hybrid VNS outperforms on all but one. This was significant at the
0.05 level using both the Sign test and the Wilcoxon signed rank test.

It can also be seen that using the VNS phase alone is not sufficient to outperform
the genetic algorithm. For all instances, after the first VNS iteration, the roster is
worse than the final roster produced by the genetic algorithm (significant at the
0.05 level using both tests). The disruption and repair phases are required to

further improve the roster.
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Figure 3.3 Penalty vs. time for the GA and Hybrid VNS
Figure 3.3 shows the progress of the two algorithms in finding rosters for instance
12. The graph shows the penalty for the best roster found so far for each
algorithm afterx minutes. For the genetic algorithm, a steady decrease in penalty
can be seen over the sixty minutes as, after each generation, a new best roster is
often found as a result of the crossoaerd repair operations. A drop of over 1000
in penalty in under a couple of minutes issiikely due to one of the constraints
with a weight of 1000 being satisfied as well as other small improvements being
made. The relatively steep (as all the swmitstraints with weight 1000 have now
been satisfied) decrease in penalty in the last two minutes for the genetic
algorithm is due to the final local search phase.
For the hybrid VNS, it can be seen that within four minutes (after a couple of
iterations of the algorithm) the best roster already has a penalty close to that
produced finally by the genetic algorithm at the end of the sixty minutes. Between

the fourth and sixtieth minute, an additional better roster is found as a result of the
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roster disruption, repair and VNS. From observing the algorithm when applied to
the other scheduling periods, within thesfisixty minutes there are usually three
or four improvements in the best solution found between the fourth and sixtieth

minute.

3.3.3 Longer Computation Times

The hybrid VNS algorithm is more likely to find a better solution the more time it

is given. However, in most hospitals, rosters can be produced a long time in
advance of when they are required. This observation motivated our experiments
with granting the algorithm more computation time than just one hour.

The hybrid VNS was granted 12 hours of computation time for one of the
instances (instance 12) on which a lot of testing using the genetic algorithm had
been previously performed by ORTEC. For this instance, the best roster ever
found by an extended run of the genetic algorithm (for a period of about 24 hours)
had a penalty of 681. The best rogpeeviously known for this period had a
penalty of 587. This was produced over a long time period through an iterative
process of using the genetic algorithm and then making some manual changes to a
solution before reapplying the genetic algorithm and so on.

After 12 hours, the hybrid VNS had found a roster with penalty 541. It is
important to note that this approach is producing the best known solution
(produced either automatically or manually) on this real world problem instance.
Moreover, it is producing it within a ped (overnight) which is quite appropriate

for this kind of problem. The results are summarised in Table 3.5. As can be seen,

if more computation time is given, the roster can be significantly improved.
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Algorithm

Penalty

Hybrid VNS after 30 minutes
Hybrid VNS after 60 minutes
Best ever GA (24 hours)

Previous best known (found using GA and manual improvements)

Hybrid VNS after 12 hours

736
706
681
587
541
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Table 3.5 Experimentation with longer computation times
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Figure 3.4 Screenshot of Harmony displaying a roster with penalty 541

3.4 Conclusion

The hybrid VNS algorithm described has been shown to be a relatively

straightforward but highly effective approach for this problem. It is particularly

effective on medium and small sized instane#hk less than twenty nurses. Itis a

viable alternative to the existing genetic algorithm for the commercial workforce

management and planning software Hamynand has been added alongside the

genetic algorithm in the latest versions. This work has also been accepted for

publication in The European Journal of Operational Research [50].
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For instances with less than twenty nurses, the VNS algorithm has beentshown
regularly find superior rosters when compared against the genetic algorithm that
is currently in use. For these sized instances, the VNS algorithm represents a
significant improvement over a commertyaduccessful methodology. It has also
found best known rosters for some of the scheduling periods (by running the
algorithm for 12 hours).

On instances with more than twenty nurses, the VNS algorithm is competitive
with the genetic algorithm and outperforms it on some. However, on average, the
genetic algorithm is more successful on these larger instances.

The shift unassignment and repair gsineuristic ordering method has been
shown to be an efficient and effectineethod of exploring the search space and
when it is combined with the VNS, schedules of high quality can be found. It was
also discovered that backtracking was wesgful in finding better solutions more
quickly by reducing the exploration of paths which only led to poor quality

solutions.
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4 A Rostering Engine and Benchmarks

The previous chapter presented a very successful and relatively simple algorithm
for the nurse rostering problem. In order to validate the approach it was compared
against a commercial strength, tried and tested, genetic algorithm. Comparing the
method against an independently commercially implemented, successful
algorithm was an analysis that other nusgtering researchers have been unable

to perform. There are a number of reastursthis. This chapter discusses these
problems and describes work that has hesformed in order to overcome them.
The result is a framework for describiagd sharing nurse rostering problems in
order to establish benchmarks and to unidetipe research base in this area. A
foundation has been created that will allow high quality, practically orientated
nurse rostering research to be conducted. The results of which would have direct
practical benefits. A number of other iss@es also discussed such as guidelines

for experimentation, research aids and possible avenues of research.

Benchmark instances have played an irtgparrole in the progress made on a
wide range of problems. They are a useful tool in developing and validating
increasingly powerful solvers and ares@urce of competition and collaboration
which often drives progress. Problems ranging from satisfiability [133] to the
travelling salesman problem [215] to examination timetabling [211] all have
benchmark instances. It is somewhat sgipg, however, that the nurse rostering
problem has very few publicly available benchmark instances, especially when
considering its common occurrence, its practical applications and the wealth of

research literature in the area. In the author’s opinion, the reasons for this are
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twofold. Firstly, there is no typical nurse rostering problem. Nearly all the
published research tackles a slightly differeersion of the problem with varying
constraints, objectives and associated priorities. Secondly, defining and
maintaining a data format which could contain and describe all these variations of
the problem is a considerable and challenging task. The most appealing solution
to this lack of benchmarks would perhaps be to define an easily manageable,
simplified nurse rostering problem whidwontains a reduced set of constraints
and a simple objective function. That approach, however, has very definite
disadvantages.

At the 2006 Practice and Theory of Automated Timetabling (PATAT)
conference, a plenary presentation given by Barry McCollum was titled
“University Timetabling: Bridging the Gap between Research and Practice”
[170]. One of the key points made by the speaker was that the research in
university timetabling does not always follow the direction of or keep up with the
requirements and complexities of the ‘real world’. The reason for this can be
partly attributed to the benchmark datats used by researchers to test and
develop the latest algorithms. Unfortunately, the data sets are too often simplified
and infrequently updated to reflect the dynamic and complex scenarios found in
modern real world environments. This partly occurs due to the fact that it is a
long, time consuming process for researsherwrite the code to deal with these
complex problems. Although this may or may not be a valid reason, the major
difficulty, is that it will become harder to justify research when the practical
benefits become less apparent (i.e. without updating, the real problems will move
further from the researchers’ data sef)e ideal solution to this gap between

research and practice would be a system for describing and sharing real world
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problems which could be used as benahta and which minimises the start up
time required by researchers to examine and provide solutions to these complex
real world scenarios.

To investigate whether this is possibdedata format has been developed (and is
continuing to be extended) which can describe complex nurse rostering problems
with multiple, complicated constraints and objectives. A key design goal was to
produce a format which can evolve tandee new problem formulations as they
appear. All software and source code developed to work with this data (including
solvers) has also been made available. This is important not only to reduce the
researcher’s burden and to make these unwieldy problems more accessible but
also to provide validation and verification of new solutions. A facility that is

essential for complicated benchmark problems.

4.1 Other Nurse Rostering Benchmarks and Data Formats

This is not the first attempt at defining a format for employee timetabling
problems in order to share instancasd establish benchmarks. Meisels and
Schaerf [175, 176] described a general model and format for employee
timetabling and provided some real world instances

[http://www.cs.bgu.ac.il/~am/ETP_Home/Main_Page.html  Unfortunately

though, the project appears to have received little recent work in order to develop
it further and incorporate a wider variety of real world instances.

Ozcan [200] proposed an XML format for timetabling problems called TTML.
This format was flexible enough to de$eria real world nurse rostering problem
[201] which is available online

[http://cse.yeditepe.edu.tr/~eozcan/research/TTMAgain though, it does not
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appear to have received much further attention in order to expand the number and
variety of instances which can be presented.

A recent benchmark project has been started by Vanhoucke and Maenhout [239,
240]. They have created a nurse schedutiroblem library called NSPLib. This

is a useful contribution but currently the number of constraints is limited.
Therefore, the large number of computer generated instances may not be
reflective of the real world. However, thaye able to generate a wide variety of
instances in terms of size and comptgxvhich data sets based on real world
problems can not always achieve. As sumir projects complement each other

well.

4.2 About the Format

The data instances and solutions are presented uSibensible Markup
Language (XML). XML is a relatively new technology (work began in 1996)
although it derives from SGML, the foundations of which began in the 1960’s.
One of its main design goals was to facilitate the sharing of data, particularly over
the internet. It has proven to be very popular with wide and successful adoption in
many industries. Like HTML, XML uses elements (tags) and attributes. Unlike

HTML however, it allows new tags to be introduced (i.e. it is extensible).

Using XML provides a number of benefitghen working with data that will be

shared and transferred:

= Schemas and DTD’s (document type definition) can be used to validate
the data and ensure that all the necessary information has been provided.

For example, ensuring parameters are legal values and in the correct
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format and undefined element ID’s are not referenced. Schemas also

facilitate the writing of more robust parsers.

= Itis human readable and can be edited in any text editor.

» Tags and attributes provide a degree of self description. For example,
most people would have a rough idea of what information is represented

by <EmployeeName>John Smith</EmployeeName>

» |tis platform independent. For exarapUifferences in newline characters
between systems do not cause problems. XML also supports Unicode,

allowing different languages with unusual characters to be included.

= Application programming interfaces and libraries for working with XML

are available in most programming languages.

= Parsers can be designed to continue working correctly even when the file
format has been updated (e.g. aftdding new elements). This allows
backwards compatibility and removes the need to update old files when

the format is updated.

4.3 Overview of the Latest Version

The first version was based on ANROM (Advanced Nurse ROstering Model)
[238]. However, as already emphasised, this is an evolving format. As new nurse

rostering problems are encountered with new constraints and objectives, so the
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format will be updated to allow this new information to be included. In its short

history it has already had a number of revisions.

In the latest version (1.1) the information for a single instance can be broadly split
into seven sections. The majority of information in each section is optional. This
is a design feature that simplifies describing problems which may be significantly

different to each other. An overview of each section now follows.

4.3.1 Shift Types

These are the different types of shifts which need to be assigned to employees
over the scheduling period. Relevant information, for example, includes, start
times and end times, hours counted as work (if different from the difference
between the end time and start time), the skills required to perform this shift, the
minimum rest times before and after the shift. It is also possible to specify
information used for displaying schedukasch as shift labels, descriptions and

colours. An example shift definition in XML is shown in Figure 4.1.

<Shift ID="D1">
<GeneralType>D</GeneralType>
<Label>D1</Label>
<Colour>Red</Colour>
<Description>Head Nurse Day Shift</Description>
<StartTime>09:00:00</StartTime>
<EndTime>17:00:00</EndTime>
<HoursWorked>8.0</HoursWorked>
<FreeTimeBefore>660</FreeTimeBefore>
<FreeTimeAfter>480</FreeTimeAfter>
<Skills>

<Skill>HeadNurse</Skill>

</Skills>

</Shift>

Figure 4.1 Example shift definition
4.3.2 Employees

It is necessary to define the employees available during the scheduling period.

Each employee is linked to a contract which specifies their working regulations
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(constraints). Each employee’s skills, qualifications or training are also specified
to ensure that they are not assignedtshifat they cannot perform. An example

employee definition in XML is shown in Figure 4.2.

Example employee definition in XML:

<Employee ID="ExampleEmployee">
<Name>John Smith</Name>
<ContractID>ExampleContract</ContractID>
<EmploymentStartDate>2007-05-01</EmploymentStartDate>
<Skills>

<Skill>HeadNurse</Skill>

</Skills>

</Employee>

Figure 4.2 Example employee definition
4.3.3 Contracts

Each employee is linked to a contract. An employee can have a unique contract
but, more commonly, a number of employees share the same contract. Allowing
employees to have unique contracts, however, provides a higher degree of
flexibility. Within the contract is all the information regarding an employee’s
working regulations and preferences. For example, the minimum and maximum
number of hours worked during the scheduling period, the minimum and
maximum number of consecutive working days or consecutive free days etc. In
the current version there are approxinateventy constraints that can be

specified in a contract. They are:

= Maximum number of shifts worked during the scheduling period.
= Maximum and minimum number of hours worked during the scheduling
period or per week.

=  Maximum and minimum number of consecutive working days.
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Maximum and minimum number of consecutive non-working days.

Maximum number of a specific shift type worked. For example, maximum
zero night shifts for the planning period or a maximum of seven early shifts.
This constraint can also be specified for each week. For example, a nurse may
request no late shifts for a certain week.

Maximum number of weekends worked in four weeks (a weekend definition
is also a user definable parameter i.e. Friday and/or Monday may be
considered as part of the weekend).

Maximum number of consecutive weekends worked.

No night shifts before a weekend off.

No split weekends, i.e. shifts on all days of the weekend or no shifts over the
weekend.

Identical shift types over a weekend. For example, if a nurse has a day shift on
Saturday then he/she may prefer to have a day shift on Sunday also.
Minimum number of days off after night shifts.

Valid numbers of consecutive shift types. For example, three or four
consecutive early shifts may be valid but two or five consecutive early shifts
may not.

Shift type successions. For example, if shift rotation is allowed, is shift type A
allowed to follow B the next day?

Maximum total number of assignments for all Mondays, Tuesdays,
Wednesdays... For example, a nurse may request not to work on Wednesdays
or may require to work a maximum of two Tuesdays during the scheduling

period.
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= Avoid a secondary skill being used bynurse. Sometimes a nurse may be
able to cover a shift which requires a specific skill but they may be reluctant
to do so as it is not their preferred duty. An example would be a head nurse

not wanting to stand in for a regular nurse.

The majority of these constraints are from ANROM and their implementation is
based on their specification in [238]. As such, all these constraints are modelled
as soft constraints. Weights are used to reflect their relative priority and can be
specified within a contract for each constraint. If they are not provided in the
contract they are specified in a different section and globally for all contracts. An

example contract definition in XML is shown in Figure 4.3.

<Contract ID="Trainee">
<MaxNumAssignments>15</MaxNumAssignments>
<MinNumAssignments weight="10">8</MinNumAssignments>
<MaxConsecutiveWorkingDays>4</MaxConsecutiveWorkingDays>
<MinConsecutiveWorkingDays>2</MinConsecutiveWorkingDays>
<MaxWorkingBankHolidays>2</MaxWorkingBankHolidays>
<MaxConsecutiveFreeDays>4</MaxConsecutiveFreeDays>
<MinConsecutiveFreeDays>2</MinConsecutiveFreeDays>
<MaxConsecutiveWorkingWeekends>2</MaxConsecutiveWorkingWeekends>
<MaxWorkingWeekendsInFourWeeks>2</MaxWorkingWeekendsIinFourWeeks>
<WeekendDefinition>FridaySaturdaySunday</WeekendDefinition>
<CompleteWeekends>true</CompleteWeekends>
<TwoFreeDaysAfterNightShifts>true</TwoFreeDaysAfterNightShifts>
<AlternativeSkillCategory>true</AlternativeSkillCategory>
<MaxAssignmentsForDayOfWeek>
<MaxAssignments>
<Day>Tuesday</Day><Value>1</Value>
</MaxAssignments>
<MaxAssignments>
<Day>Wednesday</Day><Value>1</Value>
</MaxAssignments>
</MaxAssignmentsForDayOfWeek>
<MaxShiftTypes>
<MaxShiftType>
<ShiftType>N</ShiftType><Value>0</Value>
</MaxShiftType>
</MaxShiftTypes>
<MaxShiftTypesPerWeek>
<MaxShiftTypePerWeek>
<ShiftType>E</ShiftType><Week>1</Week><Value>2</Value>
</MaxShiftTypePerWeek>
</MaxShiftTypesPerWeek>
<MaxHoursWorked>140.00</MaxHoursWorked>
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<MinHoursWorked>100.00</MinHoursWorked>
</Contract>

Figure 4.3 Example contract definition
4.3.4 Cover Requirements

These are the number of shifts needing to be assigned to employees for each day
in the planning period. That is, the number of employees required at certain time
periods over the planning horizon. They can be specified for specific dates and/or
for a general day of the week (e.g. ‘MoggaAn example partial definition is

shown in Figure 4.4.

<CoverRequirements>
<DayOfWeekCover>
<Day>Sunday</Day>
<Cover>
<Shift>E</Shift>
<Count>2</Count>
<Type>Required</Type>
</Cover>
<Cover>
<Shift>L</Shift>
<Count>2</Count>
<Type>Required</Type>
</Cover>
</DayOfWeekCover>
<DayOfWeekCover>
<Day>Monday</Day>
<Cover>
<Shift>E</Shift>
<Count>3</Count>
<Type>Required</Type>
</Cover>
<Cover>
<Shift>L</Shift>
<Count>3</Count>
<Type>Required</Type>
</Cover>
</DayOfWeekCover>
</CoverRequirements>

Figure 4.4 Example cover requirements definition
4.3.5 Day On/Off and Shift On/Off Requests

Employees may request particular days orofbrwith associated priorities (set
using weights). A request to work or not work a specific shift is also possible.

Example definitions are shown in Figure 4.5.
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<DayOffRequests>
<DayOff weight="1000">
<EmployeelD>A</EmployeelD>
<Date>2007-01-03</Date>
</DayOff>
<DayOff weight="1000">
<EmployeelD>A</EmployeelD>
<Date>2007-01-04</Date>
</DayOff>
<DayOff weight="10" holiday="false">
<EmployeelD>B</EmployeelD>
<Date>2007-01-20</Date>
</DayOff>
</DayOffRequests>

<ShiftOnRequests>
<ShiftOn weight="1">
<ShiftGrouplD>Early</ShiftGrouplD>
<EmployeelD>E1</EmployeelD>
<Date>2007-02-05</Date>
</ShiftOn>
<ShiftOn weight="1">
<ShiftGrouplD>Late</ShiftGroupID>
<EmployeelD>E2</EmployeelD>
<Date>2007-02-06</Date>
</ShiftOn>
<ShiftOn weight="1">
<ShiftTypelD>L</ShiftTypelD>
<EmployeelD>E3</EmployeelD>
<Date>2007-02-07</Date>
</ShiftOn>
</ShiftOnRequests>

Figure 4.5 Example day on/off and shift on/off request definitions
4.3.6 History

Some of the constraints are dependent on the previous schedule for an employee.
For example, if there is a maximum number of consecutive night shifts, then we
need to know if the employee had any night shifts at the end of the previous
scheduling period before assigning any at the beginning of the current one. This

information is provided in this section. An example is shown in Figure 4.6.

<EmployeeHistory EmployeelD="T">
<LastDayType>WorkingDay</LastDayType>
<LastDayShifts>

<Shift>D1</Shift>

</LastDayShifts>
<PreviousConsecutiveWorkingDays>4
</PreviousConsecutiveWorkingDays>
<PreviousConsecutiveWorkingDaysAndHoliday>4
</PreviousConsecutiveWorkingDaysAndHoliday>
<PreviousConsecutiveFreeDays>0</PreviousConsecutiveFreeDays>
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<PreviousConsecutiveWorkingWeekends>0
</PreviousConsecutiveWorkingWeekends>
<PreviousWorkingBankHolidays>0</PreviousWorkingBankHolidays>
<WeekendWorkedThreeWeeksAgo>false</WeekendWorkedThreeWeeksAgo>
<WeekendWorkedTwoWeeksAgo>true</WeekendWorkedTwoWeeksAgo>
<WeekendWorkedOneWeekAgo>false</WeekendWorkedOneWeekAgo>
<PreviousSaturdayWorked>false</PreviousSaturdayWorked>
<PreviousSundayWorked>false</PreviousSundayWorked>
<PreviousSaturdayRequestedHoliday>false
</PreviousSaturdayRequestedHoliday>
<PreviousSundayRequestedHoliday>false
</PreviousSundayRequestedHoliday>
<NightShiftThursday>false</NightShiftThursday>
<NightShiftFriday>false</NightShiftFriday>
<PreviousFridayWorked>true</PreviousFridayWorked>
<PreviousNightShift>false</PreviousNightShift>
<PreviousFreeDaysAfterNightShift>0
</PreviousFreeDaysAfterNightShift>
<PreviousConsecutiveHolidayDaysOff>0
</PreviousConsecutiveHolidayDaysOff>
<PreviousConsecutiveShifts>

<PreviousConsecutiveShift>

<GeneralShiftTypelD>D1</GeneralShiftTypelD>
<Count>1</Count>

</PreviousConsecutiveShift>
</PreviousConsecutiveShifts>
<PreviousOvertime>0</PreviousOvertime>

</EmployeeHistory>

Figure 4.6 Example scheduling history definitions
4.3.7 Miscellaneous Information

There is a large amount of other information which may also need to be provided.
For example, the start and end dates of the planning period. Groups of shifts may
need to be defined if they are used by some of the constraints. Bank holidays need
to be specified if the maximum working bank holidays constraint is used. If the
constraint specifying employees who should or should not work together is used,
then this also needs to be provided. Examples of some of this information are

shown in Figure 4.7.

<StartDate>2007-01-01</StartDate>

<EndDate>2007-01-28</EndDate>

<ShiftGroup ID="EarlyAndNight">
<Shift>Early</Shift>
<Shift>Night</Shift>

</ShiftGroup>

<Partnership Type="Tutorship">
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<EmployeellD>Tutor</EmployeellD>
<Employee2ID>Tutee</Employee2ID>
</Partnership>

<BankHoliday>
<Name>Christmas Day</Name>
<Date>2006-12-25</Date>
</BankHoliday>

Figure 4.7 Example miscellaneous information

The examples given here are very smathpared to a full instance description.
For examples of whole instances see the benchmark website

http://www.cs.nott.ac.uk/~tec/NRP/

4.4 A Problem Definition

All the data is freely available for amgsearch purposes. In order to use it as
benchmark nurse rostering instances though, a problem must be defined. The

definition derives from ANROM. Firstly, there are only three hard constraints:

1. A nurse cannot be assigned more thia@ of the same shift type per day.

2. Shifts which require certain skills can only be covered by (i.e. assigned to)
nurses who have those skills.

3. The shift coverage requirements must be satisfied. For example, if a
certain day requires three night shifts then there must be three employees
present at that time to work during that shift. Over coverage is not

permitted.

All other constraints are soft. The objective is to minimise a weighted sum of
penalties due to soft constraint viotats. The penalty for each constraint is
calculated according to the functions given in [238].

As there are many constraints and theialuation functions can be relatively

complex, it may be naive to assume that someone who independently implements
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the functions found in [238] will produce an identical objective function. This
would make any comparisons betweelusons independently found, unreliable
because, effectively, different problerase being examined. To avoid this, the
source code is publicly available. An executable is also provided for checking
solutions (described in an XML format). This will aid the process of checking and
verifying new solutions. Researchers melgo directly incorporate the source
code into their own solvers rather than having to rewrite the objective function (a
time consuming task).

When the format is extended to include different versions of the problem an

option will be added to the format to select/define the objective function.

4.5 Research Aids

As discussed, it is important to makeailable the source code for the objective
function for increasing the accuracy of new results. As the data files can be large
and complicated, the source code for the parsers and the data structures used by
the latest solvers is online too. Thiwsld considerably reduce the time required

to start examining the problem.

The source code for the latest solvers is also made available. This is particularly
useful for two reasons. Firstly, if a weproblem is introduced (perhaps due to
changing real world requirements) then there may be no benchmarks available.
However, it may be possible to use a solver for an earlier version (perhaps with a
little modification) to create some benchmark results for the new instances. Even
if the results are not as strong on the new instances, it does create a source of
comparison.

Secondly, providing the code for the solvers is a partial solution to the problem of

comparing experiments performed on different machines. If two solvers are
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compared using the same computer, it removes unreliability due to differences in
computing power. Of course, one algorithm may still be more effective due to a
more efficient implementation but at least one variable in the experiments has

been removed.

Another tool provided converts solutions in an XML format into an HTML
format for viewing the schedules in a witmwser. This provides a visualisation

of a solution by displaying the roster and schedules for each employee. Constraint
violations are highlighted and soft constraints and employee requests presented.
The penalties for soft constraint violations are also broken down and explained.
This is a practical way of sharing sbtins which can be viewed and understood

by humans without having to download and install separate software. Figure 4.8
is a screenshot of a roster displayed gis#TML (shifts in the roster are colour

coded to help differentiate them).
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Figure 4.8 Screenshot of a schedule displayed in a web browser

A graphical user interface has also been developed to allow manual changes to
solutions and provides an alternativeewi of schedules, their violations and
penalty explanations. This gives a better ‘feel’ for the problems and an
appreciation of their complexity. Figure 4.%iscreenshot of the application. It is

publicly available on the research website for download.
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Figure 4.9 Screenshot of Nurse Rostering GUI

Another tool created whilst developing solvers provides a real time animation of
the search algorithms. For neighbourhood sesr@md constructiveeuristics, it

is possible to create visualisationstloé algorithms by updating a graphical view

of the current schedule whenever a new shift has been assigned or shifts are
swapped between employees. This was particularly helpful when developing
more complex approaches. For some complicated searches (such as the one
described in chapter 5) it is relatively easy to introduce errors or miss areas of
inefficiency and redundancy. For example, re-visiting solutions, cycling,
examining bad solutions which a simpleuhistic would have avoided etc. Being

able to watch an animation of the searches helped to spot some of these things
and improve the efficiency of the searches. To reduce the impact of the animation
on the speed of the searches, the power of the latest video cards was exploited by

using Microsoft’'s DirectX libraries tdevelop the animation software. At normal

110



4 A Rostering Engine and Benchmarks

running speed of the algorithms though, the animations were very fast and
difficult to follow. A control was therefore added to dynamically adjust the speed
of the algorithm and even pause it during its execution. The software also allows
the rosters to be manually altered (when the animation is not running) by moving
shifts between employees (using the mouse) to see the effect on the roster's

quality. A screenshot is shown in Figure 4.10.
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Figure 4.10 Screenshot of algorithm visualisation software
4.6 Guidelines for Experiments
The data was primarily compiled to create benchmark instances to real world
nurse rostering problems. However, it is available for any research purposes. If it
is used as a benchmark problem, a fewdelines for experiments and presenting
results are suggested. These are only recommendations though which may help

future research and make results more reliable. Most of these suggestions are well
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known and generally accepted as good practice. For example, Schaerf and Di
Gaspero [220] recently highlighted some of these ideas at PATAT06 and they can

also be found in Johnson’s well known paper [143].

=  Provide solutions for verification and future use. An XML format has also

been defined for presenting solutions.

= Provide an executable for a new solver. Ideally the source code should be
provided as well. This may not always be possible though if it is

commercially sensitive.

» For neighbourhood searches, record the number of solutions examined
(Vanhoucke and Maenhout [240] even use a maximum number of
solutions visited as the stop critami for their benchmarks). This is a
metric which is unaffected by the speed and technology of the machine

executing the algorithm.

4.7 Research Uses and Possibilities

There are a number of possible researsés for the benchmark instances. The
most obvious is to create better algorithms. It is unlikely that one algorithm will
dominate over all instances. However, useful insights may be obtained by
examining algorithms that are particulastyong on certain instances or groups of
instances. These insights may be useful in creating more robust solvers that are
effective over a wide range of instances.

Another research avenue that does not receive a lot of attention is improving the

speed and efficiency of evaluation functions. These functions in nurse rostering
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problems are usually long, complicateshd subsequently slow and there is
considerable benefit in making them faster. Burke et al. [53] have performed
some research in this area, but theseape for further investigation. Benchmark
instances would confirm any improvements, especially if the code is publicly

available.

Work has begun to try and identify optimal solutions to these instances, Even if
this is not possible, good lower bounds may be found. Better lower bounds and

optimal solutions would help gauge the strength of other results.

4.8 Design Features

The data format and software have been designed to make it as simple as possible
to add new constraints and objectives, an exercise that will occur frequently as
they are extended to handle a wider vart nurse rostering problems. Within

the format, nearly all the information is optional.

A few relatively simple steps are required to model a new problem.

1. Extend the format definition to allow any new information which varies
between instances to be included.

2. Modify the parser and create any new data structures required by the new
constraints or objectives.

3. Write the constraints and objectives.

4. If necessary, modify an existing solver to handle the changes.
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None of the above steps are beyond the ability of an average programmer. The
fourth step could be challenging depending upon the solver and the type of
changes made. However, it would only be necessary if no solver existed for this
new problem or an alternative solver was wanted for comparison purposes.

The software has been designed to allow new changes to be built on top rather
than requiring everything to be rewritten each time. This also ensures everything

is backwards compatible with the older versions.

In effect, the software can be regarded as an API (application programming
interface) or nurse rostering engine. Asadissed in section 4.5, it is possible to
build a user interface (web based or graphical etc) around the software in order to
view schedules, enter new data, run solvers etc. When the user interface reaches a
quality suitable for use in practice, it could be an effective tool for obtaining new
real world problem instances. A function could be built into the interface to
anonymize any data entered and make ailable for research. The users would

then benefit by having researchers working on their latest problems. This would

be a mutually beneficial and direct link between research and practice.

4.9 Instances Currently Available

A variety of instances described using the XML format are already available on
the research website. Table 4.1 lists some of the data sets and their characteristics.
They vary in the number of nurses, covequirements, shift types, constraint

types and priorities, personabreests and planning horizon.
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Instance Nurses Shift types Skill levelsPlanning horizon
BCV-1.8.1 8 4 2 28lays
BCV-2.46.1 46 4 1 28ays
BCV-3.46.1 46 3 1 26@ays
BCV-4.13.1 13 4 2 2@ays
BCV-5.4.1 4 4 1 28lays
BCV-6.13.1 13 4 2 3days
BCV-7.10.1 10 6 1 28ays
BCV-8.13.1 13 4 2 28ays
BCV-A.12.1 12 4 2 3Hays
ORTECO1 16 4 1 3tlays

Table 4.1 Example benchmark instances

Data sets BCV-1 to BCV-8 are all based on real world data and were originally
modelled using ANROM. As the data was taken from a commercial system used
in real world environments it has been anonymized and any confidential
information removed. Data sBCV-A.12.1is a fictional test problem that uses all

the possible constraint types availabled acontains many conflicting requests.
ORTECOL1 is instance 12 for the problgresented in chapter 3 (the instance
which the extra tests were performedaml the one commonly used by ORTEC).

To model the problem with this system, some of its hard constraints have been
changed to soft constraints with weights of 10,000. Therefore all solutions with
penalty below 10,000 are feasible solutions to the original problem (solutions
with penalties above 10,000 are not necessarily infeasible for the original problem
though). Care was taken and a lot of testing and verification performed to ensure
that the objective function is identical, so enabling comparisons to the original
results.

Best known solutions to these instances (in the XML and HTML formats) are

also available at the research website.
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/A Personnel Scheduling Problems and Benchmark Data Sets - Microsoft Infernet Explorer (A=
o
u

File Edit View Favorites Tools Help

fcldress |8 C:iDocuments and Settingsitec|Piy Do Develop Projects|RPIf hernl * B
The University of y r Science i i / =
E Nottingham ”'( omputer Science éi Information Technology asa p :
Faculty of Science automated _
scheduling
optimisation
& planning

Personnel Scheduling Data Sets and Benchmarks

[ data ] [ software ] [ documentation ] [ changes ] [ contact ]

QOverview

Personnel scheduling problems and benchmarks, These are test instances for the problem of automated personnel scheduling. Most of the benchmark problems
provided here are nurse rostering problems and based on real world data. See the documentation section for more information on the format of the data and
software provided for using the data sets and the development of new solvers

Data sets
Best known
solutions

File GPost.uml 7 html uml

Problem GPost g html uml

Comments This is a small problem and a nice introductaory example.

Employees g

Schedule length 4 weeks

Cover type Cover is specified per shift, over and under coverage is nat allowed.

File SINTEF kil 3 bl gml

Problem SINTEF

Employess 24

Schedule length 3 weeks

Cover type Caver is specified per shift, over and under coverage is not allowed.

File ORTECOL.3tml 280 html xml

Problem ORTECOL 285 html - xml

Nurses 16 290 htral - xml

Shift types 4 300 html  zml

Period 21 days

Cover type Cover is specified per shift, over and under coverage is not allowed.

File OMC=1.xml 23 html zml

Problem amc 24 html zml

Nurses 19 25 html zml =
&) J My Computer

Figure 4.11 Screenshot of benchmark website
4.10 Conclusion
There is a large number of publicatioms solving nurse rostering problems. A
problem with some of these published aitjons though is that there is rarely
any way of knowing how ‘good’ they actually are. Readers have to place a certain
amount of trust in the conclusions and anyone wanting to know the best way of
solving a nurse rostering problem will have to use some guess work. This is not
an ideal situation. As a potential solution to this problem, a flexible and
extensible system has been propoged sharing real world instances and
benchmarks for nurse rostering problemBese benchmark instances will allow
researchers to compare their algorithms to other approaches that have been
independently implemented. This will increase the credibility of results and

conclusions and help reviewers better gauge the strength of new methods.
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Validation will be provided other than the usual “the rosters were better than
those produced manually” or “the nurses were satisfied with the rosters”.

This need for benchmark nurse rostgr problems has been expressed in a
number of publications e.g. [60, 73, 228]. As well as defining a format for
describing the problems, from the outset, the intention was to also provide
software (and source code), in orderfacilitate and encourage the use of this
format. In effect, a nurse rosteringgame has been created which is freely
available for research purposes. The engine accepts problem data in a standard
format and outputs a solution in a standard format. Using the engine’s API, user
interfaces (e.g. web based or GUI) carbb#t on top of it. When these interfaces

are used in real world environments, direct links between research and practice
will be created. The latest problem data t@en be exported to researchers. Once
the scientific challenges behind the current problems have been analysed and
solvers developed in order to handle them, the end users’ software could be
updated with the new algorithms at the click of a button (e.g. via the internet).
This would be a mutually beneficial relationship and a method of “bridging the

gap” between academia and practice.

The engine could also be used in a@ternative scenario. When a researcher
solves a nurse rostering problem with a certain method and he/she would like
some method of validating the method, it should be possible to convert the
problem to the benchmark format and goitvusing a publicly available (perhaps
published) method. If their method is better this would have provided validation

and information on how to improve the other solver. If their method is worse they
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may be able to find ways of improving it by looking at the better approach. They

will also have contributed a new benchmark instance for other researchers.

Finally, research into solving unnatural, computer generated problems is often
justified by tenuous links to practice or to obtain insight into a particular problem
or approach. This is justifiable to a degree. For example, many notable and
hugely beneficial outputs of scientific research would not have been produced if
the conductors were purely interestegiactical benefits. However, this should
not negate the scientific challenges and obvious contributions of tackling the
inherent complexity of real world problems. Obtaining real world data though is
not always an easy task and collating it into a usable format is not trivial either.
This project has lessened these burdand provided a platform for future

research.

The remaining chapters in this thesis present algorithms developed for the
benchmark instances currently available. The source code for the algorithms can
be found in the ‘Solvers’ module of the rostering engine. The engine, all the data
sets, best solutions, and more documentation are all available online at the

research websitet{p://www.cs.nott.ac.uk/~tec/NRP/ ).
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5 A Time Predefined Variable Depth Search

As mentioned in a recent survey paper by Ahuja et al. [9] many successful very-
large scale neighbourhood search techniques have appeared in various forms in
the field of Operations Research. Theymmented, for example, that the well
known Lin-Kernighan algorithm for the travelling salesman problem can be
viewed as a very large-scale neighbourhood search technique. Ahuja et al.
categorised very large-scale neighbourhood methods into three similar classes,
one of which are variable depth methods. Variable depth searches (including
some ejection chain methods [114]) have been effectively applied to a number of
optimisation problems, for example the vehicle routing problem [214] and the
generalised assignment problem [249]. Many more examples of successful very-
large scale neighbourhood searches can be found in the survey paper of Ahuja et
al. Perhaps the problem closest to nursg¢ering that these techniques have been
applied to is exam timetabling [5, 6, 180here are, however, very few large-
scale neighbourhood searches appitedurse rostering problems.

One paper that does introduce the application of such techniques to nurse
rostering is that of Dowsland [91]. In her approach to providing an automated
nurse rostering system, a tabu search is used that oscillates between decreasing
cover violation and increasing roster quality. In each of these phases, two types of
ejection chains are used. The first detssof a sequence of on/off day swaps
between nurses and the other is made up of sequences of swapping week long
work patterns between nurses. The chains are able to escape from poor local

optima that single on/off day or pattern swaps would not be able to escape from.
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Another example of using such techniques in solving a nurse rostering problem is
the method of Louw et al. [166] who also use an ejection chain approach. The
compound move used is similar to Dowsland’s chain of on/off day swaps. They
noted that the compound move was able to achieve far superior reductions in the
objective function value when compared to any of the elementary move types
Very large-scale neighbourhood searches face the problem of exploring an
exponentially large neighbourhood. Therefore, the key to developing effective
ones is identifying heuristics and other mechanisms which can efficiently narrow
or direct the search. This chapter presents a variable depth search for nurse

rostering and describes the heuristics ahemteatures that make it successful.

The next section investigates variouarsé neighbourhoods that have been used
to solve nurse rostering pr@ohs. Section 5.2 presents the variable depth search
and Section 5.3 contains the results from a number of experiments using this

algorithm and comparisons to other approaches.

5.1 Search Neighbourhoods for Nurse Rostering

This section describes two types of search neighbourhood that have been used to
solve nurse rostering problems. Their aqgdbility to the benchmark instances are
then investigated. The results from this preliminary investigation are relevant to

the variable depth search presented in Section 5.2.

5.1.1 The Single Shift Neighbourhood

Included in this category are all neighbooods that are identified by moves or
swaps that change the assignment of up to two shifts, days on/off or variables at a

time. Depending on the type of cover constraints (are there minimum and/or
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maximum shift cover requirements and areythard or soft constraints?), these
moves may involve either one nurse (e.g. [26, 39, 88]) or two nurses (e.g. [56, 58,
78, 141, 159, 176, 205]). The neighbourhoods described in chapter 3 also fall

under this category.

In the benchmark problems, the shift cover requirements are hard constraints and
neither over nor under coverage are permitted. Therefore, once an initial feasible
roster is constructed, only swaps ooves between two nurses are allowed. This
ensures that the coverage constraint is not violated. Examples of these swaps are
illustrated in Figure 5.1 and Figure 5.2. Figure 5.1 shows a section of a roster
where L, N, D and DH are shifts and G, H and A are nurses. Kowmlves the
swapping of shift L and shift N on the 5th of December between nurses G and H
to give the resulting roster on the right. In Figure 5.2, mbvavolves the
assigning of shift L to nurse G from nurse H on 5th December. This could be
alternatively phrased as “swapping shift L and an empty shift between nurses G

and H on the 5th of December.”

1 1
December 4 5 B 7 B December 4 5 5 7
Mo T w T F MoT W T F
G |_1 G N
H a<iN, D o T >y L O D
A DH DH DH DH A DH DH DH DH

Figure 5.1 Example mowein the single shift neighbourhood
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—
=

December 4 5 6 7 8 December 4 5 B 7
M T w T F M T W T F
G L

© b<\>-</l """"""" >

H (L)} D D H b D

A DH DH DH DH A DH DH DH DH

Figure 5.2 Example mowein the single shift neighbourhood

The single shift neighbourhood is the most commonly used neighbourhood in
solving nurse rostering problems. Itagelatively small neighbourhood and easy

to implement in a search algorithm. Even for the largest instances examined,
using today’s average desktop computer, this neighbourhood can be exhaustively
searched and a local optimum can be reached quickly using a hill climber. Rosters
produced using this approach, however, are not always of satisfactory quality and
can usually be improved by an expeded human scheduler. Therefore, this
neighbourhood is often, either incorp@@tinto a more sophisticated method
such as a metaheuristic (as in chapter 3) and/or replaced with a larger

neighbourhood.

5.1.2 The Block Neighbourhood

The single shift neighbourhood, on its own, is often not effective enough. Meyer
auf'm Hofe [179] highlights its weaknesgth a specific example in which this
neighbourhood, even if combined with a tabu list, would be unlikely to remove a
particular violation as it requires the simultaneous change of eight (and only these
eight) specific variables.

This section describes a largerigidourhood defined by moves which would

have been able to repair that particular violation. The neighbourhoods have
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recently been incorporated into search algorithms for nurse rostering and that

approach has been shown to be very effective.

Included in this category of neighbourho@de those defined by the swapping of

all assignments on two or more adjacent days between two nurses. Examples of
these swaps can be seen in Figure 5.3 and Figure 5.4. Figure 5.3 illustrates a
move involving the swapping of a block of two adjacent days. On the 5th and 6th
December, the N shifts of nurse A assigned to nurse G and the L shifts of
nurse G are assigned to nurse A. Heee litock size is two as it involves two
adjacent days. Figure 5.4 shows a move involving the swapping of a block of
adjacent days of length three. Note that on 6th December, nurse A had no shift
but this is still labelled as a swap with a block of days of length three.

As the block neighbourhood is a largeeighbourhood, its practical use was
previously restricted by computational limitations. However, the recent dramatic
increases in computing power have made a more aggressive use of this

neighbourhood much more viable, as will be shown.

1 1
December £ a B 7 December i a [ 7
MoT W T F M T wW T F
G /T LN G NN
~—__" >
C e
A ‘MM \/\L A L L L

Figure 5.3 Example mowein the block neighbourhood
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December 4 &8 & TF7 8 9 December 4 5 6 9
M T W_T_F § MoOT W F 5
G ’\,L L L ; G NN
d [ s e >
A NN ) A L L L L L

Figure 5.4 Example mowin the block neighbourhood

An early example of the use of changing blocks of shifts can be found in [148],
where, although a block neighbourhood is not actually used, varying size blocks
of shifts are assigned to nurses to créitéal rosters. In [140], Jan et al. swap
assignments on blocks of days between nurses as a mutation operator (called
escapgin a genetic algorithm but again do not use it as a search neighbourhood.
The first use of this type of swap in a search neighbourhood can be found in [58]
and subsequently [49] and [56] in which they are calladffleneighbourhoods.

The authors commented that although these larger neighbourhoods were very
time consuming and computationally intemsto use, the solutions they produced
were significantly better and almost impossible to improve by hand. A very
similar neighbourhood is also used bylM&is and Housos [237] and later,
Bellanti et al. [37] also describe reeighbourhood search which partially uses
similar moves.

During development and testing, it was noticed that an expert human planner will
often make improvements to a roster using similar moves. This may explain why
an expert has such difficulty in improving a roster produced using this search

neighbourhood.
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5.1.3 Comparing the Single Shift and Block Neighbourhood

To examine how effective these neighbourhoods are and how quickly they can be
searched using today’s desktop personal computer, some experiments were
conducted using a simple first improwent hill climber on the benchmark
instances introduced in chapter 4. (Note that it is actually a hill descender as the
penalty is being minimised but it is referred to as a hill climber as this is,
generally, a more familiar term). The search uses neighbourhoods defined by
swaps of up to a maximum length block of days. The pseudocode is given in
Figure 5.5. This pseudocode is simply to provide an outline of the process. The
actual implementation contains many more lines of code that increase efficiency

and avoid redundancy (e.g. not visiting a solution already examined, etc).

1. WHILE there are untried swaps

2. FOR BlockLength = 1 to MAX_BLOCK_LENGTH

3.  FOR each employee (E1) in the roster

4. FOR each day (D1) in the planning period

5. FOR each employee (E2) in the roster

6. Swap all assignments between E1 and E2 on D1 up
to D1+BlockLength

7. IF an improvement in roster penalty THEN

8. Break from this loop and move on to the next day

9. ELSE

10. Reverse the swap

11. ENDIF

12. ENDFOR

13. ENDFOR

14. ENDFOR

15. ENDFOR

16. ENDWHILE

Figure 5.5 Pseudocode for the hill climber

The initial roster is created using a randomized greedy assignment method. It
operates as follows: for each shift which needs to be covered, assign it to the
nurse who incurs the least gain in pgn#or their individual schedule (or who

receives the greatest decrease in penalty) on receiving this shift.

125



5 A Time Predefined Variable Depth Search

In order to provide different starting latons and allow the search to also be
used with random restarts, the set oftshib be assigned is randomly shuffled.
The quality of the initial rosters created using this greedy algorithm is usually
very poor.

As there are few hard constraints, it is not difficult to construct a feasible roster.
Also, the hard constraints are all relatedcoverage and it is possible to pre-
calculate whether a feasible solution can be built. If a feasible solution does not
exist, the user is notified that the covequirements need to be reduced or extra
staff need to be added. This is impattas the hill climber operates over the

feasible solution space.

Table 5.1 presents the results of the hill climber (outlined in Figure 5.5) when the
maximum block length parametewgL) is set from one to ten. Note that when
MBL=1, it is effectively the single shift neighbourhood.

Each experiment is repeated five times using different initial rosters (the same
initial rosters are used for eaohBL setting). The best, average and worst
solutions, the average number of solutions examined per repeat and the average
computation time per repeat are recorded for each instance. Table 5.1 contains the
averages of these over all instances (for quick reference) and the results for each
instance can be found in Table 5.2. The experiments penfermed using a

desktop PC with an Intel P4 2.4GHz processor.
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Average No. solutionsAverage computation

Repeats mBL Best Average Worst examined per repeattime per repeat (secs)
5 1 2064 2820 3576 49200 3.8
5 2 1565 2245 2614 86095 7.5
5 3 1452 1840 2224 100472 9.2
5 4 1413 1634 1893 115241 11.0
5 5 1253 1573 2005 127452 12.4
5 6 1191 1570 1891 138627 13.7
5 7 1341 1526 1829 159760 16.3
5 8 1160 1452 1652 171433 17.7
5 9 1165 1462 1712 183773 19.2
5 10 1165 1458 1721 185903 19.7
25 1 1589 2613 3888 50513 4.0
Table 5.1 Results of varying MAX_BLOCK_LENGTH (MBL)
Average  Averagg Average Average
Max No. computation Max No.computation
block solutions time block solutions time
Instance length Best Ave. Worstxamined (secondg) Instance length Best Ave. Worstxamined (seconds)
ORTECO01 1 89271464120192 55752 2.6BCV-5.4.1 1 487 725 933 1560 0.1
ORTECO01 2 59171104613185 83462 4.1BCV-5.4.1 2 193 369 633 2389 0.1
ORTECO01 35120 7735 9771 109864 5.0BCV-5.4.1 3 48 196 487 2433 0.1
ORTECO1 4 5020 5706 6865 126689 7.1BCV-5.4.1 4 48 108 205 2670 0.1
ORTECO01 5 3355 5470 8045 144511 8.1BCV-5.4.1 5 48 106 195 2680 0.1
ORTECO01 6 2745 5303 6915 167063 9./BCV-5.4.1 6 48 106 195 2831 0.1
ORTECO01 7 4257 4848 6470 173036 10.pBCV-5.4.1 7 48 106 195 3032 0.1
ORTECO01 8 2475 4022 4700 185363 11.1IBCV-5.4.1 8 48 106 195 3268 0.1
ORTECO01 9 2525 4174 5295 202584 12.4BCV-5.4.1 9 48 106 195 3452 0.2
ORTECO01 10 2525 4131 5345 188767 11.88CV-54.1 10 48 106 195 3587 0.2
BCV-1.8.1 1 328 491 698 9647 D.4 BCV-6.13.1 1 1024 1324 1597 19883
BCV-1.8.1 2 291 448 650 14206 0.6 BCV-6.13.1 2 1019 1223 1287 29736
BCV-1.8.1 3 288 332 470 20461 0.9 BCV-6.13.1 3 994 1131 1286 34222
BCV-1.8.1 4 273 330 464 22138 1.1 BCV-6.13.1 4 954 1057 1257 41324
BCV-1.8.1 5 287 338 470 22226 1.1 BCV-6.13.1 5 954 1057 1257 46422
BCV-1.8.1 6 287 336 470 25884 1.3 BCV-6.13.1 6 954 1057 1257 50864
BCV-1.8.1 7 287 337 471 30805 1.6 BCV-6.13.1 7 954 1011 1101 60173
BCV-1.8.1 8 287 337 471 33242 1.8 BCV-6.13.1 8 954 1011 1101 64769
BCV-1.8.1 9 287 329 471 35425 2.0 BCV-6.13.1 9 954 1011 1101 69157
BCV-1.8.1 10 287 327 471 37639 .1 BCV-6.13.1 10 954 1011 1101 73355
BCV-2.46.1 1 1704 1715 1726 140592 12.4BCV-7.10.1 1 403 555 662 10259 0.4
BCV-2.46.1 2 1618 1674 1716 246792 CV-7.10.1 2 381 514 606 13863 0.6
BCV-2.46.1 3 1618 1663 1701 302478 CV-7.10.1 3 381 505 596 18048 0.9
BCV-2.46.1 4 1618 1663 1701 335523 CV-7.10.1 4 381 505 596 19851 1.1
BCV-2.46.1 5 1618 1663 1701 361902 CV-7.10.1 5 381 505 596 21480 1.1
BCV-2.46.1 6 1618 1663 1701 387107 CV-7.10.1 6 381 505 596 23038 1.2
BCV-2.46.1 7 1618 1663 1701 411298 CV-7.10.1 7 381 505 596 24540 1.3
BCV-2.46.1 8 1618 1663 1701 434607 CV-7.10.1 8 381 505 596 25982 1.4
BCV-2.46.1 9 1618 1663 1701 456895 CV-7.10.1 9 381 505 596 27368 1.6
BCV-2.46.1 10 1618 1663 1701 478249 BGV-7.10.1 10 381 505 596 28691 1.7

1.0
1.6
1.9
2.4
2.8
3.1
3.8
4.2
4.5
4.9
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BCV-3.46.1 1 3883 3969 4094 200929 16.8BCV-8.13.1 1 236 268 334 17229 0.8
BCV-3.46.1 2 3607 3675 3801 392147 37.pBCV-8.13.1 2 148 236 333 22756 11
BCV-3.46.1 3 3464 3525 3605 420806 41./MBCV-8.13.1 3 148 198 236 28734 15
BCV-3.46.1 4 3474 3507 3554 483621 49./MBCV-8.13.1 4 148 198 235 34321 1.9
BCV-3.46.1 5 3443 3463 3493 535836 56.8BCV-8.13.1 5 148 198 235 37471 2.1
BCV-3.46.1 6 3432 3463 3486 581235 62.8BCV-8.13.1 6 148 198 235 40455 2.3
BCV-3.46.1 7 3430 3456 3470 737642 82.[BCV-8.13.1 7 148 198 235 43316 25
BCV-3.46.1 8 3408 3446 3470 800863 90.pBCV-8.13.1 8 148 198 235 48029 2.9
BCV-3.46.1 9 3409 3446 3470 857518 98.4BCV-8.13.1 9 148 198 235 50671 3.1
BCV-3.46.1 10 3409 3454 3507 852724 BGV-8.13.1 10 148 198 235 53218 3.3
BCV-4.13.1 1 75 110 189 12284 0.6 BCV-A.12.1 1 3570 4397 5335 23867 2.9
BCV-4.13.1 2 17 53 75 20875 1.0 BCV-A.12.1 2 2463 3210 3858 34728 4.6
BCV-4.13.1 3 22 54 75 21729 1.1 BCV-A.12.1 3 2433 3060 4015 45941 6.4
BCV-4.13.1 4 22 54 75 24019 1.3 BCV-A.12.1 4 2190 3207 3980 62257 9.2
BCV-4.13.1 5 22 52 74 31412 1.8 BCV-A.12.1 5 2275 2878 3980 70575 104
BCV-4.13.1 6 22 52 74 33390 .0 BCV-A.12.1 6 2275 3019 3980 74401 11.2
BCV-4.13.1 7 22 52 74 35330 .1 BCV-A.12.1 7 2265 3082 3980 78429 119
BCV-4.13.1 8 15 50 74 38808 .4 BCV-A.12.1 8 2265 3178 3980 79397 12.3
BCV-4.13.1 9 13 49 74 45282 .8 BCV-A.12.1 9 2265 3134 3980 89375 14.0
BCV-4.13.1 10 13 49 74 47293 8.0 BCV-A.12.1 10 2265 3134 3980 95509 15.0

Table 5.2 Results of varying MBL in the hill climber (5 repeats for each instance)

Average No. Average
solutions computation
Instance Mablock length Best Ave. Worst examinedtime (seconds)
ORTECO1 1 5431 12505 21199 56621 2.6
BCV-1.8.1 1 312 432 698 9168 0.4
BCV-2.46.1 1 1634 1694 1799 158093 14.2
BCV-3.46.1 1 3694 3899 4094 199456 16.9
BCV-4.13.1 1 18 135 411 12140 0.6
BCV-5.4.1 1 194 714 1099 1676 0.1
BCV-6.13.1 1 1024 1360 1749 19574 1.0
BCV-7.10.1 1 403 535 742 9379 0.4
BCV-8.13.1 1 149 243 379 16799 0.8
BCV-A.12.1 1 3030 4609 6708 22223 2.8
Average 1589 2613 3888 50513 4.0

Table 5.3 Results for hill climber, 25 repeats with MBL=1

The results in Table 5.2 and Table 5.1 show that the single shift neighbourhood

(i.e. MBL=1) is not as effective as whemBL>1. It is logical to question whether

this is simply due to less solutions being examined w&r-1. To provide a

fairer comparison, the experiments were repeatetsor1 but with 25 instead

of 5 repeats (Table 5.3 and the bottom row of Table 5.1). This ensures that the

searches withvBL=1 receive at least the same time (and in most cases more) as
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each experiment wittvBL>1. Although giving a longer computation time did
improve the best solution found, it was still worse thvir=2 on all but one
instanceTesting the null hypothesis ¢Hthat the difference in objective values of

the solutions produced by the two aigfuns are symmetrically distributed
around the central point of zero, for the Wilcoxon signed rank test the probability
was greater than 0.05 and for the Sign test less than 0.05. Compared against
MBL=5, MBL=1 was also worse on all instances but one.MEI=5 versusvBL=1,

Ho had a probability of less than 0.05 using the Wilcoxon signed rank test.

As shown, increasingBL increases the quality of the results but at the cost of
extra computation time. However, whetBL>8, any increases in performance
become less clear. AlthougisL could range up to the number of days in the
planning period, the results suggest that settndg>8 does not yield better
results, especially in relation to the extra computation time required. In fact, when
MBL>8 the results deteriorate slightly for some instances. This would have been a
strange result if line one of the pseudde was not present. However, what is
happening is that a move is being made when the block lengtat would
obviously not have been madeviBL<9 and hence in the next iteration of the loop

at line 1 the current solution is slightly different.

It can also be seen that the increase in computation time is approximately linear in

relation toMBL.

On average, increasimgsL will yield better solutions. However, if the results for
each instance are studied, the benefits of using larger blocks on some instances is
less noticeable. For example, on instar®@€¥-2.46.1and BCV-7.10.1, MBL=2 is

only slightly better thamiBL=1 and increasing/BL above three gives no further
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improvement. Similarly, increasingsL above five for instancBCV-5.4.1is not
worthwhile. Although the reasons for this are not obvious, it could possibly be
linked to which types of constraints aneithpriorities are used in the schedules.
Although it may be possible to estimate the suitability of neighbourhoods for a
particular instance based on its coasits, it would also be difficult, as
potentially each nurse could request #edent set of constraint types with

different parameters for any one scheduling period.

The computation times for each instance range from less than one second to
approximately 90 seconds. As would be expected, the longer computation times
are required for the rosters with more employees, longer planning horizons and
also those instances which utilise a larger set of the available soft constraint types

for each employee (e.g instarBeV-A.12.1).

As can be seen, on the machine used, the search, on average, examines
approximately 10,000 solutions per second. Examining the results for each
instance reveals that the solutions examined per second ranges from
approximately 28,000 for the instances with fewer soft constraints to around
6,000 for the instances which use all the available soft constraint types.
Evaluating soft constraints is by far the most time consuming function in the
search and so a large amount of effort was spent streamlining them to ensure that
they were fast and efficient as well as accurate. It is possible to obtain large
increases in search performance thiougriting faster code than any new
heuristic or search mechanism may be able to achieve. This is not always

appreciated and the challenge and importance of writing fast and efficient
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evaluation functions is often underestimated. Also, metrics such as the

performance per number of solutions evaluated are often analysed less, if at all. In
the results, the number of rosters examined as well as computation times are
provided. In the author’s opinion this & more revealing, reliable and future-

proof measure of a search method’s performance.

5.2 The Variable Depth Search

As the results in the previous sectimow, using today’s average desktop PC, a
local search employing the block neighbourhood can be completed on the larger
instances in less than 90 seconds. These solutions are very difficult to improve by
hand. However, due to the complexity of the problems, they are still very often
local optima (albeit high quality ones). Therefore, end users may wish to use idle
computer time (e.g. during a lunch break or over night) to try and find even
higher quality rosters. Perhaps the simplest way to provide this option is by
restarting the hill climber as many times as possible in the allotted time with
different initial rosters, in the form @ basic iterated local search [165]. This is
something that was tested and the results are provided in section 5.3. However,
the main focus of this chapter is ariable depth search which will now be

introduced.

The first step of the algorithm is to create initial roster. This is done using the
greedy assignment method introduced in section 5.1.3. As mentioned, these initial
rosters can be constructed very quickiyléss than a second) but are generally of
poor quality. It was found, however, that the quality of the initial roster had
relatively little impact on the final roster. Once the initial roster is created, it is

possible to proceed with the variable depth search which, like the hill climber,
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also operates over the feasible solution space. Figure 5.6 provides an outline of
the algorithm.

The search is similar to a method useden attempting to manually improve
rosters. When improving rosters by hand it was observed that first we would try
to improve one nurse’s individual scheeluithat is lower the penalty for that
nurse’s schedule). Improving this nusseschedule would usually be at the
expense of another nurse so we thertdarimprove their schedule. If the second
nurse’s schedule is improved it may bete expense of a third nurse’s schedule

so we then move on to the third nurse and so on until (hopefully) we have an
overall roster penalty that is lower than the original penalty. If not, we would
reverse all the changes we have just made and try a different path. This is the

basic idea behind the algorithm.
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penalty = the penalty for roster.
penalty n = the penalty for the schedule of nursi rosterr.

0. setbestroster :=the current roster

1. set current roster := an unvisited neighbour in neighbourhood
for best roster

2. if no unvisited neighbour available
stop and return best roster

3. if penalty  current roster < penalty pest roster
goto 0.

4. if neither of the penalties decrease for the individual schedules of
the two employees involved in the swap OR maximum depth <=1
goto 1.

5. set E1 := the employee with increased penalty
set current depth := 1

6. In the neighbourhood for the current roster where considering swaps
of blocks between employee E1 and all other employees (E2)

set current roster := neighbouring roster with lowest penalty where

penalty npeighbour < Penalty pestroster ~ Of

penalty neighbour - Penalty neighbour,E2 + Penalty current roster,E2
< penalty  pest roster

7. if no such neighbour
goto 1.

8. else if current roster's penalty < best roster's penalty
goto 0.

9. else if current depth < a preset maximum depth
setE1:=E2
set current depth := current depth + 1;
goto 6.

10. else
goto 1.

Figure 5.6 Variable depth search outline

The neighbourhoods referred to in Figure 5.6 are identified by swaps of blocks up
to a maximum block lengtitMBL). The neighbourhood at step 1 is defined by all
possible swaps of blocks, on all days of the planning period, between all nurses.
At step 6, the swaps are just between two nurses on all days of the planning
period. It was found to be generally more efficient tovsst at step 1 lower than

at step 6 (e.g at step 1, use 2 or 3 and at step 6, use 5 or 6).
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At various points in the algorithm (e.geps 4 and 6), it is necessary to analyse

the change in penalty for a nurse’s individual schedule after a swap has been
performed. After any swap, at least obet no more than two of the nurse's
individual schedules will have been aéid. However, the penalties for other
nurses’ schedules may also have changed even though their schedule has not been
modified. This occurs in instances which use the so called ‘vertical’ constraints of
tutorship and ensuring that certain nurses work separately. Therefore, when
analysing the change in penalty for any individual nurse’s schedule that has just
been altered, what we actually use istbechange in penalties for this nurse and

all other nurses that are directly linkedthis nurse by ‘vertical’ constraints.

5.2.1 Heuristics

It was stated that the search operates over the feasible solution space. However, it
was discovered that it was beneficial teetrthe hard constraint that a nurse must
have the skills required to perform aifslas a soft constraint. This can be
achieved by assigning a sufficiently high weight to the hard constraint violation
(e.g. giving it the same value as the penalty of the initial roster) thus ensuring that
a solution with this constraint violated will not be returned. Using it as a soft
constraint though, allows greater exploration of the search space. This happens
because rosters with this hard constraint violated are sometimes used as
intermediate solutions in a chain of moves and a better local optimum may be

reached via them.

Step 6 is perhaps the most important step in the algorithm. Step 6 specifies which
moves to examine as potential candidates to be added to the current chain of

moves and also defines the rule for deciding which one (if any) to select. As
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outlined in Figure 5.6, a swap is only selected as a potential move to add to the
current chain ifignoring the change in E2's pdhg the neighbour'penalty is

less than the best roster's penalfhis rule is similar to, and inspired by, the
‘Gain Criterion” of the Lin-Kernighan algorithm for the travelling salesman
problem [163]. In section 5.3, the results of a number of experiments are

presented in which this rule is removed to investigate its benefit.

The number of moves to examine in order to select candidates for continuing the
chain can have a significant effect on the performance of the algorithm. If too
many moves are tested, then the algorithm’s run time will increase. If too few are
selected, then there is a smaller chance of a successful one being found and the
algorithm will become less effective. In Figure 5.6, all swaps up to a maximum
block length, on all days of the planning period, between one nurse and all the
others are tested. Reducing the run time by limiting the number of nurses to test
swaps between and reducing the number of days adjacent to the swap at step 1
over which to test swaps was evaluated. As expected, the run time was improved
but at the cost of roster quality. To try to increase efficiency, two heuristics for

selecting candidate moves were developed and tested instead.

In the first heuristic \(iolation flag heuristic), all days which need changing
either through the removal, addition or changing of shift assignments, in order to
remove a soft constraint violation are flagged during penalty recalculations. Only
the swaps which involve at least one of these days are then tested. This heuristic
is also applied at step 1. Only focusimg parts of a solution that have violations

and need repairing is a common heuristic. For example, Nonobe and Ibaraki [195]
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use a similar heuristic in a tabu seamgbproach tested on a nurse rostering

problem formulated as a cdraint satisfaction problem.

In the second heuristiavpr sened days heuristic), an array of penalties due to

soft constraint violations for each day is maintained for each nurse’s schedule
during penalty calculations. Using these arrays, the moves in step 6 are then
restricted to only those blocks thatntain days which were made worse (i.e.
penalty increased) after the last move. This is a more restrictive heuristic as days
which contain violations will be ignored if they were not affected by the last swap

in the chain.

5.2.2 Predefined Run Time

The running time for the algorithm depends on the size of the neighbourhoods at
steps 1 and 6, the maximum depth used at step 9 and the structure of the instance
being addressed. The size of the neighbourhoods at steps 1 and 6 depends upon
the number of nurses, the number of days in the planning period and the
maximum block length. The effects of the third factor (the instance structure) on
the running time cannot be as easily predicted as factors such as the number of
nurses and days. For some instances,possible that the structure (determined
more by the soft constraints and their weights) is such that there is very often a
valid neighbour found at step 6 with which to replace the current roster but which

is not better than the best roster. This can mean that the search sometimes reaches
great depths which obviously affects the running time.

To reduce this effect, a maximum depth which is set beforehand is used at step 9.
Initially the depth was set using a trial and error method of running the algorithm

for a short time and observing its progress on the particular instance. Then
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altering the maximum depth value until a suitable setting is found (that is
estimated) will restrict the algorithrto a satisfactory running time. This is
obviously not a suitable approach for practical use. Therefore, an additional
mechanism was added which takes theguretl running time as a parameter and

attempts to use that time efficiently.

This mechanism works as follows: for the algorithm to finish, every neighbour in
the neighbourhood at step 1 needs to be examined and potentially used as the first
solution in a chain of moves. It is possible to calculate the size of the
neighbourhood at step one using the number of nurses, the maximum block
length and the number of days in the planning horizon. Given a preferred running
time and the number of solutions to evaduat step 1 (updated each time a new
best solution is found), it is possible to calculate an average time to spend using
each neighbour at step 1 as the first solution in a chain. Then at step 9, instead of
testing whether a maximum depth will be exceeded in continuing the chain, we
test whether the average time per chain will be exceeded if it continues.

In the results section where this heuristic is not used but a maximum running time
is set, the search immediately terminates and returns the best solution when the
time limit is reached. If the algorithmaturally terminates and the preferred
running time has not been exceeded, thestegd 2, instead of returning the best

roster, a new initial roster is created and the algorithm restarts at step O.

Figure 5.7 shows an example of an improving chain of moves. The change in the

roster consists of seven moves which, when performed simultaneously, provide

an overall reduction in the roster’s penalty. It can be seen that the second nurse of
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a swap is always the first nurse in the next swap. Note that Figure 5.7 is just used
to illustrate the idea of a chain of moves. For the roster shown (which is far from

optimal), there are many other chawsich would also improve the roster.
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Figure 5.7 Example chains of swaps

From observing the logs after searches, the lengths of improving chains of moves
varies greatly. Note that poor rosters are easily improved by single moves. When
the local optima start to be found less frequently, (and the penalty is approaching
better values) even for the smaller instances, improving chains of moves with

lengths over one hundred are not uncommon.

5.2.3 Efficient Implementation

At step 6, there is a possibility that a neighbouring solution will be selected that
has been visited previously and cyclicauld occur. Two diffeent methods were

tested to remove this risk. In the first method, a history of solutions visited along
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the current path (i.e. since the last use of step 1) is maintained and used to ensure
that they are not revisited. This is fast and prevents cycling but does not guarantee
that solutions are not revisited at other points in the algorithm, for example
visiting a solution at step 1 that has already been used at step 6. The second
method maintains a hash table of all solutions visited during the run of the
algorithm and so also prevents all solutions being revisited. Testing showed that
the first, simpler method, produced bettesules. This appears to be because the
probability of visiting a duplicate solution at the points which the first method
does not prevent is small and much lower than the probability of cycling at step 6.
Therefore, using the faster method whimtevents the majority of cycling and
revisiting duplicate solutions was more efficient than the slower approach which

guaranteed no cycling or duplicate paths.

As discussed earlier, increases in performance can be achieved as effectively
through making the algorithm faster and more efficient as by using better
heuristics. We have already mentioned the importance of avoiding cycling. There
are also some other efficiency measures which are worth highlighting. Firstly,
when a nurse’s schedule has been altérisdonly necessary to re-evaluate their
schedule and any other nurses’ schedwliédch may be linked by vertical
constraints to recalculate the new roster’s penalty. Secondly, by far the most time
consuming operation is calculating penalfjes. soft constraint evaluations). If
there is a likelihood that a solution will be returned to, then the algorithm caches
penalties to avoid having to recalculate them. Finally, some soft constraint
calculations can be speeded up by using data structures that are modified as

assignments are made. A simple example is to update the total number of hours
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worked when a shift is (un)assigned rather than to add all the hours up when
calculating the penalty. Some of the more complicated constraints benefit from a

similar approach.

5.3 Results
The algorithm was tested on the ten publicly available data sets introduced in

chapter 4.

531 Comparing Heuristics

In the experiments, the following panaters were used: Maximum depth = 1000,
maximum block length at step 1 = 2, maximum block length at step 6 = 5. As
described, if the algorithm finishes beddhe maximum running time is reached,

a new initial solution is constructed and the search restarts.

Table 5.4, Table 5.5, Table 5.6 and Table 5.7 contain the results of the variable
depth search when different heuristics are used. Predefined maximum run times
of 1 minute, 2 minutes and 5 minutes were tested with each instance and repeated
five times using different random seeds (but which were the same for each
corresponding trial). The best, worst aanerage of these runs were recorded.
The penalties in Table 5.4 are the averages over all instances. The results for each

instance given in Table 5.5, Table 5.6 and Table 5.7.

The heuristics are summarised below:

No heuristics Step 4 is removed and stép &pplied twice but with E1 set as the
other nurse each time. At step 6 the only rule is to select the best

neighbour.
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PG Partial gain heuristic (only addswap to the end of the current
chain if it satisfies the partial improvement criterion).

VF Violation flag heuristic (only & swaps which include at least one
day which is flagged as having a violation). This is used at steps 1
and 6.

WD Only swap worsened days heuristic (only test swaps which include
at least one day which has a violation and the violation’s penalty
was increased or the violation occurred after the last swap). This is
used at step 6.

TR Time restriction heuristic (ensure that a pre-calculated average
amount of time is spent on every chain).

ILS Hill climber with restarts. Maximum depth is set to 1 and
maximum block size at step 1 is increased to 5.

1 Minute 2 Minutes 5 Minutes

Heuristics Best Avg. Worst Best Avg. Worst Best Avg. Worst

No heuristics 1390 1561 1879 1196 1454 1825 1154 1394 1766

PG 917 1156 1461 888 1078 1271 872 1034 1225

VF 1222 1629 2050 1113 1329 1611 973 1111 1232

WD 1046 1241 1515 1008 1131 1251 972 1087 1234

PG + VF 1003 1228 1680 894 1163 1p19 872 1016 1303

PG + WD 900 1016 1205 895 973 1083 877 946 1031

TR 1153 1454 1829 1175 1450 1654 1008 1232 1386

TR + PG + VF 1014 1122 1277 888 994 1141 874 978 1141

TR + PG + WD 899 1068 1260 862 935 1027 858 889 938

ILS 1164 1266 1405 1048 1174 1290 1012 1067 1161

Table 5.4 Comparison of heuristic combinations
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Time restriction = 1 minute. Max. depth = 1000. Max. block length atGstep. Max. block length at

step 1 = 2.
TR+ TR+
No PG+ PG + PG+ PG+
heuristcs PG| VF| WD | VF | WD | TR | VF | WD | ILS

ORTECO1 Average 5768 2358 6560 3234 3347 1103 4605|2242 | 1910 3573

Best 4826 50p 3245 1655 1421 425 2746 1430 | 555 2825
BCV-1.8.1 Average 263 263 267 265 263 P59 [278 |257 [261 266

Best 255 258 259 257 254 254 271 P54  [255 261
BCV-2.46.1 Average 16719 1667 1643 1662 1659 1683 [1657 [1605 | 1598 1641

Best 1653 1616 1595 1633 1616 1646 1618 1593 |1574 1618
BCV-3.46.1 Average 3570 3478 3546 3515 3501 3481 (3588 |3477 | 3411 3464

Best 3483 3411 34536 3505 3460 3422 3531 3442 3380 3443
BCV-4.13.1 Average 1 13 10 11 11 10 |22 |11 11 12

Best 19 10 1p 10 10 10 11 [0 10 11
BCV-5.4.1 Average 48 48 48 18 48 48 |48 |48 48 48

Best 4 48 48 48 48 48 48 48 48 48
BCV-6.13.1 Average 941 873 793 770 814 769 [844 |768 | 770 908

Best 827 768 768 768 7B8 768 7J69 [ 68  [768 822
BCV-7.10.1 Average 419 455 3B5 384 383 B84 (392 (384 | 384 381

Best 381 38l 391 381 381 381 381 P81 (381 381
BCV-8.13.1 Average 10 164 148 148 148 148 |196 (148 | 148 148

Best 148 143 148 148 148 148 148 {148 148 148
BCV-A.12.1 Average 2731 2240 2890 2370 2103 2271 p912 (2284 |2135 2215

Best 2265 2033 2309 2050 1919 1900 2009 P068 1870 2085

Table 5.5 Variable depth search heuristics with maximum run time 1 minute

Time restriction = 2 minutes. Max depth = 1000. Max. block length at step 6 =)6.bMek length at

step 1 = 2.
TR+ TR+
No PG+ PG+ PG+ PG+
heuristcs PG| VF| WD| VF | WD | TR| VF | WD | ILS

ORTECO1 Average 5023 1981 4246 2529 2893 |860 4990 1262 | 868 2713

Best 3110 485 2430 1605 520 425 3099 |470 480 1691
BCV-1.8.1 Average 263 261 265 262 260 P55 [269 (257 | 257 265

Best 255 252 25 257 254 253 263 P53 253 261
BCV-2.46.1 Average 1679 1664 1642 1652 1649 1680 [1627 [1597 |1600 1620

Best 1653 1616 1595 1683 1596 1646 1616 1572 (1574 1615
BCV-3.46.1 Average 3486 3433 3477 3433 3477 3457 3523 [3410 | 3380 3446

Best 3449 3392 3419 3414 3399 3372 3479 3380 (3338 3413
BCV-4.13.1 Average 7 11 10 11 [10 10 |11 |11 10 12

Best 19 10 1p 10 10 10 10 [0 10 11
BCV-5.4.1 Average 48 48 48 18 U8 48 |48 |48 48 48

Best 48 48 4B 48 48 48 48 48 48 48
BCV-6.13.1 Average od4 842 7B0 769 768  [769 |836 |768 |768 889

Best 827 768 768 768 768 768 174 [768 [768 822
BCV-7.10.1 Average 419 437 3p4 384 382 B84 |403 384 |384 381

Best 381 38l 391 381 381 381 381 P81 (381 381
BCV-8.13.1 Average 164 148 148 148 148 (148 |148 (148 | 148 148

Best 148 148 148 148 148 148 148 148 |148 148
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115 p647
1900 1928

BCV-A.12.1 Average
Best

2540

207

177

2007

2293 2071 1p92
2050 1819 1820

2051
845

1882
1620

Table 5.6 Variable depth search heuristics with maximum run time 2 minutes

Time restriction = 5 minutes. Max depth = 1000. Max. block length at step 6 =)5.bMek length at

step1l=2.
TR+| TR+
No PG + PG+ PG +| PG +
heuristicy PG| VF| WD | VF | WD | TR | VF | WD ILS
ORTECO01 Average 4763 1785 2421 2234 1570 857 [3150 (1147 448
Best 3000 460 1390 1410 435 425 1420 |360 420
BCV-1.8.1 Average 259 258 262 255 255 P54 (264 |257 254
Best 254 25p 256 253 253 253 255 P53 253
BCV-2.46.1 Average 1664 1654 1621 1635 1647 1669 [1622 [1596 | 1586
Best 1633 1614 1595 15P4 1595 1613 1595 1572 (1572
BCV-3.46.1 Average 3468 3404 3465 3892 3448 3423 (3443|3392 | 3378
Best 3427 3374 3411 3382 3399 3872 3399 8347 |3355
BCV-4.13.1 Average n 11 10 10 |10 10 |12 |10 10
Best 1d 10 1D 10 10 10 10 |10 10
BCV-5.4.1 Average 43 48 48 18 U8 48 |48 |48 48
Best 44 4 48 48 48 48 18 148 48
BCV-6.13.1 Average 857 818 7p8 7169 768 768 |814 |768 768
Best 768 768 768 768 768 768 7170 [768 768
BCV-7.10.1 Average 401 401 3B2 383 382 383 |384 |383 383
Best 381 381 381 381 381 381 381 j81 381
BCV-8.13.1 Average 148 148 148 148 148 148 |148 |148 148
Best 148 14 148 148 148 148 148 [148 148
BCV-A.12.1 Average 2320 1814 1985 2000 1881 1900 R437 |2028 | 1867
Best 1869 1664 1720 17P9 1679 1750 2053 1849 (1620000

Table 5.7 Variable depth search heuristics with maximum run time 5 minutes

The results indicate that a goodndmnation of heuristics is TR+PG+WIDBor

2213
2085

1901
1590
263
257
1607
1595
3427
3413
11
10
48
48
853
77
381
381
148
148
2034

example, comparing this combination against no heuristics over all tests it

outperformed or was equal on all but four (out of 150). The null hypothesis that

the difference in objective values of the solutions produced by the two algorithms

are symmetrically distributed around the central point of zero, using the Wilcoxon

signed rank test, had a probability less than 0.05. Similarly TR+PG+WD could be

considered “better” than TR+PG+VF at the same confidence level using the

Wilcoxon signed rank test and using the Sigst. The better results all use PG

For example, using the Wilcoxon signed rank test, comparing PG against no

heuristics, the null hypothesis could be rejected at the 0.05 confidence level,
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indicating the efficacy of PG. TR is improved if combined with other heuristics
and similarly VF and WD also perform better when not used on their own. As
would be expected, VF and WD perforimgarly (WD is a more restrictive form

of VF). ILS performs similarly to TR, VF and WD when they are used on their
own. All other combinations outperform ILS.

Examining the results for each instance is also interesting. VF is very effective on
instance BCV-4.13.1, even when used on its own and WD+PG works well on
instance ORTECO01. However, we were hbleato draw any definite conclusions

on why this should be the case after examining the characteristics of these
instances more closely. Due to its simplicity ILS is able to examine more

solutions in the allocated time but its lack of heuristics makes it less effective.

5.3.2 Comparisonswith Other Methods

Brucker et al. [46] developed a heuristic constructive approach and tested it on
the benchmark instances. As it is a constructive method it is not possible to
provide a comparison to the variable depth search by using the number of
solutions examined metric. Howevergihexperiments were performed on the
same machine and a comparison can be provided by using computation times.
The results in Table 5.8 are Brucker et &kst results from all experiments. The
total computation time in obtaining these solutions for each instance was then set
as the maximum run time for the variable depth search with the heuristic
combination TR+PG+VF.

Burke et al’s result for ORTECO1 using the hybrid variable neighbourhood search
[50] had a computation time of twelve hours (this is the method and results
presented in chapter 3). The result for the variable depth search on this instance is

the best of the five, five minute tests using the heuristic combination TR+PG+VF.
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As can be seen, the variable depth deautperforms the constructive method,
over the same computation times, on all instances except one, on which they are
equal. Using the Sign test, these results were significant at the 0.05 level (testing
the same null hypothesis as in section 5.3.1) but not significant using the
Wilcoxon test. It also beats the hybrid method of Burke et al. on instance

ORTECO1.
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Time | Brucker et al. [46] Burke et al. [50] Variable Depth Search
ORTECO01 1lohrs 541 360
BCV-1.8.1 136s€q 328 - 253
BCV-2.46.1 3424eq 1594 - 1572
BCV-3.46.1 288&eq 3601 - 3324
BCV-4.13.1 208eq 18 10
BCV-5.4.1 16seq 20p - 48
BCV-6.13.1 304eq 890D - 768
BCV-7.10.1 216seq 396 - 381
BCV-8.13.1 224eq 148 - 148
BCV-A.12.1 944seq 333b - 1843

Table 5.8 Comparison DS with other algorithms
To provide further comparisons, the hybtabu search of Burke et al. [49, 58]

was implemented and tested on the benchrdata sets. The best version of their

tabu search (TS2) was applied five timeg#zh instance. Table 5.9 contains the

best and average results. The average execution time on each instance was also
recorded. The variable depth search was then set a maximum run time identical to
that used by the tabu search for each instance. Five repeats of the variable depth
search were then performed to obtain average and best results. Heuristics

TR+PG+WD were used.

Variable depth search TS2 [49, 58]
Instance Best Average Avg. Evals. Best Average Avg. Evals. Timg)(sec
ORTECO01 480 1120 1,852,7881581 3201 2,363,828 108
BCV-1.8.1 262 269 159,379 293 350 140,690 9
BCV-2.46.1| 1574 1593 1,563,8651573 1596 1,557,905 167
BCV-3.46.1| 3334 3346 4,486,39B410 3453 5,088,206 427
BCV-4.13.1 10 11 152,182 11 25 150,639 9
BCV-5.4.1 48 48 21,208 48 48 17,58p 1
BCV-6.13.1] 769 817 356,8911010 1154 345,595 24
BCV-7.10.1] 381 427 117,224 391 458 93,817 7
BCV-8.13.1] 148 148 248,927 148 165 215,524 15
BCV-A.12.1 1835 1942 649,926 2065 2831 718,354 108

Table 5.9 Comparison of the variable depth search with a hybrid tabu search

The results in Table 5.8 and Table 5.9 show the variable depth search nearly

always outperforms or is equal to previous methods in comparable tests over all
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instances. The only time it was beaten was when TS2 found a best solution for
BCV-2.46.1with penalty 1573. The variable depth search could still manage a best
with penalty 1574 though. Note that the variable depth search is actually
dynamically adjusting to the run time of the other approaches. Using the Sign
test, these results were statistically significant at the 0.05 level (testing the same

null hypothesis as in section 5.3.1).

5.3.3 Longer Computation Times

Further experiments were conducted taraie the potential benefit of a longer
execution time. The variable depth seardtin\the same parameters as before and
using heuristics TR+PG+WD was tested on each instance with a time limit of one

hour. ILS was also tested for comparative purposes.

TR+PG+WD ILS
Pen Evals Pen Evals
ORTECO01 435 58,703,568 630 69,151,556
BCV-1.8.1 254 62,769,622 255 72,216,494

BCV-2.46.1 1574 29,767,188 1594 39,255,535
BCV-3.46.1 3302 36,422,606 3414 42,504,506

BCV-4.13.1 10 58,613,414 10 68,301,984
BCv-5.4.1 48 73,021,195 48 92,071,328
BCV-6.13.1 768 54,683,305 814 62,509,316
BCV-7.10.1 381 59,704,319 381 69,957,265
BCVv-8.13.1 148 59,084,6Y8 148 66,960,140
BCV-A.12.1 1564 23,675,881 1808 25,506,048
Average 848 T 910

Table 5.10 Experiments with VDS using longer computation times
The increase in computation time leads to an improvement for both methods.

Again the simpler ILS examines more solutions in the allotted time but is still not
as effective as the variable depth search. In fact, ILS after one hour on each
instance is, on average, still worse tham ltlest of five, one minute repeats of the

variable depth search with heuristics PG + WD.
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5.4 Conclusion

This chapter has briefly reviewedearch neighbourhoods that have been
previously used to solve nurse rostering problems. They were tested using new
benchmark nurse rostering problems and based on the results, a variable depth
search was created.

The block neighbourhood is very effective for the majority of the instances.
Today’s technology allows these larger neighbourhoods to be exhaustively
searched very quickly. Even a simple hill climber which uses these
neighbourhoods will produce satisfactory rosters and combining the hill climber
with the greedy construction, restartethod further improves the quality of
solutions produced.

However, the variable depth search can still improve upon this basic iterated local
search. The variable depth search works by chaining together the block moves
using a number of heuristics to select the next move (link in the chain). The
results show the best combination of heuristics to use is PG (the positive gain
criterion) with TR (the time restriction heuristic) and WD (selecting moves on
days that have violations which occurred after the last move).

It is also worth noting that, although the variable depth search is more effective, it
is also more complicated to implement with an increased potential for introducing

errors.

If the hill climber using the block neighbourhoods or the variable depth search
were used in a population based approach such as a memetic algorithm [152] or a
scatter search [118], then even better results may be possible. These are good

methods for adding extra diversification to the search, especially over extended
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execution times. This is investigated in the next chapter where the variable depth

search is wused as the improvement method in a scatter search.
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6 A Scatter Search

This chapter describes a scatter search for the nurse rostering problem. Like
genetic algorithms [104, 124, 132, 219], memetic algorithms [151, 152, 186]
particle swarm optimisation [145, 177] and ant colony optimisation [89, 90], a
key feature of scatter search is the maintenance of a population of solutions. This
is in contrast to many other metahstics which generally work with one
solution, for example simulated annealing [1, 147], tabu search [111, 117],
GRASP [101], variable neighbourhood search [130, 185] etc. In genetic
algorithms, these sets of solutions avften referred to as populations. To
continue the metaphor, the individuals within a population may be labelled as
parents and new solutions are usually called offspring. New solutions are
generally created from two parents in the population through crossover and
mutation operations. Although, for different problems, the details of the crossover
and mutation functions can vary, there is typically some stochastic element to
their operation. This contrasts with scatter search in which the method for
forming new solutions is designed to mmmize (if not eliminate) decisions being
allocated to random (or more usuallyepdo-random) chance. The idea is to try

to replace calls to the random number function waystematic and strategically
designed rulés[118].

Another difference is found in the way that new solutions are added to the
population or reference set. In many genetic algorithms, new solutions are
allowed to enter the current population if their quality (usually determined by an
objective function) is greater than the worst member of the current population. In

scatter search, a method for comparing the similarity of two solutions is used to
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measure the reference set’s overall divgr§Vhether or not a new solution enters

the reference set may then be decided by not only its quality, but also its
contribution to the reference set’s diversity. The goal is to trgnantain the
highest quality, yet diverse, reference set.

Some genetic algorithms also use a local search or other optimisation method on
each of the new solutions between generations in order to improve their quality.
These methods may also act to repair gbkitions if they were incomplete or
infeasible after the crossover stage. Thoggsgetic algorithms plus local search are
often labelled as memetic algorithms butynaéso be referred to as hybrid genetic
algorithms and genetic local search.eTidea of using a heuristic improvement
process on new solutions is also common to scatter search. These
improvers/repairers can be a noticeable bottleneck in the algorithm though. Also,
as new solutions can be created from more than one reference solution (in
contrast to genetic algorithms), even with a small reference set, many new
solutions can be created at each iteration. Therefore, the reference set is typically
a lot smaller than the corresponding population in a genetic algorithm.

However, as the boundaries between metaheuristic algorithm classification
sometimes overlap and as different metaistic approaches are often hybridised,

so also, features of scatter search may appear in genetic algorithms and vice
versa. The comparisons between genetiorithms and scatter search described
here are just a basic introduction. For further information on scatter search and a

more in depth analysis see [115, 118, 119, 155].

Population based optimisation methods have previously and successfully been

applied to employee timetabling problems in various forms. Example approaches
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include memetic algorithms [49] and genetic algorithms [12, 13, 93, 140, 144,
190, 229]. These papers were reviewed in chapter 2.

At the time the work presented here was undertaken, there had been very little
research into investigating scatter search for personnel scheduling and no known
applications of it to nurse rostering. This made it an appealing method to test,
especially considering how successful evolutionary approaches for nurse
rostering have been previously. This is a conclusion which was simultaneously
(but independently) made by Masut and Vanhoucke. They have also
implemented and tested a scatter search for the nurse rostering problem [167].
Surprisingly, their implementation of Glover's template is almost entirely
different to the one presented here. However, they also were able to achieve
successful results albeit on a variatiohthe nurse rostering problem. Scatter
search and path relinking strategies hla@en applied to a considerable variety of
problems other than nurse scheduling though. For example, arc routing [125],
linear ordering [71], quadratic assignment [81], mixed integer programming [120]
and exam proctor assignment [164]. All of these studies have demonstrated

promising results.

The next section describes the scatter search implementation and section 6.2
contains the results of testing this algorithm on the benchmark instances
introduced in chapter 4. To help drawnclusions, the scatter search has been

compared against Brucker at al.’s constructive method [46] and the memetic
algorithm of Burke at al. [49]. The variable depth search presented in chapter 5 is

also used for comparisons as well.
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6.1 The Algorithm

In Glover’s template for scatter seafdli5], five component subroutines for the
overall process are outlined. The following sections describe an implementation
of these subroutines for the nurse rosgepnoblem. The overall scatter search is

outlined in Figure 6.1.

Create initial set of diverse solutions
Improve each solution in diverse set
Create initial reference s&dfSet
Make a copy of the reference $RefSetCopy
FOR each untried subset of solutionR@iSet
Combine solutions in subset to produce a new soliN@mngolutioh
ImproveNewsSolution
Replace a solution RefSetCopwith NewSolutiorsubject to certain criteria
ENDFOR
IFRefSeandRefSetCopwgre not identical
10. SETRefSet= RefSetCopy
11. GOTO 3.
12. ENDIF
13. Return the best solutionRefSebr GOTO 0.

CoNoO~WNEO

Figure 6.1 Scatter search overview
6.1.1 The Diversification Generation Method

A diversification generation method iequired to create a diverse set of
solutions. These solutions are then imgayaccording to the objective function)

and added to the initial reference set subject to certain criteria. When creating the
diverse set of solutions, the objective value for each solution is not relevant, only
its similarity to other solutions in thetds of interest. A number of methods were
tested for creating diverse solution setthwiarying degrees of success. Of these
methods, the one outlined in Figure 6.2 consistently produced the most diverse set

of solutions.
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1. Create an empty sestef) of size n for the diverse solutions
2. UNTIL setis full

3. Create a rosterosten with no assignments made

4. FOR each dayléy) in roster

5. FOR each shift typsh(ft) to be covered oday

6 UNTIL the cover is satisfied

7

Assigshiftto a nurse who has been assigsieift on daythe
least number of times in all other rosteseti(subject to no hard
constraint violations)

If more than one nurse has receibétion day the least number
of times then randomly select one of them

9. ENDUNTIL
10. ENDFOR

11. ENDFOR

12. Addrosterto set
13. ENDUNTIL

Figure 6.2 Pseudocode for the scatter search initial set creation

o

To measure the similarity of two rosteessimple but effective method is used:
counting the number afurse to shifassignments in common. An example of this

is given in Figure 6.3 which shows the individual schedules of three nurses
(labelled D, E, and F) from two different rosters. Identical assignments are
highlighted, for example nurse E has a late shift (L) on MondAyn4both
schedules. In this example, just lookiigthese three nurses’ schedules, there are

seventeen identical assignments in the two rosters.

1 2 3 4
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
M T w T F S S M TwWTF S S MTWTFGSSMTWTF 8 5
D DDV L L v v D EEV MO R
E |_ D D v ¥ D D DD\/ D Lov v w
F ¥ ¥ D DR Tl LoLov v v L L L DD
D DD D D N TRl EE Dv Y N L L
E v VR, D D D D D DL L A
VRV L L D DD L D D [N

m
E
E

-

-

Figure 6.3 Example of the roster similarity measure
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To demonstrate the success of the method, we compare it to a purely random
approach which simply assigns randomly selected shifts to randomly chosen
nurses. The assignments are made subgenb hard constraint violations (e.qg.
skills needed to perform certain shifts) until total cover is satisfied. A set of ten
solutions was generated using bothtmes and the total number of shift
assignments in common between all solutions in the set counted. Five repeats
were performed on each instance and the average numbers of common
assignments for each instance are given in Table 6.1. The results show that, on
nine out of the ten instances, the random method made approximately twice as
many common assignments. On the other instance, the random method made

roughly 30% more common assignments.

Instance Diversification method = Random Assignment
ORTECO01 1064 2101
BCV-1.8.1 286 786
BCV-2.46.1 1705 3752
BCV-3.46.1 1770 3675
BCV-4.13.1 609 1190
BCV-5.4.1 614 842
BCV-6.13.1 986 1859
BCV-7.10.1 374 1102
BCV-8.13.1 901 1631
BCV-A.12.1 434 1192

Table 6.1 Comparison of common assignments by different generation methods
6.1.2 Improvement Method

The goal is to try to improve any solutions according to their objective function.
If necessary, it may also repair sotuts. The solutions which it works upon may

be those produced by the diversificatgeneration method (see section 6.1.1) or
the solution combination method (see section 6.1.5).

The improvement method used is the time predefined variable depth search

presented in chapter 5. Experiments were performed using a number of different
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maximum run times to investigate how it affected the performance of the scatter
search. The results are provided in section 6.2. For the experiments, the same

settings as described in section 5.3.1 were used.

6.1.3 Reference Set Update Method

The reference set update method is used at two separate stages in the algorithm. It
is used to create the initial reference set from the solutions produced by the
diversification method. Afterwards, it is e to maintain the reference set. It
decides whether to add to the reference set new solutions that are produced by the
combination and improvement methods.

The reference set is initialised in a similar manner to that used by Glover at al.
[119]. After all the solutions produced by the diversification method are improved
by the variable depth search, they are ranked according to the objective function.
The bestb, of these solutions are then added to the reference set. From the
remaining solutionsy, are selected and added, based on their contribution to the
diversity of the reference set. Figure 6.4 outlines the protgss, and the
number of diverse solutions to initially generate are all parameters which may
affect the running time of the algorithm and the quality of schedules produced. In

section 6.2, the results of vargithese parameters are presented.
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P is the set of solutions created using the diversification generation method.
RefSet is the reference set and is initially empty.

b, andb, are algorithm specific parameters (integers >= 0).

1. FOR 1 tdy

2. Select fronf the best solution according to the objective function
3.  Remove the solution fromand add it td&RefSet

4. ENDFOR

5.FOR 1 tdb,

6. For each solution iA calculate its total similarity to all the solutions
currently irRefSe{using the similarity function)

7. Select the least similar solution (the schedule with least assignments in
common with other rostersRefSet

8. Remove the solution fromand add td&refSet
9. ENDFOR

Figure 6.4 Scatter search reference set initialisation

After the solution combination method, new solutions are added to the reference
set if their objective function value is batthan the reference set’s current worst
solution and the set does not already contain an identical solution. If a new

solution is added, the current worst solution is removed.

6.1.4 Subset Generation Method

The subset generation method is used ¢mtifly the subsets of solutions in the
reference set that will be used by the combination method to create new solutions.
A commonly used subset generation method in scatter search is that suggested by
Glover [115]. This approach is alsadopted here. Using this method, four

different types of subsets of increasing size are identified. They are:

1. All unigue subsets of the reference set containing 2 elements.

2. Subsets of size 3 identified by aalglto each 2-element subset (above) the

best solution not already in this subset.
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3. Subsets of size 4 identified by auglto each 3-element subset (above) the
best solution not already in this subset.

4. Subsets containing the besblutions, for i =5 to |RefSet|

The best solutions here refer only to the objective function values.
At each iteration, it is also necessary to keep a record of which solutions in the
reference set are new. This avoids combining sets of old solutions which were

already combined in the previous iteration.

6.1.5 The Solution Combination M ethod

The solution combination method uses two or more solutions (selected by the
subset generation method) for refereand produces one or more new solutions,
often using a path relinking mechanism. These new solutions are then improved
by the improvement method and then either added to the reference set or
discarded by the reference set update method.

Although the subset generation method cardsly adapted to a wide range of
problems, the solution combination method is often more specifically designed
for each problem. Glover et al. [118] discuss a number of forms that the solution
combinations or path relinking could take. The solution combination method
developed here is categorized ireithpaper as a constructive neighbourhood
approach Where the guiding solutions vote fattributes to be included in the
initiating solutiorf [118]. In our case, the attributes afaift to nurseallocations
within the rosters.

A solution can be regarded as simply a numbeshdt to nurseassignments. In

the solution combination method, easthft to nurseallocation in each solution to

be combined is regarded awate for a candidate The candidates available for
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selection are all the possildaift to nurseassignments for the problem instance.

All these votes are then analysed and used to construct a new solution. The shift
assignments (candidates) for the new solution are made according to the number
of votes they received from the guiding solutions. The pseudocode in Figure 6.5
outlines the process.

In Figure 6.5, a candidate isshift to nurseassignment on a specific day. The
voters are the guiding solutions, each solution is a voter and each assignment
within that solution is a vote for a specific candidate. The first step in the process

is to create a new solution which initially has no assignments.

1. Identifycandidatesas the set of all possible shift to nurse assignments for
this instance
Collect all the candidates’ votes from each solution in the guiding set
Remove frontandidatesany candidate with zero votes
IF candidateds empty
GOTO 10.
5. Sortcandidatesyy:
a) decreasing total number of votes
b) increasing total number of votes successful for voters selecting this candidate
) increasing sum of objective function values for voters selecting this candidate
6. Select and remove the first candidateandidates
7. Make the assignment represented by this candidate in the new solution
unless it exceeds cover requirements or breaks any hard constraints
8. IF the assignment was made
GOTO 4.
9. IFcandidatess not empty
GOTO 6.
10. Return new solution

Pown

Figure 6.5 An outline of the scatter search solution combination method

At step 5 of Figure 6.5, the list of candidates (thashst to nurseassignments)

is sorted by the number of votes they received. As the guiding sets of solutions
are small (see the subset definitions), ¢aadidates are often tied. If this is the
case, two tie-breakers are used. If two candidates receive the same number of
votes, the candidate whose voters hhad the least total number of successful

votes is ordered first. If this does mdifferentiate between the two candidates,
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then the candidate whose voters have the lowest sum of objective function values
comes first (lowest as it is a minimisation problem).

The requirements at step 7 ensure that no hard constraints will be violated by the
new solution except possibly not providing full cover (but not exceeding cover).

If the shift coverage constraint is not satisfied, it is repaired by the variable depth

search.

6.2 Results

The algorithm was tested using the benchmark data sets introduced in chapter 4.
Two preliminary investigations wereorducted with the scatter search. Firstly,

we varied the amount of computation time given to the improvement method
(variable depth search) each time it is usgelcondly, we evaluated the effect of
using a larger reference set. The main aim in these experiments was to examine
the difference in solution quality with respect to the variation in computation
time. It was expected that the larger the reference set and/or the more time given
to the variable depth search, the better the solutions. The purpose though was to
examine the trade off between computation time and solution quality in order to
investigate the balance.

To conduct these experimenasteference set of size 53, =2, initial number

of solutions=8) was used and the valéablepth search was given 5 seconds, 30
seconds and 5 minutes. An additioredperiment was conducted where the
variable depth search was replaced with a hill climbing algorithm which uses the
single shift neighbourhood introduced in section 5.1.1. As shown, this local
search typically has a very short execution time (less than one second on smaller

instances).
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Secondly, a reference set of size 16=@ =4, initial number of solutions=20)

was used. As a larger reference set woahuire the improvement method to be
called many more times, the improvemeargthod was restricted this time to the

hill climber and then tried with the varilebdepth search with a limit of 5 seconds
per execution.

The results of these experiments are shown in Table 6.2. As well as the
computation time, the number of solutions evaluated is also given. The
experiments were performed on desk®@ with an Intel Pentium 4 2.4GHz

processor.
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Data set | Penalty Evaluations Time Penalty Evaluations Time Penalty  Evaluations e Tim
RefSet=5 (b1=3, b2=2), Initial solutions=8, RefSet=5 (b1=3, b2=2), Initial solutions=8, RefSet=5 (b1=3, b2=2), Initial solutions=8,
Improvement method=HillClimber Improvement method=VDS (5secs) Improvement method=VDS (30secs)
BCV-A.12.1 1813 2,765,040 6 mins, 42/sec 1378 43,256,411 1 hr, 23 mins| 43 séx18 1 44,925,889 1 hr, 31 mins, 7 sec
ORTECO01 2551 4,195,911 3 mins, 51|sec 470 39,643,699 22 mins, 19 sec 341202,4%4, 1 hr, 32 mins, 35 sec
BCV-1.8.1 275 918,415 1 mins, 1 sec 253 33,082,154 23 mins, [18 sec 252 96,816,04 1 hr, 3 mins, 37 sec
BCV-2.46.1 1574 18,097,242 16 mins, 27|sec 1577 16,711,732 13 miseg 13 1572 102,694,355 1 hr, 16 mins, 43 sec
BCV-3.46.1 3427 31,587,573 24 mins, 6/sec 3301 250,015,392 2 hrsn@ZBhisec 3312 298,790,524 3 hrs, 21 mins, 7 sec
BCV-4.13.1 12 1,786,825 1 mins, 43 |sec 10 15,009,273 9 mins, |18 sec 5,820,989 28 mins, 36 sec
BCV-5.4.1 48 88,930 0 mins, 13 sec 48 4,414,062 3 mins, 5 sec 48 18,586,063 13 mins, 1 sec
BCV-6.13.1 915 2,582,780 2 mins, 54|sec 768 20,542,9 15 mins, 8 sec 768 67,159,785 54 mins, 54 sec
BCV-7.10.1 382 808,381 1 mins, 7 sec 381 10,184,684 7 mins, [39 sec 381 BUL674, 46 mins, 26 sec
BCV-8.13.1 149 1,558,705 1 mins, 45|sec 148 10,698,537 7 mins,|26 sec 148 49,6897 24 mins, 43 sec
RefSet=5 (b1=3, b2=2), Initial solutions=8, RefSet=10 (b1=6, b2=4), Initial solutions=20, RefSet=10 (b1=6, b2=4), Initial solutions=20,
Improvement method=VDS (300secs) Improvement method=HillClimber Improvement method=VDS (5secs)
BCV-A.12.1 1440 491,902,115 16 hrs, 41 mins, 19 sec 1640 18,257,546 4B Pnges, 1490 154,689,835 5 hrs, 7 mins, 7 sec
ORTECO01 325 306,473,260 2 hrs, 40 mins, 45sec 1881 25,548,930 25 ming, 59 sec 500 221,390,330 hr, 56 mins, 58 sec
BCV-1.8.1 252 475,692,443 5 hrs, 29 mins, 6 sec 267 6,412,094 7 mins, 6 sec 253208,101 1 hr, 11 mins, 3 sec
BCV-2.46.1 1572 1,679,197,437 1 day, 21 mins, 22 sec 1573 75,473,986 Trins135 sec 1573 61,658,977 50 mins, 14 sec
BCV-3.46.1 3294 2,747,238,252 1 day, 8 hrs, 47 mins, 21 sec 3414 199,490,595 s, 4@rhins, 37 sec 3293 4,031,912,911 1 dahyrl35 mins, 24 sec
BCV-4.13.1 10 313,030,852 3 hrs, 10 mins, 47 sec 10 11,588,880 11 mins, 13 sec0 87,667,326 51 mins, 45 sec
BCV-5.4.1 48 32,520,202 22 mins, 35|sec 48 408,408 0 mins, 52 sec 48 16,7190 11 mins, 8 sec
BCV-6.13.1 768 319,751,554 4 hrs, 37 mins, 14 sec 886 10,784,081 12 ming, 54 sé68 142,817,348 1 hr, 51 mins, 42 sec
BCV-7.10.1 381 332,434,426 5 hrs, 6 mins, 16 sec 381 5,478,574 7 mins), 32 s&81 121,430,659 1 hr, 21 mins, 26 sec
BCV-8.13.1 148 191,706,580 2 hrs, 49 mins, 44 sec 148 6,299,783 7 ming, 54 sec 148125,315 49 mins, 38 sec

Table 6.2 Results of varying the reference set size and the improvement method
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As expected, increasing the size of the reference set and increasing the maximum
execution time of the variable depth search, increased the total execution time. A
benefit in terms of increased solution quality is not obvious however. Using a
reference set of size 5 (RefSet=5) and with the variable depth search given a
maximum time of 5 minutes (VDS=5mins) produced very long execution times.
The results were not greatly better than RefSet=5, VDS=30secs though which had
a shorter execution time. Although it was better or equal on all instances for the
three instances on which is was better, the improvement was small. Again, using
a larger reference set did not result in much better solutions in relation to the
required execution time. The results suggest that the best trade off between
solution quality and execution time is with RefSet=5 and VDS=5secs. This was
able to produce very good solutions on all instances without unfeasibly long run
times. The result for BCV-A.12.1 usinghese parameters is particularly
encouraging as it is a new best result.

Using these settings, further tests were performed to compare this approach to the
memetic algorithm, MEH, of Burke et al [49]. MEH is a hybrid approach which
performs a tabu search on individualghe population between generations and a
greedy shuffling step on the best solution at the end. It was shown to be a robust
approach and the best method on the more difficult instances. The same settings
as described in the original paper wased (underlying memetic algorithm ME4,
population size of twelve and stop criterion of no improvement during two
generations). Five repeats of both thatger search and MEH were executed. The
best and average solutions and average computation times are shown in Table 6.3.
The scatter search with RefSet=5 and using the hill climbing improver was also

tested for comparative purposes.
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Scatter search using hill| Scatter search using VDS at

MEH climber (SS1) 5 secs. (SS2)
Time) Time Time
Instance BestAverage (secs. Best Average(secs. Best Average(secs.)
ORTECO01 1580 2904 33b1 601 1707 713 405 445 1381
BCV-1.8.1 275 285 99 263 268 66 253 253 815

BCV-2.46.1| 1574 1589 2560 1573 1588 1665 1575 1594 1076
BCV-3.46.1| 3439 3471 10714 3379 3396 5226 3344 3380 3814

BCV-4.13.1 12 19 93 11 12 114 10 10 374
BCV-5.4.1 48 48 2/ 48 135 9 48 48 126
BCV-6.13.1 815 959 385 806 904 207 768 768 592
BCV-7.10.1 381 390 g6 381 385 76 381 381 361
BCV-8.13.1 148 166 219 148 148 123 148 148 226
BCV-A.12.1] 1990 2349 929 1685 1813 p18 1434 1522 1786

Table 6.3 Scatter search compared to MEH
The results show that the scatter searsimg the hill climber as the improver

(SS1) produces average solutions which are found in less time and are better than
MEH on seven out of the ten instances. For the other three instances, the solutions
are better for two of them but used slightly more time and worse on one but using
less time. The Wilcoxon signed rank test was used to test the null hypothgsis (H
that the difference in objective values of all the solutions produced by the two
algorithms are symmetrically distributed around the central point of zero. It had a
probablity of greater than 0.05.

The scatter search using the variable depth search with a maximum run time of
five seconds as the improver (SS2) outpers SS1, but with a longer run times

for all instances exceCV-3.46.1 SS2’s average results compared to SS1 are

better for eight of the instances, equal on one and were worse on the other.

For further comparisons, Table 6.4 contains average results of SS1, the best
results of Brucker et al's heuristic constive approach on the BCV data sets
and Burke et al's best result on the ORTECO1 data set. Brucker et al.’s

experiments were all performed on the same machine as SS1.
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As can be seen, SS1 outperforms twnstructive approach on all but two
instances (for one of which they are equal). It can also be noted that SS1 uses less
computation time on all instances but one. SS1 does not outperform the result of
Burke at al. on instance ORTECO1 although it does use considerably less
computation time. SS2 does produce a better result in less time for ORTECO1
though. Comparing SS1 with the constructive approagh(abl defined above)

had a probability of greater than 0.05 using the Wilcoxon signed rank test and the

Sign test.
SS1 Brucker et al. [46] Burke et al. [50]
Penalty Time ($) Penalty Time|(s) Penalty Time

ORTECO1 1707 713 - - 541 12hours
BCV-1.8.1 268 66 323 186 - -
BCV-2.46.1 1588 1665 1594 3424 - -
BCV-3.46.1 3396 5226 3601 2888 - -
BCV-4.13.1 12 114 18 208 - -
BCV-5.4.1 135 ?] 200 16 - -
BCV-6.13.1 904 297 890 3p4 - -
BCV-7.10.1 385 76 396 216 - -
BCV-8.13.1 148 123 148 2p4 - -
BCV-A.12.1 1813 518 3335 944 - -

Table 6.4 Comparisons of scatsearch with other algorithms

For a final comparison, the variable degearch (VDS) was tested on its own but
with a predefined maximum run time equal to the average time used by MEH and
then SS1. Five repeats were also penkxl and the best and average results are

shown in Table 6.5.
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VDS with max run time same as ugedDS with max run time same as used
by MEH by SS1

Instance Best Average Tingsecs Best Average Tingsecs)
ORTECO1 355 377 3351 360 420 713
BCV-1.8.1 252 260 99 253 258 66
BCV-2.46.1| 1572 1592 2560 1574 1588 1665
BCV-3.46.1| 3290 3313 10714 3312 3337 5226
BCV-4.13.1 10 11 93 10 10 114
BCV-5.4.1 48 48 27 48 48 9
BCV-6.13.1 768 768 385 768 777 207
BCV-7.10.1 381 438 a6 381 412 76
BCV-8.13.1 148 148 219 148 148 123
BCV-A.12.1| 1495 1694 929 1734 1865 518

Table 6.5 VDS with the same maximum run times as MEH and SS1

Looking at average results, the variab&pth search outperforms MEH on seven

of the ten instances, is equal on one and worse on the other two. Using best
results, VDS is better on seven out of ten instances and equal on three. When
compared to SS1 and using identical run times, for the average results, VDS is
better on six out of ten instances, equal for two and worse on two. Comparing

best results, VDS is better than SS1 ~e finstances, equal on three and worse

on two. Comparing MEH with VDS, ¢had probability of greater than 0.05 using

the Wilcoxon signed rank test. Comparing SS1 with VDS, adlko has a

probability greater than 0.05.

6.3 Conclusion

A scatter search has been presentedHernurse rostering problem and tested
using benchmark instances. Scatter search is similar to a memetic algorithm in
that it is a population based, evolutiopnapproach which improves individuals
between generations using a heuristiewact method. Scatter search differs in
that new schedules can be constructgth guidance from more than two
solutions and random decisions are replaced with strategic rules. The first

experiments showed that the scatter search is more powerful when using the
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variable depth search as the improvement method rather than a hill climber
operating over the single shift neighbourhood. However, this improvement in
solution quality comes at a cost of extra computation time. Setting a maximum
run time for the VDS of 5 seconds though is a good compromise for most users
on today’s PCs. Even on the largest instances, this produced a run time of less
than a couple of hours.

When compared against the heuristic constructive method of Brucker et al. the
scatter search found better solutions on all but two instances and using less
computational time on all but one. On instance ORTECO1, the scatter search
using the variable depth search as the improvement method found a better
solution than the hybrid approach ofrRe et al., also in less time.

When compared with Burke et al.’s memetic algorithm, the scatter search (with
hill climber improvement method) found better solutions for seven out of ten
instances in less time. This shows that it is an efficient and successful approach.
When scatter search was compared to the VDS on its own with a maximum run
time identical to that used by the scatter search, it produced better results on two
instances and equal results on two more.

Interestingly, there is one instance on which the scatter search outperforms the
VDS and is consistently strong; instargev-A.12.1. This is highlighted by the
solution for BCV-A.12.1 with penalty 1378 which was found in the first set of
experiments. 1378 is a new record and \particularly impressive considering

the days of computation that had been used on it previously by other methods; for
example the VDS during its development and testing. It is not clear why the

scatter search should be so suited to this instaBCe-A.12.1 does contain
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6 A Scatter Search

constraint types which do not appear in the other instances (for example the
tutorship constraint), which may be a possible explanation.

Compared to the variable depth search, the scatter search with the hill climber as
the improvement method is easier to implement with less potential for
introducing bugs. The solution similarity comparison method is simple and
intuitive and the solution combination method is also easily understandable.
When these subroutines are combined into the overall scatter search, a relatively

straightforward yet demonstrably robust and effective approach is produced.
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7 Conclusions

In Section 1.1 the central research questf the thesis was defined: “To what
extent can the state of the art metaheuristic approaches to nurse rostering be
improved upon, particularly to meet today’s real world needs in complex
operating environments?” To answer this question, six hypotheses were formed.
We will now attempt to resolve these hypotheses based on the investigations,

experiments and interpretation of results presented in Chapters 3-6.

Hypothesis 1: Based on recent advanoesnetaheuristic approaches to nurse
rostering, improvements can be made the genetic algorithm in ORTEC's
software Harmony.To test this hypothesis a hybrid heuristic ordering and
variable neighbourhood search was developed. When compared against the
genetic algorithm, a statistical analysis of the results leads us to conclude that
with a high level of probability the hybrid method is better on the smaller
instances (up to twenty nurses). On thgéa instances it is not possible to make
confident conclusions on either algorithm’s superiority. Therefore, although the
hybrid variable neighbourhood search is a successful algorithm which
incorporates novel and effective ideas, this hypothesis can be neither entirely

accepted or rejected.

Hypothesis 2: The research community will significantly benefit from the
development of a collection of real world benchmark data setsecognised at

the start of the research, this hypothesis will have to be tested in a time frame
beyond the scope of this project. Howetbg data sets and related software have

been created. Extensibility, accessibility and the ability to bridge the gap between
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research and practice were key design goals which have been achieved. As a

result we believe this hypothesis will eventually be accepted.

Hypothesis 3: Very large scale neighbourhood search techniques can be
successfully applied to nurse rosterinighe variable depth search confirms this
hypothesis. When it was compared against a number of state-of-the-art

metaheuristic approaches the results show this is a very effective algorithm.

Hypothesis 4: A successful time predefined algorithm can be developed for the
nurse rostering problem.Again the variable depth search confirms this
hypothesis. It uses a heuristic whidlgsed on the execution time remaining,
dynamically alters the length of chains of swaps examined when looking for an
improvement. In effect this prevents over intensification and ensures
diversification during the search. The algorithm was competitive with and often

superior to other approaches even when adjusting to their computation times.

Hypothesis 5: A class of search gi@bourhoods that are known to be very
effective for the nurse rostering problem aut computationally intensive to use,

can now be applied equally successfully but with much shorter computation
times. This hypothesis was confirmed in Section 5.1.3 and was a result of
significant practical importance. These neighbourhood operators were previously
known to be very effective but their use had been very restricted due to their
increased size and subsequent high computational expense. However, it is now

possible to search these neighbourhoods westheely in very short computation
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times and produce high quality rosters. They may also be incorporated in more

sophisticated approaches (aghe variable depth search).

Hypothesis 6: If a successful very large scale neighbourhood search algorithm
can be developed, it will be possibleit@orporate it in a novel evolutionary
algorithm for increased robustnesko test this hypothesis a scatter search was
developed and the variable depth search was used as the improvement method
applied to solutions between generatiolbe scatter search was shown to be
successful when compared against aipresty published evolutionary approach.

It produced very high quality solutions on all instances and a new record on a
particularly complex instance. When compared against the variable depth search
though, over all instances, it could not be concluded with a high level of
confidence that one method outperformed. Hence, although the first part of the
hypothesis can be confirmed, there is not clear evidence that the scatter search is

in fact more robust.

Based on these investigations we can now attempt to answer the main research
guestion: “To what extent can the statiethe art metaheuristic approaches to
nurse rostering be improved upon, particulaolyneet today’s real world needs in
complex operating environments?”. We can conclude that the hybrid variable
neighbourhood outperforms Harmony’'s genetic algorithm on smaller instances.
We cannot make confident conclusions about their performance on larger
instances. We can conclude that the variable depth search is better than the tabu
search of Burke et al. [58] and the hybcmhstructive approach of Brucker at al.

[46]. Although the variable depth search outperforms or is equal to the memetic
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algorithm of Burke at al. [49] on nearly all test instances, based on the statistical
analysis we cannot confidently conclude thas in fact superior. Similarly, the
scatter search produces better results than the memetic algorithm on most of the
benchmark data sets. However, basedtlon statistical anlaysis there is not

enough evidence to make confident conclusions on which is the better algorithm.

7.1 Contributions
As well as answering the main research question this thesis has also been aimed
at advancing research into the highly practical and scientifically challenging nurse

rostering problem. It makes a number of significant research contributions.

Chapter 2 contains a thorough review of the automated nurse rostering literature
and associated publications. Although literature reviews on this topic already
exist e.g. [30, 60, 98], a surprisingly large number of publications have appeared
since the last of these surveys was published in 2004 (over 30). Also, with the
previous summaries to refer to, chap includes interesting contributions,
strengths and weaknesses that were noiqusly discussed. An effort was made

to ensure that the review gives a different angle on the publications, highlighting
key points not previously mentioned. Hence, it contributes to and strengthens the
existing library of nurse rostering surveys.

The review begins with a general esview of personnel scheduling, an
introduction to the different scheduling problems and definitions of key terms
used in personnel scheduling. The varief approaches to solving rostering
problems are then organised into telstinct categories, beginning with
mathematical programming and ending with hyperheuristics. Each of these

general methodologies are briefly examined and all significant publications
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falling within each category are revieweda chronological order. Related nurse
rostering publications, overviews and sys are also discussed. The review
concludes with a short critical discussion of key papers, an analysis of the
progress in automated nurse rostering ardekation of the research in this thesis

to the large body of previous work.

The research conducted in collaboration with ORTEC makes a number of
contributions. Firstly, a novel and successful hybridisation of heuristic ordering
and variable neighbourhood search was developed. This was validated on a
challenging real world problem against a commercially successful genetic
algorithm. As a result the scheduling software Harmony is also now no longer a
‘black box’ to other researchers. Instead, benchmark results have been provided
which can be used to provide validation for other approaches. The ORTEC
problem has already attracted the dttenof other researchers e.g. [64].

The algorithm is an iterative procedure of applying a variable neighbourhood
descent, heuristically disrupting the mseand then repairing it using heuristic
ordering. The variable neighbourhood search can be regarded as an intensification
phase in the overall search and the disruption and repair as a diversification
mechanism. The disruption method is a simple but effective idea, unassigning the
shifts of employees who have poor quality schedules. The heuristic ordering
phase then attempts to improve the quality of these schedules by ranking the
unassigned shifts in order of difficulty (to assign) before reassigning them over all
nurses using a greedy method. For example, night shifts and weekend shifts have

a number of high priority constraints associated with them so it makes sense to try
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to assign them first. The variable neighbourhood descent is then reapplied from
this point in the search space to try to further improve the roster.

Experiments were conducted to examine the effect on solution quality of
increasing the size of the disruption (i.e. the number of employees’ schedules to
unassign shifts from). Interestingly it was discovered that the optimum disruption
size appears to be unrelated to the siz¢he instance being solved. The best
number of nurses’ schedules to unassign was around 3-5 regardless of the number
of nurses in the roster.

Experimental tests showed this approaas consistently more successful than
Harmony’s existing genetic algorithm on instances with less than twenty nurses
and competitive on larger instances. As a result, the hybrid variable
neighbourhood search was incorporated in the latest product versions of Harmony

alongside the genetic algorithm.

The new benchmark problems and related software have provided a solid
platform from which nurse rostering research can build upon well into the future.
Although this was a significant amount wbrk (all the software alone is over
35,000 lines of code at a recent count), the invested time and effort will benefit
other researchers and be rewarded leyghality of new algorithms and related
research it will produce. This, in turn, will lead to an increase in the adoption and
impact of automated personnel scheduling in practice.

To describe and share nurse rostering instances, an XML format has been defined
(using schema). Although a large variety of instances can already be presented,
the format has been designed with flexibility and future expansion in mind. A

number of rostering instances taken from real world scenarios have been
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converted into this new format and made publicly available for other researchers

(seehttp://www.cs.nott.ac.uk/~tec/NRP/These instances have also been used to

establish benchmark results and the best known solutions are also available
online. Benchmarks will help validate new algorithms and methodologies and
encourage competition and collaboration. This will result in more powerful
solvers for practical, real world scenarios.

To help and encourage other researchers a number of software tools have been
created and made available (including source code). These include parsers,
helpful data structures, objective functions and solvers. Rosters may also be
converted to/saved as HTML for examining solutions, their violations and
explanations of penalties via a web browser (Figure 7.1). An application has also
been created for viewing rosters and adjusting them by hand. This gives a better
feel for the complexity of the problems and can also be used to verify new

solutions to the benchmark instances (Figure 7.2).

175



7 Conclusions

4 Schedule :: : GPost - Microsoft Internet Explorer [BEE
Flle  Edt View Favorites Tools Help ]
Address |1 CiiDocuments and SettingsiteciMy Doc lop Projects|NRPY} Solution. 7, Rl v e
o]
i 1 2 3 4

2006 January 02 03 04 05 06 07 08 09 100 11 12 13 14 15 16 17 18 13 20 21 22 23 24 25 26 2F 28 239
M T W T F 85 58 M T W T F 8 8 M T W T F 8 8 M T W T F § §

A o | B B | § Bl (B0 BB B o o) |5 B | B . . . i} =
B oooo HHE oo HE 5 | ) | GO | N | | |

s oo HE o iz i H{e &l BB B oo HHE BN |1

o] N | oo HE =i EN | B EH B3 | ED | B o4 BN Bl |5

E & | B4 B ol B B D D ]

= HE B Bl B = s e 0D D ]

&) o9 By | B D b D . . . . i}

H D D Gl | | . . . D D i}

Reguests [ Employees’ Penalty 7

vinlations [

Shift Cover (Skill level: All} Hide

Bl Frefoned| 3 |3 |3 |3 |8 (3|3 |8 |B|4 (33|93 |3|83|8B|3 |33 |@|(3|3|8|8|3|3F|3

BE proided | 9 |13 |3 |3 @ | #|3|@|9 @@ |@ || 3 @@ |93 |@|F|la|@|a|a|a|al0

. Preferred 1 1 1 1 1 1 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 T 1 1 1 1

. (=7 O O A s A O 1 (T s O O T O 0 1 O T I O U G I = O i
Total Penalty 7

Shifts Stat End Description Cover weights
D 08:00 1700 Day, General type=D, hours warked=8 hours, duration=3 hours Over preferred 1000

Bl 23:00 07:00 Might, General type=N, (night shift=true), hours worked=g hours, duration=8 hours Under preferred 1000
Qver maximurn 1000

Under minimum 1000

KEY Computation
Eiank holiday Found by tec on BALROG (BALROG)

<

Js=

) Internet

Figure 7.1 Roster displayed using HTML

osterViewer

Fio thow Help
CHILD 1 2 3 4 e
Juy, 2001 1516 [17 [18 18 20 21 |22 23 24 [25[26 /27 28 29 30 |31 |01 0203 04 (05 08 07 [08[09 10 11 [12 1:
Employes Penalt, 5 M T W T F 8 3 5 5 M T W T F & 8 MTWTF &8 8§ N
11886 1008 BEEA = BEE EER
7095 0 HE HEREE | BE@A [ | [E
501653 5800 EEE EER H EH EBN
03245 15015 Gl EEE E-
602712 14801 [ | &l EEEEER
502373 9817 & eEeEeE BEE BEeeEEE E
511066 10417 HE B [ |
603361 14809 (&) .. el HE i
2575 14215 a ANEEEEEN =a ma
510595 22417 1] HE |
12310 5820 ] BEE
35022 5600 & el =] H ER
511865 a £ [ ] B &
603042 2000 BEEEE - | ERESA |
@
60315 1000 | — = I @
Skill Penalty | Cover provided
1 7 (01:00-07:15) o [l 2| 4 434 slalalalalglilaslals|s]alalg]s]4]z]a]4]4B
1 T@FIB000 2082 5 11 10 9|7 [1m0]s8 5|lal|e s |s[7|ale|elelalalgalan]s 108l
1 2(10:00-15:15) | 2082| 5 11)10 8 9 |7 10|8 5 s5|sl10 s 5 5 7|46 6|4 8 5 8 /9/al10/9 108 W
1 305151700 | 64986| 1 6 |10 108 |9 /9|12 10/ 6|7 |8 8 5 6 /8|7 |8 5|7 |5 6 8 7|8|6|8 6|7 |7
1 Atizooe00y| 35148 3 |7 [2d1 e 1|51 6 |6 |8 e s |7 a8 |8 |67 @28 ale|6|el7]ald
1 saeonanm | esee|l e |7 (el e lmnlaalaainlelale ale 7laleflelglrlelz dlalslelalz|olom
Vialations for ‘510595 on 29/07/2001 : A
Too few hours worked betwean days 200107-23 and 20010811, Requests min B0 hours works 24] =
Too many consecutive fee days (mas 3] E|
To many congecutive res weekends o

Penalty: 352121 |

Figure 7.2 Screenshot of roster viewer application

176



7 Conclusions

Chapter 5 begins with an analysistié very effective, block neighbourhood for
nurse rostering problems. Althoughstmeighbourhood was already known, its
previous use was severely restricted tluslower computers and its larger size
(compared to the single shift/day neighbourhood). It was shown that these
neighbourhoods can now be exhaustivedgrshed very quickly, producing high
quality solutions. The approach in chapter 5 takes this even further by chaining
these block moves together in a variable depth search (a class of very large scale
neighbourhood search). A number of heuristics for achieving this were developed
and tested. The result was a very competitive algorithm. Again, it was validated
against the state of the art, previgysublished methods on our new benchmark
instances. The most efficient heuristicslboilding the chains was a positive gain
heuristic and a heuristic which only tests swaps which are flagged as containing
violations. The positive gain heuristic waspired by the ‘Gain Criterion’ of the
Lin-Kernighan algorithm for the travelling salesman problem. It ensures the chain
is only continued if the last but one move resulted in an improved (although
infeasible) solution.

A particularly novel feature of this algorithm was a mechanism for allowing the
user to specify a maximum run time which the algorithm dynamically reacts to, in
order to use its time more effectivelydives this by altering the maximum length

of chains it may examine. Hence, it avoids over intensification and ensuring

diversification.

Finally, the variable depth search has been incorporated into an evolutionary

approach. The result is a robust method which produces solid results on all
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instances. The algorithm was particularly effective on one of the more complex
instances. This is also one of the firpplcations of scatter search to the nurse
rostering problem.

Scatter searches are similar to memadigorithms except that the random
decisions are replaced with intelligently designed rules and solutions may be
created from more than one parent. Appdythe approach to the nurse rostering
problem required the development of new methods for measuring similarity
between solutions, creating solutions from multiple parents and maintaining
diversity in the population. For measuring similarity, a simple but effective
method was used : counting the number of common shift assignments in rosters.
To create new solutions for each generatiotiesriocrati¢ approach was adopted

in which each guiding solutiorvotes for the assignments in the new solutions.
Experiments were also conducted to examine the trade offs between solution
quality and computation time, when the size of the reference sets and the run
time of the improvement method (variable depth search or a simple hill climber)
were varied. It was discovered that the best trade off was a relatively small
reference set combined with using the variable depth search with a maximum
execution time of 5 seconds. These sg#iproduced high quality solutions in
acceptable computation times on all instarexes a new record for a particularly

complex instance.

All the source code for the algorithms developed for the benchmark instances is

publicly available. This is also a novel contribution, especially within the field of

nurse rostering. Writing code to be shared with other researchers, requires a
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discipline and standard which is not ajanecessary for code written for private

use.

7.2 Publications

The research presented in this thdgs been published (or is currently under

review) as follows:

[50] Burke, E.K., T. Curtois, G. Post, R. Qu, and B. VeltmanHybrid
Heuristic Ordering and Variable Neighbourhood Search for the Nurse
RosteringProblem.European Journal of Operational Research, Accepted

for publication, to Appear 2008.

[51] Burke, E.K., T. Curtois, R. Qu, and G. Vanden BeRy&catter Search

for the Nurse Rostering Proble@007, Under journal review.

[52] Burke, E.K., T. Curtois, R. Qu, and G. Vanden Befydjme Predefined

Variable Depth Search for Nurse Rosterig§07, Under journal review.

The author of this thesis is also the mairthor of the papers listed above. During
this project the author also contributed to the following related work which has
been published or is currently under revieMae author’s contributions to these
papers were implementing (but notsdming) algorithms and/or conducting

experiments.

[46] Brucker, P., E.K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe,
Adaptive Construction of Nurse I&clules: A Shift Sequence Based

Approach and New Benchmarkénder journal review, 2006.
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[82] Curtois, T., L. Fijn van Draat, J.-K. van Ommeren, and G. Posgress
Control in Variable Neighbourhood Searcim Proceedings of the 6th
International Conference on the Practice and Theory of Automated
Timetabling E.K. Burke and H. Rudova, Editors. 2006. Brno, Czech

Republic. pp. 376-380.

7.3 Future Research
This section discusses possible futureeeech directions which are directly
related to the specific research presented in this thesis and for nurse rostering in

general.

7.3.1 Future Research Directly Related to this Thesis

A large number of nurse rostering probkeaescribed in the literature could be
presented in the current version of the data format. However, the format will
continue to be extended to include a wider variety of instances with varying
objective functions. Currently, many of the constraints are soft and to model a
problem where one of these constraints is actually hard, a very high weight is set.
Although this has proved satisfactory, it may be an improvement to include an
option to identify a constraint as strictly hard. This would reduce the risk of
returning infeasible solutions.

Since this thesis was completed, two more problems have been added to the
database. One from Queen’s Medical Centre, Nottingham and another from
SINTEF (a Norwegian research organisation).

The format is also currently being extended to allow the inclusion of instances

(including physician scheduling) from hotgs in the area of Montreal, Canada.
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These instances allow minimum, maximum and preferred levels of cover to be

specified. The objective function includes a measure of deviation from preferred

levels which has to be minimised. To accommodate these instancés:nblat

also now allows cover constraints to be specified per periods of the day as well as
per shift. The shifts therefore can include definitions of which periods of the day

they cover. A number of new employee constraints particular to these instances
have also been added. This work, which is being carried out in collaboration with

the Université de Montréal, will allow us to make comparisons between different

algorithmic approaches on shared instances.

Relating to the algorithms presented, there may be potential for further
investigation. For example, in the variable depth search, specific neighbourhoods
(i.,e. maximum block size settings) anduhistics are particularly effective on
certain instances. A method which can exploit this by, for example, intelligently
selecting neighbourhoods and heuristics,y nii@ able to contribute gains in
performance. One possibility may be an algorithm which runs some short
preliminary tests on the instance, testatifferent parameterand heuristics in

order to estimate a good set of paramsetfer the variable depth search. An
alternative approach may be to dynamically adjust the algorithm’s set of
heuristics and parameters as the search progresses. This is somewhat akin to

hyperheuristics [63, 217].

Another interesting idea with potentiddenefit is related to analysing and

optimising constraint evaluation funatis used in neighbourhood searches. As

discussed in section 5.2.3 improvements in the speed of the evaluation functions
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can contribute to increased performancéhef search algorithms (more solutions
examined per second). Some work has been initiated in this direction e.g. [53].
However, there may be scope for hat improvements. Pattern matching
algorithms could have possible application here. Again, the benchmark instances

and publicly available code could be used for experiments and validation.

7.3.2 Future Research Directionsfor Nurse Rostering

In the survey papers [60, 73, 99] a variet promising future research directions
related to nurse scheduling in geneaaé¢ suggested. Some of the key ideas

include:

Integrating staffing and rostering models. If the staffing and rostering
problems are combined into a single model, it may yield benefits in terms of cost
savings and increased satisfaction with work schedules. For example, a combined
model may help decision makers analifse relationship between the workforce
size (and related costs) and the quality of rosters that could be produced under
different demand scenarios. A multiobjective formulation may be most

appropriate here.

Par eto optimisation has also been suggested as having utility in nurse rostering.
So far, though, the number of investipns using these methods has been
limited, [141, 158] being the only real digations. If a decision maker wishes to
view or choose from the trade off between two or more conflicting objectives (or
groups of objectives), then a Pareto optimisation approach would be an obvious

choice.

182



7 Conclusions

Producing more robust schedules which can adapt more easily to unforeseen
circumstances would also be an intarggtscientific challenge with practical
benefits. There has been a variety of research into how to assign pool or float
nurses or how to adjust schedules wheployees are absent e.g. [188-190, 234].
However, there has been very little work into how to make these potential

problems easier by building robustness #iexibility into the original rosters.

Parameterless algorithms. Naturally, end users do not want to fiddle with
meaningless parameters to achieve the highest quality rosters. They just want to
click a button and see the solutions appear. The time predefined variable depth
search in chapter 5 shows how it is possible to accept a preferred run time and
dynamically adjust to this requiremenithout requiring manual tinkering with
settings, yet still produce excellent rosters. In section 7.3.1, methods which may
enhance solution quality even further through automatic and intelligent parameter
selection are also suggested. In the future, approaches which minimise the
reliance on manual parameter/heuristicesgbn, should be aimed for. (This is

also a recent research direction in exam timetabling [48]).

Improved user interfaces. Increasing the attractiveness and ease of use of user
interfaces will increase the adoption of automated rostering systems in hospitals.
As discussed, nurse rostering problenes @mplicated and as such require a lot

of data input. Entering and modifying this data should be fast and intuitive for the
typical end users. There is a considé&radmount of work in researching and
designing such complex user interfaces. However, appealing and user friendly

interfaces will significantly increase the uptake of rostering systems.
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Algorithmic improvements. This thesis has introduced a number of algorithms
which have been shown to outperforcommercial and previously published
approaches. Easily accessible and praltficsiented benchmark instances have
also been introduced in order to allow future comparisons against these new
methods. Predicting the shape and form of future solvers is difficult. However,
problem decomposition and hybrid methods have both been suggested as having
potential for the nurse rostering probl¢d®]. Again, problem decomposition has

already been successfully investigated for exam timetabling [66].

184



References

References

1. Aarts, E., J. Korst, and W. MichielSimulated Annealingin Search
Methodologies. Introductory Tutorials in Optimization and Decision
Support Technique.K. Burke and G. Kendall, Editors. 2005, Springer.
pp. 187-210.

2. Aarts, E. and J.K. Lenstra, Editorsocal Search in Combinatorial
Optimization 1997, Wiley.

3. Abdennadher, S. and H. SchlenkKBITERDIP An Interactive Constraint
Based Nurse Schedulein Proceedings of The First International
Conference and Exhibition on The Prasti Application of Constraint
Technologies and Logic Programmirng99.

4. Abdennadher, S. and H. Schlenkidurse scheduling using constraint
logic programming in Proceedings of the Eleventh Conference on
Innovative Applications of Artificial Intelligencd999: AAAI Press. pp.
838-843.

5. Abdullah, S., S. Ahmadi, E.K. Burke, and M. Drimyestigating Ahuja-
Orlin's Large Neighbourhood SearctApproach for Examination
Timetabling.OR Spectrum, 20029(2): pp. 351-372.

6. Abdullah, S., S. Ahmadi, E.K. Burke, M. Dror, and B. McColldmlabu
Based Large Neighbourhood Search Methodology for the Capacitated
Examination Timetabling Problendournal of the Operational Research
Society, 2007 (to appear).

7. Abernathy, W.J., N. Baloff, J.C. Hershey, and S. Warfdlhree-Stage
Manpower Planning and Scheduling Model - A Service-Sector Example

Operations Research, 1923(3): pp. 693-711.

185



10.

11.

12.

13.

14.

15.

16.

References

Ahuja, H. and R. Sheppar@omputerized nurse schedulinigndustrial
Engineering, 19757: pp. 24-29.

Ahuja, R.K., O. Ergun, J.B. Orlin, and A.P. Punn@nsurvey of very
large-scale neighborhood search technique®iscrete Applied
Mathematics, 2002123(1-3): pp. 75-102.

Aickelin, U. Genetic Algorithms for Multiple-Choice ProblemBhD
thesis, University of Wales Swansea, 1999.

Aickelin, U., E.K. Burke, and J. LiAn Estimation of Distribution
Algorithm with Intelligent Local Search for Rule-based Nurse Rostering.
Journal of the Operational Reseh Society, 2007(in print).

Aickelin, U. and K.A. DowslandExploiting problem structure in a
genetic algorithm approach ta nurse rostering problemJournal of
Scheduling, 2003B(3): pp. 139-153.

Aickelin, U. and K.A. DowslandAn Indirect Genetic Algorithm for a
Nurse Scheduling ProblenComputers and Operations Research, 2003.
31(5): pp. 761-778.

Aickelin, U. and J. LiAn Estimation of Distribution Algorithm for Nurse
SchedulingAnnals of Operations Research, 2007(in print).

Aickelin, U. and P. WhiteBuilding Better Nurse Scheduling Algorithms.
Annals of Operations Research, 20048: pp. 159-177.

Al-Zubaidi, H. and A.H. ChristeMaintenance manpower modelling for a
hospital building complexEuropean Journal of Operational Research,

1997.99(3): pp. 603-618.

186



17.

18.

19.

20.

21.

22.

23.

24,

25.

References

Alfares, H.K.,Survey, Categorization, and Comparison of Recent Tour
Scheduling LiteratureAnnals of Operational Research, 20Q27: pp.
145-175.

Anzai, M. and Y. MiuraComputer program for quick work scheduling of
nursing staff Medical Informatics, 198712: pp. 43-52.

Arabeyre, J.P., J. Fearnley, F.C. Steiger, and W. TedtherAirline
Crew Scheduling Problem: A Surv@yansportation Science, 196¥2):
pp. 140-163.

Arthur, J.L. and A. Ravindrad multiple objective nurse scheduling
model.AlIE Transactions, 1981.3(1): pp. 55-60.

Azaiez, M.N. and S.S. Al Sharif 0-1 goal programming model for
nurse schedulingComputers and Operations Research, 2628): pp.
491 - 507.

Bailey, J.)ntegrated days off and shift personnel schedul@gmputing
and Industrial Engineering, 198%4): pp. 395-404.

Bailey, J. and J. Fiel@ersonnel scheduling with flexshift moddisurnal

of operations management 19883): pp. 327-338.

Baker, K.R., R.N. Burns, and M. Cart&taff Scheduling with Day-Off
and Workstretch Constraint®@IllE Transactions, 197911(4): pp. 286-
292.

Bard, J.F. and H.W. PurnomA, column generation-based approach to
solve the preference scheduling problem for nurses with downgrading.

Socio-Economic Planning Sciences, 208%3): pp. 193-213.

187



26.

27.

28.

29.

30.

31.

32.

33.

References

Bard, J.F. and H.W. PurnomBreference scheduling for nurses using
column generationEuropean Journal of Operational Research, 2005.
164(2): pp. 510-534.

Bard, J.F. and H.W. Purnom@yclic Preference Scheduling of Nurses
Using A Lagrangian-Based Heuristidgournal of Scheduling, 20070(1):
pp. 5-23.

Bartédk, R.Constraint Programming: In Pursuit of the Holy Graih
Proceedings of the Week of Doctoral Students (WDI®®9. Prague,
Czech Republic: MatFyzPress. pp. 555-564.

Beaulieu, H., J.A. Ferland, B. Gendron, and P. Michéilanathematical
programming approach for scheduling gigians in the emergency room.
Health Care Management Science, 2@&j8): pp. 193-200.
Beddoe(G.R.Case-Based ReasoningRPersonnel Rosterind®hD Thesis,
University of Nottingham, UK, 2004.

Beddoe, G.R. and S. Petrovis. novel approach to finding feasible
solutions to personnel rostering problenmis Proceedings of the 14th
Annual Conference of the Production and Operations Management
Society (POM), Savannah, Georgia, United Sta2663.

Beddoe, G.R. and S. Petrov&electing and Weighting Features Using a
Genetic Algorithm in a Case-Based Reasoning Approach to Personnel
Rostering.European Journal of Operational Research, 20062): pp.
649-671.

Beddoe, G.R. and S. PetroviEnhancing Case-Based Reasoning for
Personnel Rostering with Selected Tabu Search Conckpimal of the

Operational Research Society, To appear.

188



34.

35.

36.

37.

38.

39.

40.

41.

42.

References

Begur, S.V., D.M. Miller, and J.R. WeavAn Integrated Spatial DSS for
Scheduling and Routing Home-Health-Care Nurseserfaces, 1997.
27(4): pp. 35-48.

Belien, J. and E. Demeulemeest@r,branch-and-price approach for
integrating nurse and surgery schedulinguropean Journal of
Operational Research, To appear in 2007.

Bell, P.C., G. Hay, and Y. Liang, visual interactive decision support
system for workforce (nurse) schedulingpformation Systems and
Operational Research, 1988l(2): pp. 134-145.

Bellanti, F., G. Carello, F.D. Croce, and R. Tadkigreedy-based
neighborhood search approach to a nurse rostering probEanmopean
Journal of Operational Research, 2008B: pp. 28—40.

Berman, O., R.C. Larson, and E. Pink8cheduling workforce and
workflow in a high volume factorjManagement Science, 1998(2): pp.
158-172.

Berrada, I., J.A. Ferland, and P. Micheladnmnulti-objective approach to
nurse scheduling with both hard and soft constraifscio-Economic
Planning Sciences, 19980(3): pp. 183-193.

Blake, J.T. and M.W. Cartek goal programming approach to strategic
resource allocation in acute care hospital&uropean Journal of
Operational Research, 20020(3): pp. 541-561.

Blau, R. and A. Seaxurse Scheduling with a Microcomputdaurnal of
Ambulance Care Management, 1983: pp. 1-13.

Blochliger, 1.,Modeling staff scheduling problems. A tutoriBuropean

Journal of Operational Research, 20088(3): pp. 533-542.

189



43.

44,

45.

46.

47.

48.

49,

50.

References

Bosch, R. and M. Tricknteger Programmingin Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques
E.K. Burke and G. Kendall, Editors. 2005, Springer. pp. 69-96.

Bradley, D.J. and J.B. MartinContinuous personnel scheduling
algorithms: a literature reviewdournal of the Society for Health Systems,
1991.2(2): pp. 8-23.

Brooks, I. and S. Swailegnalysis of the relationship between nurse
influences over flexible working and commitment to nursiogirnal of
Advanced Nursing, 20038(2): pp. 117-126.

Brucker, P., E.K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe,
Adaptive Construction of Nurse I&cules: A Shift Sequence Based
Approach and New Benchmarkénder journal review, 2006.

Burke, E.K., Y. Bykov, J. Newall, and S. Petrovic,Time-Predefined
Approach to Course TimetablingYugoslav Journal of Operations
Research, 20033(2): pp. 139-151.

Burke, E.K., Y. Bykov, J. Newall, and S. Petrovc,Time-Predefined
Local Search Approach tBxam Timetabling ProblemHE Transactions,
2004.36(6): pp. 509-528.

Burke, E.K., P. Cowling, P. De Causmaecker, and G. Vanden Bérghe,
Memetic Approach to the Nurse Rostering Problapplied Intelligence,
2001.15(3): pp. 199-214.

Burke, E.K., T. Curtois, G. Post, R. Qu, and B. VeltmanHybrid
Heuristic Ordering and Variable Neighbourhood Search for the Nurse
Rostering ProblemEuropean Journal of Operational Research, Accepted

for publication, to Appear 2007.

190



51.

52.

53.

54.

55.

56.

57.

58.

References

Burke, E.K., T. Curtois, R. Qu, and G. Vanden Befg&catter Search
for the Nurse Rostering Proble@007, Under journal review.

Burke, E.K., T. Curtois, R. Qu, and G. Vanden Befg&ime Predefined
Variable Depth Search for Nurse Rosterig§07, Under journal review.

Burke, E.K., P. De Causmaeck8&: Petrovic, and G. Vanden Berghe.
Fitness Evaluation for Nurse Scheduling Problemd$roceedings of the
Congress on Evolutionary Computation (CEC20@001. Seoul, Korea:
IEEE Press. pp. 1139-1146.

Burke, E.K., P. De Causmaeck8&: Petrovic, and G. Vanden Berghe.
Variable Neighbourhood Search for Nurse Rostering Prohlems
Proceedings of the 4th Metaheuits Internation Conference (MIC
2001) 2001. Porto, Portugal. pp. 755-60.

Burke, E.K., P. De Causmaecker, S. Petrovic, and G. Vanden Barghe.
Multi-Criteria Meta-heuristic Approach to Nurse Rosteringn
Proceedings of the 2002 Congress on Evolutionary Computation
(CEC2002) 2002. Hawaii, USA: IEEE Press. pp. 1197-1202.

Burke, E.K., P. De Causmaeck8&: Petrovic, and G. Vanden Berghe,
Variable Neighborhood Search for Nurse Rostering Prohleins
Metaheuristics: Computer Decision-Making.G.C. Resende and J.P. de
Sousa, Editors. 2004, Kluwer. pp. 153-172.

Burke, E.K., P. De Causmaeckgr, Petrovic, and G. Vanden Berghe,
Metaheuristics for Handling Time Imteal Coverage Constraints in Nurse
SchedulingApplied Artificial Intelligence, 200620(3).

Burke, E.K., P. De Causmaecker, and G. Vanden BekgHgbrid Tabu

Search Algorithm for the Nurse Rostering Prohlem Simulated

191



59.

60.

61.

62.

63.

64.

References

Evolution and Learning, Selected Papers from the 2nd Asia-Pacific
Conference on Simulated Evolutiamd Learning, SEAL 98, Springer
Lecture Notes in Atrtificial Intelligence Volume 158 McKay, et al.,
Editors. 1999: Springer. pp. 187-194.

Burke, E.K., P. De Cammecker, and G. Vanden BerglNgvel Meta-
heuristic Approaches to Nurse Rostering Problems in Belgian Hospitals
in Handbook of Scheduling: Algorithms, Models and Performance
Analysis J. Leung, Editor. 2004, CRC Press.

Burke, E.K., P. De Causmaeckés. Vanden Berghe, and H. Van
Landeghem,The State of the Art of Nurse Rosteringpurnal of
Scheduling, 20047(6): pp. 441 - 499.

Burke, E.K., E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg,
Hyper-Heuristics: An Emerging Direction in Modern Search Technoglogy
in Handbook of Meta-Heuristic$. Glover and G. Kochenberger, Editors.
2003, Kluwer. pp. 457-474.

Burke, E.K. and G. Kendall, EditoiSearch Methodologies. Introductory
Tutorials in Optimization and Decision Support Techniqu2605,
Springer.

Burke, E.K., G. Kendall, and E. Soubeigalabu-Search Hyperheuristic
for Timetabling and Rosteringournal of Heuristics, 2009(6): pp. 451 -
470.

Burke, E.K., J. Li, and R. Q& Hybrid Model of Integer Programming
and Variable Neighbourhood Search for Highly-constrained Nurses

Rostering ProblemdJnder review, 2006.

192



65.

66.

67.

68.

69.

70.

71.

72.

73.

References

Burke, E.K., B. MacCarthy, S. Petrovic, and R. Quiltiple-retrieval
case-based reasoning for course timetabling probledosirnal of the
Operational Research Society, 2088. pp. 148-162.

Burke, E.K. and J. Newaly Multi-Stage Evolutionary Algorithm for the
Timetable ProblemlEEE Transactions on Evolutionary Computation,
1999.13(1): pp. 63-74.

Burke, E.K. and S. PetroviRecent Research Directions in Automated
Timetabling.European Journal of Operational Research, 208X2): pp.
266-280.

Burke, E.K. and S. Petrovitiniversity Timetabling (Chapter 45)n
Handbook of Scheduling: Algorithms, Models, and Performance Analysis
J.Y.-T. Leung, Editor. 2004, CRC Press.

Burke, E.K., S. Petrovic, and R. QCase-based heuristic selection for
timetabling problemsJournal of Scheduling, 2008(2): pp. 115-132.

Cai, X. and K.N. LiA genetic algorithm for scheduling staff of mixed
skills under multi-criteria. European Journal of Operational Research,
2000.125(2): pp. 359-369.

Campos, V., F. Glover, M. Laguna, and R. Mafth Experimental
Evaluation of a Scatter Search for the Linear Ordering Probléoarnal
of Global Optimization, 200121(4): pp. 397-414.

Carter, M.W. and S.D. Lapier®¢cheduling Emergency Room Physicians.
Health Care Management Science, 2G%4): pp. 347-360.

Cheang, B., H. Li, A. Lim, and B. Rodrigudijrse rostering problems—

a bibliographic surveyEuropean Journal of Operational Research, 2003.

151(3): pp. 447-460.

193



74.

75.

76.

77.

78.

79.

80.

References

Cheeseman, P., B. Kanefsky, and W.M. Taydnere the really hard

problems are in Proceedings of the Twelfth International Joint
Conference on Artificial IntelligenceJ. Mylopoulos and R. Reiter,
Editors. 1991. San Mateo, CA: Morgan Kaufmann. pp. 331-337.
Chen, J.-G. and T.W. Yeungybrid expert-system approach to nurse
schedulingComputers in Nursing, 19931(4): pp. 183-190.

Cheng, B.M.W., J.H.M. Lee, and J.C.K. WuConstraint-Based Nurse
Rostering System Using a Redundant Modeling Appraadtroceedings
of Eighth IEEE International Comfence on Tools with Artificial
Intelligence 1996. pp. 140-148.

Cheng, B.M.W., J.H.M. Lee, and J.C.K. WAI,nurse rostering system
using constraint proggmming and redundant modelinglEEE
Transactions on Information Technology in Biomedicine, 1991): pp.
44-54.

Chiarandini, M., A. Schaerf, and F. Tiozz&olving Employee
Timetabling Problems with Fléde Workload using Tabu Searcim
Proceedings of the 3rd International Conference on the Practice and
Theory of Automated Timetabling (PATAT-200B)K. Burke and W.

Erben, Editors. 2000. Konstanz, Germany. pp. 298-302.

Chun, A.HW., S.H.C. Chan, G.P.S. Lam, F.M.F. Tsang, J. Wong, and

D.W.M. Yeung.Nurse Rostering at the Hospital Authority of Hong Kong

in Proceedings of the Twelfth Conference on Innovative Applications of

Artificial Intelligence 2000. pp. 951 - 956.
Cowling, P., G. Kendall, and E. Soubeigyperheuristics: A robust

optimisation method applied to nurse schedylimg Proceedings of

194



81.

82.

83.

84.

85.

86.

References

Parallel Problem Solving from Nature VII2002. Granada, Spain:
Springer-Verlag. pp. 851-860.

Cung, V.-D., T. Mautor, P. Michelon, and A. TavaresScatter Search
Based Approach for the Quadratic Assignment ProplienfProceedings
of IEEE International Conference on Evolutionary Computatib®97.
pp. 165-169.

Curtois, T., L. Fijn van Draat, J.-K. van Ommeren, and G. Posgress
Control in Variable Neighbourhood Searcim Proceedings of the 6th
International Conference on the Practice and Theory of Automated
Timetabling E.K. Burke and H. Rudova, Editors. 2006. Brno, Czech
Republic. pp. 376-380.

Dantzig, G.B., A Comment on Edie's "Traffic Delays at Toll Booths".
Journal of the Operations Resch Society of America, 1952(3): pp.
339-341.

Dantzig, G.B.,Linear Programming and Extensian4998: Princeton
University Press.

Darmoni, S.J., A. Fajner, N. Mahé, A. Leforestier, M. Vondracek, O.
Stelian, and M. BaldenweckHoroplan: computer-assisted nurse
scheduling using constint-based programmingournal of the Society for
Health Systems, 1995: pp. 41-54.

De Causmaecker, P. and G. Vanden BeRgdaxation of Coverage
Constraints in HospitaPersonnel Rosteringn Selected Revised Papers
of 4th International Conference on Practice and Theory of Automated
Timetabling, Springer Lecture Notes in Computer Science .2F4Q.

Burke and P. De Causmaecker, Editors. 2003. pp. 129-147.

195



87.

88.

89.

90.

91.

92.

93.

94.

References

Deb, K., Multi-objective Optimization in Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques
E.K. Burke and G. Kendall, Editors. 2005, Springer. pp. 273-316.

Dias, T.M., D.F. Ferber, C.C. de Souza, and A.V. MoGmstructing
nurse schedules at large hospital$nternational Transactions in
Operational Research, 20A®)(3): pp. 245-265.

Dorigo, M., V. Maniezzo, and A. Colorf\nt system: optimization by a
colony of cooperating agentssEE Transactions on Systems, Man, and
Cybernetics. Part B: Cybernetics, 1996(1): pp. 29-41.

Dorigo, M. and T. StutzleAnt Colony Optimization2004: The MIT
Press.

Dowsland, K.A.,Nurse scheduling with tabu search and strategic
oscillation. European Journal of Operational Research, 199&2): pp.
393-407.

Dowsland, K.A. and J.M. Thompsdplving a nurse scheduling problem
with knapsacks, networks and tabu seardburnal of the Operational
Research Society, 20081(7): pp. 825-833.

Easton, F.F. and N. Mansouwk. Distributed Genetic Algorithm for
Employee Staffing and Scheduling ProblemsProceedings of the 5th
International Conference on Genetic Algorithmi®93. San Mateo. pp.
360-367.

Easton, F.F., D.F. Rossin, and W.S. Bordémsalysis of Alternative
Scheduling Policies for Hospital NurseBroduction and Operations

Management, 1992(2): pp. 159-174.

196



References

95. Easton, K., G. Nemhauser, and M. Tri8gorts Scheduling (Chapter
52), in Handbook of Scheduling: Algadnins, Models, and Performance
Analysis J.Y.-T. Leung, Editor. 2004, CRC Press.

96. Edie, L.C.,Traffic Delays At Toll BoothsJournal of the Operations
Research Society of America, 19242): pp. 107-138.

97. Ernst, A.T., P. Hourigan, M. Krishnamoorthy, G. Mills, H. Nott, and D.
Sier. Rostering Ambulance Officers Proceedings of the 15th National
Conference of the Australian Society for Operations ReseaB899. pp.
470-481.

98. Ernst, A.T., H. Jiang, M. Krishnamoorthy, B. Owens, and D. 3ier,
Annotated Bibliography of Personnel Scheduling and RosteAngals
of Operations Research, 20027: pp. 21-144.

99. Ernst, A.T., H. Jiang, M. Krishnamoorthy, and D. S&gff scheduling
and rostering: A review of atipations, methods and modeEuropean
Journal of Operational Research, 20083(1): pp. 3-27.

100. Eveborn, P. and M. RénngviSicheduler — A System for Staff Planning.
Annals of Operations Research, 20023: pp. 21-45.

101. Feo, T.A. and M.G.C. Resendsreedy Randomized Adaptive Search
ProceduresJournal of Global Optimization, 1996(2): pp. 109-133.

102. Ferland, J.A., |. Berrada, I. Nabli, B. Ahiod, P. Michelon, V. Gascon, and
E. Gagné,Generalized Assignment Tyg&oal Programming Problem:
Application to Nurse Schedulindournal of Heuristics, 200%(4): pp.

391-413.

197



References

103. Fitzpatrick, J.M., A.E. While, and J.D. Robe8hjft work and its impact
upon nurse performance: current knowledge and research is3oesal
of Advanced Nursing, 19929(1): pp. 18-27.

104. Fogel, D.B.Evolutionary Computation: The Fossil Recdrflo8: Wiley-
IEEE Press.

105. Franz, L.S., H.M. Baker, G.K. Leong, and T.R. Rakesyathematical
model for scheduling and staffing multiclinic health regioBsropean
Journal of Operational Research, 19883): pp. 277-289.

106. Freuder, E.C. and M. Wallac€pnstraint Programmingin Search
Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques.K. Burke and G. Kendall, Editors. 2005, Springer.
pp. 239-272.

107. Fries, B.E Bibliography of Operations Regech in Health-Care Systems.
Operations Research, 19728(5): pp. 801-814.

108. Gans, N., G. Koole, and A. Mandelbauielephone Call Centers:
Tutorial, Review, and Research Prosped#anufacturing & Service
Operations Management, 20@82): pp. 79-141.

109. Gascon, V., S. Villeneuve, P. Michelon, and J.A. Ferl&odeduling the
flying squad nurses of a hospital using a multi-objective programming
model.Annals of Operations Research, 2098. pp. 149-166.

110. Gendreau, M., J.A. Ferland, B. Gendron, N. Hail, B. Jaumard, S.D.
Lapierre, G. Pesant, and P. SoriaRbaysician Scheduling in Emergency
Rooms in Proceedings of the 6th International Conference on the
Practice and Theory of Automated Timetablikg Burke and H. Rudova,

Editors. 2006. Brno, Czech Republic.

198



111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

References

Gendreau, M. and J.-Y. Potvirgbu Searchin Search Methodologies.
Introductory Tutorials in Optimization and Decision Support Techniques
E.K. Burke and G. Kendall, Editors. 2005, Springer. pp. 165-186.
Glover, F..,Tabu Search - Part IORSA Journal on Computing, 1989.
1(3): pp- 190-206.

Glover, F..Tabu Search - Part IORSA Journal on Computing, 1990.
4(1): pp. 4-32.

Glover, F.Ejection Chains, Reference Sttures and Alternating Path
Methods for Traveling Salesman Problem®iscrete Applied
Mathematics, 1996&5(1-3): pp. 223-253.

Glover, F.A Template for Scatter Search and Path Relinkimgiecture
Notes in Computer Science, 1363K. Hao, et al.,, Editors. 1998,
Springer. pp. 13-54.

Glover, F. and M. Lagun@abu Searchin Modern Heuristic Techniques
for Combinatorial Problems C.R. Reeves, Editor. 1993, Blackwell
Scientific Publications: Oxford. pp. 70-150.

Glover, F. and M. Lagunalabu Search 1997: Kluwer Academic
Publishers.

Glover, F., M. Laguna, and R. MaRindamentals of Scatter Search and
Path RelinkingControl and Cybernetics, 2008(3): pp. 653-684.

Glover, F., M. Laguna, and R. Marficatter Searchin Advances in
Evolutionary Computing A. Ghosh and S. Tsutsui, Editors. 2003,
Springer. pp. 519-539.

Glover, F., A. Lgkketangen, and D.L. Woodrudcatter Search to

Generate Diverse MIP Solutionsy OR Computing Tools for Modeling,

199



121.

122.

123.

124,

125.

126.

127.

References

Optimization and Simulation: Interfaces in Computer Science and
Operations Resear¢chM. Laguna and J.L. Gonzalez-Velarde, Editors.
2000, Kluwer. pp. 299-317.

Glover, F. and C. McMillanfThe general employee scheduling problem:
an integration of MS and AComputers and Operations Research, 1986.
13(5): pp. 563-573.

Glover, F., C. McMillan, and R. GloveA Heuristic Programming
Approach to the Employee Scheduling Problem and Some Thoughts on
"Managerial Robots"Journal of Operations Management, 1982): pp.
113-128.

Glover, F.W. and G.A. Kochenberger, Editorslandbook of
Metaheuristic2003, Kluwer Academic Publishers.

Goldberg, D.E.,Genetic Algorithms in Search, Optimization, and
Machine Learning1989: Addison-Wesley.

Greistorfer, PA Tabu Scatter Search Metahstic for the Arc Routing
Problem.Computers & Industrial Engineering, 200: pp. 249-266.
Gutjahr, W.J. and M.S. Raunekn ACO algorithm for a dynamic
regional nurse-scheduling problem in Austraomputers & Operations
Research, 200B4: pp. 642—666.

Hansen, P. and N. Mladeng\n introduction to variable neighborhood
search in Meta-heuristics: Advancesand trends in local searchs
paradigms for optimizatignS. Voss, et al., Editors. 1999, Kluwer

Academic Publishers. pp. 433-458.

200



128.

129.

130.

131.

132.

133.

134.

135.

136.

References

Hansen, P. and N. Mladengwariable neighborhood search: Principles
and applicationsEuropean Journal of Operational Research 208 3):
pp. 449-467.

Hansen, P. and N. MladengviVariable Neighborhood Searchn
Handbook of Metaheuristic$. Glover and G.A. Kochenberger, Editors.
2003, Springer. pp. 145-184.

Hansen, P. and N. Mladengwariable Neighborhood Searcim Search
Methodologies. Introductory Tutorials in Optimization and Decision
Support Technique.K. Burke and G. Kendall, Editors. 2005, Springer.
pp. 211-238.

Hogg, T., B.A. Huberman, and C. Willian®2hase transitions and the
search problemaArtificial Intelligence, 199681 pp. 1-15.

Holland, J.H.Adaptation in Natural and Artificial System$992: The
MIT Press.

Hoos, H.H. and T. StitzIBATLIB: An Online Resource for Research on
SAT in SAT 20001.P. Gent, H.v. Maarerand T. Walsh, Editors. 2000:
IOS Press. pp. 283-292.

Hung, R.Hospital nurse schedulinglournal of Nursing Administration,
1995.25(7-8): pp. 21-23.

Ikegami, A. and A. Niwa\ Subproblem-centric Model and Approach to
the Nurse Scheduling Probleiathematical Programming, 20037(3):
pp. 517-541.

ILOG, CPLEX Mathematical programming optimizer

(http://www.ilog.com/products/cplexétrieved 27-June-200.72006.

201



137.

138.

139.

140.

141.

142.

143.

References

ILOG, ILOG Constraint programming engine

(http://www.ilog.com/products/cpétrieved 27-June-20072006.

Inoue, T., T. Furuhashi, H. Maeda, and M. TakabaRProposal of
Combined Method of Evolutiona’lgorithm and Heuristics for Nurse
Scheduling Support SystetBEE Transactions on Industrial Electronics,
2003.50(5): pp. 833- 838.

Isken, M. and W. Hancock, Heuristic Approach to Nurse Scheduling in
Hospital Units with Non-Stationary, Urgent Demand, and a Fixed Staff
Size Journal of the Society for Health Systems, 129D): pp. 24-41.

Jan, A., M. Yamamoto, and A. Ohuckvolutionary Algorithms for
Nurse Scheduling Problemn Proceedings of the 2000 Congress on
Evolutionary Computation2000. California, USA: IEEE Press. pp. 196-
203.

Jaszkiewicz, A.A metaheuristic approach to multiple objective nurse
scheduling. Foundations of Computing and Decision Sciences, 1997.
22(3): pp. 169-183.

Jaumard, B., F. Semet, and T. VovoGeneralized Linear Programming
Model for Nurse Schedulingzuropean Journal of Operational Research
1998.107(1): pp. 1-18.

Johnson, D.SA Theoretician's Guide to the Experimental Analysis of
Algorithms in Data Structures, Near Neighbor Searches, and
Methodology: Fifth and Sixth DIMACS Implementation Challenlyesl.
Goldwasser, D.S. Johnson, and CMtGeoch, Editors. 2002. pp. 215-

250.

202



144,

145.

146.

147.

148.

149.

150.

151.

152.

References

Kawanaka, H., K. Yamamoto, T. Yoshikawa, T. Shinogi, and S.
Tsuruoka.Genetic algorithm with the cotmaints for nurse scheduling
problem in Proceedings of the 2001 Congress on Evolutionary
Computation 2001. Seoul, South Korea: IEEE Press. pp. 1123-1130.
Kennedy, J. and R. EberhaRarticle swarm optimizatign in
Proceedings of the 1995 IEEE International Conference on Neural
Networks 1995. Perth, Australia. pp. 1942-1948.

Khoong, C.M., H.C. Lau, and L.W. Chevwutomated Manpower
Rostering: Techniqgues and Experiendaternational Transactions in
Operational Research, 19943): pp. 353-361.

Kirkpatrick, S., C.DGelatt, and M.P. VecchQptimization by Simulated
Annealing.Science, 198320(4598): pp. 671-680.

Kostreva, M.M. and K.S.B. Jenning$\lurse scheduling on a
microcomputer.Computers and Operations Research, 198(9): pp.
731-739.

Koza, J.RGenetic Programmingl992: MIT Press.

Kragelund, L.V.,Solving a timetabling problem using hybrid genetic
algorithms. Software: Practice and Experience, 19297M10): pp. 1121-
1134.

Krasnogor, N., W. Hart, and J. Smith, EditdRecent Advances in
Memetic Algorithms, Studies in Fuzziness and Soft Compl2eg,
Springer.

Krasnogor, N. and J. SmittA Tutorial for Competent Memetic
Algorithms: Model, Taanomy and Design Issue&EE Transactions on

Evolutionary Computation, 2009(5): pp. 474-488.

203



153.

154.

155.

156.

157.

158.

159.

160.

References

Kwak, N.K. and C. Leé\ Linear Goal Programming Model for Human
Resource Allocation in a Health-Care Organizatidournal of Medical
Systems, 199721(3): pp. 129-140.

Kwan, R.Bus and Train Driver Scheduling (Chapter 5it) Handbook
of Scheduling: Algorithms, dtlels, and Performance Analysi3.Y.-T.
Leung, Editor. 2004, CRC Press.

Laguna, M. and R. Marti,Scatter Search. Methodology and
Implementation in C2003: Kluwer Academic Publishers.

Landa Silva, J.D., E.K. Burke, and S. Petrowio, Introduction to
Multiobjective Metaheuristics for Scheduling and Timetablirg
Metaheuristics for Multiobjective Optimisation, Lecture Notes in
Economics and Mathematical Systerxs Gandibleux, et al., Editors.
2004, Springer. pp. 91-129.

Lau, H.C.On the Complexity of Manpower Shift Scheduli@gmputers
& Operations Research, 1993(1): pp. 93-102.

Le, K.N. and D. Landa-Silv&imple Evolutionary Algorithm with Self-
Adaptation for Multi-Objective Optimisatior2007, School of Computer
Science and IT, University of Nottingham. Working Paper.

Li, H., A. Lim, and B. Rodrigue®A Hybrid Al Approach for Nurse
Rostering Problemin Proceedings of the 2003 ACM symposium on
Applied computing2003. pp. 730-735.

Li, J. and U. AickelinA Bayesian Optimization Algorithm for the Nurse
Scheduling Problemin Proceedings of 2003 Congress on Evolutionary
Computation (CEC2003)2003. Canberra, Australia: IEEE Press. pp.

2149-2156.

204



161.

162.

163.

164.

165.

166.

167.

168.

References

Li, J. and U. AickelinThe application of Bayesian Optimization and
Classifier Systems in Nurse Scheduling Proceedings of the 8th
International Conference on Parallel Problem Solving from Nature
(PPSN VIII), Springer Lecture Notes in Computer Science Volume 3242
2004. Birmingham, UK. pp. 581-590.

Liao, C.-J. and C.-Y. KaoScheduling nursing personnel on a
microcomputer.Health Manpower Management, 1998(3): pp. 100-
106.

Lin, S. and B.W. KernighaAn Effective Heuristic Algorithm for the
Traveling-Salesman Probler@perations Research, 1923(2): pp. 498-
516.

Lourenco, H., M. Laguna, and R. MaAgsigning Proctors to Exams
with Scatter Searchin Computing Tools for Modeling, Optimization and
Simulation M. Laguna and J.L. Gonzalez-Velarde, Editors. 2000,
Springer. pp. 215-228.

Lourenco, H.R., O.C. Martin, and T. Stlutdterated Local Searchin
Handbook of Metaheuristicd. Glover and G. Kochenberger, Editors.
2003, Kluwer. pp. 321-353.

Louw, M.J., I. Nieuwoudt, and J.H. van Vuurémding Good Nursing
Duty Schedules: A Case Study.

Maenhout, B. and M. Vanhouckdew computational results for the
nurse scheduling problem: a scatter search algorjthmbecture notes in
Computer Science, 3908006, Springer. pp. 159 -170.

Maier-Rothe, C. and H.B. Wolf€yclical scheduling and allocation of

nursing staff.Socio-Economic Planning Sciences, 197.3p. 471-487.

205



169.

170.

171.

172.

173.

174.

175.

References

Mason, A.J. and M.C. SmitA. Nested Column Generator for solving
Rostering Problems with Integer Programmingn International
Conference on Optimisation: Techniques and Applicatibn€accetta, et
al., Editors. 1998. Perth, Australia. pp. 827-834.

McCollum, B. University Timetabling: Bridging the Gap between
Research and Practicein Proceedings of the 6th International
Conference on the Practice and Theory of Automated Timetalidikg
Burke and H. Rudova, Editors. 2006. Brno, Czech Republic. pp. 15-35.
McVicar, A.,Workplace stress in nursing: a literature revielournal of
Advanced Nursing, 20034(6): pp. 633—-642.

Meisels, A., E. Gudes, and G. Solotorevdkgployee Timetabling,
Constraint Networkand Knowledge-Based Rules: A Mixed Approach
Selected papers from the First Imational Conference on Practice and
Theory of Automated Timetabling996: Springer-Verlag. pp. 93-105.
Meisels, A., E. Gudes, and G. Solotorevspmbining rules and
constraints for employee timetablingternational Journal of Intelligent
Systems, 199712(6): pp. 419-439.

Meisels, A. and N. LusternilExperiments on Networks of Employee
Timetabling Problemsin E. Burke and M. Carter (Eds.) Selected papers
from the Second International Cenénce on Practice and Theory of
Automated Timetablinge. Burke and M. Carter, Editors. 1997: Springer-
Verlag. pp. 130-141.

Meisels, A. and A. SchaeB&TP - Problem structure and File formats

1999.

206



176.

177.

178.

179.

180.

181.

References

Meisels, A. and A. SchaeModelling and solving employee timetabling
problems.Annals of Mathematics and Atrtificial Intelligence, 20CB3:
pp. 41-59.

Merkle, D. and M. MiddendorfSwarm Intelligence in Search
Methodologies. Introductory Tutorials in Optimization and Decision
Support Technique.K. Burke and G. Kendall, Editors. 2005, Springer.
pp. 401-436.

Meyer auf'm Hofe, HConPlan/SIEDAplan: Personnel Assignment as a
Problem of Hierarchical Constraint Satisfactionin PACT-97:
Proceedings of the Third International Conference on the Practical
Application of Constraint Technolog$997. pp. 257-272.

Meyer auf'm Hofe, H.,Solving Rostering Tasks as Constraint
Optimization in Selected papers from the Third International Conference
on Practice and Theory of Automdtelimetabling, Springer Lecture
Notes in Computer Science Volume 2. Burke and W. Erben,
Editors. 2000. pp. 191-212.

Meyers, C. and J.B. Orlinvery Large-Scale Neighborhood Search
Techniques in Timetabling Problemsn Proceedings of the 6th
International Conference on the Practice and Theory of Automated
Timetabling E.K. Burke and H. Rudova, Editors. 2006. Brno, Czech
Republic. pp. 36-52.

Millar, H.H. and M. KiraguCyclic and non-cyclic scheduling of 12 h shift
nurses by network programming§uropean Journal of Operational

Research, 199804(3): pp. 582-592.

207



182.

183.

184.

185.

186.

187.

188.

189.

References

Miller, H.E., W.P. Pierskalla, and G.l. Rathurse Scheduling Using
Mathematical ProgrammingOperations Research, 1978Y5): pp. 857-
870.

Mitchell, D.G., B. Selman, and H.J. Levesqu#éard and Easy
Distributions of SAT Problemsn Proceedings of the Tenth National
Conference on Artificial Intelligencel1992. San Jose, CA: AAAI
Press/MIT Press. pp. 459-465.

Mladenow, N. A variable neighborhood algorith - a new metaheuristic
for combinatorial optimization in Abstracts of papers presented at
Optimization Days1995. Montreal.

Mladenod, N. and P. Hansen\Variable neighborhood search.
Computers and Operations Research, 124(@.1): pp. 1097-1100.
Moscato, P.On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithm4989, Caltech Concurrent
Computation Program Report 826, California Institute of Technology.

Moscato, P. and C. Cotta,Gentle Introduction to Memetic Algorithms
in Handbook of metaheuristicE. Glover and G. Kochenberger, Editors.
2003, Kluwer. pp. 105-144.

Moz, M. and M.V. Patdn Integer Multicommodity Flow Model Applied
to the Rerostering of Nurse Schedubkgmals of Operations Research,
2003.119: pp. 285-301.

Moz, M. and M.V. PatoSolving the Problem of Rerostering Nurse
Schedules with Hard Constraints: New Multicommodity Flow Models

Annals of Operations Research, 20028: pp. 179-197.

208



190.

191.

192.

193.

194.

195.

196.

197.

198.

References

Moz, M. and M.V. PatoA genetic algorithm approach to a nurse
rerostering problemComputers & Operations Research, 208%. pp.
667—-691.

Musa, A. and U. Saxen&cheduling nurses using goal-programming
techniqueslIE transactions, 19846: pp. 216-221.

Musliu, N., J. Gartner, and W. Slarifficient generation of rotating
workforce schedulediscrete Applied Mathematics, 200R18(1-2): pp.
85-98.

Musliu, N., A. Schaerf, and W. Slanyocal search for shift design.
European Journal of Operational Research, 2088{1): pp. 51-64.
Nemhauser, G.L. and L.A. Wolseynteger and Combinatorial
Optimization1999: Wiley.

Nonobe, K. and T. Ibarak® tabu search approach to the constraint
satisfaction problem as a general problem solMeuropean Journal of
Operational Research, 19986(2-3): pp. 599-623.

Nooriafshar, M.A heuristic approach to improving the design of nurse
training schedulesEuropean Journal of Operational Research, 18985.
pp. 50-61.

Okada, M.An Approach to the Generalized Nurse Scheduling Problem -
Generation of a Declarative Prograno Represent Institution-Specific
Knowledge Computers and Biomedical Research, 1292 pp. 417-434.
Okada, M. and M. Okad&rolog-based system for nursing staff
scheduling implemented on a personal comput€omputers and

Biomedical Research, 19831 pp. 53-63.

209



References

199. Osman, I.H. and G. Laporteletaheuristics: A bibliographyAnnals of
Operations Research, 19%3(5): pp. 511-623.

200. Ozcan, ETowards an XML based standard for Timetabling Problems:
TTML, in Proceedings of First Multidiscimary International Conference
on Scheduling: Theory and Applications. Kendall, E. Burke, and S.
Petrovic, Editors. 2003. Nottingham, UK. pp. 566-570.

201. Ozcan, E.Memetic Algorithms for Nurse Rosteringn The 20th
International Symposium on Ceuoter and Information Science2005:
Springer-Verlag. pp. 482-492.

202. Ozkarahan, I.A disaggregation model of a flexible nurse scheduling
support systemSocio-Economic Planning Sciences, 1924(1): pp. 9-

26.

203. Ozkarahan, I. and J.E. Bail&ypal programming model subsystem of a
flexible nurse scheduling support systdi& transactions, 19880(3):
pp. 306-316.

204. Petrovic, S., G.R. Beddoe, and G. Vanden Befgase-based reasoning
in employee rostering: learning repair strategies from domain experts
2002, Technical Report, Automdte Scheduling Optimisation and
Planning Research Group, School of Computer Science and Information
Technology, University of Nottingham.

205. Petrovic, S., G.R. Beddoe, and G. Vanden Befgfioeing and adapting
repair experiences in employee rosteringSelected Papers from the 4th
International Conference on the Practice and Theory of Automated

Timetabling (PATAT 2002), Springer Lecture Notes in Computer Science

210



206.

207.

208.

209.

210.

211.

212.

References

Volume 2740E.K. Burke and P. De Causmaecker, Editors. 2003. pp.
149-166.

Petrovic, S., Y. Yang, and M. Dr&ase-based Selection of Initialisation
Heuristics for Metaheuristi Examination TimetablingExpert Systems
With Applications, 2007 (to appeaB3(3).

Poissonnet, C.M. and M. VéroHgealth effects of work schedules in
healthcare professiondournal of Clinical Nursing, 2000: pp. 13-23.

Post, G. and B. VeltmarHarmonious Personnel Scheduljngn
Proceedings of the 5th International Conference on the Practice and
Automated Timetabling (PATAT 200&) K. Burke and M. Trick, Editors.
2004. Pittsburgh, PA. USA. pp. 557-559.

Punnakitikashem, P., J.M. Rosenberger, and D.B. BeBimchastic
Programming for Nurse AssignmeR005, Technical Report COSMOS
05-01, The University of Texas at Arlington. Arlington, TX.

Purnomo, H.W. and J.F. Ba@yclic preference scheduling for nurses
using branch and priceéNaval Research Logistics, 2004(2): pp. 200-
220.

Qu, R., Benchmark Data Sets in Exam Timetabling

(http://www.cs.nott.ac.uk/~rxg/data.ht@trieved 27-June-20072007.

Qu, R., E. Burke, B. McCollum, L.T.G. Merlot, and S.Y. L&&urvey of
Search Methodologies and Automated Approaches for Examination
Timetabling. Computer Science Technical Report No. NOTTCS-TR-2006-
4. 2006, School of Computer Science and Information Technology.

University of Nottingham.

211



213.

214.

215.

216.

217.

218.

219.

220.

References

Randhawa, S.U. and D. SitompAlheuristic-based coputerized nurse
scheduling systenComputers and Operations Research, 199(R): pp.
837-844.

Rego, C.A Subpath Ejection Method for the Vehicle Routing Problem.
Management Science, 1998l(10): pp. 1447-1459.

Reinelt, G., TSPLIB95 littp://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB9%étrieved 27-June-

2007) 2007.

Rosenbloom, E.S. and N.F. GoertZeyclic nurse schedulindgzuropean
Journal of Operational Research, 198%.pp. 19-23.

Ross, P.Hyper-heuristics in Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Technigque&. Burke
and G. Kendall, Editors. 2005, Springer. pp. 529-556.

Rousseau, L.-M., G. Pesant, and M. Gendwe&eneral Approach to the
Physician Rostering ProblerAnnals of Operations Research, 20025:
pp. 193-205.

Sastry, K., D. Goldberg, and G. Kend@&l&netic Algorithmsin Search
Methodologies. Introductory Tutorials in Optimization and Decision
Support Techniques.K. Burke and G. Kendall, Editors. 2005, Springer.
pp. 97-126.

Schaerf, A. and L. Di Gaspendeasurability and Reroducibility in
Timetabling Research: State-of-the-Art and DiscussioRroceedings of
the 6th International Conference on the Practice and Theory of
Automated Timetabling=.K. Burke and H. Rudova, Editors. 2006. Brno,

Czech Republic. pp. 53-62.

212



221.

222.

223.

224.

225.

226.

227.

References

Schaerf, A. and A. MeiselSolving Employee Timetabling Problems by
Generalized Local Searchn Proceedings of the 6th Congress of the
Italian Association for Artificial Itelligence on Advances in Atrtificial
Intelligence 1999: Springer-Verlag. pp. 380-389.

Scott, S. and R. SimpsoiCase-Bases Incporating Scheduling
Constraint Dimensions - Experiences in Nurse RosteimBroceedings
of the 4th European Workshop on Adees in Case-Based Reasoning,
Lecture Notes In Computer Science; Vol. 148898: Springer-Verlag.
pp. 392-401.

Siferd, S.P. and W.C. BentoWorkforce Staffing and Scheduling :
Hospital Nursing Specific ModelsEuropean Journal of Operational
Research, 19950: pp. 233-246.

Silvestro, R. and C. Silvestian evaluation of nurse rostering practices
in the National Health Servicelournal of Advanced Nursing, 2000.
32(3): pp. 525-535.

Sitompul, D. and S.U. Randhawdyrse scheduling models: a state-of-
the-art review.Journal of the Society of Health Systems, 194@): pp.
62-72.

Smith, L.D., D. Bird, and A. Wigging, computerized system to schedule
nurses that recognizes staff preferencekaspital & health services
administration, 19724(4): pp. 19-35.

Smith, L.D. and A. WigginsA Computer-Based Nurse Scheduling

SystemComputers and Operations Research, 18@j: pp. 195-212.

213



228.

229.

230.

231.

232.

233.

234.

235.

References

Spyropoulos, C.DAI planning and scheduling in the medical hospital
environment.Artificial Intelligence in Medicine, 200020(2): pp. 101-
111.

Tanomaru, JStaff scheduling by a genetalgorithm with heuristic
operators in Proceedings of the IEEE Conference on Evolutionary
Computation 1995. pp. 456-461.

Taylor, P.E. and S.J. Huxlepy Break from Tradition for the San
Fransisco Police: Patrol Officer ®eduling Using an Optimization-Based
Decision Support Systemmterfaces, 19899(1): pp. 4-24.

Thompson, G.M.A simulated-annealing heuristic for shift scheduling
using non-continuously available employe€smputers and Operations
Research, 199@3(3): pp. 275-288.

Thornton, J. and A. Sattdurse Rostering and Integer Programming
Revisited in International Conference on Computational Intelligence and
Multimedia ApplicationsB. Verma and X. Yao, Editors. 1997. pp. 49-58.
Tien, J.M. and A. Kamiyaman manpower scheduling algorithms.
SIAM Review, 198224(3): pp. 275-287.

Trivedi, V.M. and M.D. WarnerA Branch and Bound Algorithm for
Optimum Allocation of Float NurseManagement Science, 1972(9):
pp. 972-981.

Tsang, E., J. Ford, P. Mills, R. Bradwell, R. Williams, and P. Scott,
Towards a Practical Engineering Tool for Rosteringnnals of

Operational Research, Accepted for publication, January 2006.

214



236.

237.

238.

239.

240.

241.

242.

243.

244,

References

UK Government Statistical Servic8taff in the NHS 2006 (available

online at http://www.ic.nhs.uk/statistics-and-data-

collections/workforce/nhs-staff-numbeetrieved 18-Jun-20072006.

Valouxis, C. and E. Housoslybrid optimization techniques for the
workshift and rest assignment of nursing personfsilficial Intelligence

in Medicine, 200020: pp. 155-175.

Vanden Berghe, GAn Advanced Model and Novel Meta-Heuristic
Solution Methods to Personnel Scheduling in HealthcBieD. Thesis,
University of Gent, Belgium, 2002.

Vanhoucke, M. and B. Maenho@haracterisation and generation of
nurse scheduling problem instance2005, Vlerick Leuven Gent
Management School.

Vanhoucke, M. and B. MaenhobSPLib—A Nurse Scheduling Problem
Library: A tool to evaluatémeta-) heuristic procedure2005.

Voss, S., S. Martello, I.H. Osman, and C. Roucairol, Ediideta-
Heuristics: Advances and Trends& Local Search Paradigms for
Optimization 1999, Kluwer Academic Publishers.

Warner, D.M.,Scheduling Nursing Personnel according to Nursing
Preference: A Mathematical Programming ApproadBperations
Research, 197&4: pp. 842-856.

Warner, D.M. and J. Prawda, Mathematical Programming Model for
Scheduling Nursing Personnel in a Hospitédnagement Science, 1972.
19(4): pp. 411-422.

Warner, M., B.J. Keller, and S.H. Martaljtomated Nurse Scheduling.

Journal of the Society for Health Systems, 1299): pp. 66-80.

215



245.

246.

247.

248.

249.

References

Weil, G., K. Heus, P. Francois, and M. Pouj&it&straint programming
for nurse scheduling.lEEE Engineering in Medicine and Biology
Magazine, 199514(4): pp. 417-422.

Wolpert, D.H. and W.G. Macreadyo Free Lunch Theorems for
Optimization. IEEE Transactions on Evolutionary Computation, 1997.
1(1): pp. 67-82.

Wong, G.Y.C. and H.W. ChurNurse Rostering Using Constraint
Programming and Meta-level Reasoning Developments in Applied
Artificial Intelligence: 16th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems
2003. Loughborough, UK: Springer. pp. 712-721.

Wright, P.D., K.M. Bretthauer, and M.J. CoRgexamining the Nurse
Scheduling Problem: Staffing Ratios and Nursing ShortaBegision
Sciences, 200&7(1): pp. 39-70.

Yagiura, M., T. Yamaguchi, and T. Ibaraki,Variable Depth Search
Algorithm for the Generalized Assignment ProblemMeta-Heuristics:
Advances and Trends in Local Search Paradigms for OptimizaBon
Voss, et al., Editors. 1999, Kluwer Academic Publishers: Boston, MA. pp.

459-471.

216



