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Abstract

The Real Time Management (RTM) of operating rooms is the decision prob-
lem arising during the fulfillment of the surgery process scheduling of elective
patients, that is the problem of supervising the execution of such a sched-
ule and, in case of delays, to take the more rational decision regarding the
surgery cancellation or the overtime assignment. The main concern of this
paper is to propose a model for the RTM and to evaluate its impact on the
OR performance assessed by a set of patient- and facility- centred indices. To
this end, we consider a generic surgical clinical pathway for elective patients
– inspired to a real case study – in which we evaluate the introduction of an
online optimization approach for the RTM and some additional optimization
modules to deal with the surgery process scheduling problem. To the best of
our knowledge, the RTM is not clearly addressed in the literature and this
is the first attempt to propose an online approach in the context of surgery
process scheduling. We propose a hybrid simulation and optimization model
in which simulation is used to model the inherent stochasticity and to repli-
cate the elective patient flow on which the online approach for the RTM
and the additional optimization modules operates. We report an accurate
computational analysis proving the effectiveness of the proposed approach to
the RTM. Finally, we demonstrate the capability and the flexibility of our
approach extending our hybrid model to deal with emergency surgeries and
different trained surgery teams.
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Elective surgery, Emergency surgery

1. Introduction

Problems arising in the Operating Room (OR) planning and scheduling
are usually classified into three phases corresponding to three decision lev-
els, namely strategic (long term), tactical (medium term) and operational
(short term) [1]. At the operational decision level, the problem arising in
the OR management is also called “surgery process scheduling” and is gen-
erally divided into two sub-problems referred to as “advanced scheduling”
and “allocation scheduling” [2]. The first sub-problem consists in selecting
patients from an usually long waiting list and assigning a specific surgery and
OR time block to each patient over the planning horizon, which can range
from one week to one month [3–10]. Given this advanced schedule, the sec-
ond sub-problem determines the precise sequence of surgical procedures and
the allocation of resources for each OR time block and day combination in
order to implement it as efficiently as possible [11–16]. Usually, the two sub-
problems have different objectives, that is to maximize the operating room
utilization and to minimize the number of surgeries delayed or cancelled,
respectively. Furthermore, especially when considering the inherent stochas-
ticity of the problem, the two objectives are conflictual as discussed in [17].
For a complete overview of the problems arising in the OR management,
the reader can refer to the papers [18, 19] in which an exhaustive review is
reported analyzing in detail multiple fields related to the problem settings
and summarizing significant trends in research areas of future interest.

The Real Time Management (RTM) of operating rooms is the decision
problem arising during the fulfillment of the surgery process scheduling of
elective patients, that is the problem of supervising the execution of such a
schedule and, in case of delays, to take the more rational decision regarding
the surgery cancellation or the overtime assignment.

The literature reports few attempts to address the problem as shown
in [20]. In [21] the authors showed how a computer assisted system could
help mitigating the increase of over-utilization of the operating room re-
sources such as overtime. The problem of tardiness from scheduled start
times is addressed in [22] comparing the effectiveness of several procedures
to reduce tardiness. The authors showed that the generation of a modified or
auxiliary OR schedule that compensates for known causes of tardiness can be
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a good solution to reduce tardiness even if its impact proportionally increases
as the number of cases involved. The problem of rescheduling the elective
patients upon the arrival of emergency patients is addressed in [23, 24]. The
authors proposed a MILP model which considers the overtime cost of the op-
erating rooms and/or the post-anesthesia care units, the cost of postponing
or preponing elective surgeries, and the cost of turning down the emergency
patients. They proposed a genetic algorithm for its approximate and faster
solution. The results of the case study suggest that, instead of shuffling the
elective surgeries, it would be worthwhile to consider performing the elective
surgeries using the overtime of the operating rooms. Note that the problem
of rescheduling patients can be addressed as a particular job shop scheduling
problem [25, 26] but these experiences can not directly applied to the oper-
ating room context due to its peculiarity in the evaluation of a solution, as
we will show in the following. Strategies to move a patient from an operating
room to another and based on statistical remarks are proposed in [27–29].

To the best of our knowledge, this is the first attempt to propose an online
approach in the context of the operating room management.

The main concern of this paper is to propose a model for the RTM and to
evaluate its impact on the OR performance assessed by a set of patient- and
facility- centred indices. To this end, we consider a generic surgical clinical
pathway for elective patients – inspired to a real case study – in which we
evaluate the introduction of an online optimization approach for the RTM
and some additional optimization modules to deal with the surgery process
scheduling problem.

A Clinical Pathway (CP) can be defined as “health-care structured multi-
disciplinary plans that describe spatial and temporal sequences of activities
to be performed, based on the scientific and technical knowledge and the
organizational, professional and technological available resources” [30].

As reported in [31], health care optimization problems are challenging,
often requiring the adoption of unconventional solution methodologies. The
solution approach proposed herein belongs to this family. We propose a
hybrid simulation and optimization model in which simulation is used to
model the inherent stochasticity and to replicate the elective patient flow
on which the online approach for the RTM and the additional optimization
modules operates.

The paper is organized as follows. The three phases of a generic surgical
clinical pathway are described in Section 2 pointing out the corresponding
optimization problem arising in each phase. Our hybrid simulation and opti-
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mization model is discussed in Section 3. In Section 4 we report an accurate
computational analysis in order to prove the effectiveness of the proposed
approach to the RTM, and to evaluate the impact of the optimization on
the management of a surgical pathway. In Section 4.5 and 4.6 we demon-
strate the capability and the flexibility of our approach extending our hybrid
model to deal with emergency surgeries and different trained surgery teams.
Section 5 closes the paper.

2. Surgical clinical pathway and optimization problems

The definition of the surgical pathway is inspired to that presented and
analyzed in [32] for the thyroid surgical treatment. The reader can refer to
this paper for further details. From a management point of view, a surgical
pathway can be seen as made up of three phases.

Figure 1: Pre-admission phase flowchart
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The first phase concerns the pre-admission phase and it is related to all
the activities regarding patients before their admission (see Figure 1).

In this phase, a relevant information is the Diagnosis Related Group
(DRG). A DRG defines a general time limit before which the patient should
be operated on. Note that the DRG refers to the access time (i.e., days to
surgery) and not to the waiting time on the day of surgery. In our context, a
Urgency Related Group (URG) is assigned to each patient belonging to the
same DRG: the URG states a more accurate time limit called Maximum Time
Before Treatment (MTBT). In other words, URG allows to define a partition
of the patients in the same DRG in order to prioritize their surgical operation.
The optimization problem arising in this phase is the advanced scheduling
problem, which consists in the selection of patients from the (usually long)
waiting list and in their assignment to an OR session (i.e., an operating room
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on a given day) in such a way that several operative constraints are satisfied
(number of beds available during the patient stay, total time available for the
OR session, and so on). Our objective is to maximize the utilization of the
operating rooms in each day in such a way to guarantee that each patient
is operated within the time limit defined by the URG. This problem is well
known in the literature as Surgical Case Assignment Problem (SCAP) [33].

Figure 2: Flowcharts of the hospital and operating theatre phases

(a) Hospital phase
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(b) Operating theatre phase
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The hospital phase is concerned with all the activities involving the ad-
mitted patient stay except for those related to the operating theatre as de-
picted in Figure 2a. The relevant information in this phase is the Length Of
Stay (LOS) of each patient, that is the number of days required before the
discharge. The optimization problem arising in this phase is the allocation
scheduling problem, which consists in finding a sequence of patients to deter-
mine the order in which they are operated on. The objective is to minimize
the risk of cancellation, while keeping an acceptable utilization rate with re-
spect to the available operating time taking into account a patient-centred
point of view (considering waiting time, class of urgency, possible previous
referrals).

Figure 2b depicts the operating theatre phase, which is a component of
the hospital phase, as highlighted in Figure 2a. Due to its importance in
a surgical pathway, it requires to be treated separately. Patients assigned
to a given OR session will be operated on following the sequence previously
defined unless delays imposes to define a new sequence. Patients not operated
on will be rescheduled. We could have a delay as soon as the Estimated
Operating Time (EOT) differs from the Real Operating Time (ROT). The
RTM operates when such a delay become significant, that is exceeding the
total operating time allowed. The following possible decisions should be
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considered:

• to use some overtime reducing the total amount weekly available;

• to cancel 1 or more surgeries and to re-schedule them, when possible;

• to change the sequence of the remaining patients in order to minimize
the cancellation of surgeries whose patients are close to their MTBT
while keeping an acceptable level of OR utilization.

The first two choices are generally non-trivial and alternatives requiring to
consider several aspects. For instance, the decision of postponing a patient
could violate MTBT. Further, it determines an increased patient stay lower-
ing the patient satisfaction and, by consequence, the quality of the service.
On the other side, overtime is a scarce resource. So, it seems crucial to es-
tablish some criteria driving the decisions of using it to avoid cancellations.

Considering the surgery process scheduling at the operational level means
that we are not directly dealing with the “Master Surgical Schedule” (MSS)
and, therefore, with the assignment of operating rooms to wards or special-
ties taking into account also the physician (e.g., surgeons and anesthetists)
availability. From our point of view, this will be implicitly considered when
defining the scenarios for the quantitative analysis: actually, if we suppose
to have an OR available for 300 minutes means that the required physicians
are available. Note that this is a quite common assumption when dealing
with surgery process scheduling.

3. The Hybrid Model

This section discusses the hybrid simulation optimization model proposed
in this paper. Simulation is exploited to model the inherent stochasticity
that characterizes the problems arising in the operating room management,
that is the arrival of patients, the variability of patient length of stays and
the variability of patient operating times (see, e.g., [34–36]). Furthermore,
it allows to easily replicate the three phases of the patient flow depicted in
Section 2. On this simulated surgical clinical pathway, it is possible to embed
the optimization modules to deal with the decision problems described in
Section 2.

Figure 3 summarizes how the patient passes through the surgical path-
way highlighting when the optimization operates: the advance scheduling
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Figure 3: Description of the hybrid simulation and optimization model
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manages its admission, the allocation scheduling manages its position in the
surgery sequence and, finally, the RTM manages the ongoing operations be-
fore the surgery. Summing up, simulation allows to model the operative
context required by the optimization modules to operate correctly over the
time horizon needed to evaluate the impact of such optimization modules.

In the following, we will briefly describe the hybrid model through the
description of its main components, that is the simulation framework and
the three optimization modules.

Table 1 introduces the notation of the problem used hereafter in the
paper.

Table 1: Notation

N : number of OR sessions Sj: duration of j-th OR session
dj: operating day (from Mon to Fri) of the j-th OR session k: index of the day, k = 1, . . . , 7
Bk: number of beds available the k-th day of the week Ω: weekly overtime available
I: set of patients in the pre-admission waiting list L: set of scheduled patients
L(j): set of patients scheduled into the j-th OR session Mi: MTBT of patient i
ti: waiting time of the i-th patient `i: LOS of patient i
ei: EOT of patient i ri: ROT of patient i

3.1. The Simulation Framework

The simulation framework is based on a Discrete Event Simulation (DES)
since it is the most suitable methodology to analyze a discrete and stochas-
tic workflow. Further, DES is the only approach capable to represent the
single entities within a CP, which is a necessary condition to apply the pro-
posed optimization planning modules. The proposed simulation model is a
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straightforward implementation of the surgical pathway depicted in Figure 1
and 2. The main parameters of the simulation model, and their distribution,
are depicted in Appendix A.

Note that the hybrid model is implemented using AnyLogic 6.9 [37]: its
Enterprise Library is exploited for the implementation of the DES simulation
framework whilst the optimization modules are implemented from scratch in
Java, which is the native programming language of AnyLogic.

3.2. Solving the Advanced Scheduling Problem

We propose a metaheuristic based on a greedy construction of an initial
solution and then a local search to improve that solution. The proposed
algorithm is a simplified version of that discussed in [38]. The operative
context is represented by a long queue of patients from which we would like
to select a subset of patients to be admitted taking into account the fact that
the resources available can be reduced since patients admitted the previous
week are already in the hospital phase, usually waiting for the discharge but
also for their surgery. From a temporal point of view, we suppose to plan
the next week of surgeries at the end of the current week, that is on Friday.

3.2.1. Constructive greedy algorithm

The algorithm associates to each patient i ∈ I the following values

wi =
ti + min1≤j≤N dj

Mi

, (1)

w̃ki =
ti + min1≤j≤N dj + π(k)

Mi

= wi +
π(k)

Mi

, (2)

where π(k) measures the distance of the current day k to the next Friday: for
instance, at the moment of determining a solution for the advance scheduling
problem π(k) is equal to 7. The value wi measures the ratio of the time
elapsed before the surgical operation and the MTBT associated to the URG
of the patient i ∈ I whilst w̃ki is a projection of wi referred to the next week.

Starting from the schedule containing the patients planned the previous
week, patients to be admitted and belonging to the admission queue are or-
dered by decreasing value of wi in such a way to promote the scheduling of
those patients which are close to their MTBT. Then, each patient is consid-
ered for the scheduling. A patient will be inserted in the current schedule if
there exists an OR session available with enough free operating time in such
a way to satisfy the operative constraints regarding the bed occupation.
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Among different possible OR sessions, the algorithm tries to schedule the
patient first in the day k such that k + `i ≤ 5. If it is not possible, the
algorithm tries the insertion in the day k such that k+ `i > 5. The rationale
here is to avoid the use of the weekend stay beds which could be a limited
resource. This rule can be overridden when w̃ki ≥ 1 assigning the patient to
the first day k = 1, if possible, or to the second day k = 2, and so on. In
this case, we would like to reduce the probability of not satisfying the URG
requirements in case of cancellation. Finally, if a patient cannot be scheduled,
the algorithm will consider the next patient. The algorithm terminates when
all patients in the queue have been considered for the insertion in the current
schedule.

3.2.2. Improvement local search algorithm

The Local Search tries to improve the greedy solution by exchanging pairs
of patients already scheduled in such a way to cluster them in a reduced
number of OR sessions and, by consequence, to allow the insertion of new
patients previously not scheduled. Let j∗ be the OR session having the
maximum operating time yet available, that is the one having the minimal
utilization. The Local Search algorithm follows these criteria to select the
new incumbent solution:
• the new solution will be that providing the maximal increase of the

time yet available of j∗;
• otherwise, if the two schedules are equivalent in j∗, the algorithm will

consider the second least utilized OR session, and so on;
• otherwise, if the two schedules are equivalent in all OR sessions, the

algorithm selects those solutions having OR sessions less utilized at the
end of the week.

3.3. Solving the Allocation Scheduling Problem

In our settings, the allocation scheduling problem consists in establishing
the order in which patients i ∈ L(j) will be operated on in such a way to
minimize the inefficiency due to possible cancellations.

Considering a given schedule, there is a set of patients for which is better
to avoid the cancellation of their surgery, that is those patients whose w̃ki
is greater than or equal to 1 and those patients whose surgery was already
postponed. To deal with these special cases, let us introduce the following
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values:

Wi =

{
w̃ki if w̃ki > 1

0 otherwise
, (3)

and letDi > 0 be the number of days elapsed after a cancellation, 0 otherwise.
Finally, we define the value

si = α1Wi + α2Di + α3ei (4)

for each i ∈ L(j) where α1, α2 and α3 are parameters. Setting

α1 � α2 � α3 =

{
1 case (A)

−1 case (B)
,

the sequencing of patients i ∈ L(j) is simply obtained by ordering them by
decreasing order of their si.

Within such a ordering, the use of α imposes three priority levels. First
we schedule patients close to their MTBT. Then we schedule those whose
surgery was previously postponed in such a way to foster those waiting for
more days after the cancellation. Finally, when the first two components of
si, that is α1Wi and α2Di, yield to the same value for two different patients,
we break ties by ordering them following a LPT or a SPT policy (with respect
to EOT) in the case (A) and in the case (B), respectively.

3.4. An online approach to the Real Time Management

The solutions discussed in the previous sections provide a schedule based
on the EOT, which is usually an estimate of the surgeons. Unfortunately,
it is possible that the ROT differs from the EOT. Given L(j) and a patient
i ∈ L(j), the whole schedule could be delayed if ri > ei. When the overall
delay could determine the exceeding of the jth OR session duration Sj, the
RTM should deal with the problem of postponing a surgery or using a part
of the overtime available. Such a decision poses the problem of evaluating
the impact of consuming overtime or to have a cancellation.

Let us consider the jth OR session on day k = dj having duration Sj
and a list L(j) of scheduled and sequenced patients. Suppose that m <

∣∣L(j)
∣∣

patients are already operated on. Let ρm the effective time elapsed to operate
on the m patients, that is

ρm =
∑

i=i1,...,im

ri. (5)
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Let us introduce the following parameter:

βjkm = 1 +
Nk

N
− Ωj

km

Ω
(6)

where Ωj
km is the residual overtime after the surgery of patient im and Nk

is the number of the remaining OR sessions scheduled from the day k + 1.
Note that Nk = 0 if k corresponds to Friday.

The value βjkm would measure the overtime still available with respect to
the number of OR sessions to be still performed. Actually, βjkm is closed to
1 when the overtime was used proportionally; it is between 0 and 1 or it is
greater than 1 when it was underused or overused, respectively. Because of
Nk is equal to 0, we remark that the last day of the week it is always less
than or equal to 1 hence promoting the use of the residual overtime. The
online algorithm starts every time a surgery ends and ρm >

∑
i=i1,...,im

ei. It
consists of three procedures.
Sequencing check. The sequencing of the remaining patients is checked in

such a way to ensure that (i) all the remaining patients having w̃ki > 1
are scheduled prior to the other patients and (ii) those having w̃ki > 1
are ordered by decreasing value of w̃ki ; if those patients run out the
available operating time Sj, the patients having w̃ki ≤ 1 maintain the
same original ordering; otherwise, the free operating time is filled se-
lecting a subset of the patients having w̃ki ≤ 1 according to the Bin
Packing Best Fit rule;

Patient postponing. Let im+1 be the next patient in the schedule. Then,
if

eim+1 > Sj − ρm ,
the patient im+1 could incur in a cancellation. Therefore, the algorithm
checks if

βjkm

(
eim+1 + ρm

Sj

)
≤ 1 (7)

and if (7) is satisfied, the required overtime is assigned to the patient
im+1.

Rescheduling. At the end of the day, all the postponed surgeries must be
rescheduled on OR sessions having enough free operating time. First
the algorithm considers all the patients having w̃ki > 1 trying to insert
each patient in the first OR session available. Then, the algorithm tries
to insert iteratively subsets of patients having w̃ki ≤ 1 according to the
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Bin Packing Best Fit rule. If an insertion is not possible, the patient
will be scheduled on the first day available in the next week.

Finally, we remark that the algorithm for the insertion of a subset of
patients, used both in the sequencing check and in the rescheduling proce-
dures, is and adaptation of the dynamic programming discussed in Section
3.4.1 of [39]. For a description of the Best Fit rule for the Bin Packing, the
reader can refer to Section 8.2 of [39].

4. Quantitative analysis

This section reports the quantitative analysis performed in order to eval-
uate the impact of the online approach to the RTM and the additional opti-
mization modules on the management of a surgical clinical pathway.

The main idea behind the proposed quantitative analysis is to evaluate
their impact week by week, that is how the previous decisions (e.g., deter-
mining less or more cancellations) can impact on the current decisions.

In our work, we are considering the surgery process scheduling problems
arising at the operational level, which has usually a planning horizon of a
week. The idea behind our quantitative analysis is therefore to evaluate the
impact of such plannings week by week, that is how the previous decisions
(e.g., determining less or more cancellations) can impact on the current de-
cisions.

Section 4.1 describes how the computational experiments are carried out
reporting the possible configurations of the optimization modules, the per-
formance indices and the different evaluation scenarios. Section 4.2 reports
about the logical validation of the simulation model discussed in Section 3.1.
Section 4.3 and Section 4.4 report the results of the computational tests made
on two different evaluation scenarios. Finally, Section 4.5 and 4.6 extend the
original hybrid model to deal with the emergency surgeries and different
trained surgery teams in order to prove the capability and the flexibility of
our approach.

The results reported in the following sections are the average value among
those obtained by running the hybrid model 30 times on a given configura-
tion and, each time, starting from a different initial conditions. On average,
one single run requires from 1.3 to 4.3 seconds when running with all the
optimization approaches turned off or turned on, respectively. This means
that no more than 4.3× 30 = 129 seconds are needed to simulate two years
of operating room management. Finally, we remark that the algorithms for
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the advanced scheduling are the most time consuming components while the
running time required by the other optimization algorithms are negligible.
Finally, we remark that all the simulation parameters are depicted in Ap-
pendix A. The Appendix describes and reports the parameters regarding the
patient flow characteristics, the duration of the activities and their distribu-
tions, and all the other parameters characterizing our simulation such as the
values for each class of URG and the number of beds available.

4.1. Test configurations, performance indices and scenarios

The optimization algorithms described in Section 3.2, 3.3 and 3.4 can be
combined in different ways In order to evaluate their actual impact, we define
a baseline configuration with respect to the three phases as follows:
Phase 1: advanced scheduling performed by a first-fit algorithm, that is (i)

it considers patients by decreasing order of wi, (ii) it scans the OR
session from Monday to Friday and assigns the selected patient to the
first one having enough operating time available (if possible);

Phase 2: the patient sequencing is that resulting from the patient assign-
ment, that is, the first assigned to an OR session will be the first in the
sequence, and so on;

Phase 3: overtime is assigned a priori uniformly to all OR sessions in an
amount equal to Ω

N
;

Phase 3: all the surgeries are rescheduled only at the end of the day using
the first-fit algorithm, that is the first phase of the RTM rescheduling
algorithm.

Besides the baseline configuration, we define further configurations to eval-
uate the impact of the optimization modules. Each configuration is defined
with respect to the baseline configuration.
• Phase 1:

option 1: computing wi w.r.t Monday instead of the previous Friday
(in the simulation model, Friday is the day in which the advance
scheduling is performed);

option 2: adopting the greedy explained in Section 3.2.1 (instead of
the first-fit algorithm);

option 3: adopting the Local Search depicted in Section 3.2.2;
• Phase 2:

LPT/SPT: use LPT or SPT rules in sequencing (case (A) or (B) in
Section 3.3), respectively;

• Phase 3:
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option A: adopting the RTM online algorithm after each surgery;
option B: adopting the rescheduling algorithm depicted in Section 3.4

at the end of the day (instead of the first-fit algorithm).
Table 2 reports the two types of indices adopted to evaluate the impact

of the optimization modules. We define a set of patient-centred indices in
such a way to evaluate the performance from a patient point of view. We
also define a set of facility-centred indices in such a way to evaluate them
against to the patient-centred ones.

Table 2: Patient-centred and facility-centred indices

Index Definition
Patient-centred

C number of cancellations
fMTBT percentage of patients operated within the MTBT
Iavg average length (number of patients) of the waiting list
tavg average waiting time spent in the waiting list
wavg average value of patient’s wi at the time of their surgery
wmax maximum value of patient’s wi at the time of their surgery

Facility-centred

ubed bed utilization
uOR OR session utilization

It is quite evident that different indices can affect each other. For instance,
the increase of the number of cancellations can affect the bed utilization and,
in its turn, can reduce the percentage of patients operated within the MTBT.

Table 3 describes the two different scenarios in which we evaluate the
optimization solutions on different operating contexts. The two scenarios are
characterized by about the same overall amount of operating time available
(7920 vs. 7980 minutes) distributed in a different way with respect to the
number N of available OR sessions (21 vs. 15) and their duration Sj, j =
1, . . . , N .

4.2. Simulation Model Validation

The validation of a simulation model requires a quite complex analysis.
In our case, we are only interested in the logical correctness of the simulation
model representing the surgical pathway. On the other side, we are not
interested in the replication of a real system.
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Table 3: Scenarios

(a) Scenario 1

OR 1 OR 2 OR 3 OR 4 OR 5
mon 300 360 420 420 420
tue 300 360 420 420
wed 300 360 420
thu 300 360 420 420 420
fri 300 360 420 420

(b) Scenario 2

OR 1 OR 2 OR 3
mon 540 540 540
tue 540 540 540
wed 540 540 540
thu 540 540 480
fri 540 540 480

To this end, we adapted our simulation model to represent the inspiring
case, that is that reported in [32]. In that paper, the proposed model dealt
with two patient flows having similar EOT but different LOS. Note that
the LOS of the second flow is roughly the double of the first one while the
number of patients in the first flow is roughly the double of the second flow.
Since our model can generate only one type of patient flow, we adapted our
patient flow generator in such a way to have, on average, the same number of
patients having the LOS of the first flow which is the most numerous. In this
validation scenario, we have N = 7 OR sessions having the same duration
equal to 360 minutes. Two OR sessions are scheduled on from Tuesday to
Thursday and one on Friday. The other parameters are set to the same
value reported in Appendix A. Furthermore, we turn off all the optimization
during the three phases. In Table 4 we compare the results of our adapted
simulation model with those reported in [32].

Table 4: Model validation: comparison with real measures

ubed uOR

Real measures 51.1% 77.3%
Simulation model 49.1% 80.8%
Difference 2.0% 3.5%

The differences in the two performance indices can be accounted to the
different composition of the patient flow as depicted above. For instances,
the gap of 3.5% for uOR expressed in minutes corresponds to the execution of
one surgery having average duration. On the basis of these considerations,
the comparison is satisfactory with respect to our objective, which is the
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validation of the logical correctness of our simulation model.

4.3. Scenario 1: analysis

We tested all the possible configurations that can be obtained combining
the options defined in Section 4.1. Our aim is to identify the best configu-
ration which increases the patient-centred indices without deteriorating the
facility-centred ones. First, the impact of each optimization modules is eval-
uated through the quantitative analysis. Based on these results, two further
configurations have been studied. The results are summarized in Table 5,
which reports the value of the performance indices for each test configura-
tion denoted by the value in the first column “id”. Note that the column
reporting the number of cancellations also reports in brackets the total num-
ber of patients operated on. All the results are compared with those obtained
for the baseline configuration.

Table 5: Performance indices for each test configuration

Option(s) Performance indices
id 1 2 3 seq. A B C fMTBT Iavg tavg Ubed UOR wavg wmax

(0) baseline configuration 234 (2348) 32.6% 338 55 63.6% 89.9% 1.17 4.05
(1)

√
235 (2347) 31.9% 346 56 60.2% 89.8% 1.11 3.29

(2)
√ √

226 (2340) 26.0% 360 58 60.6% 89.3% 1.16 3.27
(3)

√
252 (2346) 36.0% 324 52 60.4% 89.6% 1.12 3.61

(4)
√ √

246 (2349) 35.3% 330 53 60.3% 89.8% 1.06 3.41
(5)

√ √ √
230 (2338) 27.2% 355 58 60.8% 90.0% 1.17 3.10

(6) LPT 236 (2367) 47.9% 292 48 60.5% 90.8% 1.03 3.79
(7) SPT 240 (2261) 12.1% 452 72 58.6% 86.4% 1.51 4.91
(8)

√
197 (2384) 74.6% 213 35 59.3% 91.3% 0.80 2.64

(9)
√

236 (2315) 30.7% 339 55 72.6% 88.8% 1.18 3.79
(10)

√ √
222 (2372) 73.0% 223 37 64.0% 90.7% 0.83 2.68

(11)
√

LPT
√

239 (2389) 79.9% 192 32 60.3% 91.8% 0.73 2.62
(12)

√ √
LPT

√
248 (2390) 85.5% 207 34 60.6% 91.8% 0.71 1.87

Regarding the impact of the advanced scheduling optimization module,
we can observe a lower waiting time in the waiting list and an improvement
of the performance indices related to MTBT in test configurations (3) and
(4). On the other side, the minimal number of cancellations is obtained with
configuration (2) but, at the same time, the percentage of patients operated
on before their MTBT decreases consistently. Note that the use of Local
Search allows to insert more patients determining the improvement measured
in (3) and (4).
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Regarding the impact of the allocation schedule optimization module, we
can observe significantly better performances when LPT policy is adopted.
Figure 4 shows the trend of Iavg under the baseline, (6) and (7) configurations.

Figure 4: Trend of Iavg (data referred to the 2nd year, days on x-axis, patients on y-axis)
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Regarding the impact of the online approach for the RTM, we observe
a remarkable improvement of all the performance indices (see configurations
(8) and in particular fMTBT). On the other side, we observe the negligible
impact of the algorithm for the rescheduling postponed patients at the end
of the day (see configurations (9) and (10)).

Figure 5 and 6 show respectively the trend of Iavg and wavg under the
baseline and (8) configurations. Note that it is positive when wavg < 1 which
means that all the patients are operated on before their MTBT, on average.

Figure 5: Trend of Iavg (data referred to the 2nd year, days on x-axis, patients on y-axis)
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Finally, configurations (11) and (12) report about the combination of the
different best options. We note a further improvement of the performance
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indices except for that related to the number of cancellations if compared
with configuration (8). This is due to the fact that Local Search allows to
insert more patients in the advanced scheduling thus reducing the waiting
time in the waiting list but increasing the probability of incurring in a can-
cellation. Figure 7 shows the trend of wavg under the baseline, (11) and (12)
configurations. While baseline configuration shows a value of wavg always
greater than 1, we remark that both configurations (11) and (12) tend to be
less than 1. Further, configuration (12) seems more stable and powerful in
reducing this index.

4.4. Scenario 2: analysis

The second scenario differs from the first one in terms of the schedule of
the OR sessions. As for scenario 1, the impact of each possible configuration
is evaluated and then, based on these results, four further configurations
have been studied. The results are summarized in Table 6. All the results
are compared with those obtained for the baseline configuration.

Comparing the results for the two scenarios, we can observe that the
number of cancellations with respect to the number of operated patients is
almost the same. Further, the utilization indices (UOR and Ubed) ranges
around the same values, that is 60% and 90% for beds and OR sessions,
respectively. The comparison of the results reported for configurations (6)
and (7) confirms the fact that LPT can provide better results than SPT. The
significant reduction of the waiting list length and of the patient waiting time
is confirmed also in the analysis of the second scenario. Similarly, the results
confirm the significant reduction of wavg and wmax.

Figure 6: Trend of wavg (data referred to the 2nd year, days on x-axis, patients on y-axis)
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Figure 7: Trend of wavg (data referred to the 2nd year, days on x-axis, patients on y-axis)
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Table 6: Performance indices for each test configuration

Option(s) Performance indices
id 1 2 3 seq. A B C fMTBT Iavg tavg Ubed UOR wavg wmax

(0) baseline configuration 187 (2411) 57.7% 269 44 61.5% 92.0% 0.97 3.80
(1)

√
199 (2408) 60.0% 260 43 62.0% 92.1% 0.95 3.61

(2)
√ √

181 (2403) 70.5% 250 41 61.0% 91.8% 0.85 3.12
(3)

√
200 (2404) 61.1% 250 41 61.9% 92.0% 0.92 3.66

(4)
√ √

203 (2409) 67.7% 256 42 62.3% 92.0% 0.87 2.94
(5)

√ √ √
198 (2398) 69.2% 250 42 61.7% 91.9% 0.86 3.22

(6) LPT 174 (2462) 85.1% 151 25 61.7% 94.3% 0.62 3.16
(7) SPT 202 (2346) 27.0% 355 58 60.8% 89.5% 1.24 3.79
(8)

√
177 (2422) 84.7% 165 27 61.0% 92.6% 0.67 2.52

(9)
√

189 (2405) 62.1% 252 41 62.6% 92.0% 0.92 3.83
(10)

√ √
176 (2411) 84.4% 164 27 64.0% 92.5% 0.66 2.51

(11)
√ √

LPT
√

155 (2430) 96.0% 123 21 59.8% 92.8% 0.49 2.16
(12)

√ √ √
LPT

√
205 (2434) 95.3% 127 21 62.4% 93.1% 0.50 2.15

(13)
√ √

LPT
√ √

159 (2426) 96.5% 123 21 60.2% 92.8% 0.49 2.16
(14)

√ √ √
LPT

√ √
201 (2419) 96.8% 119 20 61.6% 92.6% 0.48 2.18

In both scenarios, configurations (11)–(12) and (11)–(14) are those pro-
viding the best overall performances. Configurations (11)–(14) confirm the
impact of Local Search during the pre-admission phase: Local Search is ca-
pable to insert more patients in the scheduling thus reducing the average
length of the waiting list but increasing the number of cancellations.

4.5. Dealing with a flow of emergency surgeries

The management of emergency surgery is quite a complex task: actually,
delaying emergency surgery may increase the risk of postoperative complica-
tions and morbidity. Therefore, the responsiveness of the surgical pathway,
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that is the speed at which an OR is available for that surgery, is the crucial
factor to guarantee a positive final outcome.

To deal with emergency surgeries, a common approach is to reserve OR
capacity since it is believed to increase the responsiveness. This approach
poses a question, that is if it is better to have dedicated emergency ORs
(see, e.g.,[40]) or, alternatively, to reserve capacity in the elective ORs (see,
e.g.,[41]).

In this section, we would like to evaluate the impact of introducing a
patient flow of emergency surgeries within an optimized surgical pathway.
Basically, we would evaluate the RTM capability of dealing with the emer-
gencies. To this end, we modified our simulation model adding an emergency
patient flow sharing only the ORs with the elective patient flow, that is the
emergency patients have dedicated stay beds. The emergency patient flow
is generated in such a way to have, on average, one emergency patient each
day having the same EOT and ROT of an elective patient with the highest
level of URG. In our setting, a patient requiring an emergency surgery is
operated as soon as an OR becomes available. This means that no changes
are considered in the algorithms for determining a solution for the advanced
and the allocation scheduling. We tested the modified model on the second
scenario (Table 3b) taking into account the baseline, (13) and (14) configu-
rations. Here we did not consider the first scenario (Table 3a) since it has
more ORs and therefore, it is easier to assign an emergency patient without
worsening the solution.

Table 7 reports the value of fMTBT for the emergency patients varying
MTBT value between 30 and 240 minutes.

Table 7: fMTBT for emergency patients w.r.t. different MTBT

id 30 60 90 120 150 180 210 240
(0) 55.7% 75.4% 88.6% 95.1% 98.3% 99.7% 100.0% 100.0%
(13) 52.2% 72.9% 84.1% 88.3% 95.5% 98.1% 99.4% 100.0%
(14) 53.5% 73.1% 83.3% 89.7% 95.0% 98.1% 99.6% 99.9%

Table 8 reports the performance of the whole surgical pathway after intro-
ducing the emergency patient flow. Note that the last three columns report
the value for the indices wavg, wmax and fMTBT referred to the emergency
patients with a MTBT threshold set to 60 minutes.

As one might expect, it may be noted a general worsening of the patient-
centred indices for the elective patients. On the other side, the three indices
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Table 8: Evaluating performance of best configurations in Table 6

Elective Emergency
id C Iavg (tavg) Ubed UOR wavg wmax fMTBT wavg wmax fMTBT

(0) 294 (2302) 410 (66) 62.9% 95.1% 1.4 4.8 16.4% 0.60 3.04 75.4%
(13) 370 (2271) 302 (50) 73.9% 94.4% 1.0 3.3 48.2% 0.68 3.59 72.9%
(14) 367 (2300) 323 (52) 71.0% 95.6% 1.1 3.4 41.1% 0.68 3.47 73.1%

referred to the emergency patients shown quite satisfactory results consider-
ing the really tight MTBT threshold and the absence of any optimization.

Recalling the model depicted in Section 3.4, RTM decisions largely de-

pend on the ratio
Ωj

km

Ω
, that is from the amount Ω of overtime available each

week. Therefore, we would evaluate the overtime available (and the overtime
really used) to guarantee the same performance before the introduction of
the emergency patient flow as suggested in [24]. The quantity of overtime
available can be interpreted as the hours available of a dedicated operating
room for emergency surgeries.

Table 9 reports about such tests. The first column reports the extra
overtime available each week, that is the number of overtime hours added to
the initial overtime of five hours (see Table A.15), that is one hour per day.
The last two columns reports the overtime actually used and its percentage
with respect to the total overtime available, respectively.

Table 9: Overtime estimation

Elective Emergency overtime used
Ω C Iavg (tavg) Ubed UOR wavg wmax fMTBT wavg wmax fMTBT minutes %
0 370 (2271) 302 (50) 73.9% 94.4% 1.03 3.32 48.2% 0.68 3.59 72.9% 295 98.5%
5 333 (2290) 248 (41) 73.6% 95.1% 0.90 3.19 71.9% 0.69 3.59 72.1% 543 90.5%
10 318 (2352) 212 (35) 72.6% 96.8% 0.75 2.30 84.6% 0.70 3.53 71.6% 689 76.5%
15 291 (2231) 210 (35) 74.2% 92.7% 0.80 4.03 84.8% 0.67 3.61 73.2% 792 66.0%
20 273 (2250) 205 (33) 72.6% 93.6% 0.79 3.52 86.9% 0.69 3.43 72.1% 823 54.8%
25 260 (2361) 176 (29) 68.9% 97.5% 0.65 2.22 90.6% 0.71 3.72 72.4% 797 44.3%
30 244 (2397) 157 (26) 66.6% 98.6% 0.59 1.85 93.7% 0.73 3.65 70.8% 785 37.4%
35 233 (2403) 166 (28) 66.8% 98.9% 0.61 1.88 93.6% 0.72 3.68 71.7% 811 33.8%
40 209 (2424) 164 (27) 64.5% 99.5% 0.61 1.83 92.8% 0.74 3.71 70.7% 791 29.3%
45 205 (2422) 140 (23) 64.3% 99.5% 0.54 1.82 95.2% 0.73 3.63 70.9% 806 26.9%
50 194 (2413) 136 (23) 62.9% 99.5% 0.53 1.83 96.0% 0.72 3.67 71.3% 817 24.8%
55 183 (2406) 127 (21) 63.5% 99.1% 0.50 1.94 96.8% 0.74 3.74 70.1% 817 22.7%

The first remark is concerned with the overtime percentage effectively
used, which decreases as soon as the number of hours weekly available in-
creases. On the other side, it seems that about 800 minutes of overtime are
those really used to deal with the emergency surgery flow under the second
scenario.
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The available overtime seems the more influencing factor. Actually, we
can reach about the 90% of elective patients operated within their MTBT by
making available 25 hours of overtime but using only the 44.3%. On a sched-
ule of five days, the 25 hours of overtime can correspond to the availability for
five hour each day of one dedicated operating room for emergency surgery.
Therefore, our results suggest that it could be better to avoid the use of
dedicated operating room for emergency surgery and to use those resources
in a more flexible way within the elective patient flow as suggested in [41].
Furthermore, it seems convenient also from a budget point of view due to
the fact since the overtime really used is a fraction of the whole available.
Finally, we can observe that the overtime can be reduced adopting ad-hoc
scheduling as shown in [42].

4.6. Dealing with differently trained surgical teams

A surgical team is a set of experts who perform surgery activities and
related tasks together usually including surgeons, assistants, nurses, anaes-
thetists and surgical technologists. Such roles require a long period of training
to be specialized (especially for surgeons and anaesthetists), with a significant
impact on the variability of surgery duration.

Even if our focus is at the operational level to deal with the resource
management, we would provide an evaluation of having surgical teams with
different level of training. We suppose that a surgical team having less trained
components could require additional time to accomplish their tasks.

The additional time added to the ROT is generated through an exponen-
tial distribution of parameter λj > 0 set to have average delay 1

λj
(minutes).

The exponential distribution has been chosen because such a probability
function is positive and quickly decreasing.

We considered the new scenarios 1b and 2b obtained from the original one
simply adding the value for parameter 1

λj
, as reported in Table 10a and 10b.

Table 10: Scenarios with additional delay

(a) Scenario 1b

OR 1 OR 2 OR 3 OR 4 OR 5
1
λj

best 5 10 15 20

(b) Scenario 2b

OR 1 OR 2 OR 3
1
λj

best 10 20
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Tables 11 and 12 show the results for the new scenarios corresponding
to the most representative configurations. Comparing them with those ob-
tained for the baseline configurations, adding further delay causes a substan-
tial deterioration of the performance indices, specially in correspondence of
cancellations and number of patients operated on according to their MTBT.

Table 11: Performance indices of scenario 1b for best configurations in Table 5

id C Iavg (tavg) Ubed UOR wavg wmax fMTBT

(0) 378 (2162) 597 (93) 62.7% 87.5% 1.9 6.2 10.9%
(8) 281 (2298) 401 (64) 60.5% 93.5% 1.4 3.3 18.0%
(11) 356 (2345) 319 (52) 63.5% 95.4% 1.1 3.0 38.1%
(12) 368 (2342) 311 (51) 63.7% 95.1% 1.0 2.4 43.7%

Table 12: Performance indices of scenario 2b for best configurations in Table 6

id C Iavg (tavg) Ubed UOR wavg wmax fMTBT

(0) 344 (2248) 496 (78) 63.5% 90.6% 1.65 5.27 9.4%
(8) 266 (2354) 310 (50) 62.6% 95.0% 1.09 3.03 43.1%
(11) 332 (2400) 240 (39) 64.1% 96.5% 0.83 2.32 75.6%
(12) 350 (2396) 245 (40) 64.6% 96.4% 0.84 2.24 75.7%
(13) 341 (2375) 231 (38) 68.3% 95.6% 0.81 2.37 78.2%
(14) 355 (2386) 245 (40) 67.7% 96.3% 0.84 2.30 73.4%

The positive impact of the optimization persists: actually, the value of
fMTBT ranges from 10.9% to 43.7% in the scenario 1a, and from 9.4% to
73.4% in the scenario 1b. On the contrary, the value of C is almost stable,
probably due to the nature of the new delays.

As already done in Section 4.5, we evaluate the additional number of
overtime hours Ω necessary to regaining roughly the same overall performance
that had been obtained for scenario 2. Results are reported in Table 13.

The results suggest that 15 hours of additional overtime per week would
be enough to bring the performance indices to the best values of the scenario
2. Further, we observe that the overtime actually used is about the same of
the scenario 2 (304 vs. 295 minutes).
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Table 13: Overtime estimation

Elective overtime used
Ω C Iavg (tavg) Ubed UOR wavg wmax fMTBT minutes %
0 341 (2375) 231 (38) 68.3% 95.6% 0.81 2.37 78.2% 225 74.8%
5 282 (2410) 168 (28) 64.7% 96.8% 0.62 1.88 92.9% 256 42.7%
10 227 (2411) 146 (24) 62.6% 97.2% 0.56 1.82 95.0% 281 31.2%
15 169 (2414) 119 (20) 60.3% 97.4% 0.48 1.81 96.8% 304 25.3%

5. Conclusions

In this paper we proposed a model for the Real Time Management of
operating rooms. Given an OR schedule, it consists in a sort of centralized
surveillance system whose main task is to supervise the execution of such a
schedule and, in the case of delays, to take the more rational decision regard-
ing the surgery cancellation or the overtime assignment. We evaluated its
impact on the performance of a generic surgical clinical pathway for elective
patients. To this end, we developed a hybrid simulation and optimization
model.

The extensive quantitative analysis discussed in Section 4 showed the
positive impact of the optimization in the management of a surgical pathway
through the evaluation of a set of patient-centred and facility-centred indices.

The online algorithm developed for the RTM is capable to determine a
general improvement of all the performance indices. Comparing the baseline
configuration with the best configuration in the two scenarios considered,
we observed a vast improvement of the performance indices related to the
waiting list in terms of its length and the waiting time. This allow to almost
double the percentage of the patients operated on before their MTBT time
limit. These improvements can determine a general improvement of the
quality of service from a patient-centred point of view without deteriorating
the facility-centred performance indices. The quantitative analysis confirms
the trade-off between the number of cancellations and the number of operated
patients (or, equivalently, the OR session utilization) as discussed in [17].

The analysis provided in Section 4.5 and 4.6 demonstrate the capability
and the flexibility of our hybrid model to deal with different OR settings.
These analysis also showed how the overtime could be interpreted as a re-
ally flexible resources that can be used to bring under control challenging
situations.

From an OR management point of view, the quality of the provided re-
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sults and the low computation time suggest the development of a decision
support system based on the online algorithm for the RTM powered by an
ICT infrastructure to track the surgeries within the operating rooms. Such a
system could support the OR supervisor(s) in the management of the current
schedule optimizing the use of the overtime.

Future research avenues could consider a more systematic analysis of the
management of a joint elective and emergency patient flow. Another avenue
could be the extension of the proposed approach to the analysis of multiple
surgical pathways and their shared resources.

Furthermore, in our approach we are not directly taking into account the
physician availability (e.g., surgeons and anesthetists) as is common when
dealing with surgery process scheduling. Therefore, a future research avenue
could include the availability of the physicians by introducing an optimization
module dealing with the Master Surgical Schedule problem.
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Appendix A. Parameters

In this appendix, we report the parameters of the simulation model and
its setting both for the model validation (Section 4.2) and for the quantitative
analysis (Sections 4.3–4.6). In brackets, the unit of measure.
Flow and patient characteristics:

r0: patient interarrival rate [patients/minutes],
R0: initial length of the pre-admission waiting list [patients],
p1: patient probability to require a surgical treatment during the am-

bulatory visit (see Fig. 1),
p2: patient probability to do not require a surgical treatment but re-

quiring further exams during the ambulatory visit (see Fig. 1),
pA, . . . , pG: urgency class A,. . .,G patient probability.

Duration of activities:
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Tmin,avg,modA,...,F,I : minimum, average and modal time for the execution of
A,. . .,F,I [minutes] (see Figures 1–2b),

`min, max, mod; A,. . .,G: minimum, maximum and modal LOS for pa-
tients belonging to the urgency class A,. . .,G [days],

ε̄A,...,G: average EOT for the surgery of a patient belonging to the ur-
gency class A,. . .,G [minutes],

emax: maximum duration of a surgery [minutes],
σA,...,G: EOT standard deviation [minutes],
σ: ROT standard deviation for each patient [minutes],
τ : tolerance time within which the surgical team operates a patient at

the end of OR session without resorting to the overtime [minutes].
Table A.14 shows the distributions used to generate the required time for

the execution of the activities A,. . .,J. Table A.15 reports the values assigned
to the parameters for the model validation and for the quantitative analysis.

Table A.14: Distribution of the activity durations

Activities Durations Parameters

A,. . ., F, I TA,. . .,F,I
min + T, k = TA,...,F,I

avg − TA,...,F,I
mod ,

T ∼ Gamma(k, ϑ) ϑ =
TA,...,F,I

avg −TA,...,F,I
min

TA,...,F,I
avg −TA,...,F,I

mod

H (LOS) bTriangular(lmin; A,. . .,G, lmax; A,. . .,G, lmod; A,. . .,G) + 1
2
c

J (EOT) min
{

max
{
bT
u

+ 1
2
cu, 0

}
, emax

}
, µ = log εA,. . . ,G − 1

2
log
(
σ2

A,...,G

ε2A,...,G
+ 1
)

,

T ∼ Lognormal(µ, s2) s =

√
log
(
σ2

A,...,G

ε2A,...,G
+ 1
)

J (ROT) min {max {0, T} , emax},
T ∼ Gaussian(EOT, σ2)

Starting from the values reported in [32], that is minimum, maximum,
average and modal values, we use a Gamma distribution because, empirically,
those values suggested a distribution whose shape recalls the Gamma. The
parameters k and ϑ were obtained in such a way to equal the expected
and the modal values reported in [32]. Further, we compute the value of
the survival function on the maximum time for the execution of activities
(always reported in the paper), obtaining a value less than 10%.

The EOT of the patient i represents a prediction of the surgery dura-
tion performed by the surgeons at the moment of the ambulatory visit who
indicates the mean duration of similar surgeries on the basis of the own per-
sonal experience (in absence of historical data). In the literature, a priori
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Table A.15: Parameters used in the simulation framework

Parameters unit of measure Validation Quantitative analysis

r0 patients/minutes 5.8 · 10−3 2.0 · 10−2

R0 patients 140 420

p1, p2 0.2, 0.1 0.2, 0.1

pA, . . . , pG 0.0245, 0.1401, 0.4136, 0.1785 0.0245, 0.1401, 0.4136, 0.1785
0.1140, 0.0749, 0.0544 0.1140, 0.0749, 0.0544

TA,...,F,I
min minutes 5, 25, 25, 25, 40, 25, 35 5, 25, 25, 25, 40, 25, 35

TA,...,F,I
avg minutes 7.5, 31.5, 31, 28, 62.5, 32, 41 7.5, 31.5, 31, 28, 62.5, 32, 41

TA,...,F,I
mod minutes 6, 30, 26, 25, 50, 30, 40 6, 30, 26, 25, 50, 30, 40

`min; A,. . .,G days 2, 1, 1, 1, 1, 1, 1 2, 1, 1, 1, 1, 1, 1

`max; A,. . .,G days 29, 16, 7, 9, 5, 5, 5 29, 16, 7, 9, 5, 5, 5

`mod; A,. . .,G days 3, 2, 2, 2, 2, 2, 2 3, 2, 2, 2, 2, 2, 2

emax minutes 360 420

ε̄A,...,G minutes 145, 171, 149, 153, 171, 164, 166 145, 171, 149, 153, 171, 164, 166

σA,...,G minutes 85, 85, 66, 60, 61, 51, 60 85, 85, 66, 60, 61, 51, 60

σ minutes 0 30

τ minutes 30 10

Ω minutes 0 300

u minutes 30 30

B1, . . . , B7 beds 18, 18, 18, 18, 18, 18, 18 50, 50, 50, 50, 50, 35, 35

MURG A,...,URG G days 8, 15, 30, 60, 90, 120, 180 8, 15, 30, 60, 90, 120, 180

surgery duration generally follows a Log-Normal distributions (see, e.g.,[44–
46]). Then, the ROT of the patient i has been generated in such a way to
replicate the uncertainty pertaining the prediction made by the surgeons:
we generate a value ν using a Gaussian distributions with average 0 and
standard deviation σ; then, the ROT value ri is computed as ei + ν.

We observe that the simulation model generates activity durations on
the basis of few information reported in [32]. In presence of historical data
about surgery durations, it is more reasonable to use them for replicating and
predicting surgery durations depending on the characteristics of the patient,
learning from the previous experiences. For this purpose several Bayesian
methods can be used as reported in the literature (see, e.g.,[47–49]).
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