1,531 research outputs found

    What do faculties specializing in brain and neural sciences think about, and how do they approach, brain-friendly teaching-learning in Iran?

    Get PDF
    Objective: to investigate the perspectives and experiences of the faculties specializing in brain and neural sciences regarding brain-friendly teaching-learning in Iran. Methods: 17 faculties from 5 universities were selected by purposive sampling (2018). In-depth semi-structured interviews with directed content analysis were used. Results: 31 sub-subcategories, 10 subcategories, and 4 categories were formed according to the “General teaching model”. “Mentorship” was a newly added category. Conclusions: A neuro-educational approach that consider the roles of the learner’s brain uniqueness, executive function facilitation, and the valence system are important to learning. Such learning can be facilitated through cognitive load considerations, repetition, deep questioning, visualization, feedback, and reflection. The contextualized, problem-oriented, social, multi-sensory, experiential, spaced learning, and brain-friendly evaluation must be considered. Mentorship is important for coaching and emotional facilitation

    The Maxwell-Chern-Simons gravity and its cosmological implications

    Full text link
    We consider the cosmological implications of a gravitational theory containing two vector fields coupled minimally to gravity as well as a generalized Chern-Simons term that couples the two vector fields. One of the vector fields is the usual Maxwell field, while the other is a constrained vector field with constant norm included in the action via a Lagrange multiplier. The theory admits a de Sitter type solution, with healthy cosmological perturbations. We will show that there is 6 degrees of freedom propagate on top of de Sitter space-time, two tensor polarizations and four degrees of freedom related to two massless vector fields interacting with each other via Chern-Simons interaction term. We also investigate in detail the behavior of the geometric and physical parameters of a homogeneous and anisotropic Bianchi type I Universe, by using both analytical and numerical methods, by assuming that the matter content of the Universe can be described by the stiff causal and pressureless dust fluid equations of state. The time evolution of the Bianchi type I Universe strongly depends on the initial conditions of the physical and geometrical quantities, as well as on the numerical values of the model parameters. Two important observational parameters, the mean anisotropy parameter, and the deceleration parameter, are also studied in detail, and we show that independently of the matter equation of state the cosmological evolution of the Bianchi type I Universe always ends in an isotropic and exponentially accelerating, de Sitter type, phase.Comment: 19 pages, 12 figure
    • …
    corecore