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Abstract In genomic studies of cancers, identification of genetic biomarkers from 
analyzing microarray chip that interrogate thousands of genes is important for diagnosis 
and therapeutics. However, the commonly used statistical significance analysis can only 
provide information of each single gene, thus neglecting the intrinsic interactions among 
genes. Therefore, methods aiming at combinational gene signatures are highly valuable. 
Supervised classification is an effective way to assess the function of a gene combination in 
differentiating various groups of samples. In this paper, an evolutionary variable 
neighborhood search (EVNS) that integrated the approaches of evolutionary algorithm and 
variable neighborhood search (VNS) is introduced. It consists of a population of solutions 
that evolution is performed by a variable neighborhood search operator, instead of the more 
usual reproduction operators, crossover and mutation used in evolutionary algorithms. It is 
an efficient search algorithm especially suitable for tremendous solution space. The 
proposed EVNS can simultaneously optimize the feature subset and the classifier through a 
common solution coding mechanism. This method was applied in searching the 
combinational gene signatures for predicting histologic response of chemotherapy on 
osteosarcoma patients, which is the most common malignant bone tumor in children. 
Cross-validation results show that EVNS outperforms the other existing approaches in 
classifying initial biopsy samples. 
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1.  Introduction 

  Osteosarcoma is the most common malignant bone tumor in children and accounts 
for 60 percent of malignant bone tumors diagnosed in the first two decades of life [19]. It 
is possible that resistant tumor cells have additional time to either metastasize to the 
lungs or evolve further during the period when ineffective preoperative chemotherapy is 
given. Therefore initial diagnosis, which aims at identifying whether the patients are 
likely to have a poor response to standard preoperative therapy, is necessary. 

 In cancer research, microarray chip can simultaneously interrogate thousands of 
genes, which provides an extremely powerful tool for genomic studies of cancer. A few 
key genes (typically involving oncogenes and tumor suppressor genes), when mutated, 
will cause dysregulation of the transcription and translation of other genes through 
complicated signaling pathways to initiate oncogenesis, and ultimately leading to 
derangement of the cellular phenotype and the clinical manifestations of cancer [6, 12]. 
Significance based methods (e.g. T-test, Confidence intervals, etc.) [7], which aim at 
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finding statistically significant genes in differentiating various patient groups, have been 
extensively utilized. However, the philosophy of these methods is to evaluate each single 
gene one by one, thus neglecting the intrinsic interactions among genes. Therefore, 
methods to assess the function of gene combinations in regulating tumor patterns are 
highly desired. Supervised classification is the most effective machine learning method 
to map the input space (with multiple predictor genes) and the output space (with labeled 
conditions).  

 Commonly used learning algorithms include neural network [2, 16], k-nearest 
neighbor [18], decision tree, multi-layer perceptron [17], self-organizing maps [12], 
hierarchical clustering [8], graph theoretic approaches [14], and support vector machine 
(SVM) [11, 25, 34], have been employed to identify gene signatures. Among all of them, 
SVM has been proven to have the best capability in controlling the tradeoff between 
empirical risk and model complexity to achieve good prediction [1, 18, 29, 30]. It has 
many appealing properties for classification of microarray data in osteosarcoma [20], 
including measures to prevent overfitting and local minima that are associated with other 
classification algorithms. 

 In our recent study, an integrated approach of support vector machine (SVM) with a 
variable neighborhood search (VNS) algorithm, that can effectively solve the problem of 
simultaneously optimizing gene subset and the classification of osteosarcoma, is 
introduced [4]. The rationale behind the use of VNS is its high efficiency in searching a 
tremendous solution space that can reach better solutions than classical local search 
algorithms and faster convergence speed than stochastic algorithms like evolutionary 
algorithms [27]. VNS achieves this with a systematic change of neighborhood whilst 
searching through solution space so as to avoid local minima traps, which are the hardest 
drawbacks with metaheuristics. The main limitation of VNS implementations arises with 
its inbuilt neighbourhood functions, which restrain the search with spinning in some 
particular regions of the space. After searching in a long time, jumping to some other 
regions of the search space becomes almost impossible. 

 The most effective healing option appears to be hybridised VNS with other 
heuristics such as the evolutionary algorithms. The main aim of the resulting algorithm, 
namely evolutionary variable neighbourhood search EVNS, is to avoid local minima 
traps and/or to have faster convergence. This idea behind EVNS is to run many VNSs 
distributively in a parallel way. In EVNS, many VNSs work independently on different 
individuals of the population as evolutionary algorithms do. Evolutionary algorithms use 
genetic operators, crossover and mutation, to explore the search space, while EVNS uses 
VNS to explore the search space. This method is applied in finding the combinational 
gene signatures and building models for predicting chemo-response of osteosarcoma. To 
evaluate the performance and robustness, the results of the proposed method were 
compared with the existing methods, VNS [5] and evolutionary algorithm [4] in which 
the same mircoarray dataset [20] was used. 

  
2.  Problem Formulation and Solution Representation 
 
2.1 Problem Formulation 
Let a gene microarray dataset D be l

iii y 1)},{( =x , where m
i ℜ∈x  is the gene 

expression level of the i-th patient, }1,1{−∈iy  is the condition label for binary 
classification problem, and m is number of gene features.  
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The dataset after performing gene selection is defined as 
( ) ( ) DDx ⊂==  l

iii y 1)},{(  with ( ) 'm
i ℜ∈x , where function   selects 'm  

( m≤ ) gene features among all the m gene features from the gene expression data set D. 
For a new sample x , the decision function of a SVM classifier with 

radial-basis-function (RBF) kernel can then be defined based on the selected gene subset: 
(1)         ( ) )))(,(sgn(),,,,(

vectorssupport 
∑= xxDx  iii KayCf σ   

where σ  is the width parameter of the RBF kernel and C  is the regularization 
parameter, ia  is solved by optimizing a quadratic function 
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subject to Cai ≤≤0 . The support vectors are only corresponding to those items with 

0>ia . 
To develop a robust SVM model based on the training set, the leave-one-out 

cross-validation (LOOCV) was applied to optimize the model parameters (σ  and C). In 
LOOCV, one sample is leaved out as testing sample, and the remained 1l − samples are 
used as training data. Let kD  represent the training set 

( ){ }, , 1, 1, 1, ,i iy i k k l= − +x  �� , then the accuracy for a validation is calculated by: 
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Thus the overall accuracy is ∑
=

l

k
k lJ
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. Now the problems of gene feature 

selection and SVM parameter optimization are integrated to optimizing the above 
objective function (3). 

2.2 Solution representation 

Solutions of the above problem are represented in combination of both binary and real 
codes where binary coded representation is for the selection of gene features with  , and 
real coded representation is for the SVM parameters σ  and C. This scheme of 
representation is illustrated in Figure 1. 
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Figure 1 Solution representation 
 

As illustrated in the left hand side of Figure 1, binary coded representation [3, 
16] is composed of a fixed-length binary string to determine the usage of gene features 
by their corresponding genes. It has the form of the binary string with m bits such that m’ 
of entries are 1 and the rest are 0. A bit with 1-element means that the corresponding 
gene feature is selected in the subset of gene features while a bit with 0-element indicates 
that the corresponding gene feature is not selected. For instance, a solution of [0,1,0,1,0,0] 
with 2'=m , i.e. the number of 1-elements of the solution, and m=6, i.e. the number of 
bits of the solution, represents the 2nd and 4th gene features are selected. As illustrated in 
the right hand side of Figure 1, real code is adopted for representing the two SVM 
parameters, the kernel width parameter σ  and the regularization parameter C. 

The number of bits m is equivalent to the total number of genes, and the number 
of 1-elements 'm  is the number of selected gene signatures. Thus the number of 
possible gene subsets cn  can be calculated as the following: 

(4)                        

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In general, the number of the genes contained in microarray data is very large. This will 
make the whole solution space extremely large, thus impair the efficiency and 
effectiveness of the algorithm. Therefore, utilizing a pre-screening procedure to filter out 
those noisy genes will remarkablely improve the performance of this algorithm. 
 
3.  Variable neighborhood search VNS 
Variable neighborhood search (VNS) [22, 27] could be used to solve the integrated gene 
feature selection and SVM classification problem defined in (3) due to its ease of use 
with remarkable success in solving hard combinatorial optimization problems [9, 13]. It 
has been proposed to solve the gene signature selection problem [4] as formulated in (3). 
Basically, it carries out exploration within a limited region of the whole search space. 

m’ 

Binary coded representation Real coded 
representation 

σ C 

Solution representation 

 
1 0 0 1 0 1 1 0 1 0 

Kernel width parameter σ and 
the regularization parameter C 

Selection of m’ gene features 
among the m genes 
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That facilitates a provision of finding better solutions without going further investigation. 
It is shown to be a simple and effective search procedure that explores the solution space 
with systematic change of neighbourhood. It searches in which a local search intensifies 
the exploration within a preferred neighbourhood until a certain level of satisfaction. 
Once a local search was finished with a neighbourhood, then another neighbourhood is 
systematically moved to. That refreshes the search and let the algorithm converge faster. 
Its main components, neighborhood functions (NFs), and its detailed procedures are 
discussed in Section 3.1 and 3.2 respectively. 
3.1.  Neighborhood functions (NFs) 
In VNS, the neighborhood functions (NFs) are the methods in which the neighboring 
solutions are determined through. Therefore, they are the key elements of VNS in 
success of metaheuristics with exploration through search spaces. Following two types of 
NFs are used for exploring the solution space of the integrated gene feature selection and 
SVM classification problem as defined in (4): 

- ‘MutationBin’ is a neighborhood function used to explore solutions of the binary 
representation by exchanging the entries of a 0- and 1- elements. For instance, 
suppose that the 2nd bit with entry 1- element and 5th bit with entry 0- element of the 
solution [0,1,0,1,0,0] are selected to be exchanged. Thus the 2nd gene is selected as 
the gene signature, and the 5th gene is not. After applying MutationBin, the new 
solution will be [0,0,0,1,1,0]. Obviously, the elements of the 2nd and 5th bits were 
exchanged from 1 to 0 and from 0 to 1 respectively. Thus after the performing the 
operation MutationBin, the 5th gene is selected as the gene signature, and the 2nd 
gene is not. 

- ‘MutationReal’ is a neighborhood function that implies small shake on a randomly 
choice of SVM classifier parameters in the real coded representation of the solution. 
The MutationReal function is defined as the following shake function: 

(5)      ω+= ppshake )(        
where p  represents the randomly chosen parameter, and ω  is randomly generated 

within the range ( )minmax1.0 pp −× , representing 0.1 times scale of the parameter 

space of the SVM classifier. 
 

3.2. VNS 
VNS starts with a randomly selected initial solution, SxC ∈=],,[ σ , where S is the 
whole search space, and manipulates the solutions via steps (a) and (b), where two main 
functions, Shake Function and Local Search Function LSF, for intensification and 
exploration in search.  

The pseudo-code of the variable neighborhood search (VNS) is illustrated 
follows:  

Repeat the following Step (a) to (c) until the stopping condition is met: 
 Step (a) Perform Shake Function: x’=MutationReal(x) 
 Step (b) Perform Local Search Function: x’’=LSF(x’’) 
 Step (c) Improve or not: if x’’ is better than x, do x’’’→  x 

In Step (a), Shake Function generates and/or modifies the solutions regardless 
of the quality of solution so as to initializes a fresh search in a local neighborhood or to 
switch to another neighborhood. Then Step (b) carries out the major intensive search by 
Local Search Function (LSF), which a simple hill-climbing algorithm based on both 
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aforementioned NSs detailed in the appendix is used. It explores for an improved 
solution within the local neighborhood chosen. After that the outcome of local search 
function is evaluated whether or not to adopt it as the solution for further search. 
Shake Function and LSF need to be chosen so as to achieve an efficient VNS. The NF 
discussed in Section 3.1 are used for Shake Function and LSF to obtain neighborhood 
changes and local intensification in VNS. Since the purpose of Shake Function is to 
diversify the exploration, it is designed to switch to another region of the search space so 
as to carry out a new local search over there. In this study, Shake Function is not applied 
to the binary coded representation part of solutions, but is designed to conduct a random 
move within the real coded part. Thus, the given solution *x  operated with the Shake 
Function to obtain x’ uses MutationReal(x*). That is reiterated until the termination 
condition is met. 
 
4.  Evolutionary Variable Neighbourhood Search (EVNS) 
VNS is able to converge to the optimum value, but it could be very expensive to obtain a 
desired solution in terms of computational time. It can be found from the literature that 
VNS has been either hybridized with other methods such as genetic algorithms or 
parallelized [10, 23, 31]. In this paper, the evolutionary variable neighbourhood search 
(ENVS) algorithm was developed to overcome the long computational time for solving 
the gene signature problem as formulated in (3). It offers an evolutionary process in which 
a VNS algorithm substitutes for the genetic operators to evolve a population of solutions. 
The pre-defined number of iterations in VNS algorithm is kept short and sufficiently 
compact so that it can be easily used in any evolutionary process as an operator. This 
makes the EVNS implementable in various environments, working alongside other 
methods. We embedded a shortened VNS into an evolutionary algorithm, which adopts the 
VNS as the only operator and does not contain any other reproduction operators 
(crossover, mutation). The EVNS algorithm for solving (3) is sketched below: 
Begin  
 Initialise the population (X), 
 Set the number of evaluations (N) 
 Repeat: 
  Select an individual (xn) 
  Operate by the NVS and generate the new individual (xn’) 
  Evaluate the new individual xn’ for replacement 
 Until n>=N 
End. 

After initialization and parameter setting, the algorithm repeats the following 
steps: (i) selects one individual xn subject to the running selection rule; (ii) generate a new 
individual x n’ by the VNS operator; and (iii) evaluates whether or not to put it back into 
the population through a particular replacement rule. The VNS operator is basically a 
metropolis algorithm, which is the original inspirational idea, where inner repetitions are 



                     PREDICTING CHEMO-RESPONSE OF OSTEOSARCOMA                    265     

kept optional.  
Implementations of NVS differ depending on the setting of inner repetitions, 

which are set to stabilize the solution before the NVS stops exploring the solution space. 
This identifies the total number of evaluations per run of the NVS operator. Obviously, the 
only operator running alongside the selection is the NVS. Since the NVS operator 
re-operates on particular solutions several times, the whole method works as if it is 
explored the solution space every particular number of iterations. If we assume that there 
is a single solution operated by this NVS, it will become a multi-start (not multi-run) 
algorithm that reruns repeatedly. Thus, the novelty of ENVS can be viewed from two 
points of view: one is its multi-start property, and the other is its evolutionary approach. 
The multi-start property provides ENVS with a more uniform distribution of random 
moves along the whole procedure and that helps to diversify the solutions. In fact, typical 
NVS works in such a way that the search space is explored by distributed random moves, 
where each random move starts a new hill climbing process to reach the global minimum. 
Since it almost behaves like a hill climber in the later stages of the process, it becomes 
harder to escape from local minima then, especially, when it is applied to difficult 
optimisation problems, which have harder local minima. The idea is to distribute the 
random moves more uniformly than exponentially across the whole process. 
 Suppose that the landscape of the formulated problem (3) is l, and E0 is one of the 
very strict local minima. Furthermore, suppose we run a NVS algorithm that sticks in E0 
under some initial conditions. Most of the time, getting stuck in such local minima 
happens in the later stages of runs, therefore the probability of moving to a rescuable 
neighbour is very low. In order to avoid sticking in E0, it is required to relax the restricted 
conditions to let the algorithm proceed by jumping to a solution state that avoids E0. A 
multi-start NVS algorithm is more useful to relax these conditions rather than a single run 
NVS since the random moves are more uniformly distributed in the multi-start one and the 
chance to commence new hill climbing cycles in the later stages is higher. Thus, a compact 
NVS algorithm that constantly picks the same solution and manipulates it along a number 
of iterations for several times can easily avoid the local minima, as it adopts a set of short 
Markov chains instead of a single and long one. This allows changing the direction of 
solution path towards a much more useful destination. 
 The other property of EVNS is to tackle a population of individuals rather than a 
single individual. This decreases the effects of initial solutions on the optimization 
process. Many works on solving hard optimization problems by heuristics focused on the 
effects of initial solutions. When an initial solution has been chosen, there arise limited 
possible paths to proceed under the certain circumstances since the optimization process 
behaves as a Markov chain and each chain offers limited paths to the destination, as widely 
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shown in the literature [31, 28]. Looking at the initial conditions, one can estimate the 
probability of getting an optimal or useful near optimal solution with a particular initial 
solution. In fact, it is hard to ensure that all initial conditions can avoid the local optima in 
searching for reasonable time. Therefore, a diverse population of initial solutions can give 
higher probability than a single initial solution to catch the optimum or a useful near 
optimum within a reasonable time. Moreover, if useful selection and replacement 
strategies can be utilized, it will definitely help the process to improve the quality of 
solutions. So, for that reason, the ENVS algorithm is run on a population of solutions 
rather than an individual. 

 
5.  Data Description 
The osteosarcoma microarray data were collected through institutional review 
board-approved protocols at four centers (Texas Children’s Hospital/Baylor College of 
Medicine, Cook Children’s Medical Center, Pediatric Branch of the National Cancer 
Institute, and University of Oklahoma Health Science Center) after informed consents 
were signed [20]. A total of 20 samples, which are definitive surgery specimens, were 
employed to be used in this study. The definitive surgery samples were collected after the 
completion of preoperative chemotherapy. The drug responses are centrally reviewed by 
one pathologist after definitive surgery. Good response is defined as more than 90 
percent necrosis in tumor, and poor response with less than 90 percent necrosis. 
    This amount of patient samples are considered to be valuable and satisfied in cancer 
researches in which were collected through many years of observation of diagnosis, 
treatment and surgery of the patients [20]. Also osteosarcoma is not that common, but 
long-term and strong chemotherapy needs to take to turn recovery. Our objective is to 
make use of this amount of patient samples to solve the integrated gene feature selection 
and SVM classification problem formulated in (3). 
    Raw quantification output of all array experiments were preprocessed and filtered 
by removing spots with low signal intensity and low sample variance (P > 0.01) as well 
as those that were missing in >50% of the experiments. A total of 1,934 genes remained 
after pre-processing and filtering. Intensities were then normalized by intensity 
dependent local weighted regression method. After normalization, intensity ratios were 
log transformed before further analysis. 
There were some missing data after filtering. Since most of the learning machines 
including SVM require complete data matrix, simply ignoring those genes with missing 
values may possibly miss some significant genes. In this study, we simply replaced those 
missing data by the mean value of the existing data sets. This approach ensures that the 
testing data are entirely independent to the training process to exclude any possibility of 
overestimation. 

6   Results and Discussion 

A case study of classification of osteosarcoma is proposed to be solved by EVNS. The 
effectiveness and robustness of the proposed EVNS is performed by comparing with the 
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other two existing methods, genetic algorithm [5] and variable neighbourhood search [4] 
which have been proposed to solve this classification problem. The 20 definitive surgery 
samples were employed to perform the LOOCV discussed in Section 2, the classifier was 
firstly trained by 19 out of the 20 definitive surgery samples, optimized and validated on 
1 out of the 20 definitive surgery samples to classify good responders and poor 
responders. To reduce the computational cost for optimization, two-sample t-test is first 
performed to pre-screening those noisy genes among the 1934 genes in which the test 
values of all genes are illustrated in Figure 2.  
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Figure 2 t-values of the sorted gene features 

192 most significant genes, which their t-value are higher than 2.151

The t-test is then used to evaluate how significance the EVNS better than the 
other algorithms is, and the t-values are shown in Table 2. It shows that all t-values in 
Table 2 are higher than 2.15. Based on the normal distribution table, if the t-value is 
higher than 2.15, the significance is with 98% confident level. Therefore the performance 

, are kept 
from the total 1934 genes. Then the algorithms used to train the SVM classifier with 5 
genes out of the 192 genes. Since all algorithms, ENVS, GA and NVS are the stochastic 
algorithms, different solutions are obtained with runs. The better the algorithm is, the 
smaller mean and variance of solutions in all runs can be obtained. Therefore 30 test runs, 
which are detailed on Table 1, were performed. The means and variances of the three 
algorithms are also shown, and the numbers of times that the algorithms reached 100% 
accuracy are recorded on the table. It can be found from Table 1 that EVNS achieves the 
best mean accuracy among all the algorithms. In fact, EVNS obtains the highest mean 
accuracy. Also the variance of accuracy of EVNS is the smallest comparing with the 
other algorithms. The smaller the variance means the closer the values cluster around the 
mean. Since all the variance of accuracy of EVNS is the smallest, it demonstrates that 
the EVNS is capable to approach and keep searching around the optimal mean closer. 
Therefore EVNS can produce better and more stable solution quality than the other two 
algorithms. Also Table 1 shows that the numbers of times that the VNS, GA and EVNS 
can reach 100% accuracy are 3, 21 and 29 respectively. Therefore the capability of 
EVNS to reach 100% accuracy is higher than the other two algorithms. 

                                                        
1  Based on the normal distribution table, if the t-value is higher than 2.15, the 
significance is with 98% confident level.  
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of EVNS is significantly better than the other two methods with 98% confident in 
classification of osteosarcoma. The results indicate that the proposed EVNS can achieve 
more robust and higher quality solution on searching feature subset and parameters of 
SVM classifier on osteosarcoma. 
 

Among the total 30 runs, four subsets of gene signatures with 100 percent 
cross-validation accuracy are selected, and are shown in Table 3. In this table, the gene 
Enah/Vasp-like (EVL, also known as RNB6) appears in all the subsets. It was reported 
that RNB6 has been identified as a commonly down-regulated gene biomarker in various 
types of cancers [15, 24]. Another gene Cell division cycle 23, yeast, homolog (known as 
CDC23), when overexpressed, will leads to abnormal levels of anaphase-promoting 
complex (APC/C) targets, which is a large multisubunit ubiquitin-protein ligase required 
for the ubiquitinations and degradation of G1 and mitotic checkpoints regulators [32]. 
Some other genes, such as Early growth response 1 and C1q and tumor necrosis factor 
related protein 2, etc., also have relationship with oncogenesis or tumor development. So 
far no available information can be found to explain the cooperative relationship among 
genes in each subset. Therefore we cannot verify the validity of the selected genes as 
genuine biomarkers. Nevertheless, the results can be used as a hypothesis for further 
investigations. Performing real-time RT-PCR can validate the relevance of these genes as 
biomarkers. More molecular studies should be pursued to investigate the biological 
mechanism of these genes in determining drug response and chemoresistance. 
 
 To further evaluate the credibility of the gene subsets, comparison of correlations 
between gene signatures on the 5 gene subsets found by ENVS are carried out. Table 4 
shows the correlations between the gene signatures on the 5 gene subsets found by 
EVNS. Also the correlation of the gene subset, which consists of the 5 genes (shown in 
Table 5) with the highest t-values among all the genes, is shown in Table 4. The mean of 
correlations, maximum correlation and minimum correlation in each gene subset are all 
shown in Table 4. It can be found from Table 4 that the mean correlation of 5 gene 
signatures with the highest t-values is larger than the five subsets of gene signatures 
found by EVNS. Also the minimum and maximum correlations found by the 5 gene 
signatures with the highest t-values are larger than the ones found by EVNS. If the 
correlations between gene signatures are close, then similar information is contained in 
the gene signatures. The smaller correlation found, the more information is contained on 
the gene subset. Therefore the results suggest that the gene subsets found by EVNS can 
explore more information than the one found by the 5 gene signatures with the highest 
t-values.  
 
Table 1 Classification accuracies of the 30 runs, mean of accuracies, variance of accuracies, 

and number of times reached 100% classification accuracy 

Accuracy of i-th run VNS GA EVNS 

1 90 100 100 

2 95 100 100 

3 100 100 100 

4 95 100 100 

5 95 95 100 
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6 90 95 95 

7 95 100 100 

8 80 100 100 

9 95 100 100 

10 80 100 100 

11 95 100 100 

12 100 100 100 

13 90 100 100 

14 95 100 100 

15 85 100 100 

16 95 90 100 

17 95 100 100 

18 90 95 100 

19 100 90 100 

20 90 100 100 

21 90 100 100 

22 90 100 100 

23 95 95 100 

24 100 100 100 

25 100 90 100 

26 90 95 100 

27 95 100 100 

28 95 90 100 

29 85 100 100 

30 95 100 100 

Mean 92.83 96.67 99.83 

Variance 28.76 13.24 0.83 

Times reached 100%  5 21 29 

 

 
 
Table 2 The t-tests between VNS and EVNS, and between GA and EVNS 
 VNS-EVNS GA-EVNS 
t-values 7.05 4.62 
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Table 3 Subset of combinational gene signatures found by EVNS 
1st 
subset  

ESTs 
Highly 
similar to 
hypothetical 
protein  

EVL 
Enah/Vasp-like 

Acetyl-Coenzyme 
A transporter 

Extra 
spindle 
poles like 1 

Major 
histocompati
bility 
complex, 
class II, DO 
beta 

2nd 
subset  

Cell 
division 
cycle 23, 
yeast, 
homolog 

EVL 
Enah/Vasp-like 

Extra spindle 
poles like 1 (S. 
cerevisiae) 

Early 
growth 
response 1 

Major 
histocompati
-bility 
complex, 
class II, DO 
beta 

3rd 
subset 

SRY-box 9 
(sex 
determining 
region 
Y)-box 9  
 

EVL 
Enah/Vasp-like 

ESTs, Highly 
similar to 
hypothetical 
protein  

C1q and 
tumor 
necrosis 
factor 
related 
protein 2 

Homo 
sapiens 
mRNA from 
chromosome 
5q21-22, 
clone:357Ex 

4th 
subset 

Cell 
division 
cycle 23, 
yeast, 
homolog 
 

EVL 
Enah/Vasp-like 

Protein associated 
with PRK1 
 

Hypothetical 
protein 
MGC19556 

Ubiquitin 
specific 
protease 9, Y 
chromosome 
(fat 
facets-like 
Drosophila) 

 
Table 4 Correlation between genes in gene subsets found by EVNS 
The i-th to 

the j-th 
gene pair 

Gene subset 
(with 

highest 
t-values) 

1-st gene 
subset 

 (found by 
EVNS) 

2-nd gene 
subset  

(found by 
EVNS) 

3-rd gene 
subset  

(found by 
EVNS) 

4-th gene 
subset  

(found by 
EVNS) 

1-2 0.16276 0.19654 0.45141 0.093325 0.3816 
1-3 0.12967 0.18814 0.55831 0.11165 0.62298 
1-4 0.25279 0.34208 0.56237 0.036027 0.17151 
1-5 0.26563 0.51407 0.035131 0.082609 0.35725 
2-3 0.74731 0.28718 0.27413 0.12928 0.24057 
2-4 0.096354 0.091131 0.091691 0.068829 0.035131 
2-5 0.52592 0.04635 0.17565 0.32967 0.21738 
3-4 0.15023 0.43749 0.43749 0.046298 0.020122 
3-5 0.35928 0.068829 0.068829 0.18343 0.054302 
4-5 0.24182 0.19441 0.19441 0.056498 0.23068 

Mean 0.74731 0.1893 0.22795 0.091009 0.18652 
Min 0.096354 0.04635 0.035131 0.036027 0.020122 
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Max 0.74731 0.51407 0.56237 0.32967 0.62298 
 

Table 5 Subset of combinational gene signatures with the highest t-values 
ATPase, H+ 
transporting, 
lysosomal 
56/58kD, V1 
subunit B, 
isoform 1 
(Renal tubular 
acidosis with 
deafness) 

microfibrillar- 
associated 
protein 2 

Mitogen-activated 
protein kinase 
kinase kinase 
kinase 1 

Protein 
phosphatase 
6, catalytic 
subunit 

selectin L 
(lymphocyte 
adhesion 
molecule 1) 

 
7.  Conclusion 
In this paper, we have proposed an evolutionary variable neighborhood search algorithm 
EVNS, which is an integrated approach of variable neighborhood search VNS and 
evolutionary algorithm, aiming at selecting a compact gene subset and simultaneously 
optimizing SVM classifier parameters. As discussed in the literature, VNS algorithms 
may guarantee the optimum or a useful near optimum result. However, it may not reach 
the reasonable solutions in an affordable time. For this reason, VNS is hybridized with 
another heuristic algorithm, evolutionary algorithm. The resulting algorithm EVNS is 
identical to EA except the reproduction operations, crossover and mutation are replaced 
with VNS. It can work as a proper evolutionary algorithm and is more likely to avoid the 
local minima traps. 

Applying EVNS on osteosarcoma microarray data resulted in 99.83 percent of 
cross-validation accuracy on the training dataset with 20 definitive surgery samples 
outperforming the other proposed algorithms, VNS [4] and evolutionary algorithm [5]. 
Apart from higher solution quality, more robust solutions can be produced by EVNS than 
the other proposed algorithms. In the mean time, four subsets of combinational gene 
signatures were discovered. Some of them are reported to have close relationship with 
oncogenesis and tumor development. Further laboratory test will be pursued to 
investigate the cooperative mechanism among each gene subset. This suggests that the 
results of EVNS can be used to generate hypothesis for the identification and validation 
of genetic biomarkers for diagnostic and therapeutic purposes. In the future, we will 
employ the proposed algorithm in solving other similar classification problems with 
large amount of gene data sets like the nasopharyngeal carcinoma or the lung cancer. 
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APPENDIX 
Local Search Function (LSF) is developed as a simple hill-climbing algorithm based on 
both aforementioned NFs as discussed in Section 3.1. As indicated in the following 
pseudo-code, the NFs are used complementary to each other in the way that the NFs 
keep iterating as long as better moves are resulted. It switches to the other move once the 
result produced is not better and the algorithm stops if the number of moves, n, meets a 
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predefined number, nmax. The change of NF is organized with a binary integer variable, γ 
∈ (0, 1), in which the value of γ is changed by using an absolute function denoted by |·| 
norm at the second part of step (b) of the pseudo-code. The procedures of LSF are as 
follows: 

 Algorithm LSF: x=LSF(x) 
1. Set 0←n and 1←γ  
2. While maxnn < do 
(a) if ( )1=γ then x’ ← MutationBin(x); else if ( )0=γ  then x’ 

← MutationReal(x) 
(b) Set if ( ) ( )'xJxJ <  then 'xx ← ; else 1−← lγ  
(c) 1+← nn  

where ( )xJ  is defined by (3) in Section 2.1. 
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