79 research outputs found

    Developing pedagogic skills of Libyan pre-service teachers through reflective practice

    No full text
    Over the last two decades, teacher education (TE) has witnessed substantial changes in the way the divide between theory and practice is viewed. This has resulted in changes in the approaches used to deliver TE programmes. Since Dewey (1933), teacher educators have been concerned with how to prepare teachers who are reflective about what they are doing. Hence, there has been widely applied emphasis on the investigation of practice. This study describes the introduction of Reflective Practice (RP) to Libyan fourth-year trainee teachers to enhance their thinking about pedagogic skills. Its main aim is to examine to what extent trainee teachers will engage in a reflective practice (RP) programme, how they will reflect on their everyday understanding and practice and how they may improve their thinking about practice as a result.It describes how an action research study was conducted with a group of 30 prospective teachers over a period of 14 weeks and involved three phases. The first two phases lasted twelve weeks. In the first phase, the participants engaged in general discussions on instructional strategies, and this paved the way for the second phase, where there was in-college teaching practice. Finally, the participants practised teaching for two consecutive weeks in a real-life context, i.e. in a secondary school.The findings indicate that the implementation of RP in the Libyan context promoted a culture of observation and critical discussions in a setting that has traditionally been characterised as passive and non-reflective. The study indicates that RP is an essential component of pre-service teachers’ development. However, if we are to make more progress, we need to aim for more understanding of the pedagogic process that supports trainee teachers’ (TTs) pedagogic inquiry. This will require good collaborative work between colleges and schools, between educators and language tutors in schools and colleges, and among TTs themselves

    Time and multiple objectives in scheduling and routing problems

    Get PDF
    Many optimization problems encountered in practice are multi-objective by nature, i.e., different objectives are conflicting and equally important. Many times, it is not desirable to drop some of them or to optimize them in a composite single objective or hierarchical manner. Furthermore, cost parameters change over time which makes optimization problems harder. For instance, in the transport sector, travel costs are a function of travel time which changes depending on the time of the day a vehicle is travelling (e.g., due to road congestion). Road congestion results in tremendous delays which lead to a decrease in the service quality and the responsiveness of logistic service providers. In Chapter 2, we develop a generic approach to deal with Multi-Objective Scheduling Problems (MOSPs) with State-Dependent Cost Parameters. The aim is to determine the set of Pareto solutions that capture the trade offs between the different conflicting objectives. Due to the complexity of MOSPs, an efficient approximation based on dynamic programming is developed. The approximation has a provable worse case performance guarantee. Even though the generated approximate Pareto front consist of fewer solutions, it still represents a good coverage of the true Pareto front. Furthermore, considerable gains in computation times are achieved. In Chapter 3, the developed methodology is validated on the multi-objective timedependent knapsack problem. In the classical knapsack problem, the input consists of a knapsack with a finite capacity and a set of items, each with a certain weight and a cost. A feasible solution to the knapsack problem is a selection of items such that their total weight does not exceed the knapsack capacity. The goal is to maximize the single objective function consisting of the total pro t of the selected items. We extend the classical knapsack problem in two ways. First, we consider time-dependent profits (e.g., in a retail environment profit depends on whether it is Christmas or not)

    A stochastic inventory policy with limited transportation capacity

    Get PDF
    In this paper we consider a stochastic single-item inventory problem. A retailer keeps a single product on stock to satisfy customers stochastic demand. The retailer is replenished periodically from a supplier with ample stock. For the delivery of the product, trucks with finite capacity are available and a fixed shipping cost is charged whenever a truck is dispatched regardless of its load. Furthermore, linear holding and backorder costs are considered at the end of a review period. A replenishment policy is proposed to determine order quantities taking into account transportation capacity and aiming at minimizing total average cost. Every period an order quantity is determined based on an order-up-to logic. If the order quantity is smaller than a given threshold then the shipment is delayed. On the other hand, if the order quantity is larger than a second threshold then the initial order size is enlarged and a full truckload is shipped. An order size between these two thresholds results in no adaption of the order quantity and the order is shipped as it is. We illustrate that this proposed policy is close to the optimal policy and much better than an order-up-to policy without adaptations. Moreover, we show how to compute the cost optimal policy parameters exactly and how to compute them by relying on approximations. In a detailed numerical study, we compare the results obtained by the heuristics with those given by the exact analysis. A very good cost performance of the proposed heuristics can be observed

    Single item inventory control under periodic review and a minimum order quantity

    Get PDF
    In this paper we study a periodic review single item single stage inventory system with stochastic demand. In each time period the system must order none or at least as much as a minimum order quantity Qmin. Since the optimal structure of an ordering policy with a minimum order quantity is complicated, we propose an easy-to-use policy, which we call (R, S,Qmin) policy. Assuming linear holding and backorder costs we determine the optimal numerical value of the level S using a Markov Chain approach. In addition, we derive simple news-vendor-type inequalities for near-optimal policy parameters, which can easily be implemented within spreadsheet applications. In a numerical study we compare our policy with others and test the performance of the approximation for three different demand distributions: Poisson, negative binomial, and a discretized version of the gamma distribution. Given the simplicity of the policy and its cost performance as well as the excellent performance of the approximation we advocate the application of the (R, S,Qmin) policy in practice

    An exact approach for the pollution-routing problem

    Get PDF

    The time-dependent capacitated profitable tour problem with time windows and precedence constraints

    Get PDF
    We introduce the time-dependent capacitated profitable tour problem with time windows and precedence constraints. This problem concerns determining a tour and its departure time at the depot that maximizes the collected profit minus the total travel cost (measured by total travel time). To deal with road congestion, travel times are considered to be time-dependent. We develop a tailored labeling algorithm to find the optimal tour. Furthermore, we introduce dominance criteria to discard unpromising labels. Our computational results demonstrate that the algorithm is capable of solving instances with up to 150 locations (75 pickup and delivery requests) to optimality. Additionally, we present a restricted dynamic programing heuristic to improve the computation time. This heuristic does not guarantee optimality, but is able to find the optimal solution for 32 instances out of the 34 instances

    A dynamic programming approach to multi-objective time-dependent capacitated single vehicle routing problems with time windows

    Get PDF
    A single vehicle performs several tours to serve a set of geographically dis- persed customers. The vehicle has a finite capacity and is only available for a limited amount of time. Moreover, tours' duration is restricted (e.g. due to quality or security issues). Because of road congestion, travel times are time-dependent: depending on the departure time at a customer, a different travel time is incurred. Furthermore, all customers need to get delivered in their specicified time windows. Contrary to most of the literature, we con- sider a multi-objective cost function: simultaneously minimizing the total time traveled including waiting times at customers due to time windows, and maximizing the total demand fulfilled. Efficient dynamic programming algorithms are developed to compute the Pareto set of routes, assuming a specific structure for time windows and travel time profiles

    Exact and Approximate Schemes for Robust Optimization Problems with Decision Dependent Information Discovery

    Get PDF
    Uncertain optimization problems with decision dependent information discovery allow the decision maker to control the timing of information discovery, in contrast to the classic multistage setting where uncertain parameters are revealed sequentially based on a prescribed filtration. This problem class is useful in a wide range of applications, however, its assimilation is partly limited by the lack of efficient solution schemes. In this paper we study two-stage robust optimization problems with decision dependent information discovery where uncertainty appears in the objective function. The contributions of the paper are twofold: (i) we develop an exact solution scheme based on a nested decomposition algorithm, and (ii) we improve upon the existing K-adaptability approximate by strengthening its formulation using techniques from the integer programming literature. Throughout the paper we use the orienteering problem as our working example, a challenging problem from the logistics literature which naturally fits within this framework. The complex structure of the routing recourse problem forms a challenging test bed for the proposed solution schemes, in which we show that exact solution method outperforms at times the K-adaptability approximation, however, the strengthened K-adaptability formulation can provide good quality solutions in larger instances while significantly outperforming existing approximation schemes even in the decision independent information discovery setting. We leverage the effectiveness of the proposed solution schemes and the orienteering problem in a case study from Alrijne hospital in the Netherlands, where we try to improve the collection process of empty medicine delivery crates by co-optimizing sensor placement and routing decisions

    The vehicle routing problem with partial outsourcing

    Get PDF
    This paper introduces the vehicle routing problem with partial outsourcing (VRPPO) in which a customer can be served by a single private vehicle, by a common carrier, or by both a single private vehicle and a common carrier. As such, it is a variant of the vehicle routing problem with private fleet and common carrier (VRPPC). The objective of the VRPPO is to minimize fixed and variable costs of the private fleet plus the outsourcing cost. We propose two different path-based formulations for the VRPPO and solve these with a branch-and-price-and-cut solution method. For each path-based formulation, two different pricing procedures are designed and used when solving the linear relaxations by column generation. To assess the quality of the solution methods and gain insight in potential cost improvements compared with the VRPPC, we perform tests on two instance sets with up to 100 customers from the literature

    Approximating multi-objective time-dependent optimization problems

    Get PDF
    In many practical situations, decisions are multi-objective in nature. Furthermore, costs and profits are time-dependent, i.e. depending upon the time a decision is taken, different costs and profits are incurred. In this paper, we propose a generic approach to deal with multi-objective time-dependent optimization problems (MOTDP). The aim is to determine the set of Pareto solutions that capture the interactions between the different objectives. Due, to the complexity of MOTDP, an efficient approximation based on dynamic programming is developed. The approximation has a provable worst case performance guarantee. Even though the approximate Pareto set consists of less solutions, it represents a good coverage of the true set of Pareto solutions. Numerical results are presented showing the value of the approximation
    • 

    corecore