474 research outputs found

    Statistical reasoning with set-valued information : Ontic vs. epistemic views

    Get PDF
    International audienceIn information processing tasks, sets may have a conjunctive or a disjunctive reading. In the conjunctive reading, a set represents an object of interest and its elements are subparts of the object, forming a composite description. In the disjunctive reading, a set contains mutually exclusive elements and refers to the representation of incomplete knowledge. It does not model an actual object or quantity, but partial information about an underlying object or a precise quantity. This distinction between what we call ontic vs. epistemic sets remains valid for fuzzy sets, whose membership functions, in the disjunctive reading are possibility distributions, over deterministic or random values. This paper examines the impact of this distinction in statistics. We show its importance because there is a risk of misusing basic notions and tools, such as conditioning, distance between sets, variance, regression, etc. when data are set-valued. We discuss several examples where the ontic and epistemic points of view yield different approaches to these concepts

    Japan fuzzified: the development of fuzzy logic research in Japan

    Get PDF

    Review of fuzzy techniques in maritime shipping operations

    Get PDF

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    A framework for managing global risk factors affecting construction cost performance

    Get PDF
    Poor cost performance of construction projects has been a major concern for both contractors and clients. The effective management of risk is thus critical to the success of any construction project and the importance of risk management has grown as projects have become more complex and competition has increased. Contractors have traditionally used financial mark-ups to cover the risk associated with construction projects but as competition increases and margins have become tighter they can no longer rely on this strategy and must improve their ability to manage risk. Furthermore, the construction industry has witnessed significant changes particularly in procurement methods with clients allocating greater risks to contractors. Evidence shows that there is a gap between existing risk management techniques and tools, mainly built on normative statistical decision theory, and their practical application by construction contractors. The main reason behind the lack of use is that risk decision making within construction organisations is heavily based upon experience, intuition and judgement and not on mathematical models. This thesis presents a model for managing global risk factors affecting construction cost performance of construction projects. The model has been developed using behavioural decision approach, fuzzy logic technology, and Artificial Intelligence technology. The methodology adopted to conduct the research involved a thorough literature survey on risk management, informal and formal discussions with construction practitioners to assess the extent of the problem, a questionnaire survey to evaluate the importance of global risk factors and, finally, repertory grid interviews aimed at eliciting relevant knowledge. There are several approaches to categorising risks permeating construction projects. This research groups risks into three main categories, namely organisation-specific, global and Acts of God. It focuses on global risk factors because they are ill-defined, less understood by contractors and difficult to model, assess and manage although they have huge impact on cost performance. Generally, contractors, especially in developing countries, have insufficient experience and knowledge to manage them effectively. The research identified the following groups of global risk factors as having significant impact on cost performance: estimator related, project related, fraudulent practices related, competition related, construction related, economy related and political related factors. The model was tested for validity through a panel of validators (experts) and crosssectional cases studies, and the general conclusion was that it could provide valuable assistance in the management of global risk factors since it is effective, efficient, flexible and user-friendly. The findings stress the need to depart from traditional approaches and to explore new directions in order to equip contractors with effective risk management tools

    Advanced system engineering approaches to dynamic modelling of human factors and system safety in sociotechnical systems

    Get PDF
    Sociotechnical systems (STSs) indicate complex operational processes composed of interactive and dependent social elements, organizational and human activities. This research work seeks to fill some important knowledge gaps in system safety performance and human factors analysis using in STSs. First, an in-depth critical analysis is conducted to explore state-of-the-art findings, needs, gaps, key challenges, and research opportunities in human reliability and factors analysis (HR&FA). Accordingly, a risk model is developed to capture the dynamic nature of different systems failures and integrated them into system safety barriers under uncertainty as per Safety-I paradigm. This is followed by proposing a novel dynamic human-factor risk model tailored for assessing system safety in STSs based on Safety-II concepts. This work is extended to further explore system safety using Performance Shaping Factors (PSFs) by proposing a systematic approach to identify PSFs and quantify their importance level and influence on the performance of sociotechnical systems’ functions. Finally, a systematic review is conducted to provide a holistic profile of HR&FA in complex STSs with a deep focus on revealing the contribution of artificial intelligence and expert systems over HR&FA in complex systems. The findings reveal that proposed models can effectively address critical challenges associated with system safety and human factors quantification. It also trues about uncertainty characterization using the proposed models. Furthermore, the proposed advanced probabilistic model can better model evolving dependencies among system safety performance factors. It revealed the critical safety investment factors among different sociotechnical elements and contributing factors. This helps to effectively allocate safety countermeasures to improve resilience and system safety performance. This research work would help better understand, analyze, and improve the system safety and human factors performance in complex sociotechnical systems
    corecore