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SUMMARY

More than �fty years after its introduction, fuzzy sets theory is still thriving and
continues to play a relevant role in a wide number of scienti�c applications. Nev-
ertheless, while the enrichments that fuzzy logic and set theory can provide are

manifold, the recognition of fuzzy set and logic inside the machine learning community
remains rather moderate. In this thesis, we present several approaches aimed at improving
machine learning techniques using tools borrowed from fuzzy set theory and logic. Par-
ticularly, we try to focus more on the machine learning perspective, thus inviting machine
learning researcher to appreciate the modelling strengths of fuzzy set theory.

We begin presenting FDT-Boost, a boosting approach shaped according to the SAMME-
Adaboost scheme, which leverages fuzzy binary decision trees as base classi�ers; then, we
explore a distributed fuzzy random forest DFRF, that leverages the Apache Spark frame-
work, to generate an e�cient and e�ective classi�er for big data. We also propose a
novel approach for generating, out of big data, a set of fuzzy rule-based classi�ers charac-
terised by di�erent optimal trade-o�s between accuracy and interpretability. The approach,
dubbed DPAES-FDT-GL, extends a state-of-the-art distributed multi-objective evolution-
ary learning scheme, implemented in the Apache Spark environment. Lastly, we focus on
an application, showing how fuzzy systems could be employed in helping medical decision;
we propose a novel pipeline to support tumour type classi�cation and rule extraction based
on somatic CNV data. The pipeline outputs an interpretable Fuzzy Rule-Based Classi�er
(FRBC)

Much work remains to be done, and fuzzy set theory has still a big role to play in
machine learning.
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NOTATION

Symbols
{x1, ...,xn} The set of n elements.
O,Ω,Θ,o,ω asymptotic notation.
T (x ,y) A fuzzy T-norm.
X ,X instances domain.
Y ,Y labels domain.
[x]T transpose operator.
[a,b) The real interval including a but excluding b.
[a,b] The real interval including a and b.
⊥(x ,y) A fuzzy T-conorm.
dxe round to the upper integer of x .
bxc round to the lower integer of x .
R the set of real numbers.
R+ the set of non-negatives real numbers.
Rd the set of d-dimensional real vectors.
Rmxn the set ofm × n matrices.
µA(·) membership function for a set A.
x vectors are in bold.
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CHAPTER

ONE

INTRODUCTION

1. The world is everything that is the
case

Tractatus Logico-Philosophicus —
Ludwig Wittgenstein

1.1 Introduction

More than 50 years have passed since the introduction of the concept of fuzziness by Zadeh
(Zadeh, 1965); during these years, the theory of fuzzy sets and logic gradually yet relent-
lessly crept into many scienti�c �elds, such as computer science, control engineering, de-
cision theory, pattern recognition, and robotics, just to name a few. Among them, the �eld
of arti�cial intelligence (AI) is certainly one of the most active and thriving.

In fact, the idea of building arti�cial beings and thinking machines is an old one; the
mythology of ancient Greece is sprinkled with tales of golden robots and arti�cial beings.
The quest for arti�cial intelligence evolved unceasingly through the centuries, up to the
birth of modern AI. Modern AI emerged in 1956 at Dartmouth College, and grew ever since,
ushering in a new era of big data and machine learning.

Nowadays, it is machine learning that takes the lion’s share of arti�cial intelligence
(Figure 1.1). Indeed, machine learning’s surge in popularity followed the beginning of the
era of big data. Being no longer possible to design a knowledge acquisition system by
hand, automated systems for knowledge acquisition have come to the fore. Models, auto-
matically constructed from the data, might be used to predict future observations or may
provide insights into the inner structure of the data. The birth of fuzzy machine learning
has been accompanied by the same sudden shift from knowledge-driven to data-driven fuzzy
modelling, where the model is constructed (more properly induced) automatically from the
training data.

1



Chapter 1. Introduction

AI

Machine Learning

Figure 1.1: Arti�cial intelligence studies machines that de�ne a course of action reacting
to the environment, aiming to a particular goal. Machine learning devices automatically
learn to complete a task from the data, without the need to be programmed to do so.

According to Mitchell (Mitchell, 1997), a machine learning system may be de�ned in
the following way: “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E”. Here, we particularly focus on methods, or algorithms,
that perform automatically pattern detection from data, and use the discovered patterns to
predict future data or perform some kind of decision-making from that data (Murphy, 2012).
In this thesis, we are primarily interested in predictive or supervised machine learning,
i.e. in the task of learning (or inducing) a function f from a set of training data (a set of
pairs of the form (xi ,yi), being xi the i-th input and yi the i-th output) to a set of outputs.
If the response variable is categorical, the problem is known as classi�cation or pattern
recognition; the classi�er is a function f : X → Y, being X the instance space and Y =
{1, ...,k} the target space, with k number of classes. The estimated f̂ can then be used to
make predictions. Di�erent classi�cation approaches make di�erent assumptions, and, as
such, focus on diverse classes of functions from which the approximated f̂ is learnt.

The contribution of fuzzy set theory and logic to machine learning can be manifold; if
used in the data pre-processing stage, fuzzy sets might be employed to model vague data,
and fuzzy summaries of subsets of data might also be created (Hüllermeier, 2011). Further-
more, fuzzy methods can be also employed in the analysis phase; in this case, approaches
are borrowed from fuzzy set theory and logic and used to analyse data.

The reasons that drive the employment of fuzzy set theory and logic methods in ma-
chine learning are multifarious (Hüllermeier, 2011); the paramount factor behind the wide-
spread di�usion of fuzzy set theory is the concept of interpretability. Even though the def-
inition of interpretability is still a debated topic, as fuzzy sets bridge the gap between the

2
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Figure 1.2: Growth of interest in machine learning, as measured by the frequency of the
phrases “arti�cial intelligence” and “machine learning”, according to Google Books. The
frequency for the phrase “fuzzy system” is reported as well.

realm of numbers and the realm of concepts, they provide a way to represent knowledge in
a linguistic and thus comprehensible way. For example, linguistic fuzzy rule-based system
are generally regarded as highly interpretable, due to their being based on linguistic rules,
in which the antecedent and the consequent are made up of linguistic variables comprised
of linguistic terms and the associated fuzzy sets de�ning their meanings. A general taxon-
omy of interpretability distinguishes complexity from semantics and rule base versus data
base (or fuzzy partition) (Gacto et al., 2011).

Furthermore, fuzzy set theory provides a natural framework for dealing with uncer-
tainty and uncertain phenomena; as machine learning is inextricably bound to uncertainty,
fuzzy approaches represent a valuable way for dealing with such a problem. Machine learn-
ing has to deal with data that is noisy, often incomplete or imprecise; in this scenario fuzzy
set theory can complement probability theory and provides a natural approach for exploit-
ing the uncertain characteristics of the input data.

It has often been argued that fuzzy methods are inherently more robust with respect to
crisp methods. In this context, robustness is often used with a slightly di�erent meaning
with respect to the standard de�nition of robustness in computer science, i.e. “the ability of
a computer system to cope with errors during execution, and cope with erroneous input.”
A robust machine learning method ideally shows stable performances if some (small) noise
is added to the data. It is commonly held that fuzzy models are more robust with respect
to variations in the boundary points, as the soft boundaries employed in fuzzy systems
prevent abrupt changes with small variations in boundary points. In the case of decision
trees, for example, the lack of smoothness of the decision surface is mitigated when using

3



Chapter 1. Introduction

fuzzy decision trees instead.
Other reasons often cited to support the usage of fuzzy set theory in machine learning

are the capability to incorporate background knowledge, granularity (Pedrycz et al., 2008),
i.e. the capability of dealing with information granules at di�erent level of abstraction, and
graduality, the inherent capability of fuzzy system to deal with gradual concepts. Fuzzy
concepts, de�ned as fuzzy (instead of crisp) subset of the universeU , are naturally endowed
with the notion of graduality (Dubois and Prade, 2012); furthermore, if de�ned in terms of
fuzzy predicates, the qualifying properties can bene�t from a gradual de�nition too.

In this work, we focus on devising novel machine learning approaches that exploit fuzzy
set and logic to either improve the classi�cation performances or solve existing problems in
a novel and more e�cient way. Two speci�c families of classi�er are of particular interest
in this thesis: fuzzy rule-based systems (FRBSs) and fuzzy decision trees (FDTs).

1.2 Motivation

As machine learning has become increasingly more widespread and pervasive, the number
of application in which it is replacing (or at least helping) human decision making is now
growing at a staggering rate. Nevertheless, more often than not, we still struggle to explain
why a particular machine learning model behaved in the way it did. Even if not all ML
systems need interpretability, there are classes of problems and tasks for which it is not
enough to get the prediction (the what); rather the model should also be able to explain
how it came to the prediction (the why). Those, amongst others, are the paramount reasons
that drive the demand for interpretability and explanation.

Since its inception, fuzzy logic has been often praised as a valuable modelling tool
(Gacto et al., 2011) that can produce highly interpretable models. Indeed, particularly with
linguistic models, fuzzy ML has shown a remarkable aptness in producing ML systems that
are not only accurate but also highly interpretable (Cordón, 2011).

The goal of this thesis is to use tools, borrowed from fuzzy logic and set theory, to
improve machine learning systems, particularly with respect to the interpretability of the
learnt model; furthermore, as we have already entered the era of big data (Anuradha et al.,
2015; Segatori et al., 2017b), the need for systems that are able to cope with huge amount of
data, yet learning an interpretable model, is even more pressing. Finally, we aim to show
how real applications can bene�t from the model produced according to the guidelines
described so far. We believe that the room for improvement in this area is big enough to
justify a research project in this direction.

1.3 Contribution

In this thesis, diverse aspects of machine learning and fuzzy expert systems are explored
and improved with respect to the state-of-the-art. The core focus of this work is on the
machine learning perspective, with the aim of inviting machine learning researchers to
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appreciate the modelling strengths o�ered by fuzzy set theory and logic. Among the core
topics faced up in this work are ensembles of fuzzy systems and fuzzy rule-based classi�ers
for big data.

First, we concentrate on ensembles of fuzzy systems, developing a boosted ensemble
of fuzzy decision trees – dubbed FDT-Boost – that improves state-of-the-art performances
(Chapter 3). The system proves to be e�ective and more robust when noise is injected
into the training set; moreover, several tools are used to provide valuable insights into the
learning phase.

Second, we focus on fuzzy systems for big data; we begin by i) proposing a novel Dis-
tributed Fuzzy Random Forest for Big Data, which leverages the Apache Spark Framework
in order to provide an e�ective classi�er (Chapter 4). Then, ii) we signi�cantly improve an
evolutionary fuzzy rule-based system for big-data, using a strategy for learning the most
suitable number of fuzzy sets (granularity learning) for each linguistic variable, concur-
rently to the learning of the rule base and the parameters of the fuzzy sets (Chapter 5). The
proposed system, named DPAES-FDT-GL, is able to generate more interpretable models
than the state-of-the-art while preserving comparable accuracies.

Lastly, in order to further emphasise the applicability of fuzzy machine learning sys-
tems, we devise a use case, presenting a pipeline for tumour classi�cation from somatic
CNV data. The proposed pipeline �rst performs data extraction and preparation, then im-
plements a classi�cation system built upon a fuzzy rule-based classi�er (Chapter 6). We
show that the system is able to provide highly accurate yet interpretable results.

1.4 Thesis Outline

Chapter 2: Background In this chapter, we review the preliminaries of fuzzy sets and
logic used in the remaining of the thesis; our aim is that of o�ering the machine learning
practitioner the necessary fuzzy logic background needed to understand the rest of the
work.

Chapter 3: On Boosting Approaches for Fuzzy Decision Trees This chapter describes
FDT-Boost, a boosting approach shaped according to the SAMME-AdaBoost scheme, which
leverages fuzzy binary decision trees as base classi�ers. Furthermore, new tools for a com-
prehensive analysis of the learning phase are provided.

Chapter 4: Implicitly Distributed Fuzzy Random Forests In this Chapter, a novel
implementation of a Distributed Fuzzy Random Forest (DFRF) induction algorithm is pre-
sented and discussed. The proposed approach, although shaped on the MapReduce pro-
gramming model, takes advantage of the implicit distribution of the computation provided
by the Apache Spark framework. A thorough evaluation follows.

Chapter 5: Multi-Objective Evolutionary Fuzzy Classi�ers for Big Data This chapter
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proposes a novel approach for generating, out of big data, a set of fuzzy rule-based clas-
si�ers characterised by di�erent optimal trade-o�s between accuracy and interpretability.
The approach extends a state-of-the-art distributed multi-objective evolutionary learning
scheme, implemented under the Apache Spark environment.

Chapter 6: FuzzyRule BasedClassi�ers: an application to CNV-base Tumour Clas-
si�cation using Fuzzy Rule Based Classi�ers This chapter proposes a novel pipeline
to support tumour type classi�cation and rule extraction based on somatic CNV data. The
pipeline outputs an interpretable Fuzzy Rule Based Classi�er (FRBC), on which inference
can be made. The results show the potential application of the approach: The method is
able to classify between three kidney tumour types, with an accuracy of ∼ 93%, using a
compact set of ∼ 50 interpretable rules.

Chapter 7: Discussion This chapter provides a comprehensive review of the results
achieved in this work, as well as some future directions.
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CHAPTER

TWO

BACKGROUND

All traditional logic habitually assumes
that precise symbols are being
employed. It is, therefore, not
applicable to this terrestrial life but
only to an imagined celestial existence.

— Bertrand Russel

In this chapter, the necessary background about fuzzy logic and fuzzy set theory is
introduced. As the topic of fuzzy logic is broad and lively, we do not attempt to provide a
comprehensive review of the subject. We will instead restrict this introduction to the basic
concepts needed to properly understand the subsequent chapters.

The basic notions of fuzzy sets and logic, fuzzy operators and relations are provided in
Section 2.1. Section 2.2 bridges the gap towards approximate reasoning, while Section 2.3
introduces the notion of fuzzy rule-based systems and fuzzy rule-based classi�ers. Sec-
tion 2.4 brie�y introduced evolutionary fuzzy system. Then, Section 2.5 provides a brief
discussion of probability and fuzzyness.

2.1 Basics of Fuzzy Logic

2.1.1 The quest for fuzzyness

Most of our traditional tools for formal modelling, reasoning, and computing are crisp,
deterministic, and precise in nature (Zimmermann, 2010). Nonetheless, we constantly in-
teract with a reality that is neither crisp nor certain. We routinely process vague and im-
precise linguistic terms, such as hot, tall, and around midnight. The ability to pro�ciently
deal with and reason from, imprecise data is indeed a peculiarly human one. The theory of
fuzzy sets was �rst introduced by Zadeh (Zadeh, 1965, 1975a,b,c), who aimed at generalis-
ing the classical notion of sets and proposition, in order to include fuzzyness; its seminal
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paper "Fuzzy sets" (Zadeh, 1965) opens with the (by now famous) quote, clearly realising
the need to account for fuzzyness:

“More often than not, the classes of objects encountered in the real physical
world do not have precisely de�ned criteria or membership”

He �rst formalised the concept of vagueness in the scienti�c community into the form
of fuzzy logic. The concept of fuzzy sets emerged when it was realised that it may not
be possible to model ill-de�ned systems with precise mathematical assumptions of the
classical methods, such as probability theory. As we strove to describe the reality in a
crisp and deterministic fashion, we realised that a complete description of a system is,
more often than not, beyond human possibility.

Fuzzy set theory provides the tools for coping with uncertainty, i.e. a strict mathe-
matical framework for dealing with vague conceptual phenomena. It provides a way for
embedding approximated reasoning, or imprecise human reasoning, into problems that
were heretofore intractable.

2.1.2 Classical Mathematics and Logic

Classical logic de�nes a proposition p as a linguistic, or declarative statement, that can be
either true or false. In other words, the set of truth values on which classical logic is based is
{0, 1}. A unary operation ¬ (NOT) and two binary operations ∧ (AND), ∨ (OR) are de�ned
on the propositions. Compound propositions can be constructed from atomic propositional
variables p,q, ... using the basic operators; e.g (p ∧ q), (p ∨ q),¬q (Fodor and Rudas, 2015).

Let X , universe of discourse, be the universe of all available information about a given
problem. LetA be a generic set on this universe, i.e. a collection of object x ∈ X , that might
be �nite, countable or over countable. Classical set theory satis�es the Aristotelian “Law
of Excluded Middle” that is, for a given crisp set A de�ned over X , each element x ∈ X

either belongs to A or not belongs to A.
For classical sets, three basic operations are de�ned: i) the union between two sets,

A ∪ B, is de�ned as the set of objects that belong to the set A, to the set B or both; ii) the
intersection A∩B is de�ned as the set of elements that belong to both A and B. Finally, iii)
the complement of a set Ā is de�ned as the collection of all elements in the universe that
do not belong to that set. We de�ne the characteristic function XA : X → 0, 1 of the set A,
as:

XA(x) =

{
1, x ∈ A

0, x < A
(2.1)

The characteristic function discriminates between members and non members of a set.
Using the characteristic function we are able to describe the set operations in terms of
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logical connectives (Ross, 2011):

XA∪B(x) = XA(x) ∨ XB(x)

XA∩B(x) = XA(x) ∧ XB(x)

XĀ(x) = ¬XA(x)

(2.2)

2.1.3 Fuzzy Sets and Membership Functions

A fuzzy set is a generalisation of a classical set, which de�nes a generalised characteris-
tic function, called membership function, allowed to assume various degrees of member-
ships (Zimmermann, 1996). A membership function µA is a mapping from the universe of
discourse X to the unit interval, i.e., µA : X → [0, 1]. As stated, membership functions
are direct generalisations of characteristic functions which allow degrees of membership
between zero and one. In a logical setting, the degree of membership µA(x) can also be
interpreted as the truth value of the statement “x is an element of A”. Figure 2.1 portrays
the example of a generic fuzzy set A and shows a comparison with a crisp set A′.

Figure 2.1: A fuzzy set A and a crisp set A′.

A fuzzy set can thus be represented as a collection of ordered pairs of elements of X
and their membership grades. A fuzzy set de�ned on a discrete universe can be described
using the following notation:

A =

{
µA(x1)

x1 +
µA(x2)

x2 + ...

}
=

{∑
i

µA(xi)

xi

}
(2.3)
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or, if the universe of the discourse is a continuum as:

A =

{∫
x

µA(x)

x

}
(2.4)

It usually avoided listing all the elements for which the membership degree is 0. It is also
worth noticing that in both notations, the horizontal bar is not a quotient but rather a
delimiter; furthermore, the summation, integral, and + symbols represent aggregation or
collections operators.

In the following we assume that all fuzzy set are normalised, i.e. supx µA(x) = 1. We
de�ne the cardinality of a fuzzy set A as :

|A| =
∑
x∈X

µA(x) (2.5)

We refer to the support of a fuzzy set A as the crisp set of elements S(A) = {x |µA(x) ≥ 0}.
The α-level set Aα is de�ned as the (crisp) set of elements of A whose membership degree
is greater than α :

Aα = {x ∈ X |µA(x) ≥ α } (2.6)

2.1.4 Set-Theoretic operators

The fuzzy set operations generalise the classic set operations, like intersection, union and
complement. Nevertheless, unlike classical set theory (and classical logical), several di�er-
ent de�nitions are possible (Ross, 2011).

The basic set-theoretic operations are illustrated in Figure 2.2. The membership func-
tion of the intersection C = A ∩ B between A and B is de�ned for each element x as:

µC(x) = min {µA(x), µB(x)} (2.7)

The membership function of the union D = A∪B ofA and B is de�ned for each element
x as:

µD(x) = max {µA(x), µB(x)} (2.8)
The complement E of a normalised fuzzy set A is de�ned in terms of its membership

function:
µE(x) = 1 − µA(x) (2.9)

As stated, the basic form of the three fuzzy standard operations is not the only possible
formulation. In fact, a broad class of functions can be used to generalise each of the standard
operators. Functions that qualify as fuzzy intersection, T : [0, 1]2 → [0, 1], are referred to
as triangular norm or t-norm, while we refer to functions that qualify as fuzzy union ⊥ :
[0, 1]2 → [0, 1] as triangular conorm or t-conorm or even S-norm. The precise mathematical
de�nition of t-norms and t-conorms is beyond the scope of this thesis; the interested reader
is referred to (Zimmermann, 2010). A notable property of operations on fuzzy sets is that
the “axiom of the excluded middle” does not hold, i.e. A ∩Ac , ∅ and A ∪Ac , X .

A non-comprehensive list of operators is reported in Table 2.1. A even wider class of
parametric functions exists; please refer to (Fodor János, 2000) for further details.
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Figure 2.2: Basic fuzzy set operators: intersection between two fuzzy setsA and B (left panel),
union between two fuzzy sets A and B (middle panel) and negation of a fuzzy set A (right
panel).

Table 2.1: Alternative fuzzy Sets operators

Name T-norm T-conorm Negation
T (x ,y) ⊥(x ,y) N (x)

Gödel min(x ,y) max(x ,y) 1 − x

Product x · y x + y − x · y 1 − x

Łukasiewicz max(x + y − 1, 0) min(x + y, 1) 1 − x

Drastic


x if y = 1
y if x = 1
0 otherwise


x if y = 0
y if x = 0
1 otherwise

1 − x

Nilpotent
{

min(x ,y) if x + y ≥ 1
0 otherwise

{
max(x ,y) if x + y ≤ 1
1 otherwise

1 − x

Hamacher x ·y
x+y−x ·y

x+y−2·x ·y
1−x ·y 1 − x

Einstein x ·y
2−[x+y−x ·y]

x+y
1+x ·y 1 − x

2.1.5 Fuzzy Relations

The concept of relation plays a vital role in the theory of sets and its applications (Zadeh,
1965); furthermore, it is centrally related to the concept of graphs (Zimmermann, 2010). As
such, a generalisation of this concept to the fuzzy realm is of paramount importance.

The de�nition of fuzzy relation strictly follows that of crisp relation: given two sets X
and Y , a relation R is de�ned as a mapping from the Cartesian product X × Y to [0, 1]; in
other words, a relation is a subset of X ×Y . A crisp relation R(x ,y) measures whether two
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elements x ∈ X and y ∈ Y are related; the relationship can either be a complete relationship
or a no relationship. Likewise, a fuzzy relation measures the strength of the connection
between the two elements; nevertheless, it di�ers from a crisp relation in that the degree
is measured on the interval [0, 1]. A fuzzy relation R(x ,y) over X ×Y can be thus described
in terms of its membership function:

R(x ,y) = {((x ,y), µR(x ,y))|(x ,y) ∈ X × Y } (2.10)

There is obviously nothing special about a binary relation; in fact, this de�nition can
be extended to the Cartesian product of more than two sets X1 × X2 × ... × Xn, leading to
the de�nition of n−ary fuzzy relations.

As well as on the crisp equivalent, several operations can be de�ned on fuzzy relations:
T -intersection, S-union, transposition, inversion and complement are amongst the most
common ones. Nevertheless, an operation on relations in which we are particularly inter-
ested – mostly in virtue of the role it plays in allowing approximate reasoning – is that of
fuzzy composition: let R be a fuzzy relation on X × Y and S a fuzzy relation on Y × Z . We
de�ne the T-composition between R and S as:

R(x ,y) ◦T S(y, z) = supy∈YT (R(x ,y), S(y, z)) ∀(x , z) ∈ X × Z (2.11)

being T (·, ·) a t-norm. If the Zadeh (Zadeh, 1965) de�nition of t-norm is used, we obtain
the widely know max-min composition:

R(x ,y) ◦ S(y, z) = maxy∈Y min(µR(x ,y), µS (y, z)) ∀(x , z) ∈ X × Z (2.12)

2.2 Towards approximate reasoning

“In retreating from precision in the face of overpowering complexity, it is nat-
ural to explore the use of what might be called linguistic variables, that is,
variables whose values are not numbers but words or sentences in a natural
or arti�cial language. The motivation for the use of words or sentences rather
than numbers is that linguistic characterizations are, in general, less speci�c
than numerical ones”
Zadeh

2.2.1 Linguistic Variables

The concept of linguistic variable lies at the very heart of fuzzy approximate reasoning. The
notion of linguistic variable attempts to harness the powerful and �exible natural language
reasoning of which humans are gifted into a mathematical framework. In other words, a
linguistic variable is a quantitative method for dealing with qualitative information.
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Firstly introduced by Zadeh (Zadeh, 1975b) under the name of variable of higher order,
a linguistic variable is de�ned as quintuple1 (x ,T (x),U ,G, M̃); here, x is the name of the
variable andT (x) represents the set of (atomic) terms of x . For the linguistic variable repre-
sented in Figure 2.3, T (x) = {Low, Medium-Low, Medium, Medium-High, High}. U is the
universe of discourse, e.g. [l f ,u f ] for the example in Figure 2.3 and G is a syntactic rule
(usually a grammar) for generating the name, X, of values of x; basically G(x) is a rule for
generating the terms of a variable x . M̃ is a semantic rule that ties together each term X

with its meaning, M̃ , a fuzzy subset of U .

lf uf
0

1
Low Medium-Low Medium Medium-High High

Figure 2.3: Generic linguistic variables with 5 linguistic terms, de�ned on a continuous uni-
verse of discourse with boundaries l f and u f .

2.2.2 The fuzzy implication

The implication operator p =⇒ q relates together two proposition p and q, called hypoth-
esis (or antecedent) and conclusion ( or consequent), respectively. The implication p =⇒ q

is false if and only if p is true and q is false.
The fuzzy implication generalises the classical implication p =⇒ q; the most common

form of fuzzy implication is, as �rst de�ned by Zadeh(Zadeh, 1965), the following:

I (x ,y) = max(1 − x ,min(x ,y)) (2.13)

As was the case for t-norms and t-conorms, a formal de�nition of fuzzy implication
is given in terms of a function I : [0, 1]2 → [0, 1] that needs to satisfy a set of conditions
(Baczyński Micheal, 2008). More than one function that satis�es the constraints might be
de�ned; several common implication operators are listed in Table 2.2.

1The characterisation of linguistic variable we provide here is the one given in (Zimmermann, 2010).
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Table 2.2: Fuzzy Implication Operators

Name Fuzzy Implication
I (x ,y)

Zadeh max(1 − x ,min(x ,y))

Lukasiewicz min(1, 1 − x + y)

Mamdani min(x ,y)

Gödel
{

1 if x ≤ y
y otherwise

2.2.3 Fuzzy Inference

A fuzzy inference system deals with approximate reasoning, i.e. it allows reasoning about
imprecise propositions (Zadeh, 1975c). The modus ponens (A ∧ (A =⇒ B)) =⇒ B, one
of the staples of classical logic, allows inferring the truth of a proposition B given the truth
of another proposition A and an implication A =⇒ B 2.

Indeed, we would like to be able to perform approximated reasoning in the following
sense: consider the implication A =⇒ B; furthermore, let us know that A′, some approxi-
mation of A, is true. Can we then conclude that B is approximately true?

Two steps are required in order to provide the desired generalisation. The �rst neces-
sary step is to de�ne the generalised modus ponens (Luis, 2015):

Implication A =⇒ B

Premise A′

Conclusion B′
(2.14)

The second step complements the generalised modus ponens in order to allow to reason
from unequal premises. Zadeh proposed the compositional rule of inference to bridge the
gap from inference to approximate inference (Zadeh, 1975a).

The �rst term in the generalised modus ponens is indeed a fuzzy implication, i.e. a
fuzzy relation R de�ned on U ×V :

µR(x ,y) = I (µA(x), µB(y))∀x ∈ U ,y ∈ V (2.15)

The second term in the generalised modus ponens, is a unary fuzzy relation A′, de�ned on
U . We can thus apply the compositional rule for the fuzzy relations:

µB′(y) = A′(x) ◦T R(x ,y) = supx∈UT (µA′(x), I (µA(x), µB(y))) (2.16)
2Given the substantial equivalence between the membership degree of an element x to a setA, µA(x), and

the degree of truth of the proposition “x IS A”, we will, in the following, refer to fuzzy sets and propositions
without distinction.
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2.2. Towards approximate reasoning

Figure 2.4: Example of fuzzy inference using the compositional rule of inference with max-
min inference. We consider the implication A =⇒ B, where A and B are shown in the
upper left and right panel respectively. The premise A′ is shown in the middle left panel.
Can we infer B′? (central right panel). The application of the max-min compositional
inference is shown in the lower panels.
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Figure 2.5: Architecture of a generic fuzzy rule-based system.

An example of fuzzy inference, is reported in Figure 2.4.
Approximate reasoning is at the core of several fuzzy machine learning approaches

such as Fuzzy Rule-Based Systems (FRBSs) and Fuzzy Decision Trees (FDTs) which are the
subjects of the next chapters.

2.3 Fuzzy Rule-Based Systems

In this section, an introduction to (fuzzy) rule-based systems (FRBSs) is provided. A rule-
based system, also known as expert system, is a simple knowledge-based system, which
codes knowledge about a particular problem under the form of a set of IF-THEN rules
(Grosan and Abraham, 2011). As both the knowledge representation and the reasoning
method rely on bivalent logic, rule-based system are inherently inadequate to deal with
uncertain or imprecise information. FRBSs generalise rule-based systems, employing lin-
guistic variables and fuzzy sets to provide a more powerful knowledge representation, and
fuzzy logic inference to reason from uncertainty.

A generic FRBS, as �rst introduced by Mamdani (Mamdani and Assilian, 1975), is made
up of a knowledge base, where both the rules (rule base) and the fuzzy partitions (data
base) are stored, and a fuzzy inference system, implementing the fuzzy reasoning process
(Cordón, 2011). The architecture of a generic FRBS is depicted in Figure 2.5

2.3.1 Knowledge Base

The knowledge base (KB) encodes the problem-speci�c knowledge under the form of a set
of linguistic rules (rule base, or RB) and a set of fuzzy partitions (data base, or DB) that
describe the semantics of the Fuzzy subsets associated to the linguistic labels in the if-part
of the rules (Cordón et al., 1999).

The RB is made up of a set of linguistic rules, joined by the also operator (Luis, 2015).
Several types of rules have been de�ned; Mamdani and Takagi-Sugeno-Kang are amongst
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the most common ones. Furthermore, di�erent subtypes of Mamdani and Takagi-Sugeno-
Kang rules have been proposed in the literature. As a thorough description is beyond the
scope of this chapter, the interested reader is referred elsewhere (Luis, 2015; Cordón et al.,
1999; Cordón, 2011).

A generic (Mamdani type) k-th rule in the RB has the following form:

Rk : If X1 is A1,km,1 and ... and

XF is AF ,km,F then Y is Bjm

(2.17)

where Xi and Y are the system linguistic input and output variables, respectively, and
Ai ,km,1 and Bjm are the linguistic labels associated with fuzzy sets specifying their meaning.
In a fuzzy rule-based classi�er (FRBC), the fuzzy sets associated with the output variable
are singleton fuzzy sets Cj ∈ {C1, ...,CM } representing the (discrete) set of possible class
labels.

The DB contains the membership functions of the fuzzy partition associated to each
linguistic variable (See Figure 2.3 for an example of a strong fuzzy partition with 5 linguistic
terms for a generic linguistic variable).

2.3.2 Fuzzy Reasoning Method

The �ow of information through an FRBS follows the scheme reported in Figure 2.5; an
input (usually crisp), is presented to the system; the data is fuzzi�ed and the information
is then processed by the inference system; �nally, the output is defuzzi�ed and a crisp
response is generated by the system.

The fuzzi�cation step is paramount as it allows the inference engine to process the
input information using approximated inference; a mapping between crisp input values
and fuzzy sets de�ned over the universe of the input is used in this process. The singleton
fuzzi�cation is commonly employed (Luis, 2015), i.e. given an input x0 the corresponding
input fuzzy set if de�ned as:

µA′(x) =

{
1, x = x0
0, otherwise (2.18)

The standard fuzzy inference scheme uses the generalised modus ponens described in
Section 2.2:

Implication IF X is ATHEN Y is B
Premise X is A′
Conclusion Y is B′

(2.19)

Then, recalling the compositional rule of inference, the membership of a given output
set B′ is written down as:

µB′(y) = A′(x) ◦T R(x ,y) = supx∈UT (µA′(x), I (µA(x), µB(y))) (2.20)
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If the input set is a singleton, being µA′(x) = 0 ∀x , x0, we then have:

µB′(y) = I (µA(x0), µB(y))) (2.21)

To extend the inference to a rule with multiple variables and conditions in the IF part,
such as that in Equation 2.17, we then proceed as follows: consider an input vector x0 =(
x1

0 , ...,x
F
0
)
; the matching degree of the IF part, µA(x0), being a conjunction between several

statements xi0 is Ai , is thus written down as:

µA(x0) = T (µA1,km,1
(x1

0), ..., µAF ,km,F
(xF0 )) (2.22)

The membership degree de�ning the output set is then recovered from Equation 2.21 as
µB′(y) = I (µA(x0), µB(y))); here we assume a single output variable y. The outputs sets
for the M rule in the system (in an FRBC there are M singleton fuzzy sets) are aggregated
using an aggregator function and the output is defuzzi�ed in order to provide a crisp value
(First Aggregate, Then Infer (Luis, 2015)). Sometimes, the order is reversed and the input
can be �rst defuzzi�ed and then aggregated (First Infer, Then Aggregate (Luis, 2015)). A
wide spectrum of diverse aggregation functions exists; the interested reader is referred to
the literature (Cordón et al., 1999). In the following, the aggregation function suitable to a
particular problem will be de�ned in the relevant section.

2.4 Evolutionary Fuzzy Systems

Since the beginning of the 1990s, the idea of combining fuzzy systems with evolutionary
computation has been explored; from those �rst proposals the concept of Evolutionary
Fuzzy System (EFS) had born. EFSs are a family of approaches built on the top of the top
of the FRBSs described in the previous section. The components of the FRBS are improved
(evolved) through an evolutionary process (Fernández et al., 2015). The example of an EFS,
integrated on the top of a FRBS, is reported in Figure 2.6.

In the EFS setting, the design of the fuzzy system can be formulated as a search prob-
lem in high-dimensional space where each point represents a rule set and membership
functions (Shi et al., 1999). Evolutionary algorithms (EAs) and genetic algorithms (GAs)
have been employed to carry the optimisation out, thanks to their ability to deal with large
search spaces and to �nd near-optimal solutions without a precise description of the prob-
lem (Fazzolari et al., 2013).

Typically, the design of an EFS begins specifying which components of the FRBS should
undergo the optimisation process. As such, two speci�c categories of EFSs can be de�ned:
tuning and learning. Furthermore, the objective optimised can either by a single objective
(e.g. accuracy) or a trade-o� between di�erent objectives; in the latter, a multi-objective
evolutionary algorithm (MOEA) is needed (Fazzolari et al., 2013).

In general, the EFS can either learn the KB components anew or tune the components
of a preexisting KB. The KB learning can in turn be distinguished in: i) rule selection, ii)
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Figure 2.6: Architecture of a generic fuzzy rule-based system with an EFS (dark grey) inte-
grated to evolve the KB.

simultaneous learning of the KB components, iii) rule learning and iv) DB learning. The
evolutionary tuning can be further classi�ed in: i) KB parameters tuning (such as tuning of
the membership functions), ii) adaptive inference systems and iii) adaptive defuzzi�cation
methods.

In this thesis we primarily focus on rule (and condition) selection as well as on KB
parameters tuning, using a MOEA that optimises a trade-o� between accuracy and inter-
pretability. A comprehensive taxonomy of EFSs is beyond the scope of this work, and can
be found elsewhere (Fernández et al., 2015).

2.5 Randomness And Fuzzyness

Since its �rst steps, Fuzzy Logic has been often criticised for being just probability in dis-
guise (Kosko, 1990); a �erce debate has been going on about whether probability is the sole
sensible way to describe uncertainty. This view, often held by Bayesianists, obliquely chal-
lenged Fuzzy Set Theory, asserting that every other description of uncertainty but proba-
bility is inadequate (Lindley, 1987). There are, however, several conceptual and theoretical
di�erences between the two theories.

Indeed, both fuzzyness and randomness deal with uncertainty; they both did so by
quantifying uncertainty using numbers in the [0, 1] interval. But a fundamental philosoph-
ical distinction lies hidden at their roots: fuzzyness describes the ambiguity of an event,
i.e. the degree to which that particular event occurs, while probability deals with the un-
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certainty in the occurrence of an event (stochastic uncertainty (Zimmermann, 2010)). In
other words, while fuzzy logic deals with degrees of truth (fuzziness and partial or relative
truths) probability is about making predictions about the state of an event given a state of
partial knowledge.

Consider the example of describing the weather on the next day. A probabilistic ap-
proach would produce a statement of the form: “There is a 70% chance of having a shower
tomorrow”. A fuzzy logic statement is instead of the form: “There will be a 0.7 light shower
(or a 0.2 heavy shower) tomorrow”. In the probabilistic case, we assert that it is more likely
to have a shower than not having a shower, without providing any information about how
heavy the shower will be. On the other hand, the fuzzy set based approach tells us that for
sure, there will be a shower; furthermore, information regarding the amount of rainfall is
given as well.

As such fuzzy logic is not particularly apt to deal with partial knowledge and, on the
other hand, probability theory does not capture the essential property of meaning (partial
truth) which is the goal of fuzzy logic.
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CHAPTER

THREE

ON BOOSTING APPROCHES FOR FUZZY DECISION TREES

How is it that a committee of
blockheads can somehow arrive at
highly reasoned decisions, despite the
weak judgment of the individual
members? How can the shaky separate
views of a panel of dolts be combined
into a single opinion that is very likely
to be correct?

Boosting - Robert E. Schapire and Yoav
Freund

This chapter contains material from the following publications:

• Barsacchi, M., Bechini, A., & Marcelloni, F. (2017). Multi-class boosting with fuzzy
decision trees. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
(pp. 1–6).
https://doi.org/10.1109/FUZZ-IEEE.2017.8015567

• Barsacchi, M. Bechini, A. and Marcelloni F. (2018). Using Fuzzy Decision Trees in
Boosting: An Ensemble Multi-class Classi�er and its Experimental Evaluation. Under
Review.

In this chapter, we propose FDT-Boost, a boosting approach shaped according to the
SAMME-AdaBoost scheme, which employs fuzzy binary decision trees as base classi�ers.
An experimental evaluation of FDT-Boost is carried out using sixteen classi�cation bench-
marks. Comparing FDT-Boost with FURIA, one of the most popular fuzzy classi�ers, with
a fuzzy binary decision tree, and with a fuzzy multi-way decision tree, we show that FDT-
Boost is accurate, getting to results that are statistically better than those achieved by the
other approaches.
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This chapter is organised as follows. Section 3.2 recalls basic concepts on FDTs and
fuzzy discretization. Section 3.3 is devoted to the description of the proposed FDT-Boost
procedure. The results of the experimental assessment of FDT-Boost are reported in Sec-
tion 3.4. Section 3.5 summarise the results.

3.1 Decision Trees and Ensembles

Among the most popular machine learning algorithms are decision trees. Their inter-
pretability lies at the heart of their widespread di�usion, and the simplicity of their super-
vised learning process has contributed to their success as well (Quinlan, 1986). Yet another
positive aspect of decision trees is that the tuning of its learning process involves only a
very limited number of parameters, if any. Decision trees are constructed partitioning the
feature space into a set of rectangles, and �tting a simple model in each one. The training
dataset is recursively split: a tree node is associated with a subset of the whole dataset,
and in turn, the subsets of its children correspond to a partition of the father’s data subset.
When traversing the tree from the root down to the leaves, subsets become increasingly
homogeneous with respect to the label associated with the enclosed examples.

As discussed in the foregoing chapters, fuzzy systems have been often proposed for
dealing with vague/uncertain information, (Klir and Yuan, 1995); among the various appli-
cations, the ones in the �eld of decision trees, through the proposal of fuzzy decision trees
(FDTs) (Janikow, 1998), are among the most successful. Unlike classical decision trees, a
node in an FDT corresponds to a fuzzy set, and each instance can activate more than one
branch, reaching multiple leaves. In general, fuzzy classi�cation leads to label an instance
with multiple classes, each with a di�erent con�dence degree. Subsequently, FDTs may
also serve as robust rankers (Hüllermeier and Vanderlooy, 2009).

The �rst fuzzy decision tree algorithm is attributed to Chang and Pavlidis, in 1977
(Chang and Pavlidis, 1977). Since then, many di�erent fuzzy decision tree induction al-
gorithms have been proposed (Chiang and jen Hsu, 2002), with successful applications in a
growing number of �elds (Boyen and Wehenkel, 1999; Crockett et al., 2017). Among them,
the most common approaches are the Fuzzy ID3 Umanol et al. (1994) and the fuzzy SLIQ de-
cision tree (Chandra and Varghese, 2008) algorithms. Other notable approaches are the soft
decision trees (SDT) (Olaru and Wehenkel, 2003), that provides a complete method com-
bining tree growing and pruning, to determine the structure of the soft decision tree, with
re�tting and back�tting, to improve its generalisation capabilities and look-ahead fuzzy
decision trees (Dong and Kothari, 2001), that jointly optimise the node splitting criterion
(information gain or gain ratio) and the classi�ability of instances along each branch of the
node. C-fuzzy decision trees Pedrycz and Sosnowski (2005) exploit information granules
( multivariable entities characterised by high homogeneity) developed via fuzzy cluster-
ing and use them in the growth of the decision trees, The literature around FDT is still
lively: a recent contribution explored fuzzy rule based decision tree (FRDT), whose nodes
involve a fuzzy rule which in turn involves multiple features (Wang et al., 2015) in a way

22



3.1. Decision Trees and Ensembles

alike to oblique decision trees (Manwani and Sastry, 2012). Multi �exible fuzzy decision
tree (Isazadeh et al., 2016) has been recently proposed to handle online streams of data,
while hesitant fuzzy decision trees, based on the concept of hesitant fuzzy sets, have been
successfully applied in the case of imbalance classi�cation (Sardari et al., 2017). Another
recent contribution has investigated the application of fuzzy decision trees in the big data
setting (Segatori et al., 2017b) with promising results.

In a classi�cation problem, a good classi�er should be able to predict the right class
with satisfying accuracy. In order to achieve high performances, a proper learning process
has a primary role. A classi�er is usually de�ned as either binary or multi-class, depend-
ing on the so-called arity of categorical feature to be considered in the de�ned problem
(two or more, respectively). Beginning with the remarkable results on the possibility to
improve the performance of any mediocre classi�er found by Schapire (Schapire, 1990),
several other approaches have been suggested to build one accurate predictive model by
fusing together multiple models (Rokach, 2010). In ensemble methods, a set of di�erent
base learners is generated, and used for classi�cation by collecting their predictions to de-
termine a unique, agreed result. Among them, boosting plays a prominent role (Freund
and Schapire, 1997; Schapire and Freund, 2012). Boosting is also known in the literature
as “arcing”, i.e. Adaptive Resampling and Combining (Breiman, 1998). In this approach,
base classi�ers are generated iteratively, and the base classi�ers generated in previous it-
erations are used to properly manipulate the complete training set so to derive the speci�c
training set to be used in the next iteration (Schapire and Freund, 2012). Notably, boosting
with decision trees as base learners has been soon considered as one of the most e�ective
choices (Breiman, 1998). As decision trees are renown for their handiness, it is not surpris-
ing that they have often been chosen as base learners in boosting procedures (Roe et al.,
2005; De’ath, 2007)

In the �eld of binary classi�cation, AdaBoost is a popular boosting meta-algorithm
known to be simple yet very e�ective (Freund and Schapire, 1997). It can operate with any
kind of base learner (that is, obtained by any learning algorithm), and its tuning is based
on one single parameter. Anyway, many real-world problems involve multiple classes, and
the employment of AdaBoost in such contexts asks for speci�c algorithmic adaptations.
Since the introduction of AdaBoost, the proposed multi-class boosting procedures have
been shaped according to two main schemes (Saberian and Vasconcelos, 2011). According
to the �rst one, named binary reduction, a multi-class problem is recast to a combination of
a number of binary sub-problems, each to be solved with the original AdaBoost. Unfortu-
nately, binary reduction is subject to a number of problems (Zhai et al., 2014). The second
option plans to directly make use of native multi-class base classi�ers, and use them in the
context of a boosting procedure. Theoretical aspects of this option have been thoroughly
investigated (Mukherjee and Schapire, 2013), and SAMME-AdaBoost (Hastie et al., 2009)
can be regarded as the most used method that follows this approach.

Moreover, such an approach has been paired with a pre-discretization phase of nu-
merical attributes. The very preliminary results obtained in this attempt lead us to the
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development of “FDT-Boost” classi�ers, which are fully described in this work for the �rst
time. In this context, the use of size-constrained binary FDTs let us bound the complexity
of the overall model. Moreover, here a strong assessment of the performance of the algo-
rithm let us understand its real potential. It is important to underline that a fair comparison
with other models has to take into account not only the classi�cation accuracy but also the
model complexity and the ability to deal with noisy data.

In this chapter, after a detailed description of the FDT-Boost approach, we experimen-
tally investigate on the characteristics of its learning process and on its ability to deliver ac-
curate and robust results, in a cross-comparison with other state-of-the-art fuzzy classi�ers.
Moreover, we show that the complexity of models generated by FDT-Boost is lower than
their non-fuzzy counterparts, created by using SAMME-AdaBoost with classical multi-class
binary decision trees.

3.2 From DTs to FDTs

In this section we recall and expand the notation described in Chapter 2. Let each instance
x = [x1 . . . ,xF ] be characterised by a set X = {X1, . . . ,XF } of F features (or “attributes”).
Let y be a categorical label that takes values out of the set of M classes {C1, . . . ,CM }. We
de�ne the training set as TR = {(x1,y1), (x2,y2), ..., (xN ,yN )}, where N is the number of
labelled instances. We recall that in each iteration of the boosting procedure the used
training set is obtained by sampling TR according to a given discrete distribution; hence,
the actual “sampled” training set used in the t-th iteration is indicated in the following as
TR(t). Where used, the notation x̂ refers to an unlabelled instance, to which a label must be
assigned by the classi�er.

A decision tree approximates a discrete-valued function in the feature space; it does
so by inducing a hierarchical partition of the feature space, utilising the information con-
tained in the training set. The partition corresponds to a multistage decision system that
is followed in a sequential manner.

The partitioning procedure follows a recursive approach: each set, corresponding to a
node in the tree, is partitioned into k subsets until a termination condition is met (Janikow,
1998). If k = 2, decision trees are said binary, and for k > 2 they are said multi-way.
Interestingly, learnt trees can also be re-represented as sets of if-then rules; this feature
will be exploited in later chapters (Chapter 5 and 6). Fuzzy decision trees (FDTs) are built
by generalising the idea to the fuzzy context (Altay and Cinar, 2016).

At �rst, as the learning procedure was de�ned for categorical attributes, continuous
attributes required a discretization, to be performed either before or along the tree con-
struction; notably, it is the case for the well-known ID3 algorithm (Quinlan, 1986) and for
CART (Breiman, 1993), respectively. Furthermore, Fayyad and Irani have shown that the
application of entropy-based heuristics can lead to e�ective prior multi-interval discretiza-
tion (Fayyad and Irani, 1993a).

All the di�erent algorithms for decision trees induction rely on a core algorithm that
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employs a top-down, greedy search through the space of possible decision trees. At each
node, the splitting that generates the relative children depends on the local choice of a
discriminating attribute. In the speci�c context of FDTs, the attribute selection may re-
sort to di�erent types of metrics; among them, the most frequently used are the fuzzy
Kolmogorov-Smirnov discrimination quality measure (Boyen and Wehenkel, 1999), the
minimal ambiguity of a possibility distribution (Yuan and Shaw, 1995), the fuzzy Gini in-
dex (Chandra and Varghese, 2008), and the maximum classi�cation importance of attribute
contributing to its consequent (Wang et al., 2001). In more recent years, fuzzy information
(Zeinalkhani and Eftekhari, 2014) became one of the most popular.

The tree generation goes on branching until a termination condition occurs. Usually,
the termination condition is the logical disjunction of several stopping predicates that ac-
count for di�erent kinds of imposed constraints. In the following, the chosen stopping
conditions are:

• the node contains less than nmin instances;

• the node contains only instances of the same class;

• the fuzzy information gain for the split is lower than a threshold ε

• the maximum tree depth β has been reached.

The choice between binary and multi-way decision trees determines di�erent proper-
ties for the �nal tree: inmulti-way splitting of a node, one child is generated for any distinct
linguistic value de�ned over the current splitting attribute. Subsequently, in multi-way
DTs, no single attribute is tested twice on a path from the root to a leaf, while this is not
guaranteed in binary DTs.

The distinct properties of classical and fuzzy sets, outlined in Chapter 2, leads to a
di�erent classi�cation process between DTs and FDTs. Given an unlabeled instance x̂, a
classical decision tree is traversed following a unique path from the root node to a leaf, thus
outputting a single class. When considering an FDT, an instance x̂ can, by de�nition, belong
to di�erent fuzzy sets with di�erent membership degrees. Consequently, when traversing
the tree from the root downwards, multiple paths are activated, getting to multiple leaf
nodes. We can thus express the activation level of a leaf by itsmatching degree. Considering
a generic node N whose parent node is PN , we de�ne the matching degree mdN (x̂) of
instance x̂ with N as:

mdN (x̂) = T (µN (x̂ f ),mdPN (x̂)) (3.1)

where T is a T-norm (as described in Chapter 2), µN (x̂ f ) is the membership degree of x̂ f to
node N considering X f as splitting attribute, and mdPN (x̂) is the matching degree of x̂ to
PN , being each node associate with a fuzzy set.

At each activated (i.e. having matching degree дeq0) leaf nodeLN , an instance x̂ can be
labelled to a certain extent with a classCm. We can compute the association degree ADLNm (x̂)

25



Chapter 3. On Boosting Approches for Fuzzy Decision Trees

accordingly:
ADLNm (x̂) =mdLN (x̂) ·wLNm (3.2)

where wLNm is the class weight associated with class Cm at leaf node LN . The usage of
class weights is supported by a series of works, that have shown how they improve the
performances in fuzzy classi�ers (Ishibuchi et al., 2005).

Finally, in order to compute the class weights, we proceed as follows. Let G be the set
of training examples represented in the leaf node, andGCm its subset of elements labelled
with class Cm; we de�ne the class weight wLNm as:

wLNm =
|GCm |

|G |
. (3.3)

being | · | the set cardinality. The actual output class label is �nally obtained by the classi�er
by combining the association degrees for all the leaves in the FDT. The di�erent possible
ways of combing the association degrees are discussed elsewhere (Section 2.3).

3.3 The approach: FDT-Boost

The structure of the approach follows the SAMME-AdaBoost scheme; a set of base learners
is trained: for each learner, we use a fuzzy entropy-based discretizer to induce a fuzzy
partition for continuous attributes.

In the following subsections, the components phases of FDT-Boost are thoroughly de-
scribed; they are: i) the fuzzy discretizer, ii) the construction of a weak learner, i.e. the
fuzzy binary decision tree (FBDT), and iii) the ensembling using SAMME-AdaBoost.

3.3.1 (Fuzzy) Discretization for Continous Attributes

The majority of fuzzy approaches assume that a fuzzy partition is de�ned on each contin-
uous attribute; the fuzzy decision tree we employ is no exception. As such, a discretizer,
which adapts a solution from the literature (Segatori et al., 2017b), is employed. This dis-
cretization approach is based a fuzzy generalisation of what has been proposed by Fayyad
and Irani (Fayyad and Irani, 1993a), and is built on a recursive evaluation of the fuzzy en-
tropy associated with possible fuzzy partitions. Each continuous attribute is recursively
partitioned using strong triangular fuzzy partitions.

The choice of the discretizer has been partially driven by its inherent ability to perform
feature selection; if no partition has been generated at the termination point while splitting
the target domain of a given attribute, such an attribute can be discarded.

Let us de�ne a generic training set as TR. Wherever the training set varies across it-
eration, as in the boosting procedure, TR(t) is used to represent the training set at the t-th
iteration.

Let X f be the f -th attribute, and thus let x f ,i be the value of X f in the i-th sample in
TR. Hereafter is assumed, without loss of generality, that all the values x f ,i , i = 1 . . .N ,
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are sorted in ascending order. Let I f be a generic interval on the universe of discourse
U f for the feature X f , and let S f be the relative set of examples in TR whose values for
feature X f fall in I f , i.e. the support of I f . A fuzzy partition over I f is represented as
PIf =

{
B f ,1, . . . B f ,|PIf |

}
, being B f ,p the p-th fuzzy set de�ned over a sub-interval of I f , and

|PIf | the number of fuzzy sets in the given partition.
For each fuzzy set B f ,p , the related support set S f ,p is de�ned as the subset of the ele-

ments of TR that are members of B f ,p or, more formally, those whose values for the f -th fea-
ture have a membership degree toB f ,p strictly greater than zero: S f ,p =

{
x | x ∈ TR ∧ µBf ,p (x f ) > 0

}
.

The number of elements in the support set, |S f ,p |, is known as support value or simply
support, and the fuzzy cardinality |B f ,p | of a fuzzy set B f ,p is de�ned as:

|B f ,p | =

|Sf ,p |∑
j=1

µBf ,p (x f ,j) (3.4)

where x f ,j is the value for the f -th feature of the j-th element in S f ,p .
The de�nition of fuzzy entropy for a fuzzy set B f ,p strictly follows the de�nition of

entropy:

FEnt(B f ,p) = −

M∑
m=1

|B f ,p,Cm |

|B f ,p |
log2

(
|B f ,p,Cm |

|B f ,p |

)
(3.5)

where |B f ,p,Cm | represents the fuzzy cardinality of the set B f ,p restricted to just examples
with class label Cm.

Given a fuzzy partition PIf over a given interval I f , theweighted fuzzy entropy WFEnt(PIf ; I f )
can be de�ned as the weighted average of the fuzzy entropy for all the fuzzy set pertaining
to the partition:

WFEnt(PIf ; I f ) =
|PIf |∑
i=1

|B f ,i |

|S f |
FEnt(B f ,i). (3.6)

The de�nition of weighted fuzzy entropy suggests a straightforward way for comparing
di�erent partitions over the same interval I f . Given a “base” partition PIf we can quantify
the e�ect of the substitution with another partition P ′If by means of the fuzzy information
gain de�ned as follows:

FGain(P ′If ; I f ) = WFEnt(PIf ; I f ) −WFEnt(P ′If ; I f ). (3.7)

The discretization algorithm proceeds by recursively partitioning each numeric feature
on the training set TR. For each numeric feature, the initial partition is made up of a pair of
triangular “fuzzy” set. A generic partitioning step is described as follows: given a generic
sub-interval I f , it is partitioned with a partition formed of three triangular fuzzy sets, fully
described by an internal “cut-point” (see Figure 3.1). The selected cut-point induces two
sub-intervals I 1

f
(left) and I 2

f
(right) of I f , and the procedure is recursively applied to them.

Given an interval I f , along with its relative current partition PIf , the discretization
procedure choose the cut-point that yields the further partition P ′If of I f with the most
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Figure 3.1: An example of the application of the fuzzy discretization procedure for attribute
X f on I f = [l f ,u f ]. First, the procedure selects x f ,5 as cut point, and generates the trian-
gular fuzzy partition shown in the upper panel. Then, it selects x f ,3 as cut point for the
interval [l f ,x f ,5] thus generating the triangular fuzzy partition shown at the bottom.

favourable FGain. Whenever the information gain falls below a given threshold, the parti-
tion is not applied (this is the stopping condition for the recursive procedure). Figure 3.1
report an example of two steps of the described procedure on a given interval, and then on
its obtained left sub-interval.

The stopping condition can be formally expressed as

FGain(P ′If ; I f ) <
log2(|S f | − 1)
|S f |

+
∆(P ′If ; I f )

|S f |
(3.8)

being ∆(P ′If ; I f ) calculated as:

∆(P ′If ; I f ) = log2(3kf − 2) − [kIf ·WFEnt(PIf ; I f )
−kI 1

f
·WFEnt(P ′1If ; I 1

f )

−kI 2
f
·WFEnt(P ′2If ; I 2

f )]

(3.9)

where kIf is the number of class labels over the whole interval I f , and kI 1
f
, kI 2

f
are the

numbers of class labels over the subintervals I 1
f

and I 2
f
, respectively.

If the stopping condition is immediately met in the �rst step of the discretization proce-
dure for an attribute, that attribute does not in�uence the class label (at least in a univariate
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fashion), and it is thus discarded. In that in datasets with up to a few hundred examples
the proposed stopping condition often leads to an excessive selection of features, while in
large datasets the possible problem is an unreasonable discretization level.

In order to cope with this limitation, a heuristics has been implemented to obtain a
more e�ective discretization process. The number of splits can be limited to a maximum
smax , i.e. constraining the number of generated fuzzy sets. This can be obtained by tracing
back the recursive splitting procedure, and selecting the top smax splits in terms of fuzzy
entropy gain, yet keeping the partitioning procedure consistent. This possibility is due to
the additive formulation of entropy, and it needs only to keep track of the splitting tree;
then the splitting tree can be traversed one step at a time, keeping at each iteration the
node with the highest gain, among the available ones.

3.3.2 Fuzzy Decision Tree

The proposed approach builds an ensemble of weak fuzzy decision trees (FDTs); the de-
cision trees are built following the overall indications reported in (Segatori et al., 2017b).
Each FDT is built resorting to a recursive node-splitting procedure that selects the split that
maximises the relative fuzzy information gain and is subject to a set of stopping conditions
as well. The pseudocode for the learning algorithm is reported in Figure 3.2.

The construction begins considering a root node containing all the data in the training
set T̂R. As such, the root node is associated with a fuzzy set containing all the data with a
membership degree of 1. Then, the recursive SplitNode function is called on the root node.
SplitNode �rst veri�es whether at least one of the stopping conditions over the current
node is satis�ed. In our work, we used the stopping conditions described in Section 3.2.

If at least one of the stopping conditions is satis�ed, the node is labelled as a leaf and
the recursive branching is stopped. Contrariwise, the SelectSplit function is called; the
function generates two child nodes, choosing the split that maximises the fuzzy informa-
tion gain FGain ( Eq. 3.7) referring to the partitioning of the node fuzzy set induced by
the node split. The best split is found iterating over all possible splits for all the possible
features, and the split with the highest FGain is returned.

In order to be able to perform a binary splitting on a partition P (being P the outcome of
the discretization described in Section 3.3.1) |P| − 1 candidates must be evaluated, being |P|
the number of fuzzy sets in P. Each candidate binary split is obtained by merging the �rst
adjacent k fuzzy sets in P to form the �rst part, and all the remaining fuzzy sets to form the
second one, leading to the de�nition of two trapezoidal fuzzy sets. Figure 3.3, portrays an
example of candidate binary splits that correspond to the partition generated in the lower
panel of Figure 3.1.

Categorical attributes are dealt with according to a one-vs-all approach. When the func-
tion SelectSplit is called, all the possible candidates are evaluated over all the attributes,
and the best split made of the two fuzzy sets Zf ,1 and Zf ,2 is returned. Based on the out-
come of SelectSplit, two child nodes, G1 andG2, are generated by calling theMembership
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1: function LearnFDT(T̂R, P, β , nmin, γ , η)
2: Create a root node with all the set of data T̂R, i.e. a fuzzy set of all the data, with

all the membership values = 1.
3: tree← SplitNode(node, T̂R, P, β , nmin, γ , η )
4: return tree
5: end function
6: function SplitNode(node, X , P, β , nmin, γ , η)
7: if StoppingCondition(node, β , nmin, γ , η) then
8: node← mark node as leaf
9: else

10: splits← SelectSplit(X , P)
11: for splitk in splits do
12: childk , Xk ←Membership(X , P, splitk )
13: childk ← SplitNode(childk , Xk , P, β , nmin, γ , η)
14: connect childk with node
15: end for
16: end if
17: return node
18: end function

Figure 3.2: Pseudocode of the tree construction procedure LearnFDT. As input, the algorithm
requires the complete training set T̂R, the discretization P, and the parameters β , nmin, γ ,
and η. The output is the FBDT.

function; it assigns to each node the examples belonging to the support of the respective
fuzzy sets, with a membership value computed as the t-norm of the membership on the
set and the membership on the father node. In all the experiments the product t-norm has
been used.

3.3.3 Boosting scheme: SAMME-AdaBoost

The boosting procedure used in the proposed classi�er is aimed at generating an ensemble
of base classi�ers (namely binary FDTs) by following the SAMME-AdaBoost algorithm
described in (Hastie et al., 2009). SAMME-AdaBoost extends AdaBoost to the multi-class
case, avoiding to reduce the classi�cation problem to multiple two-class problems. It is
worth recalling that SAMME just requires a base-learner to provide better predictions than
an M-class random guess.

In the following, the overall procedure will be referred to as FDT-Boost; the relative
pseudo-code is presented in Figure 3.4. The algorithm requires a base model (FBDT), a
�xed number of iterations T , a constraint on the maximum number β of levels of the base
model, the minimum number nmin of instances in a node, the minimum value γ of the
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Figure 3.3: The application of the binary splitting procedure for attribute X f on I f = [l f ,u f ]

is shown. All possible candidates obtained by grouping together adjacent fuzzy sets into two
disjoint groups are tested, producing the trapezoidal fuzzy partitions shown at the bottom
(Zf1 and Zf2).

proportion of examples of a class in a node, the minimum threshold value η for the fuzzy
information gain, and the maximum number smax (for the initial discretization). The base
model, described in the previous sub-section, is grown up to its maximum depth β , with no
post-pruning. The optimal values for the parameterT and β depend on the characteristics
of the speci�c problem; further details are given below (Section 3.4).

Following the notation introduced before, the boosting procedure starts from consid-
ering the original training set with N samples,
TR = {(x1,y1), (x2,y2), ..., (xN ,yN )}, and one fuzzy partition (or “discretization”) for each
of the numerical attributes X = {X1,X2, ...,XF } as generated by the fuzzy discretizer (Sec-
tion 3.3.1) ; it gives back P, a set of partitions for the attributes that have not been �ltered
out during the discretization process.

The ensemble of T classi�ers is built up by means of an iterative procedure; at each
iteration t , the actual training set TR(t) to work on (still with N examples) is obtained by
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1: function FDT-Boost(TR, T , β , nmin, γ , η, smax)
2: P← FuzzyDiscretizer(X, TR, smax)
3: BoostEns← ∅
4: w = {wi ← 1/N , i = 1, . . .N }
5: . Uniform sampling
6: for t ← 1 to T do
7: TR(t) ←WeightedSampling(TR, w)
8: . TR is sampled using weight vector w
9: FDT (t) ← LearnFDT(TR(t), P, β , nmin, γ , η)

10: . The t-th Fuzzy Decision Tree is built
11: eer(t) ← computation of Eq. 3.10
12: α (t) ← computation of Eq. 3.11
13: . Tree weight α (t) depends on error rate eer(t)

14: BoostEns← BoostEns ∪ (FDT (t),α (t))
15: w = {wi ← value as per Eq. 3.12, i = 1, . . .N }
16: w← w/

∑N
i=1wi

17: . Sample weight vector updated & normalized
18: end for
19: return BoostEns
20: end function

Figure 3.4: Pseudocode for the overall boosting procedure FDT-Boost. As input, the algorithm
requires the complete training set TR and all the model parameters. The output is the
ensemble of FDTs.

sampling TR according to the current sampling distribution, de�ned by its weight vector
w with N components. In the �rst iteration, TR(1) = TR. A base model FDT (t) is induced
out of a dataset TR(t) , and a weighted error rate eer(t) is computed as:

eer(t) =
∑N

i=1wi · I(yi , FDT (t)(xi))∑N
i=1wi

(3.10)

being I(true) = 1 and I(false) = 0, and FDT (t)(xi) the classi�cation output of the t-th
FDT for the i-th sample in TR.

The contribution of the t-th model FDT (t) to the boosted ensemble is accounted by the
weight α (t):

α (t) = log 1 − eer(t)

eer(t)
+ log(M − 1). (3.11)

The log(M − 1) term (M indicates the number of classes), is necessary in order to avoid
negative values for α in the multiclass case for better-than-random guesses, as stated by
the original SAMME algorithm (Hastie et al., 2009).
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The sample weights are updated at each iteration, by increasing the values of samples
that have been misclassi�ed by the last built FDT:

w (t+1)
i = w (t)i · e

[α (t )·I(yi,FDT (t )(xi ))], i = 1, . . .N . (3.12)

A normalization across all the sample weights is then applied.
After the completion of the whole learning phase, the ensemble prediction for any un-

labeled example x̂ is calculated taking into account all the votes from all the base learners
in the ensemble. In the proposed fuzzy algorithm, each base FDT (t) produces as output,
for each class Cm, a relative vote Cm

t . The ensemble-wide classi�cation Cl(x̂) for x̂ con-
sists in the single class that gets the highest cumulative vote, considering also the weights
associated with the trees:

Cl(x̂) = arg max
m

T∑
t=1

α (t) ·Cm
t (3.13)

.

3.4 Experimental Comparison

In all the experiments performed in this section, a binary FDTs has been selected as a base
model for FDT-Boost. The maximum tree depth has been �xed to 4, i.e. β = 4, and the
number of boosting iterations has been �xed to T = 500. The complete parametrization is
reported in Table 3.1. These parameters re�ect an acceptable tradeo� between accuracy and
model complexity, according to experimental results reported hereafter in Subsection 3.4.3.

Table 3.1: Parameters used in FDT-Boost and their values

Parameter Description Value
T number of boosting iterations 500
β maximum tree depth 4

nmin min # inst. per leaf 2
γ max fraction inst. per leaf 1.0
η min gain 0.0001

smax max number of fuzzy sets 7

The set of experiments have been performed on a set of 16 datasets gathered from the
KEEL repository1. Table 3.2 summarises their reporting cardinality, number of attributes,
and number of classes. In order to perform a cross-validation, we used the pre-speci�ed
5-fold cross-validation splitting.

The experimental section is organised as follow: �rst, a comparison with a set of fuzzy
classi�ers is performed; the results are reported in Subsection 3.4.1. Then, FDT-Boost is

1http://sci2s.ugr.es/keel/datasets.php
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Table 3.2: Datasets used in the experimental phase, listed in alphabetical order

Dataset (init.) Cardinality # Attr. # Classes
appendicitis (APP) 106 7 2
australian (AUS) 690 14 2
bands (BAN) 365 19 2
dermatology (DER) 358 34 6
glass (GLA) 214 9 7
hayes (HAY) 160 4 3
iris (IRI) 150 4 3
mammographic (MAM) 830 5 2
newthyroid (NEW) 215 5 3
segment (SEG) 2310 19 7
tae (TAE) 151 5 3
vehicle (VEI) 846 18 4
vowel (VOW) 990 13 11
wdbc (WDC) 569 30 2
wine (WIN) 178 13 3
wisconsin (WIS) 683 9 2

compared to crisp SAMME-AdaBoost in Subsection 3.4.2. Finally, in Subsection 3.4.3 an
investigation of the convergence behaviour of the proposed model is performed, in order
to get suggestions for a correct parametrization and to study possible over�tting issues.

3.4.1 Fuzzy Classi�ers

In this section, the results of an experimental comparison of FDT-Boost and a set of state-
of-the-art fuzzy classi�ers are described; we selected FBDT, a fuzzy binary decision tree
(Segatori et al., 2017b), FMDT, a fuzzy multi-way decision tree (Segatori et al., 2017b) and
FURIA, a fuzzy rule-based classi�er (Hühn and Hüllermeier, 2009). For what concerns the
parametrization of FBDT and FMDT, we selected the value according to the indications
reported in (Segatori et al., 2017b); the maximum depth has been �xed to 15 for FBDT and
5 for FMDT. FURIA has been used as provided in WEKA (Eibe et al., 2016) with its default
parametrization.

The average accuracies and their standard deviations obtained on the test set on all the
selected datasets are reported in Table 3.3.

In order to detect statistically relevant di�erences among the accuracies achieved by
the di�erent approaches, a set of statistical tests have been performed. First, the distribu-
tion with the average accuracies evaluated on the test set for all the datasets are de�ned,
and then non-parametric statistical tests are applied. The Friedman test (Friedman, 1937),
allows calculating the rankings among the distribution; the mean ranks are reported in
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Table 3.3: Average accuracy and standard deviation achieved by FDT-Boost, FURIA, FBDT
and FMDT over the test set (5-fold cross-validation)

Datasets Algorithms
FDT-Boost FURIA FBDT FMDT

appendicitis 85.80 ± 7.43 86.84 ± 5.38 83.07 ± 2.14 87.71 ± 4.57
australian 84.49 ± 0.35 85.22 ± 2.57 83.91 ± 1.34 84.20 ± 2.57
bands 74.51 ± 1.28 67.20 ± 6.33 67.93 ± 1.64 66.85 ± 3.09
dermatology 97.78 ± 2.23 95.81 ± 1.79 94.69 ± 2.20 93.01 ± 1.88
glass 74.31± 6.73 70.55 ± 3.53 71.10 ± 5.07 71.95 ± 8.66
hayes 85.00 ± 5,00 81.87 ± 4.16 76.87 ± 4.24 60.62 ± 4.24
iris 94.67 ± 2.49 93.33 ± 4.71 94.00 ± 3.89 94.67 ± 2.50
mammographic 83.59 ± 1.63 83.57 ± 2.44 80.55 ± 2.00 80.44 ± 1.43
newthyroid 94.88 ± 3.42 94.42 ± 2.37 93.49 ± 6.31 96.28 ± 6.31
segment 96.80 ± 1.05 97.24 ± 0.54 96.79 ± 0.63 95.67 ± 0.51
tae 53.01 ± 7.48 45.63 ± 5.06 48.30 ± 7.71 51.61 ± 4.87
vehicle 72.21 ± 3.11 68.09 ± 1.78 71.87 ± 1.98 72.11 ± 1.71
vowel 86.46 ± 2.93 79.80 ± 2.09 93.43 ± 1.94 94.44 ± 1.59
wdbc 97.18 ± 1.02 95.96 ± 2.12 95.08 ± 1.71 95.08 ± 1.18
wine 98.87 ± 1.38 93.78 ± 3.37 94.38 ± 2.79 95.50 ± 2.52
wisconsin 97.01 ± 0.79 96.05 ± 0.58 96.49 ± 1.44 97.36 ± 0.53

86.04 ± 3.02 83.46 ± 3.05 83.87 ± 2.94 83.59 ± 2.74
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Table 3.4. The p-value relative to the Iman and Davenport test (Iman and Davenport, 1980)
is also reported. These tests reveal whether statistical di�erences between the distribution
exists.

The Iman and Davenport p-value is marked as signi�cant if it is below the signi�cance
level, here assumed as the ordinary value 0.05; if this is the case, the null hypothesis is
rejected, and the claim statistical di�erences among the distributions can be made.

Table 3.4: Outcome of the Friedman statistical test on the accuracy obtained by FDT-Boost,
FURIA, FBDT, and FMDT. The Iman-Davenport p-value is also reported.

Algorithm Mean Rank Iman-Davenport p-value

FDT-Boost 1.5312

0.00191FURIA 2.875
FBDT 3.0625
FMDT 2.5312

Among the selected algorithms FDT-Boost is the one with the lowest mean rank. Fur-
thermore, the results in Table 3.4 suggests that given the fact thatp-value = 0.00191 < 0.05,
the null hypothesis of statistical equivalence can be rejected. In order to unravel statistical
di�erences among the pairs of approaches, an Holm post hoc test have been performed; in
the analysis FDT-Boost has been used as control algorithm, being the one with the smaller
rank. The results are reported in Table 3.5; statistical di�erences exist between FDT-Boost
and all the other approaches.

Table 3.5: Results of the pairwise Holm post hoc test for signi�cance level = 0.05

Algorithm z-value p-value Holm Hypothesis
FBDT 3.54801 0.000794 0.016667 Rejected
FURIA 2.94401 0.00324 0.025 Rejected
FMDT 2.19089 0.02846 0.05 Rejected

3.4.2 Comparing with Crisp AdaBoost

In this section, experimental comparisons are performed in order to investigate whether
a fuzzy base learner, combined with an interpretable discretizer, outperforms SAMME-
AdaBoost when using “crisp” decision tree as base learner. First, FDT-Boost and a SAMME-
AdaBoost classi�ers are compared on the datasets described in the previous section; the
results are reported in Table 3.6.

At �rst glance, the two approaches show comparable classi�cation accuracies. Never-
theless, measuring the complexity of the resulting models, FDT-Boost seems to produce
signi�cantly less complex models. In order to use a complexity measure that is consistent
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Table 3.6: Average accuracy achieved by FDT-Boost and crisp AdaBoost on the test set for the
5-fold cross-validation and average number of nodes per base learner.

Datasets Accuracy (%) Number of nodes
FDT-Boost AdaBoost FDT-Boost AdaBoost

APP 85.80 84.89 10.48 20.56
AUS 84.49 86.66 7.93 28.14
BAN 74.51 75.02 19.53 26.54
DER 97.78 96.36 14.73 17.23
GLA 74.31 77.10 25.66 26.76
HAY 85.00 84.38 9.09 20.08
IRI 94.67 91.19 7.85 15.00
MAM 83.59 78.63 1.88 13.96
NEW 94.88 95.81 19.78 14.66
SEG 96.80 98.18 27.82 24.11
TAE 53.01 55.03 15.15 28.55
VEI 72.21 77.54 29.02 28.77
VOW 86.46 91.12 29.77 28.24
WDC 97.18 91.17 22.44 24.56
WIN 98.87 95.46 15.35 15.00
WIS 97.01 97.37 16.47 23.27

86.04 85.99 15.15 22.21

across both systems, model complexity is de�ned as the average number of non-empty
nodes across the whole ensemble; furthermore, the same tree depth and the same number
of iterations are used, in order to perform a fair comparison. Analysing the results in Ta-
ble 3.6, FDT-Boost induces models that are, on average, ∼ 31% less complex than the ones
generated by SAMME-AdaBoost.

Then, in order to analyse whether the claim that, as discussed in Chapter 1, fuzzy mod-
els are more apt to deal with noisy data (Klir and Yuan, 1995; Chiang and jen Hsu, 2002),
the robustness of both FDT-Boost and the classical SAMME-AdaBoost under an increas-
ing level of noise has been tested. This analysis is of utmost importance as the adaptation
mechanism at the basis of AdaBoost is not expected to easily discriminate noise along the
learning phase.

The following mechanism of noise injection in the training data, by corrupting only
the class labels, has been devised; for each sample in the training set, the class label is
perturbed with probability p, by choosing a random label across the remaining ones. In
order the evaluate the trends with increasing levels of noise, we varied from 0% to 35%
with 5% increments. When noise is injected both FDT-Boosts and Samme-AdaBoost behave
similarly in several datasets; we observed a di�erent trend on several other datasets; we
reported some of them in Fig. 3.5.
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Figure 3.5: The classi�cation error on the Segment and the Wisconsin datasets, for both FDT-
Boost and SAMME-AdaBoost, as a function of the percentage of noisy data. On these data-
sets, the noisier data are, the better the fuzzy model behaves with respect to its crispy coun-
terpart.

On Segment (one of the biggest), for example, as the noise ratio increases FDT-Boost
becomes growingly more accurate and, when the noise goes beyond 25%, it outperforms
SAMME-AdaBoost on the test set (as shown in the upper panel of Fig. 3.5); interestingly,
in absence of noise is the crisp model that provides higher performances. On Wisconsin
(lower panel in Fig. 3.5) this trend is even more visible: FDT-Boost outperforms the crisp
approach as soon as the minimal amount of noise is injected (less than 5%).

3.4.3 Analysis of the convergence

In this section, the results of a thorough analysis of the convergence of FDT-Boost are pro-
vided. The curves for the training and test error ratios (εtrain and εtest) have been evaluated
with respect to a growing number of iterations. There are several reasons that drive this
analysis: �rst and foremost, by observing how the boosting procedure behaves along its
progression, insight into the learning procedure might be gained. Furthermore, a quantita-
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tive evaluation of the learning process might help in devising the correct parametrization
for the model.

Firstly, the average learning curves across all the datasets are evaluated; since the learn-
ing curve depends on various factors, as the complexity of the adopted base learner, all the
maximum tree depths β in the interval [1, 6] have been tested. The results, reported in
Figure 3.6, provide some guidance in the parameter selection.
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Figure 3.6: In �gure, the average learning curves on all the datasets, for di�erent values of
the maximum depth for the base learner (a fuzzy decision tree) are reported.

The choice of T = 500 is adequate enough to reach the accuracy plateau, even for a
value of β ≥ 2 (decision stump are thus left out in the following considerations, as they do
not seem to provide su�cient accuracy). Concerning β , a choice β = 4 seems appropriate to
reach a minimal error, without letting the model complexity grows considerably. As these
are general considerations, the best values might vary in speci�c cases. As has been often
pointed out, AdaBoost defaults its ability to resist over�tting (Schapire et al., 1998) if the
base classi�er is too complex with respect to the dataset size, or if it is too weak i.e. its mar-
gin against a random classi�er is too small (this issue will be discussed below) (Schapire,
2013). Indeed, previous works in the literature have also shown that boosting algorithms
may be prone to a growing generalisation error under certain conditions (Schapire and
Freund, 2012). To better understand the issue, we performed a wide set of experiments
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to understand how the selection of fuzzy decision tree as base learner in�uences this is-
sue, considering that it is a more complex model than its crisp counterparts, i.e. it learns
more parameters during its training. As a case study, an analysis of the learning process in
the case of two datasets that have been selected as representatives is reported in this sec-
tion. In order to perform a fair analysis we selected both “Vowel” a multi-class case where
FDT-Boost is able, if properly parametrized, to generate an e�ective model, without over-
training along its learning and “Mammographic” that is likely the most problematic dataset
considered here, where the proposed algorithm struggles even in learning examples in the
training set.

The upper rows of panels (a) and (b) in Figure 3.7 report the error ratio on both the
training and the test sets for growing number of iterations (the x-axis are in log scale). The
curves show very di�erent convergence patterns between the datasets.

In the case of Vowel (a), no overtraining seems to occur even when the number of
iterations approaches 1000; moreover, when the complexity of the base model is raised,
FDT-Boost seems to converge faster. Mammographic tells a completely di�erent story: as
shown in Figure 3.7 (b), the training set can never be completely learned (as the training
error εtrain never approaches the x-axis); consequently, the classi�cation performances of
the learnt model on the test set are negatively a�ected as well. As expected, however, the
usage of a simpler (i.e. less complex) base model reduces the over�tting issue. These exam-
ples clearly depict how a dataset-dependent parametrization could de�nitively improve the
accuracy. The selected maximum depth of 4 provides a global trade-o� for all the datasets,
but it is a suboptimal choice in both cases.

Furthermore, in order the better shed light on the learning behaviour of FDT-Boost,
two additional analysis tools have been used: i) the entropy of the weight distribution, and
ii) the margin distribution (which nicely �ts with the explanation of boosting proposed
by Shapire (Schapire et al., 1998)). Both of this indices have been evaluated as the system
evolves along successive iterations, for trees bounded to varying maximal depth.

The entropy of the distribution of sample weights is, as portrayed in the lower left panel
of Figure 3.7, maximal in the initial phases of the evolution when all the samples are equally
probable. As the boosting procedure goes on, entropy decreases, as expected; the rate is
proportional to the rate at which the set of incorrectly classi�ed examples dwindles. The
lower left plot of panels (a) and (b) of Figure 3.7 reports the entropy of the weight distribu-
tion for various maximum tree depths as a function of the iteration number, for both Vowel
and Mammographic. Interestingly, the stark decrease shown in Vowel, both with growing
number of iterations and with a deeper base model, is not paralleled in Mammographic.

With reference to the second index, the classi�cation margin, it is de�ned as the di�er-
ence between the sum of the weights assigned to the correct label and the maximal sum of
weights assigned to any single incorrect label. Consequently, the margin is de�ned in the
range [−1, 1] and a sample is classi�ed correctly if and only if its margin is greater than 0.
Furthermore, the greater the margin, the more con�dent the classi�cation; nevertheless,
the margin is obviously in�uenced by the number of classes, as the greater the number of
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Figure 3.7: Results of the convergence analysis for the Vowel (a) and the Mammographic
(b) datasets. In the upper row, the classi�cation error on the training and the test sets
(represented with dashed and continuous lines, respectively), as a function of the number
of boosting rounds are reported; the lower row shows the trend of the weight entropy and
the classi�cation margin for di�erent tree depths.
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labels, the lower the margin. In the lower left plots of panel (a) and (b) of Figure 3.7, the cu-
mulative of the margin distribution over the training set is reported. In the ideal case, such
as Vowel in panel (a), the deeper the base model the better the margin distribution; fur-
thermore, a greater margin helps to achieve lower generalisation error. In Mammographic,
reported in panel (b), the margin remains the same when the base model grows deeper;
this phenomenon �ts with the stable (or slightly increasing) generalisation error shown in
the upper panels of (b).

Lastly, to better inspect how the ensemble grows during the execution of the boosting
algorithm, a graphical representation is provided in Figure 3.8; here, we plot a sample of
the generated trees, via their Pythagorean representations (Beck et al., 2015). Each node
of the tree is drawn as a square, and each split as a right triangle; the father node lays on
the hypotenuse, while the child nodes lay on the cathetus. The number of samples in each
node is proportional to the areas of the square it is associated with. The colour of each
node matches that of the dominant class, and the transparency is related to its margin.

Representing a sample of the ensemble in term of Pythagoras trees may help in un-
derstanding how the boosted ensemble has evolved; in the case of Vowel (panel (a) in Fig-
ure 3.8), for example, the sampled training set at the time t , TR(t), exhibits a swinging
behaviour, being alternately dominated by examples from one of the leading classes. Con-
sequently, trees get unbalanced and more specialised as they are grown over increasingly
specialised training sets. In Mammographic (panel (b) in Figure 3.8 ), the trees struggle to
the reach the maximal depth, mostly stopping to the root node after the very �rst iterations;
in other words, they seem to strive to separate the hardest examples.

3.5 Summary

In this chapter we have described FDT-Boost, a novel ensemble-based fuzzy classi�er;
a comprehensive analysis of the approach is also provided. FDT-Boost is made up of
several components: �rst, a fuzzy discretizer for continuous attributes; second, a depth-
constrained binary fuzzy decision tree, which is used as a weak learner. Third, the adopted
boosting approach, which follows the SAMME-AdaBoost meta-algorithm. To the best of
our knowledge, this is also the most exhaustive investigation of boosting with fuzzy learn-
ers.

According to a comprehensive set of experiments, SAMME-AdaBoost ensembles of bi-
nary fuzzy decision trees, limited to a maximum depth of 4, are typically able to provide
high accuracy value. These results are comparable to those obtained by state of the art
fuzzy classi�ers, and often even better ones. Indeed, on a set of sixteen benchmarks, FDT-
Boost outperformed FURIA, a fuzzy binary decision tree, and a fuzzy multi-way decision
tree. Statistical analysis established those di�erences as signi�cant.

In order to better understand the contribution of a fuzzy base learner, FDT-Boost has
been compared with its crisp counterpart; FDT-Boost produces way simpler models, with
a reduction of 30% in the number of nodes and leaves, while preserving a comparable
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Figure 3.8: A sample of the tree composing the ensemble trained on the Vowel (a) and Mam-
mographic (b) datasets is shown by means of the Pythagoras tree representation. The two
datasets lead to a di�erent population of trees.

accuracy. Even if AdaBoost is not known for generally providing robustness against noise,
a set of noise injection experiments showed that FDT-Boost behaves better than SAMME-
AdaBoost for some datasets. Furthermore, the use of a unique fuzzi�cation valid for all the
trees in the ensemble, consisting of a triangular strong fuzzy partitioning for each feature,
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endows the model with higher interpretability.
Then, the convergence properties of FDT-Boost have been investigated by means of dif-

ferent instruments: margin analysis and entropy of weight distribution; those tools showed
that di�erent datasets may lead to very di�erent behaviours. Finally, the model evolution
has been also visualized using an e�ective representation of the generated trees, which
helps in understanding the model behaviour.
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CHAPTER

FOUR

IMPLICITLY DISTRIBUTED FUZZY RANDOM FOREST

The intelligence of the creature known
as a crowd, is the square root of the
number of people in it.

Jingo – Terry Pratchett

In this chapter, we present a novel distributed fuzzy random forest induction algorithm,
based on a fuzzy discretizer for continuous attributes. The proposed approach, although
shaped on the MapReduce programming model, takes advantage of the implicit distribution
of the computation provided by the Apache Spark framework. The chapter is organised as
follows: �rst, Section 4.1 and 4.2 provide a brief description of the state of the art, as well as
some background information about fuzzy decision trees and fuzzy discretization. Then, in
Section 4.3 fuzzy random forests are thoroughly described. Section 4.4 details the parallel
implementation we provide. Section 4.5 gives experimental results for the assessment of
the proposed approach. Finally, Section 4.6 summarises the results obtained.

4.1 From Random Forests to Big Data

The ongoing quest of arti�cial intelligence is that of unearthing complex relationships in
the data. In other words, the learnt models should be able to generate accurate predictions
while also allowing to extract knowledge in an intelligible way. Pursuing this double goal,
research in machine learning has given rise to an extensive body of works in a myriad of
directions. As brie�y discussed in Section 3.1, a particularly popular solution is represented
by decision trees (Quinlan, 1986), which are conceptually very simple models with a high
level of interpretability. Their founding idea is to de�ne a proper partition of the feature
space, with every single partition containing a homogeneous subset of the learning dataset,
and corresponding to a classi�cation label. The model is constructed according to a hier-
archical approach, and several algorithms have been proposed to this aim (Quinlan, 1986).
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The result of the hierarchical partitioning is a tree that provides also an e�cient way to
assign an example pattern to the target partition, represented by a tree leaf. Intermediate
nodes correspond to intermediate partitions.

As also discussed in Chapter 3, as single classi�er might often be too simple of speci�c,
ensemble methods have been proposed; indeed, they have shown to o�er improved perfor-
mance with respect to base learners (Rokach, 2010). Particularly, this seems to be due to the
fact that a committee of classi�ers drives down the prediction variance, yet maintaining the
same bias (Opitz and Maclin, 1999). In fact, as (deep) decision trees are generally believed to
be high-variance low-bias models, they are ideally suited for ensembling. Several ensemble
methods have been proposed: boosting was the topic of Chapter 3; random forests are the
topic of this chapter. Unlike boosting, which evolves a committee of weak learners over
time, random forests (Breiman, 2001) make use of bagging (i.e. each single decision tree is
learnt from a di�erent training set, sampled with replacement from the complete dataset)
and random attribute selection at the node level. Random forests substantially modify bag-
ging, in that the trees they grow are de-correlated. In fact, the advent of random forest
ushered in a new era of machine learning. Nowadays, random forests are one of the most
popular classi�cation and regression algorithms and have found application in a plethora of
scienti�c �elds (Díaz-Uriarte and Alvarez de Andrés, 2006; Rodriguez-Galiano et al., 2012;
Svetnik et al., 2003).

Recalling from Chapter 3, fuzzy decision trees (FDTs) have been proposed to incorpo-
rate the notion of fuzziness (Janikow, 1998), associating each node of the FDT to a fuzzy set,
rather than a classical set. In general, fuzzy approaches help in dealing with uncertainties
(Zimmermann, 2010), and fuzzy classi�cation of an instance leads to multiple labels with
di�erent con�dence values. In an FDT, each instance can activate di�erent branches and
thus reach multiple leaves. A thorough description of FDTs has been given in Section 3.3.2.
Random forest with fuzzy decision trees have been proposed before, showing good accu-
racy classi�cation, comparable to that of the best classi�ers when tested with conventional
data sets, and high robustness to noise (Bonissone et al., 2010; De Matteis et al., 2015). The
�rst comprehensive analysis of a fuzzy random forest (FRF) classi�er was given in (Bonis-
sone et al., 2010); the authors explored di�erent combination methods to obtain the �nal
decision and proposed a thorough comparison with other approaches. Later, in (De Matteis
et al., 2015), a novel approach to the problem of fuzzy partitioning in FRFs generation was
proposed; the fuzzy partitions were created during the generation of the tree by adopting
an approach which iteratively zooms in on speci�c intervals of the universe. Lastly, an FRF
composed of C-fuzzy decision tree was also proposed (Gadomer and Sosnowski, 2016).

As the era of Big Data swept in, it brought a wealth of data that required computer
scientists to rethink the way in which they solved their problems; indeed, Big data refers
to datasets so big and complex that require specialised data processing approaches. During
the last decades, a plethora of approaches, exploiting di�erent solutions, have been pro-
posed to tackle big data; cluster computing is one of the most explored areas. Amongst the
most popular cluster computing frameworks, it is worth recalling Apache Hadoop (White,
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2009) and Apache Spark (Zaharia et al., 2010). The former implements the MapReduce pro-
gramming model introduced to simplify the distribution of a computational �ow across
clusters of computing machines (Dean and Ghemawat, 2008). The latter implements the
concept of in-memory cluster computing, thereby speeding up computation, notably in ex-
ecuting iterative or interactive algorithms, and supporting integrated processing of large
datasets (Zaharia et al., 2010). Plenty of machine learning approaches have been adapted to
take advantage of these new paradigms; SVMs (Lin et al., 2014) and decision trees (Meng
et al., 2016) are among them. It is also believed that fuzzy models are particularly well
suited for handling the variety and veracity that de�ne Big Data. Recently, several fuzzy
techniques have been proposed for dealing with huge amount of data (Elkano et al., 2017;
Fernández et al., 2017; Ferranti et al., 2017; López et al., 2015; Márquez et al., 2017; del Río
et al., 2015a; Segatori et al., 2017a, 2018). A much wider and comprehensive introduction
to the problems connected with the analysis of big data is provided later in the book, in
Section 5.1.

4.2 Preliminaries

In the following, the necessary notation is recalled; TR is a training set of N training ex-
amples, {(x1,y1), (x2,y2), ..., (xN ,yN )}, where xi and yi are respectively the feature vector
and the label for the i-th example, a supervised learning algorithm looks for a function
h : X → Y from the input space to the output space. In the case of classi�cation, yi can
assume only a limited number of values {C1, ...,Cm}.

Here, it is assumed that: i) each numerical attributeX f is de�ned on a universeU f ⊂ R;
ii) given a fuzzy set v f , the degree to which an element x f ∈ U f belongs to the set v f is
de�ned by the membership function µv(x f ). Furthermore, let us introduce the notion of
linguistic variable V , an attribute de�ned over a domain of linguistic values, which are
labels for fuzzy subsets.

Amongst the most common supervised learning techniques, decision tree learning works
by recursively partitioning the sample space according to a data-driven approach, repre-
senting the partition as a tree (Janikow, 1998). In other words, a decision tree learns a
piece-wise continuous function in the feature space. Although discrete attributes are han-
dled “out-of-the-box”, continuous ones must be discretized, either prior to or during the
tree induction. Unlike the classical ID3 algorithm (Quinlan, 1986), most of the tree in-
duction algorithms proposed so far, such as CART (Breiman, 1993), do not require prior
partitioning. However, it has been shown that the use of prior multi-interval discretiza-
tion, combined with properly shaped heuristics, can bring several advantages (Fayyad and
Irani, 1993a). As in Boolean decision trees, at each internal node, one attribute is chosen
and tested, and its child nodes are organised according to the test outcome. Then, each leaf
node holds one or more classes.

The tree generation proceeds recursively from the root node downwards. At each node,
an attribute is selected according to a proper criterion, and a split is performed. The selec-
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tion criterion in FDT is typically based on metrics like fuzzy information gain (Zeinalkhani
and Eftekhari, 2014), fuzzy Gini index (Chandra and Varghese, 2008), maximum classi�ca-
tion importance of attribute contributing to its consequent (Wang et al., 2001), minimal am-
biguity of a possibility distribution (Yuan and Shaw, 1995), and fuzzy Kolmogorov-Smirnov
discrimination quality measure (Boyen and Wehenkel, 1999). In our work, we used the
fuzzy information gain as actual splitting metrics. A formal de�nition will be given in
Section 4.3.

The tree induction recursively proceeds in partitioning nodes, until one of the stopping
conditions, discussed in Section 3.2, is met.

Regarding the inference procedure, in classical decision trees each unlabelled instance
x̂ activates a unique path, and as such, is assigned a unique class Cm ∈ C . Conversely, in
FDTs, x̂ can activate multiple paths in the tree, because at each node it may correspond to
multiple fuzzy subsets. We recall that each leaf is reached with a matching degree; given a
node N , the matching degreemdN (x̂) of x̂ with N is de�ned as in Equation 3.1.

HereTN is a T-norm, µN (x̂ f ) is the membership degree of x̂ f with the node N consid-
ering X f as splitting attribute and mdPN (x̂) is the matching degree of x̂ with the parent
node of N , PN .

Then, for each activated leaf node, an association degree is computed as ADLNm (x̂) =
mdLN (x̂) ·wLNm beingmdLN (x̂) the matching degree of x̂ with the leaf node LN andwLNm

the class weight associated with class Cm at leaf node LN . Class weights are used as they
have been shown to provide higher performances (Ishibuchi et al., 2005).

The class weight for the classCm at the leaf nodeLN iswLNm =
|GCm |

|G | , beingGCm the set
of training instances in G having class label Cm. Then the association degrees are properly
combined to produce an output class label. More precisely, a weighted voting method is
used, where the class weights for each leaf, weighted by their respective association degrees
are aggregated into an unique vector of class votes.

4.3 Proposed Fuzzy Random Forest

In this Section, the proposed FRF algorithm is described. The approach is structured in
two main steps: i) a fuzzy discretization of continuous variables is performed, then ii) a
distributed FRF is induced.

4.3.1 Distributed discretization

The fuzzy discretization approach used here follows a modi�ed Fuzzy Partitioning based on
Fuzzy Entropy (FPFE) procedure. This has been adapted from (Segatori et al., 2017b). The
description given here follows the one given in Section 3.3.1; as such only the necessary
details are recalled here. Please refer to Section 3.3.1 and to (Segatori et al., 2017b) for
further information.
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The chief aim of this section is that of extending the concepts described in Section 3.3.1
in the context of big data, using a distributed implementation; the topic of discretization in
the context of big data is thoroughly discussed in (Ramírez-Gallego et al., 2016).

The discretization algorithm recursively partitions continuous attributes, de�ning strong
triangular fuzzy partitions, until a stopping criterion is met; the stopping criterion is a
fuzzy adaptation of the minimum description length principle (MDLP) (Fayyad and Irani,
1993a). Unlike the discretizer examined in Section 3.3.1, the one described here works in a
distributed fashion. The partitioning, done independently of the tree induction step, con-
siders each feature separately. The proposed approach brings several advantages: �rst it
can lead to feature selection if no splits are selected for a feature; furthermore, it produces
a strong and highly interpretable fuzzy partition.

The notation will be brie�y recalled in the following. Let us focus on the generic feature
X f ; let xi,f be the value the f -feature in the i-th sample of the training set, and let us assume
values sorted in ascending order. Let IF be an interval on the universe of the feature X f .

Consider a fuzzy partition PIf =
{
B f ,1, ...,B f ,|PIf |

}
over I f ; let B f ,i be the i-th fuzzy set,

and let |PIf | be the number of fuzzy sets de�ned in the partition PIf over the interval I f .
Let S f ,i be the crisp subset of points of S f contained in the support of B f ,j and let |B f ,j |

be the fuzzy cardinality of the fuzzy set B f ,j , de�ned in Equation 3.4.
Let also FEnt(B f ,j) be the fuzzy entropy for a fuzzy set B f ,j , as in Equation 3.5, and let

WFEnt(PIf ; I f ) be the weighted fuzzy entropy of a fuzzy partition PIf over an interval I f
(Equation 3.6).

Furthermore, let us recall the de�nition of information gain FGain, given by a partition
P f over an interval I f for an attribute X f :

FGain(P f ; IG) = FEnt(G) −WFEnt(P f ; IG) (4.1)

Starting from an initial interval, the discretization approach proceeds by evaluating
all the candidate cut-points for an interval, selecting the cut point with maximum fuzzy
information gain, if the stopping criterion is not met. In the context of big data, to diminish
the number of evaluations, the candidate cut-points are reduced by computing an equi-
frequency binning of the universe for each continuous attribute.

Here, the stopping criterion is recalled:

FGain(x1
i,f ; I f ) <

log2(|S f − 1|)
|S f |

+
∆(x1

i,f
; I f )

|S f |
(4.2)

being ∆(x1
i,f

; I f ) given in Equation 3.9.
The MDLP, as well as its fuzzy twin, can induce a feature selection. If no splits for a

given variable is selected, the feature will be removed.
The distributed implementation of the discretization phase is described in Section 4.4;

the distribution of the workload across a cluster of computing nodes operates both i) the
selection of candidate partitions to be analysed, and ii) the recursive discretization step.
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4.3.2 Fuzzy Random Forest

The construction of the fuzzy random forest (FRF) is carried out building a set of NT inde-
pendent decision trees, grown out to their maximum depth size β (de�ned as a parameter
of the model), without post-pruning.

Let |TR| be the size of the training set; following the classical de�nition of the algorithm,
each tree is trained on a bagged subset of the training set (Breiman, 2001), i.e. for each tree,
|TR| sample are randomly chosen with replacement from the set TR. Thus, on average, a
bagged set contains ∼ 63% of the training set (Domingos, 1997). Moreover, for each tree,
the remaining samples are aggregated in the so-called out-of-bag (OOB) sample.

As such, NT decision trees are grown, each one on its bagged training set. Furthermore,
in order to decrease the correlation between trees, each node uses a random attribute se-
lection: while the tree is growing, a random subset of m < f attributes is considered at
each node (Breiman, 2001). Several feature selection strategies have been proposed in the
literature, the most common ones being sqrt , log2 and onethird . Further details about the
implemented decision tree algorithm can be found in (Segatori et al., 2017b).

The pseudo-code for a naive FRF learning algorithm is reported in Figure 4.1. The
implementation de�ned here works in a parallel fashion, where all the trees are trained
concurrently, with parallelisation at the node level; the implementation details are provided
in Section 4.4.

1: function FRFLearn(TR, NT )
2: FuzzyForest ← ∅
3: for i ← 1 to NT do
4: TR(i) ← Bagging(TR,|TR|)
5: . TR is bagged to obtain TR(i)

6: FDT (i) ← FDTLearning(TR(i))
7: . i-th fuzzy decision tree generated from TR(i)

8: FuzzyForest ← FuzzyForest ∪ FDT (i)

9: end for
10: return FuzzyForest
11: end function

Figure 4.1: Representation of a simple algorithm that induces a Fuzzy Random Forest. It
requires the complete training set TR and the number of trees NT as inputs. Furthermore,
the algorithm assumes that the continuous variables have been previously discretized.

Combination of Results from Single Trees

Each leaf node LN of each tree casts a vote for each class m, weighted by the association
degree previously de�ned, ADLN

m (x̂). As such, each decision tree in the ensemble of classi-
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�ers produces a set of aggregated votes, called con�dence values; the con�dence value Cm

for the classm, is obtained by summation of the leaf votes grouped by classm.
Accordingly, the con�dence value of the t-th tree for the classm is de�ned as:

CV t
m =

∑
LN∈t

ADLN ,tm (4.3)

In other words, each tree produces a list of class-vote pairs, thus assigning a vote to
each class. These votes are then aggregated by class for the whole forest and weighted by
a tree weight. Our implementation provides the possibility of weighting the t tree by using
the OOB accuracy for that tree, 1 −OOBErrort . Then, the forest votes for the class having
the max value.

4.4 Distributed Fuzzy Random Forests

The approach described in the preceding sections has been implemented on the Apache
Spark framework. In the following, it is described according to the MapReduce paradigm
(Dean and Ghemawat, 2008). First, we introduce the necessary notation: letV be the num-
ber of chunks (partitions) in which the training set is split, and let Q be the number of
executors (or computing units) available in the cluster. It must be recalled that, in the
Map-Reduce paradigm used here, each chunk feeds only one Map Task.

The implementation of the fuzzy partitioning approach follows the one described in
(Segatori et al., 2017b); to reduce the complexity of the discretization step described in
Section 4.3.1, the number of candidate partitions to be analysed is lowered. For each chunk
of the dataset, the values for each feature are sorted and the domain is divided into L equi-
frequency bins. The choice of the right L value involves a trade-o� between the coarseness
of the approximation and the computational complexity.

The generated list of bin boundaries is then aggregated and, for each pair of consecu-
tive bin boundaries, a new bin is generated; later, the distribution of the classes among the
instances belonging to such a bin is computed. Then a candidate fuzzy partition is gener-
ated for each bin boundary and the class distribution is used for computing fuzzy entropy
and fuzzy information gain at each step of the algorithm. In the following each generic bin
l for the feature f will be referred to as b f ,l , and it will be represented by its central value
b̄ f ,l . So, Equation 3.4 can be rewritten accordingly:

|B f ,j | =

Lf , j∑
l=1

µBf , j (b̄i,f ) (4.4)

being µBf , j (b̄i,f ) the membership degree of the central value of the bin b̄ f ,l to the fuzzy set
B f ,j . Here, L f ,j is the number of bins in S f ,j , the support of the j-th fuzzy set for the f -th
feature. The fuzzy entropy of the set B f ,j is computed using Equation 3.5, where |B f ,j,Cm |

is extracted considering the distribution of class Cm in each bin contained in S f ,j .
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The discretization can be described as two consecutive Map-Reduce steps: in the �rst
step the training set is scanned, yielding at most Ω = V · (L+1) bin boundaries. Here, L can
be selected to be a �xed fraction of the dataset size, let say 0.1%. Each Map-Task loads the
v-th chunk of the dataset and, for each continuous attribute X f , computes bin boundaries
of equi-frequency bins. Being BBv,f = {b

(1)
v,f
, ...,b(L)

v,f
} the sorted list of bin boundaries for

the f -th feature in the v-th chunk, each Map-Task outputs 〈key = f ,value = BBv,f 〉.
Then, the Reduce-Task gets a list of BBv,f for all the v , and emits 〈key = f ,value = BBf 〉,
where BBf = {b

(1)
f
, ...,b(Ω)

f
} is the sorted list of bin boundaries for the f -th attribute, thus

aggregating all the bin boundaries for each feature. The Map-Task has a space complexity
of O(dVQ e · N /V ) and a time complexity of O(dVQ e · (F · N · (loд(N /V ))/V )), while for the
Reduce-Task the space and time complexities are O(F · Ω/Q) and O(F · (Ω · loд(Ω))/Q),
respectively. The pseudo code for the �rst Map-Reduce step is shown in Figure 4.2.

Require: TR, split into V chunks
1: Function MAP-TASK(TRv , γ )
2: for each feature X f in X do
3: sort X f values
4: BBv,f ← bin boundaries of equi-frequency bins, according to γ
5: output 〈key = f , value = BBv,f 〉
6: end for
7: end Function
8: Function REDUCE-TASK(f , List(BBv,f ))
9: BBf ← sort elements of List(BBv,f )

10: output 〈key = f , value = BBf 〉

11: end Function

Figure 4.2: Pseudo code of the �rst MapReduce Task for the discretization.

The second Map-Reduce step generates the distributed fuzzy sets. The Map-Task is fed
with the v-th chunk of the dataset, and for each feature X f , a vector Wv,f of size Ω − 1
is initialized. Each element in the vector, let say W (i)

v,f
, represents the corresponding bin,

(bi
f
,br+1

f
], and is itself a vector of size M containing, for each class, the number of instances

for that class in the i-th bin for the f -th feature. The vector Wv,f is updated for each
instance in the chunk, and a key value pair is emitted 〈key = f ,value = Wv,f 〉. Then a
Reduce-Task for each attribute is run, that produces a vectorWf by element-wise addition
of all the V vectorWv,f ; later on the Reduce-Task applies the fuzzy partitioning described
before, thus emitting 〈key = f ,value = P f 〉, being P f the strong fuzzy partitioning for the
f -th attribute. For the Map task space and time complexities areO(dVQ e ·N /V ) andO(dVQ e ·
(N · loд(Ω)/V )) respectively, while, for the Reduce phase we space and time complexities
are O(F · (Ω − 1)/Q) and O(F · (2 ·max(Tf ) − 3) · (Ω − 1)2)/Q).

The DFRF learning generalises the procedure described in (Segatori et al., 2017b), dis-
tributing the computation of the best split for each node across the CUs. The following
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Require: TR split into V chunks, and BB matrix whose f -th row is BBf

1: Function MAP-TASK(TRv , BB, M)
2: Wv,f ← initialise F arrays according to BB and M

3: for each instance xn,yn in TRv do
4: for each attribute X f in X do
5: W (r )

v,f
← update number of instances of yn

6: end for
7: end for
8: for each attribute X f in X do
9: output 〈key = f , value = WWv,f 〉

10: end for
11: end Function
12: Function REDUCE-TASK(f , List(WWv,f ), BBf )
13: WW f ← addition of List(WWv,f )

14: P f ← FuzzyPartitioning(Wf , B f )
15: output 〈key = f , value = P f 〉

16: end Function

Figure 4.3: Pseudo code of the second MapReduce Task for the discretization.

Map-Reduce steps are executed iteratively. Let R be the set of nodes to be split. In the �rst
iteration, R is initialised with NT elements, the root nodes for each tree in the ensemble.
At each generic iteration h, a set of Y nodes is retrieved from R; we refer to that set as Rh .
The size of the set is determined as min(size(R),maxY ). maxY is a parameter of the model,
depending on the amount of memory available on the cluster, as well as on the number of
categorical values and fuzzy sets de�ned by the fuzzy partitioning. Thev-th map task loads
the v-th chunk of the data and, for each node NTy in Rh , a vector Dv,y of |D | =

∑
∀f ∈Fy Tf

instances is initialised. Here Fy represents the subset of features selected for the node y.
Even if the feature selection strategy is �xed, and is the same for all the nodes, the set Fy
depends on the particular node, and the value of |D | changes from node to node. Never-
theless, for a given feature selection strategy, |D | is bounded by Dmin ≤ |D | ≤ Dmax being
Dmin = min

Fy

∑
∀f ∈Fy

Tf and Dmax = max
Fy

∑
∀f ∈Fy

Tf .

Then, for each attribute of each instance in the chunk, the Map-Task, updates all the
Dv,y vectors. Finally, each Map-Task outputs the key values pairs 〈key = y, value = Dv,y〉,
being y the index of the y-th node in Rh . Then the Reduce-Task gets a list of vectors Dv,y

all pertaining to the same node, and creates a vector Dy by performing an element-wise
addiction of allV vectors in the list. As a result, Dy stores the cardinality for each attribute
value from the root to NTy . Finally, the Reduce-Task produces the child nodes using a
binary splitting method, as described before. Children are used to update the tree and are
inserted in R.
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Require: TR split into V chunks
1: Function MAP-TASK(TRv ,Rh)
2: for each node NTy in Rh do
3: Dv,y ← create vector of size |D |
4: for each instance xn,yn in TRv do
5: Dv,y ← update statistics using x f ,n
6: end for
7: output 〈key = y, value = Dv,f 〉

8: end for
9: end Function

10: Function REDUCE-TASK(f , List(Dv,y))
11: Dy ← addition of List(Dv,y)

12: children ← Splitting(NTy , Dy)
13: output 〈key = y, value = children〉
14: end Function

Figure 4.4: Pseudo code of the MapReduce Tasks for the distributed node splitting.

The following procedure is repeated until R is empty. Regarding time and space com-
plexity of the Map phase, we haveO(dVQ e ·N /V ) andO(·dVQ e · (N ·Y log(Dmax )/V )) for space
and time complexity, respectively. The Reduce phase has a space complexity O(Y/Q) and
a time complexity O(Y · |allSplits |/Q). The value of |allSplits | ≤ Dmax depends on the
feature subset strategy selected. The complexity of the forest construction algorithm can
be approximated as: O(NT · H · (dVQ e · (N log(Dmax )/V ))).

4.5 Experimental Results

In this section, the results obtained in the experimental characterisation of the proposed
algorithm are presented. A �rst subsection is devoted to evaluating the performance of the
approach against three other state-of-the-art fuzzy classi�ers: DFDT, a Distributed Fuzzy
Decision Tree (Segatori et al., 2017b), DFAC-FFP, an associative fuzzy classi�er for big data
(Segatori et al., 2017c), and ChiFRBCS-BigData (del Río et al., 2015b). Then, the scalability
of the algorithm is evaluated using a growing number of computing units (CUs). In all the
experimental tests performed to evaluate the proposed approach, a selection of seven big
datasets available from the UCI Machine Learning Repository1 have been used. The di�er-
ent datasets are characterised by di�erent cardinalities (ranging from 1 up to 11 million),
numbers of attributes, number of classes, and overall sizes, as reported in Table 4.1.

A �ve-fold cross-validation has been performed on each dataset. The algorithm has
been executed on Apache Spark 2.2.0 on a small computer cluster, using up to 7 machines,

1https://archive.ics.uci.edu/ml/datasets.html
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Table 4.1: (Big) Datasets used in the experimental validation of DFRF

Dataset # Instances # Attributes # Classes Size
COVTYPE 581,012 54 7 75.2 MB

ECO_E 4,178,504 16 10 534 MB
ECO_CO 4,178,504 16 21 534 MB

EM_E 4,178,504 16 10 532.5 MB
Higgs 11,000,000 28 2 8.04 GB

KDDcup 1999 5 4,898,431 41 5 480 MB
KDDcup 1999 23 4,898,431 41 23 484 MB

Poker-Hand 1,025,010 10 10 24.5 MB
Susy 5,000,000 18 2 2.4 GB

one master node and up to 6 workers. Each machine has 4 vCPU, 8GB of RAM and 160 GB
Hard Drive. All the machines run Ubuntu 14.04. The training set is stored on the Hadoop
Distributed File System (HDFS), with a data node running on each worker machine. In all
the experiments the standalone cluster manager provided by Apache Spark has been used.

4.5.1 Comparison with other state-of-the-art fuzzy classi�ers for
big data

In this section, the performances of DFRF, in terms of accuracy and execution time, are
analysed and compared to those of DFDT (proposed in (Segatori et al., 2017b)), DFAC-FFP
(Segatori et al., 2017c), and ChiFRBCS-BigData (del Río et al., 2015b).

Table 4.2 lists the parameters used in the experiments. The DFDT, DFAC-FFP and
ChiFRBCS-BigData are parametrized according to indications present in the literature (Sega-
tori et al., 2017b,c).

Table 4.2: Values of the parameters used in the experiments for DFRF

Parameter Description Value
λ Min instances per node 10−4 · N

ϕ Min support Fuzzy Set 0.02 · N
γ Fraction bin discretization 0.1%

Impurity Impurity measure entropy
β Maximum Tree Depth 15

featSel Feature selection strategy sqrt

maxBins Maximum number of bins 32
T T-norm used product
NT Number of trees 50
V Number of partitions 2 ·Q
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The number NT of trees composing the ensemble has been �xed to 50 in the current
experiment. The feature selection strategy we used is sqrt , where the number of features
randomly selected in each node is

√
F ′, being F ′ is the number of remaining features after

the discretization step. As suggested before in (Segatori et al., 2017b)), the minimum num-
ber λ of instances belonging to each leaf is at last 10−4 · N , and the support of each fuzzy
set should contain at least ϕ = 0.02 · N instances. The maximum tree depth β has been
�xed to 15.

For each dataset and for each algorithm, a �ve-fold cross-validation is performed; Ta-
ble 4.3 lists, for each dataset and for each algorithm, the average values and the standard
deviation of the accuracy, measured both on the train (ACCTr ) and test (ACCTs ) set; fur-
thermore, the highest accuracy for each dataset is reported in bold.

According to the results reported in the table, DFRF always outperforms DFDT, DFAC-
FFP and ChiFRBCS-BigData. Furthermore, DFRF shows little or no sign of overtraining,
the only notable exception being POKER dataset. This behaviour might be related to the
structure of the dataset, being POKER composed of only categorical features with a high
number of possible di�erent categories. Indeed, both DFDT ChiFRBCS-BigData su�er from
overtraining in the same dataset.

In order to perform a statistical comparison of the approaches, a distribution consisting
of the average accuracy value on the test set for all the datasets is generated for DFRF,
DFDT, DFAC-FFP and ChiFRBCS-BigData. Then, the Wilcoxon test is applied to uncover
statistical di�erence among the distributions; the results of the Wilcoxon test, in terms of
ranks and p-values are reported in Table 4.4.

In order to account for multiple comparisons, the Bonferroni correction has been ap-
plied; here, considering 6 comparisons (even in we are only interested in three of them), the
corrected α ′ = α

m , being m the number of comparisons, is α ′ = 0.008334. The �ndings are
reported in Table 4.5: DFRF is shown to statistically outperform all the other approaches
considered here.

The execution times for the algorithm analysed here are reported in Table 4.6. The run
times have been measured on a cluster with one master node equipped with 4 CUs and
8GB of RAM and 6 workers, up to a total amount of 24 CUs and 48 GB RAM. Nevertheless,
the amount of RAM available to Spark is reduced to 6GB per worker; the total amount of
executor memory is 36GB.

As expected, DFRF is much slower than DFDT; furthermore, it is, on average, slightly
slower than ChiFRBCS, while being much faster than DFAC-FFP.

The ratio between the FDRF and the DFDT execution times is on average 34.241. The
departure from the ideal value NT = 50, is due both to the discretization time (included in
the overall values shown in Table 4.6) and to the speedup caused by the feature selection
strategy.
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Table 4.4: Results obtained by the Wilcoxon test for algorithm FDRF

vs. R+ R− Exact P-value Asymptotic P-value
DFDT 45.0 0.0 0.003906 0.006434

DFAC-FPP 45.0 0.0 0.003906 0.006434
ChiFRBCS 45.0 0.0 0.003906 0.006434

Table 4.5: Summary of the Wilcoxon test. •= the method in the row improves the method
of the column. ◦ = the method in the column improves the method of the row. Upper
diagonal of level signi�cance α = 0.95 (non-adjusted), lower diagonal level of signi�cance
α = 0.99167 (adjusted form = 6 comparisons).
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FDRF - • • •
DFDT ◦ - • •

DFAC-FPP ◦ ◦ -
ChiFRBCS ◦ ◦ -

Table 4.6: Average execution time (s) for all the algorithms.

Dataset DFRF DFDT DFAC-FFP ChiFRBCS
COV 1,830 65 1742 46,817

ECO_E 12,160 402 18,800 1,263
ECO_CO 18,210 417 19,915 1,491

EM_E 11,690 324 56,279 1,276
HIGGS 17,410 617 24,077 19,889
KDD_5 5,366 212 23,508 3,615
KDD_23 11,162 241 70,925 6,551
POKER 2,333 109 810 18,918
SUSY 9,181 272 11,132 1,540
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4.5.2 Scalability

In this section we provide an investigation of the scalability of the proposed approach by
using an increasing number of computing units (CUs). We do so by using a metric, speedup
σ , which is the most common metric used to evaluate scalability. The speedup is de�ned as
the ratio of the sequential execution time to the parallel execution time. Nevertheless, the
size of the datasets used here is such that the sequential version of the overall algorithm
would take an unreasonable amount of time to run. We then rede�ne the speedup using a
reference execution with Q∗ computing units:

σQ∗(Q) =
Q∗ · τ (Q∗)

τ (Q)
(4.5)

being τ (Q) the runtime using Q computing units, and Q∗ the number of computing units
used in the reference execution. HereQ∗·τ (Q∗) is an estimation of an ideal single computing
unit runtime. Indeed, it is worth noticing the τ (Q∗) also includes the overhead due to the
Apache Spark framework. Furthermore, the formulation we provide makes sense only if
Q > Q∗.

Table 4.7: Average execution time, speedup σ8(Q) and utilisation σ8(Q)/Q , obtained on the
susy dataset. Table shows both the Fuzzy Partitioning and Forest Learning processes.

Fuzzy Partitioning Forest Building

# Cores Time (s) σ8(Q) σ8(Q)/Q Time (s) σ8(Q) σ8(Q)/Q

8 335 8.0 1.0 16490 8.0 1.0
16 226 11.87 0.74 8024 16.4 1.03
24 179 14.98 0.62 6395 20.6 0.86

In this work we chose Q∗ = 8, corresponding to 2 slaves in our cluster. Furthermore,
we split the RDD in a number of partitions that is twice the number of cores available
on the cluster. Table 4.7 reports the average execution time, speedup σ8(Q) and utilisa-
tion σ8(Q)/Q , obtained on the Susy dataset. The results are detailed for both the Fuzzy
Partitioning and Forest Learning processes, to detail how the di�erent components of the
approach scale. As expected, the fuzzy partitioning step bene�ts less and less from an in-
creased number of cores, as the limiting factor is the number of attributes. Conversely, the
DFRF learning phase shows a good scalability; the trend is approximately linear up to 16
cores, showing only a slight decrease when the number of available cores goes up to 24.

4.6 Summary

In this chapter, we propose a distributed fuzzy random forest (DFRF) learning scheme that
takes advantage of Apache Spark to generate an e�cient and e�ective classi�er for big
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data. The approach is built upon a distributed fuzzy discretizer for big data, which provides
strong fuzzy partitions for each continuous attribute; then, an ensemble of distributed fuzzy
decision trees is built, employing the fuzzy information gain as splitting criterion.

By performing a set of experiments on eight big datasets, the approach is thoroughly
evaluated. A comparison with a distributed fuzzy decision tree (DFDT), a distributed fuzzy
associative classi�er (DFAC-FFP), and ChiFRBCS-BigData shows that the approach pro-
vides very competitive results; DFRF statistically outperforms the other approaches. Con-
cerning run times, DFRF is obviously slower than DFDT, and requires comparable execu-
tion times with respect to ChiFRBS-BigData; furthermore, DFRF is generally faster than
DFAC-FFP. Finally, a scalability analysis shows that the approach is well-behaved with
respect to an increment in the number of CUs.
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CHAPTER

FIVE

MULTI-OBJECTIVE EVOLUTIONARY FUZZY CLASSIFIERS
FOR BIG DATA

Model building is the art of selecting
those aspects of a process that are
relevant to the question being asked.
As with any art, this selection is
guided by taste, elegance, and
metaphor; it is a matter of induction,
rather than deduction. High science
depends on this art.

Hidden Order - How Adaptation Builds
Complexity — John Henry Holland

This chapter contains material from the following publications:

• Barsacchi, M. Bechini, A., Ducange, P. and Marcelloni F. (2019). Optimizing Partition
Granularity, Membership Function Parameters, and Rule Bases of Fuzzy Classi�ers
for Big Data by a Multi-objective Evolutionary Approach. in Cognitive Computing pp.
1-21, January 2019.

In this chapter, a novel approach for generating, out of big data, a set of fuzzy rule-based
classi�ers characterised by di�erent optimal trade-o�s between accuracy and interpretab-
ility is introduced. A recently proposed distributed fuzzy decision tree learning approach is
used to generate an initial rule base that serves as input to the evolutionary process. Then,
the evolutionary learning scheme is integrated with an ad-hoc strategy for the granular-
ity learning of the fuzzy partitions, along with the optimisation of both the rule base and
the fuzzy set parameters. A thorough experimental investigation shows that the proposed
approach is able to generate fuzzy rule-based classi�ers that are signi�cantly less com-
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plex than the ones generated by the original multi-objective evolutionary learning scheme
while keeping the same accuracy levels.

The chapter is structured as follows. In Sections 5.1 the problem is introduced; some
background concepts are provided in Section 5.2. Section 5.3 describes the overall approach.
We report the results of our experimental analysis in Section 5.4. Section 5.5 provides a brief
summary of the chapter.

5.1 Fuzzy Rule Based Classifiers for Big Data: Background and
State of The Art

The last decade ushered in the era of Big Data (Mayer-Schönberger and Cukier, 2013); clas-
sical data mining algorithms appear to be inadequate to manage Big Data. Indeed, Big Data
are usually characterised in terms of the so-called four “V”s, namely volume, variety, ve-
locity and veracity: large volumes of data, which are often produced at very high speed and
need to be elaborated in almost real time (velocity), are generated by di�erent sources and
may have di�erent formats (variety) (Anuradha et al., 2015) and trustworthiness (veracity).

As the inadequateness of the classical algorithm for dealing with huge amount of data
became increasingly clear, several researchers have introduced data mining approaches
purposely designed and implemented for Big Data (Wu et al., 2014). The majority of these
approaches have relied on speci�c distributed frameworks, such as Apache Hadoop (White,
2012) and Apache Spark (Zaharia et al., 2010), which have been recently proposed with the
aim of o�ering the practitioner simpler ways for dealing with data storage and elaboration
of Big Data. Moreover, most of the recent contributions in the �eld stemmed from the
MapReduce paradigm (Dean and Ghemawat, 2008); it allows the implementation of both
descriptive and predictive models, with the additional bene�t of the possibility to make use
of computing resources on the Cloud (Fernández et al., 2014).

Among the wide variety of algorithm developed using the Apache Hadoop framework,
several distributed implementation of clustering algorithm have been proposed, such as
DB-SCAN (Kim et al., 2014) and Fuzzy C-Means (Ludwig, 2015). Among the class of super-
vised approaches, a fuzzy version of Random Forests has been implemented over the same
framework as well (Bechini et al., 2016a).

More recently, Apache Spark implementations of associative classi�cation models (Be-
chini et al., 2016b) and of a KNN classi�er (Maillo et al., 2017), respectively, have been pro-
posed. Furthermore, big social data analysis has also taken advantage of such distributed
computing frameworks (Oneto et al., 2017). A recent highlights of the main advances,
challenges and objectives in designing, developing and exploiting data mining and ma-
chine learning algorithms for Big Data can be found in (Zhou et al., 2017). In the last years,
a wide number of contributions of predictive models exploiting Fuzzy Models (FMs) for
handling Big Data have been proposed (Elkano et al., 2017; Fernández et al., 2017; Ferranti
et al., 2017; López et al., 2015; Márquez et al., 2017; del Río et al., 2015a; Segatori et al.,
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2017a, 2018). It is believed that FMs are particularly well suited for handling the variety
and veracity of Big Data (Fernández et al., 2016a), mainly due to their inherent capabil-
ity of coping with vague, imprecise, and uncertain concepts (a broader discussion of the
subject can be found in Chapter 1). Moreover, fuzzy logic has been often recognised also
as an important tool for preserving the �delity of psychological interpretation of emotion
(Ayesh and Blewitt, 2015), opening up new ways to analyse the sentiment contents of huge
amounts of data available today from the web. Mainly, it is the use of overlapped fuzzy
labels that ensures a good coverage of the problem space; this issue is especially relevant
when dealing with very large datasets.

Among the �rst FMs for Big Data classi�cation is Chi-FRBCS-BigData (del Río et al.,
2015a); it is a fuzzy rule-based classi�er (FRBC), that exploits the MapReduce paradigm to
build a classi�er according to the approach previously described by Chi et al. (Chi et al.,
1996). Chi-FRBCS-BigData algorithm has been later adapted for handling imbalanced big
datasets (López et al., 2015); furthermore, the e�ects of the granularity of fuzzy partitions
on the very same algorithm, have been studied in (Fernández et al., 2016b). Recently, the
CHI-BD algorithm has been introduced: it is a novel distributed version of the Chi et al’s ap-
proach (Chi et al., 1996), with improved results with respect to Chi-FRBCS-BigData (Elkano
et al., 2017). More details can be found in (Elkano et al., 2017) and (del Río et al., 2015a),
respectively.

Other recent approaches for Big Data are Fuzzy Associative Classi�ers Segatori et al.
(2017a) and Distributed Multi-Way Fuzzy Decision Trees (DMFDTs) Segatori et al. (2018).
Even if both of them produce highly accurate models, the complexity of the relative models,
in terms of both the number of rules and number of decision nodes, is very high. In general,
the greater the complexity of the model, the lower the interpretability of the FMs. Indeed,
the interpretability is a very important feature that characterises FMs and is believed to be
highly relevant in the context of Big Data (Fernández et al., 2016a; Wang et al., 2017). As
such, new methods that generate both accurate and interpretable FMs are currently under
investigation in the research community on fuzzy models (Duţu et al., 2018).

The subject of interpretability has been introduced and brie�y discussed in Chapter 1;
as interpretability is a subjective concept, it is still hard to �nd an agreed de�nition and
consequently a valid and universal measure of interpretability. A general taxonomy of
interpretability measures for FRBSs has been proposed (Gacto et al., 2011); it considers the
two distinct dimensions of semantics and complexity, both at the rule base (RB) and data
base (DB) levels. It thus partitions the interpretability space into 4 quadrants. Concerning
the DB, the semantic interpretability is usually evaluated in terms of the integrity of the
fuzzy partitions, while the complexity is evaluated in terms of the number of fuzzy sets.
The interpretability of the RB is usually analysed in terms of complexity and one of the
most used metrics is the Total Rule Length (TRL) (Cococcioni et al., 2007; Ishibuchi et al.,
2001; Ishibuchi and Yamamoto, 2004), that is, the total number of conditions used in the
RB. More recently, the importance of other factors, like rule relevance, in the learning of
interpretable Fuzzy Rule-based Systems, has been experimentally studied as well (Rey et al.,
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2017).
In the context of FMs, multi-objective evolutionary algorithms (MOEAs) have been

often used to generate models that are both accurate and interpretable. Several approaches
(Antonelli et al., 2016a; Fazzolari et al., 2013) exploited the MOEAs to in order to evolve
both the DB and the RB of the fuzzy rule-based systems. Nevertheless, as the computation
of the accuracy of each individual requires the entire training set, large datasets require
specialised approaches in order to properly deal with Big Data. As such, a distributed
implementation that exploits a cluster of computing nodes may come in handy.

Recent works have focused on evolutionary-based methods for learning FMs for Big
Data (Fernández et al., 2017; Márquez et al., 2017); among them is a recent implementation
of an MOEA that learns concurrently the RB and DB of FRBCs, by maximising accuracy and
minimising complexity (Ferranti et al., 2017). Dubbed DPAES-RCS, it extends PAES-RCS
(Antonelli et al., 2014, 2016b) to the Big Data setting, by leveraging on the Apache Spark
framework. The RB is learnt through a rule and condition selection strategy: for each iter-
ation of the evolutionary process, a reduced number of rules is selected from a heuristically
generated set of candidate rules; furthermore, for each rule, a reduced number of condi-
tions is selected. Additionally, the parameters of the fuzzy sets are learnt concurrently with
the RB. PAES-RCS has been thoroughly evaluated, generating satisfactory approximations
of the Pareto front using a limited number of iterations (Antonelli et al., 2014).

The work described in this chapter extends DPAES-RCS with two main novelties: �rst,
the initial rule set is now generated using a fuzzy decision tree learning algorithm, rather
than the standard C4.5 used before; the rules are extracted by considering each leaf of the
tree, mapping back the path to the root node. As a second novelty, a granularity learning
approach has been employed: the best number of fuzzy sets composing the fuzzy partition
for each continuous variable (granularity) is learnt during the evolutionary process as well.
In order to do so, the virtual partitionmethod introduced in (Antonelli et al., 2009b) has been
exploited.

5.2 Preliminaries on FRBCs

In this chapter, the necessary notation is recalled. A generic classi�cation task consists of
assigning a class label Cm, out of a given set C = {C1, . . . ,CM } of M classes, to a given
unlabeled instance. A generic instance is described by a set X = {X1, . . . ,XF } of attributes
having cardinality F . Each attribute can be either categorical or numerical; in the case of
a generic categorical attribute f , X f takes values out of a set L f = {L f ,1, . . . ,L f ,Tf } of Tf

distinct values.
Each numerical attribute is instead associated with a universe U f of X f ; the universe

is a bounded interval in R. For each universe U f , a corresponding fuzzy partition can be
de�ned: considering the attribute X f , let P f = {A f ,1, . . . ,A f ,Tf } be a fuzzy partition over
the relative universe U f , where A f ,i is a generic fuzzy set, and Tf is the number of fuzzy
sets in the partition. A linguistic label L f ,j is then assigned to each fuzzy set A f ,j ; linguistic
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labels bridge the gap with linguistic variables (Chapter 2) and allow dealing with both
categorical and numerical attributes in a homogeneous fashion.

Here, a partition made of triangular fuzzy sets is assumed, i.e each fuzzy set A f ,i is
identi�ed by the 3-tuple (a f ,i ,b f ,i , c f ,i), where a f ,i and c f ,i are to the left and right extremes
of the support, respectively, and b f ,i indicates the core. Furthermore, when using strong
fuzzy partitions, the following two conditions are satis�ed: i) a f ,1 = b f ,1,b f ,Tf = c f ,Tf , and
ii) b f ,i = c f ,i−1 and b f ,i = a f ,i+1 for i = 2, ...,Tf − 1.

Let the number Tf of fuzzy sets making up the partition of X f be used as a measure of
the granularity. In the following, the notation P f (Tf ) is used to emphasise the granularity
level for P f .

A fuzzy rule based classi�er (FRBC) is an FRBS that infers the output value for an unla-
belled instance using the fuzzy rules that compose the RB. Here a slightly reworked version
of Eq.2.17 is used in order to de�ne a genericm-th rule:

Rm : if X1 is L1,im,1 and . . . and

XF is LF,im,F then Y is Ckm

(5.1)

Here, the generic linguistic label Lf,im,f is used in place of the fuzzy set Af,im,f , in order
to provide a more general treatment. In fact, depending on the nature ofX f (that can either
numerical or categorical), such a label may refer to either a fuzzy set in partition P f or a
categorical value. Furthermore, the output classCkm is used in place of the linguistic labels
associated with the output.

In order to manage the situation in which the attribute does not provide any infor-
mation in choosing the outcome, an additional dummy label L f ,0 for each attribute X f , is
introduced; this �ctitious label expresses that X f does not contribute to the classi�cation
(a “do not care” condition). Formally, this “dummy” label is associated with a set that has a
unitary membership across the whole universe: thus, L f ,0 allows maintaining the generic
rule structure of (5.1) even for rules in which the actual outcome depends only on a subset
of the attributes.

A training set may be de�ned as a set of N tuples:
TR = {(x1,y1), ..., (xN ,yN )}; here, (xn, yn) indicates the n-th input-output pair, where xn
is the input vector with F values (each, either numerical or categorical, for the relative
attribute), and yn is the relative classi�cation label.

For a generic rule Rm, and given an input xn, the matching degree of the rule with
the input is de�ned as strength of activation of the rule. If the product t-norm is used
(Chapter 2), the matching degree can be written down as:

wm(xn) =
∏F

f =1 µLf ,im,f
(xn,f ) (5.2)

where µLf , jm,f
(xn,f ) is, in case of numerical attributes, the membership value of xn,f to

the fuzzy set A f ,jm,f represented by label L f ,jm,f and, in case of categorical attributes, is
either 0 or 1.
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Figure 5.1: Structure the proposed approach. In the Candidate RB Generation, an initial
candidate RB is generated by means of a distributed FDT learning algorithm applied to
uniformly partitioned attributes; then, a multi-objective evolutionary algorithm �nds op-
timal FRBCs with di�erent trade-o�s between accuracy and complexity.

Concerning, the many measures of complexity proposed for a FRBS, the total rule
length TRL is among the most simple and e�ective ones. It quanti�es the model com-
plexity directly counting the number of conditions; as such it represents a proxy for the
interpretability of the system.

Several reasoning methods (Chapter 2.3) for FRBS exists; here the “maximum matching
method” has been selected; it assigns the label to an unlabelled instance, selecting the
consequent of the rule that has been maximally activated by such instance. Furthermore,
in case of a tie, the �rst one among the equally-matching rules is chosen; eventually, if no
rule is activated, the instance is classi�ed with the most frequent class.

5.3 DPAES-FDT-GL

The overall proposed approach, dubbed DPAES-FDT-GL, is structured according to the
scheme reported in Figure 5.1. Two major phases are de�ned: i) Candidate RB Generation,
and ii)Multi-Objective Evolutionary Learning. In the former, a candidate rule base, to be used
in the following evolutionary phase, is generated. In the latter, the rule base undergoes an
optimisation process, yielding a set of FRBCs that approximate the Pareto front.

As the problem at hand involves dealing with Big Data, a set of e�cient and properly
design algorithms must be used. In order to ful�l these requirements, all the steps of the
approach have been designed to exploit the Apache Spark framework (Zaharia et al., 2010);
this framework automatically deals with distribution by means of a prede�ned container
type (known as RDD, Resilient Distributed Dataset).

In order to generate a candidate RB several approaches are possible; in DPAES-RCS
the RB is generated using a C4.5 algorithm (Ferranti et al., 2017); the generated RB is then
translated in a fuzzy RB. Nevertheless, as the C4.5 treats the input and output data as crisp,
the candidate RB is not tuned to the fuzzy partitions used as input; thus, the usage of an
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FDT algorithm should, in principle, easy the subsequent fuzzy manipulations. Indeed, in
practical contexts, the RBs generated by traversing all the paths from the root down to each
leaf of an FDT have proven to be both compact and interpretable (Ricatto et al., 2018). As a
preliminary step, a uniform discretization is performed. The FDT learning is then carried
out by means of a distributed algorithm(Segatori et al., 2018).

The Multi-Objective Evolutionary Learning (MOEL) phase uses a MOEA to evolve the
initial population of individuals; in this work, a Pareto Archive Evolutionary Strategy
(PAES) (Coello Coello et al., 2007) is used. The distributed implementation, which leverages
Apache Spark, follows the one proposed with DPAES-RCS (Ferranti et al., 2017). The pro-
posed DPAES implementation generates a set of satisfactory solutions in a reduced number
of iterations; its fast convergence rate is of particular relevance in the setting of Big Data
since a �tness evaluation is usually extremely costly.

In the following subsections a description of both the phases i)Candidate RBGeneration,
and ii) Multi-Objective Evolutionary Learning is provided.

5.3.1 Generating the Candidate Rule Base

The Candidate RB generation phase establishes the bases for the following evolutionary
phase; as such, it is of paramount importance to generate a Candidate RB that makes the
subsequent step as simple and e�cient as possible. To this aim, a distributed FDT (DFDT)
learning approach, suitable for dealing with Big Data (Segatori et al., 2018), is exploited.
The multi-way version of the FDT is particularly appealing because simple Mamdami type
rules (as in Equation 5.1) are easily extracted through a tree traversal, deriving one rule
for each possible path from the root down to a leaf. Furthermore, as the tree operates
on fuzzy data, the extracted RB is tuned to the input fuzzy partitions. The decision tree
algorithm (Segatori et al., 2018) has been modi�ed to better suit our needs: �rst, a uniform
discretization withTmax evenly-spaced triangular fuzzy sets that make up strong partitions,
has been used in place of the origin discretization. Furthermore, while each path from the
root down to a leaf can be seen a Mamdani-type rule with certainty degree for all the
classes in the consequent, the extracted rules have been simpli�ed using the class with the
highest certainty only (a di�erent approach, in which all classes are retained, is discussed
in Section 6.2.3).

Each node N of the FDT is associated with a fuzzy set An, and thus with a subset
of TR (the set of examples in the support of An), and the root corresponds to the whole
TR. The FDT construction starts from the root and follows a top-down approach; unless
a termination condition is not satis�ed, a newly-generated node gives rise to Tmax child
nodes according to the fuzzy partition of the attribute chosen for that speci�c splitting.
The selected termination conditions are: The i) all the instances in the node belong to the
same class; ii) the number of instances in the node is lower than a �xed threshold λ, iii) the
tree has reached a maximum �xed depth β , and iv) the value of the fuzzy information gain
is lower than a �xed threshold ε .
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In this procedure, an attribute can be considered only once in the same path from the
root to a leaf, thus producing rules that are simple and interpretable. The attribute that
drives the splitting is selected as the one that yields the best fuzzy information gain, which
will be de�ned below.

Given a parent node PN , let CN j indicate the generic j-th child node, j = 1, . . . ,Tmax ;
the number of child nodes for a parent node depends on the granularity of the fuzzy par-
tition associated with the splitting attribute X f . Each child node CN j contains only the
instances that belong to the support of the fuzzy setA f ,j ; here, let S f ,j be the set of instances
for CN j , and S f be the set of instances in the parent node. We measure the cardinality of
the fuzzy set Gj associated with the node CN j as:

��Gj

�� = Nj∑
i=1

µG j (xi) =
Nj∑
i=1

TN (µAf , j (x f ,i), µG(xi)) (5.3)

being Nj the number of instances in the support S f ,j , the operatorTN a T-norm and µG(xi)
is the membership degree of instance xi to parent node PN (for the root node, µG(xi) = 1).

The fuzzy information gain FGain is used for selecting the splitting attribute; it is com-
puted, for a generic attribute X f with partition P f , as

FGain(P f ; IG) = FEnt(G) −WFEnt(P f ; IG) (5.4)

being IG the support of fuzzy setG. The Fuzzy Entropy FEnt(G) has been de�ned in Eq. 3.5
and the weighted fuzzy entropy WFEnt(P f ; IG) has been reported in Eq. 3.6.

In the case of categorical attributes, the parent node is split into a number of child
nodes CN j equal to the number of possible values for the attribute. Each node CN j is thus
characterised by a “dummy” fuzzy set Gj , whose cardinality is :

��Gj

�� = Nj∑
i=1

µG j (xi) =
Nj∑
i=1

TN (1, µG(xi)) (5.5)

Figure 5.2 summarises the distributed implementation of the candidate RB generation
phase. The distribution of the computation across a cluster of Computing Units (CUs) is
highlighted.

The distributed FDT learning proceeds by iteratively executing a MapReduce step; the
mapper computes the fuzzy entropies needed in order to �nd the best split, and the reducer
aggregates the data and actually performs the split. The nodes to be possibly split are
kept in a list, updated in each iteration; at the beginning of each iteration at most MaxY
elements at a time are fetched to be processed in a MapReduce step. Furthermore, for each
selected split, all the child nodes are pushed into the list. The good scalability �gures of the
distributed algorithm have been reported before (Segatori et al., 2018). Still, the most critical
aspect relates to the system requirements for the used cluster of computers. Notably, the
maximum number of nodes MaxY that can be processed in parallel depends on the amount
of RAM available on the cluster.
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Figure 5.2: Schematic of the distributed RB generation phase; the three major steps are: i)
discretization, ii) fuzzy decision tree learning, and iii) rule base extraction.
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5.3.2 Distributed MOEL

The evolutionary process

The multi-objective evolutionary learning phase is used to generate a satisfactory set of
solutions, which approximates the accuracy-TRL Pareto front. The two objectives used here
are i) maximisation of the classi�cation accuracy on the training set, and ii) minimisation
of the complexity of the FRBC.

To this aim, a distributed MOEA is employed; the algorithm consumes the candidate
RB, produced by the previous phase, as input, and outputs the set of solutions. The base
structure of the algorithm is that proposed for DPAES-RCS (Ferranti et al., 2017); it is based
on (2+2)M-PAES (Cococcioni et al., 2007), which, in turn, relies on a modi�ed version of
the well-known (2+2)PAES (Knowles and Corne, 2000). (2+2)M-PAES is a steady-state evo-
lutionary algorithm that stores the non-dominated solutions in an archive and uses two
current solutions at each iteration. Nevertheless, unlike classical (2+2)PAES, the current
solutions at extracted randomly at each iteration. Furthermore, instead of considering
uniform fuzzy partitions with a pre-�xed number of fuzzy sets, the granularity of each
partition here is learned as well. Thus, the chromosome coding has to accommodate this
additional requirement.

The proposed evolutionary process works by evolving: i) the set of rules and conditions,
ii) the cores of the fuzzy sets and, iii) the granularity of each partition. For (i), a subset
of rules is selected out of the initial set of candidate rules; likewise, rule conditions are
activated or deactivated as well. In (ii) the fuzzy partitions are rearranged by moving the
cores of triangular fuzzy sets composing the partitions. Finally, in (iii) the number Tf of
fuzzy sets for a given partition (i.e. the granularity level) varies in the range [Tmin,Tmax].

The initial set of candidate rules is constructed by exploiting a uniform strong triangular
fuzzy partition for each numeric variableX f , each containingTmax fuzzy sets. Furthermore,
the evolutionary phase evolves the RB, via rule and condition selection, still referring to
the original partitions. As such, a strategy is needed in order to interface the virtual RBs
(Antonelli et al., 2009a), the and virtual partitions (Antonelli et al., 2009b) with the actual
RB (de�ned with the actual granularity) and the real partitions. Such mapping strategy,
needed both for the RB and for the parameters of the fuzzy sets, allows a e�cient execution
of crossover and mutation operators.

Even though during the evolutionary process we generate RBs, denoted as virtual RBs,
and tune the fuzzy set parameters by using the virtual partitions, the mapping needs to be
performed each time a �tness evaluation is requested.

RB The strategy adopted to map a virtual RB de�ned on (virtual) partitions with Tmax

fuzzy sets onto a concrete RB de�ned on variables partitioned with Tf fuzzy sets follows
the one proposed in (Antonelli et al., 2009a,b).

A generic RB is made up of rules with generic propositions of the form: X f is Â f ,h ,
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h ∈ [1,Tmax]. Such a proposition is mapped to X f is Ã f ,s , with s ∈ [1,Tf ]; Ã f ,s is de�ned
as the the fuzzy set that is most similar to Â f ,h (amongst the Tf fuzzy sets Â f ,h de�ned
on X f ). The speci�c form of the similarity metric is an open problem; when dealing with
strong triangular fuzzy partitions, the simplest similarity measure is the distance between
the centres of the cores of the two fuzzy sets. The trivial case in which two di�erent cores
are at the same distance from the centre of Â f ,h is handled by randomly choosing on of the
two.

The structure of the mapping strategy de�ned above may lead to a situation in which
distinct fuzzy sets, de�ned on the partitions of the virtual RB, do map onto the same fuzzy
set on the partitions used in the concrete RB; as such, di�erent rules in the virtual RB
may correspond to the same rule in the concrete RB. For this reason, the concrete RB is
searched against duplicate rules. Thus, the concept of virtual RB allows us to explore the
search space and, at the same time, exploit the (sub)optimal solutions found during the
evolutionary process.

Fuzzy set parameter The mapping strategy also applies to the fuzzy set parameters;
to do so, a piecewise non-decreasing linear transformation (Antonelli et al., 2009b) is ap-
plied. Given the initial partition of the input variables, the parameters of the fuzzy sets
(the cores) making up the partition are tuned by employing the transformation. The nec-
essary notation is provided below; let P̃ f =

{
Ã f ,1, . . . , Ã f ,Tf

}
be the initial partition, and

P f =
{
A f ,1, . . . ,A f ,Tf

}
be the transformed partitions. Let also assume that the two parti-

tions are de�ned on the same universe (i.e. Ũ f ≡ U f ),
Furthermore, let t(x f ) : U f → Ũ f be the piecewise linear transformation. Thus, the

transformed fuzzy set Ã f ,i is obtained by applying the transformation to the original one
A f ,i , such that A f ,i(x f ) = Ã f ,i

(
t
(
x f

) )
= Ã f ,i

(
x̃ f

)
.

The piecewise linear transformation operates on a sequence of representatives for each
fuzzy partition; the representatives are linked to variation of slopes of the piecewise linear
transformation t(x f ), for each variable X f . When triangular fuzzy sets are employed, the
cores can be used as representatives. Formally, let b̃ f ,1, . . . , b̃ f ,Tf and b f ,1, . . . ,b f ,Tf be the
representatives of Ã f ,1, . . . , Ã f ,Tf and A f ,1, . . . ,A f ,Tf , respectively.

For each pair of representatives, the transformation t(x f ) is de�ned on such an interval
b f ,i−1 ≤ x f ≤ b f ,i , i = 1 . . .Tf as:

t(x f ) =
b̃ f ,i − b̃ f ,i−1

b f ,i − b f ,i−1
· (x f − b f ,i−1) + b̃ f ,i−1 (5.6)

An example of such a transformation is reported in Figure 5.3; the transformation t(x f ),
as per Equation 5.6, is applied assuming a uniform initial partition and a maximum gran-
ularity Tmax = 7.

As b f ,1 and b f ,Tf are the extremes of the universe U f of X f , the transformation t(x f )

depends on Tf − 2 parameters; thus, the transformation t(x f ) can be rewritten as t(x f ) =
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Figure 5.3: An example of piecewise linear transformation; the transformation t(x f ), as per
Equation 5.6, is applied assuming a uniform initial partition and a maximum granularity
Tmax = 7

.
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t
(
x f ;b f ,2, . . . ,b f ,Tf −1

)
(Antonelli et al., 2009b). The transformation proceeds as follows:

given the values b f ,2, . . . ,b f ,Tf −1, the partition P f is generated by transforming the three
points (ã f ,i , b̃ f ,i , c̃ f ,i) that de�ne the generic triangular fuzzy set Ã f ,j , into (a f ,i ,b f ,i , c f ,i)
using the inverse transformation t−1(x̃ f ).

An example of a transformation, with a granularity ofTf = 5, is reported in Figure 5.4;
the very same function of Figure 5.3 is used, but with a di�erent granularity, lower than
the initial value of Tmax = 7.

Figure 5.4: An example of piecewise linear transformation t(x f ) (the same as in Figure 5.3)
applied with maximum granularity Tf = 5, lower than the initial value of Tmax = 7.

Objectives, chromosomes and genetic operators

In this section, a description of the objective functions, chromosome coding and mating
operators is provided.

Here, each individual is associated with a chromosome and with a bi-dimensional objec-
tive vector ; as discussed before, the two elements of the objective vector are i) the complex-
ity of the actual RB (measured as the TRL), and ii) its accuracy (measured as classi�cation
rate over the training set).

A generic chromosome, C hereafter, is made up of three sub-vectors: (CR,CT ,CG); the
�rst CR encodes to the virtual RB, the second CT de�nes the parameters of the fuzzy sets,
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and the third CG codi�es the number of fuzzy sets.
In the following, the initial virtual RB obtained in the �rst phase is denoted as JFDT (RBs

are de�ned withTmax fuzzy sets for each partition.), and the corresponding number of rules
is reported as MFDT . Furthermore, to generate RBs that are both compact and interpretable,
the coding of the virtual RB is constrained to contain no more than Mmax rules.

The �rst sub-vectorCR is composed of Mmax pairs pm = (km, vm), one for each possible
rule in the RB. For a generic pair, km identi�es the index of the selected rule in JFDT , and thus
it is allowed to assume values in the interval [0,MFDT ]; as the system should be allowed
to generate RBs with a number of rules lower than Mmax , km can be set to 0 to exclude
the m-th rule from the RB. Moreover, the second element vm, encodes a boolean“mask”
vector vm =

[
vm,1, . . . ,vm,F

]
, in which the generic element vm,f indicates, for attribute X f ,

whether to consider or not the relative condition in the rule (if not, it becomes a “don’t
care” condition, as previously discussed in Section 5.2).

As for the second sub-vector CT , it encodes the position of the Tmax distinct fuzzy sets
within each strong fuzzy partition for all the F attributes; as each partition is a strong
triangular fuzzy partition,CT is a vector of F vectors, each containing theTmax−2 positions
of the cores; to allow the transformation to occur,CT needs to contain enough information
to de�ne the slope of the piecewise linear transformation t(x f ) (and, as such, also t−1). A
further constraint is needed to impose that b f ,i < b f ,i+1, ∀i ∈ [2,Tmax − 1], and to avoid an
excessive departure of the cores with respect to the uniform partition; as such the value
for the generic core b f ,i is restricted to vary in the interval[

b̃ f ,i −
b̃ f ,i − b̃ f ,i−1

2 , b̃ f ,i +
b̃ f ,i+1 − b̃ f ,i

2

]
,∀i ∈ [2,Tmax − 1] . (5.7)

The third sub-vector CG speci�es the number of fuzzy sets de�ning the partition for
each attribute, i.e. its granularity. It is a vector of length F , whose f -th elements Tf vary
in the range l [2,Tmax], coding the number of fuzzy sets to be used in the actual partition
P f (Tf ). As discussed in Section 5.3.2, the values contained in CG are used to generate the
concrete RB from the virtual RB coded in CR .

Concerning the genetic operators, MOEL generates the o�spring population using both
crossover and mutation operations. The RB sub-vectorCR undergoes a two-point crossover,
with the crossover point always placed between two rules, and two mutation operators:
i) �rst, a random rule (actually, a pair pm) is selected; then, the rule in pm is replaced
with another rule randomly chosen out from the candidate rule base; ii) for a random rule,
each position vm,f of its condition mask is scanned, and complemented with probability
Pcond =

2
F .

The CT sub-vector is subject to a BLX-α-crossover, with α = 0.5 and to a mutation
operator; the mutation is applied as follows: �rst, a feature index f is randomly chosen
in [1, F ]; an index i , identifying the fuzzy set in the partition, is randomly selected in the
interval [2,Tmax − 1]. Then the value b f ,i is randomly chosen in the interval de�ned in
Equation 5.7.
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Lastly,CG undergoes an one-point crossover, with the crossover point random selected
in [1, F ] and a simple mutation: �rst, a gene (feature) f in randomly selected in the interval
[1, F ]; then the value is (randomly) either increased or decrease by one. If the resulting
value is outside the allowed interval [2,Tmax], the mutation is escaped.

The aforementioned set of mating operators has experimentally shown a good balance
between exploration and exploitation, thus being suitable for driving the evolutionary al-
gorithm towards good approximations of the Pareto fronts.

The Distributed MOEL

The topic of parallel/distributed MOEA implementation has been highly discussed, even
before the widespread availability of cluster/cloud computing frameworks (Van Veldhuizen
et al., 2003); a plethora of approaches, exploiting di�erent solutions, have been proposed
during the last decades. Nevertheless, both the recent availability of e�cient frameworks
like Apache Spark, and the growing handiness of cloud resources, favoured certain solu-
tions w.r.t others. Notably, “master-slave” paradigm (Van Veldhuizen et al., 2003), inherent
in typical Spark programs, has been among the most thriving ones; it is mainly attributable
to its good scalability w.r.t. to the size of the training set, and its ability to deal with big
datasets.

Even if other paradigms, such as the “islands” and “di�usion” ones, exist, they are
much more suited with other distributed computing frameworks (Coello Coello et al., 2007;
Van Veldhuizen et al., 2003); furthermore, it is often the case that the accuracy may be af-
fected by the number of used CUs.

The proposed implementation of the distributed MOEL phase for DPAES-FDT-GL is
presented in Figure 5.5; the picture focuses on the distribution of the workload across a
cluster of computing nodes. Both the initialisation of the archive required by the genetic
algorithm (upper part of the �gure), and the evolutionary procedure itself (lower part) are
implemented in such a way to bene�t from more computing nodes.

The master task, running on the driver node in the Apache Spark cluster, manages the
execution of the algorithm; also, given the limited size of the rule base, it computes the TRL
for the current solutions at each iteration.

The evaluation of the accuracy is the most resource-intensive phase of the algorithm
since it requires the evaluation of the RB over the whole TR. Thus, in order to exploit the
Apache Spark framework, the dataset TR is split into V chunks; the RB is then separately
evaluated on each chunk, by a slave task running on a cluster CU (as reported in Figure 5.5).
The slave task, which has the same structure for all the CUs, works by consuming as input
the two solutions to be evaluated and producing, for each of them, the number of successful
classi�cations over the target chunk of TR. Then, the driver aggregates the intermediate
results, generating the �nal accuracy for each solution.

Two factors in�uence the complexity of the accuracy evaluation phase: i) the number
of instances in the training set |TR|, and ii) the complexity of the currently evaluated rule
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Figure 5.5: Schematic of the distributed multi-objective evolutionary learning implementa-
tion.
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base (two RBs are evaluated at each iteration); as the average complexity gets smaller as
the population evolves (the MOEA pushes towards simpler solutions, as well as on more
accurate ones), the runtime for each iteration decreases during the execution of the algo-
rithm.

As a �nal remark, the scalability of the adopted MOEL with respect to the used CUs
has been shown before to be almost linear (Ferranti et al., 2017). This result allows using
additional CUs to e�ectively reduce the runtimes of the algorithm.

5.4 Experimental Results and Comparisons

This section describes the results of an experimental study designed to thoroughly eval-
uate DPAES-FDT-GL. First, i) the solutions provided by DPAES-FDT-GL are evaluated in
terms of classi�cation accuracy, complexity, and interpretability; then, ii) the algorithm is
compared with the original DPAES-RCS, from which it has been derived.

Furthermore, an additional comparison with DPAES-FDT, which adopts the FDT in the
candidate RB generation phase but employs no granularity learning, is performed, to better
understand the relative contributions of the FDT and of the granularity learning.

All the experiments described here have been performed on eight datasets. The datasets
are reported in Table 5.1; their number of instances, attributes, classes and their sizes are
reported as well. For the sake of reproducibility, the datasets have been extracted from
UCI1 and the LIBSVM2 repositories, and have been split into 5 folds, thus performing a
5-fold cross-validation.

Table 5.1: Datasets used in the experiments: here n and c denote numerical and categorical
attributes, respectively.

Dataset Name # Instances # Attributes # Classes Size
Covertype 2 (COV_2) 581 012 54 (n:10, c:44) 2 75.2 MB
Covertype 7 (COV_7) 581 012 54 (n:10, c:44) 7 75.2 MB
eCO (ECO) 4 178 504 16 (n:16) 10 534 MB
eME (EME) 4 178 504 16 (n:16) 10 535.2 MB
Higgs (HIG) 11 000 000 28 (n:28) 2 8.04 GB
Kddcup 2 (KDD_2) 4 856 151 41 (n:26, c:15) 2 476 MB
PokerHand (POK) 1 025 010 10 (c:10) 10 24.5 MB
Susy (SUS) 5 000 000 18 (n:18) 2 2.40 GB

All the experiments described here have been executed on a cluster of up to 7 machines
(6 worker nodes and one master node); the cluster run Apache Spark 2.2.0. All the machines
used in the cluster (master and the workers) are equipped with 4 vCPU, 8GB of RAM, and

1Available at https://archive.ics.uci.edu/ml/datasets.html
2Available at www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

77

https://archive.ics.uci.edu/ml/datasets.html
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Chapter 5. Multi-Objective Evolutionary Fuzzy Classifiers for Big Data

160 GB Hard Drive; furthermore, all the machines run Ubuntu 14.04. The datasets are stored
on the Hadoop Distributed File System (HDFS), running with a datanode on each worker.
As regards the cluster manager, the standalone cluster manager provided by Apache Spark
has been used in all the experiments.

Table 5.2 lists the parameter values used for both DPAES-FDT-GL and DPAES-FDT;
starting with the values proposed in DPAES-RCS (Ferranti et al., 2017), the best values have
been extracted both from previous experiences and experimental evaluations. The selected
number of evaluations (here �xed to 50,000) re�ects the results obtained in (Antonelli et al.,
2014): there, it has been shown that 50,000 �tness evaluations allow obtaining Pareto fronts
statistically equivalent to the ones achieved after 1 million evaluations.

The values for the granularity learning (the number of fuzzy sets per partition varies
between Tmin = 3 and Tmax = 7) have been selected according to the following consid-
erations: �rst, as a strong triangular fuzzy partitioning scheme is used, both the �rst and
last fuzzy sets of each partition are �xed to the ends of the universe; as such, a partition
is meaningful if contains at least three fuzzy sets. Second, several studies (Miller, 1956)
reported that in order to preserve the interpretability, in terms of human processing capa-
bility, the number of linguistic terms per linguistic variable should be approximately 7± 2.
As such, the valueTmax = 7 has been used; further, it has also been found before that using
7 or 9 as Tmax yields very similar results (Antonelli et al., 2009a).

Table 5.2: The parametrization used in the experiments for DPAES-FDT-GL and DPAES-FDT
is reported.

Parameter Description Value
Nval Total number of �tness evaluations 50000
AS (2+2)M-PAES archive size 64
Mmax Maximum number of rules in a virtual RB 100
Tf Number of fuzzy sets for each continous attribute X f 7
PCR Probability of applying crossover operator to CR 0.6
PCT Probability of applying crossover operator to CT 0.5
PCG Probability of applying crossover operator to CG 0.5
PMRB1 Probability of applying �rst mutation operator to CR 0.1
PMRB2 Probability of applying second mutation operator to CR 0.7
PMT Probability of applying mutation operator to CT 0.6
PMG Probability of applying mutation operator to CG 0.2
Tmax Maximum number of fuzzy sets for each linguistic variable 7
Tmin Minimum number of fuzzy sets for each linguistic variable 3

The candidate RB, used as initial population, has been obtained using the multi-way
DFDT algorithm (Segatori et al., 2017a); here, a uniform discretization, with Tmax = 7 lin-
guistic values for each numeric attribute, has been used. The parameter values for the
DFDT follow the ones used in the original manuscript (Segatori et al., 2017a): i) the mini-
mum number of instances per leaf is limited to the 0.1% of the total number of instances,
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and ii) the maximum tree depth β has been set to 10, in order to allow rules with an ad-
equate number of antecedent, without generating too many of them. In Table 5.3, the
average number of generated rules, as well as the average number of selected features, are
reported.

Table 5.3: Min number of instances per leaf used for the DFDT algorithm, and average num-
bers of rules and attributes in the RBs extracted from the generated FDTs.

Dataset min # inst. per leaf Rules Attributes

COV_2 1 13 392.8 12.0
COV_7 1 18 176.2 53.0
ECO 334 6 683.0 13.0
EME 334 9 226.6 16.0
HIG 880 4 138.0 21.0
KDD_2 391 451.6 22.2
POK 80 28 561.0 5.0
SUS 400 10 770.0 18.0

5.4.1 DPAES-FDT-GL: an Experimental Evaluation

In this section, a thorough characterisation of DPAES-FDT-GL is provided. First, an anal-
ysis of the Pareto front approximation generated during the optimisation process is given;
to this aim, previously proposed methods (Ferranti et al., 2017) are employed. For each
fold, the set of solutions constituting the Pareto front is extracted; the front is then sorted
by decreasing accuracy, and three solutions are collected. The FIRST, MEDIAN and LAST,
are the most accurate solution, the median in the set and the least accurate, respectively,
with regards to the accuracy.

The characteristics of these three solutions are reported in Table 5.4; there, for each
dataset and for each representative solution, the average values and the standard devia-
tions of the accuracy on both the training (AccTra) and test (AccTst) sets are reported. Fur-
thermore, the average values and the standard deviations of the complexity (measured as
TRL) and of the number (NNDS) of non-dominated solutions contained in the archive at the
end of the evolutionary process are reported as well.

The results provided in Table 5.4 are highly competitive (a comparison with the state-
of-the-art is provided in Section 5.4.2), while reasonably simple (low TRL). This seems to
suggest that DPAES-FDT-GL generates both accurate and interpretable systems; further-
more, when the accuracies obtained on the training and test sets are compared, there are
no signs of overtraining.

With the aim of providing a more �ne-grained analysis of the interpretability, Table 5.5
lists the average number M of rules, the average number F̂ of selected features, and the
average number #Fset of fuzzy sets obtained via granularity learning (for each selected
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numerical feature), for the FIRST, MEDIAN and LAST solutions generated by DPAES-FDT-
GL.

The results in Table 5.5 show that both the number of rules and the number of features
are reasonably low, thus suggesting that the learnt RB is highly interpretable; the inter-
pretability is even strengthened by the fact that the mean number of fuzzy sets per feature
is lower than 5. Furthermore, comparing the number of rules M with TRL, it is noted that
the average rule length (not reported here) is very low; thus, the evolved RBs are composed
by generic rules.

As regards the DPAES-FDT-RCS runtime, the average execution time for DPAES-FDT-
RCS (in seconds), as well as its standard deviation are reported in Table 5.6 for all the
datasets. For the sake of reproducibility, we remark that the execution times have been
measured on a cluster with 6 slaves, with 4 cores each (for a total of 24 cores). Table 5.6
reports both the total execution time and the runtime for the distributed evolutionary op-
timisation phase (DEO); as expected, the DEO phase is the most time consuming one.

In the following paragraph, an example of the results provided by DPAES-FDT-GL is
given. Here, the MEDIAN solution obtained on the �rst fold of SUSY 3 dataset is reported.

According to the results listed in Table 5.4, the MEDIAN solution o�ers an optimal
trade-o� in terms of accuracy and TRL. SUSY is a widely used binary classi�cation dataset,
in which a signal process that produces supersymmetric particles has to be discriminated
from a background process (which does not produce anything); all the data have been gen-
erated via Monte Carlo simulations. Of the 18 attributes, the �rst 8 are kinematic properties
directly measured by the particle detectors in the accelerator. The remaining ten features
are high-level features derived by physicists to help discriminate between the two classes.
In the following �gures and tables, the features will be labelled as: lepton 1 pT , lepton 1 η,
lepton 1 ϕ, lepton 2 pT , lepton 2 η, lepton 2 ϕ, missing energy magnitude, missing energy
ϕ, MET_rel, Axial MET, MR , M_TR_2, R, MT 2,

√
ŜR , M∆R , ∆ΦRβ and cos(θR+1). Additional

information can be found in the original manuscript (Baldi et al., 2014).

The original uniform fuzzy partition (dashed line) of the MEDIAN solution, are re-
ported, as well as the learned fuzzy partition (solid line), in Figure 5.6; each one of the 18
attributes is reported in a di�erent panel. Furthermore, the corresponding RB is provided
in Figure 5.7. The RB is composed of 7 rules, with a maximum of 3 antecedents each.

The linguistic terms used to label the fuzzy set depends on the granularity of the par-
titions; in the case of 3 fuzzy sets the terms low, medium and high are used, while in the
case 7 fuzzy sets the term set is: very_low, low, medium-low, medium, medium-high, high
and very_high. The labelling for 4, 5 and 6 fuzzy sets has been obtained by interpolating in
between.

3The SUSY dataset is available at https://archive.ics.uci.edu/ml/datasets/SUSY
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Table 5.6: Average run times (measured in seconds) and standard deviations for the dis-
tributed evolutionary optimization (DEO) phase and the overall algorithm (Tot).

Execution Time (s)
Datasets DEO Tot
COV_2 6 245 ± 1 115 7 165 ± 1 191
COV_7 4 965 ± 718 5 147 ± 671
ECO 23 895 ± 6 449 24 836 ± 6 416
EME 27 189 ± 3 060 28 088 ± 3 047
HIG 53 749 ± 9 780 54 821 ± 9 805
KDD_2 13 470 ± 1 033 14 310 ± 1 033
POK 3 935 ± 422 3 964 ± 421
SUS 32 010 ± 6 697 32 611 ± 6 690
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Figure 5.6: The uniform fuzzy partitions (dashed line) and learnt fuzzy partitions (solid line)
the MEDIAN solution obtained at the end of the evolutionary process are reported for each
of the attributes of the SUSY dataset.
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IF missing energy magnitude IS ’very_low’ AND MR IS ’very_high’
AND cos(θR+1) IS ’low’ THEN Y IS TYPE_1
IF lepton 1 pT IS ’very_low’ AND missing energy magnitude IS
’very_low’ AND M∆R IS ’very_high’ THEN Y IS TYPE_1
IF lepton 1 pT IS ’low’ AND lepton 1 η IS ’low’ AND lepton 2 η

IS ’low’ THEN Y IS TYPE_2
IF Axial MET IS ’high’ AND

√
ŜR IS ’very_high’ AND cos(θR+1) IS

’low’ THEN Y IS TYPE_2
IF lepton 1 pT IS ’very_low’ AND missing energy magnitude IS
’very_low’ AND cos(θR+1) IS ’medium’ THEN Y IS TYPE_1
IF R IS ’high’ AND cos(θR+1) IS ’high’ THEN Y IS TYPE_2
IF missing energy magnitude IS ’medium-low’ THEN Y IS TYPE_2

Figure 5.7: RB of the MEDIAN solution obtained on the �rst fold of SUSY. The RB, composed
of 7 rules, and characterized by a TRL of 18, achieved a classi�cation accuracy of∼ 78.776%
on the test set.

5.4.2 ComparingDPAES-FDT-GLwithDPAES-FDTandDPAES-RCS

This section provides an experimental comparison of the performances of DPAES-FDT-
GL, DPAES-FDT and DPAES-RCS. Here, DPAES-RCS is the baseline MOEL scheme from
which DPAES-FDT-GL has been derived, while DPAES-FDT is obtained from DPAES-RCS
by activating the FDT learning but avoiding any kind of granularity learning. As the e�ec-
tiveness of DPAES-RCS, compared to other state-of-the-art algorithms (such as DDTs and
the Chi-FRBCS-BigData) has been reported before(Ferranti et al., 2017), it has been chosen
as a benchmark.

Table 5.7 lists the average values (and the standard deviations) of the accuracy on the
training (AccTra) and test (AccTst) sets for the FIRST, MEDIAN, and LAST solutions gen-
erated by DPAES-FDT-GL, DPAES-FDT, and DPAES-RCS. Furtheremore, Table 5.8 reports
the average number M of rule and the TRL.

According to the results reported in Table 5.7, the three algorithms provide comparable
accuracies across the three solutions. Furthermore, considering the complexity indices
from Table 5.8, the solutions generated by DPAES-FDT-GL and DPAES-FDT are generally
more compact than those produced by DPAES-RCS. Nevertheless, it is worth noticing that
DPAES-FDT-GL solutions are characterised, on average, by a lower TRL and fewer rules
than those of DPAES-FDT.

In order to discover if any statistical di�erence exists among the accuracies and the
complexities of the three algorithms so far discussed, the following approach has been
followed: �rst, for each algorithm and on all datasets, a distribution consisting of the av-
erage accuracy values obtained on the test set, and a distribution consisting of the average
complexity values have been de�ned. Then, non-parametric statistical tests are applied.
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5.4. Experimental Results and Comparisons

The Friedman test allows ranking the distributions, while the Iman and Davenport test un-
covers whether there exists a statistical di�erence. Notably, if it is the case that the Iman
and Davenport p-value is lower than the level of signi�cance α 4, then the null hypothesis
can be rejected, and the claim that there exist statistical di�erences among the multiple
distributions can be made. If not, no statistical di�erence exists.

If the null hypothesis is rejected, a post-hoc procedure, the Holm test, is applied, allow-
ing the detection of statistical di�erences between the control approach, i.e. the one with
the lowest Friedman rank, and the remaining approaches. Details on the aforementioned
tests may be found in (García et al., 2009).

Table 5.9: Results of the Friedman and of the Iman and Davenport tests on the accuracy
computed on the test set.

Algorithm Friedman rank Iman and
Davenport
p-value

Hypothesis

DPAES-FDT-GL 1.875
FIRST DPAES-FDT 1.875 0.7145 Not Rejected

DPAES-RCS 2.25

DPAES-FDT 1.875
MEDIAN DPAES-RCS 2 0.714 Not Rejected

DPAES-FDT-GL 2.25

DPAES-FDT-GL 1.75
LAST DPAES-FDT 2.125 0.7145 Not Rejected

DPAES-RCS 2.125

The results of the Friedman and of the Iman and Davenport tests on the accuracy values
obtained over the test set are reported in Table 5.9. Here, according to the p-values, the
null hypothesis can never be rejected (being the p-values always greater than 0.05). As
such, all the three algorithms provide solutions that are statistically equivalent in terms of
classi�cation accuracy. Nevertheless, it is worth noticing that DPAES-FDT-GL and DPAES-
FDT achieve the highest ranks for the FIRST solutions.

The results of the application of the Friedman and of the Iman and Davenport tests
on the complexities are reported in Table 5.10; here, being the p-values always lower than
0.05, the null hypothesis associated with the Iman and Davenport test is rejected in all
three cases. Performing a Holm post-hoc procedure, and considering DPAES-FDT-GL,
DPAES-FDT and PDAES-FDT-GL as control approaches for the FIRST, MEDIAN and LAST
solutions, respectively, it is observed that the DPAES-RCS solutions are always statisti-
cally more complex than those of the control algorithms (the results for the Holm post
hoc procedure are reported in 5.11). Furthermore, the complexity of the solutions gen-

4Here it is assumed the standard threshold value α = 0.05
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Table 5.10: Results of the Friedman and of the Iman and Davenport tests on the complexity.

Algorithm Friedman rank Iman and
Davenport
p-value

Hypothesis

DPAES-FDT-GL 1.437
FIRST DPAES-FDT 1.812 0.0139 Rejected

DPAES-RCS 2.75

DPAES-FDT 1.375
MEDIAN DPAES-FDT-GL 1.75 0.0013 Rejected

DPAES-RCS 2.875

DPAES-FDT-GL 1.562
LAST DPAES-FDT 1.562 0.0025 Rejected

DPAES-RCS 2.875

erated by DPAES-FDT-GL and DPAES-FDT are always statistically equivalent. As such,
both DPAES-FDT-GL and DPAES-FDT provides less complex results than DPAES-RCS, yet
providing comparable accuracies.

As a last remark, in most of the cases, the complexities of the DPAES-FDT-GL solutions
are lower than those generated by DPAES-FDT.

Table 5.11: Results of the Holm post hoc procedures on the complexity for α = 0.05

i algorithm z-value p-value alpha/i Hypothesis

FIRST 2 DPAES-RCS 2.625 0.0086 0.025 Rejected
1 DPAES-FDT 0.75 0.4532 0.05 Not Rejected

MEDIAN 2 DPAES-RCS 3 0.0027 0.025 Rejected
1 DPAES-FDT-GL 0.75 0.4532 0.05 Not Rejected

LAST 2 DPAES-RCS 2.62 0.0086 0.025 Rejected
1 DPAES-FDT 0 1 0.05 Not Rejected

In order to allow a visual inspection of the approximated Pareto fronts, a plot of the
average values achieved by the three representative solutions, for all the datasets, on both
the training and test sets is provided ( Figure 5.8); in the plot, which depicts the classi�cation
rate/TRL plane, the solutions generated by DPAES-FDT-GL, DPAES-FDT and DPAES-RCS
are reported as blue diamond, empty black circle and red plus markers, respectively.

In short, the usage of a distributed FDT, in place of a distributed version of the C4.5,
allows the MOEL to generate simpler (less complex) FRBCs while leaving the accuracies
unchanged. Besides, the activation of the granularity allows to further reduce the number
of rules and the TRL of the generated classi�ers, even though this contribution is not strong
enough to be statistical detected.
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Figure 5.8: Plots of the average accuracy on the training and test sets and average TRL of the
FIRST, MEDIAN and LAST solutions generated by DPAES-FDT-GL (blue diamondmarkers),
DPAES-FDT (empty black circle markers) and DPAES-RCS (red plus symbol markers).
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Summing up the results, the following considerations may be given in order to explain
the behaviour of the proposed approach: �rst, as the FDT learning algorithm generates
fuzzy decision trees directly from fuzzy partitions, the tree is inherently tuned to the fuzzy
partitions. On the other hand, the C4.5 learning algorithm used in DPAES-RCS generates
decision trees from crisp partitions. The fuzzy partitions are actually considered crisp for
the execution of the learning algorithm, and only once the tree is learnt, the rules are
extracted from the tree and the labels re-assigned to the original fuzzy sets. As such, the
decision tree (di�erently from FDT) is not tuned to the �nal fuzzy partitions. Second, the
granularity learning process allows reducing the number of fuzzy sets for each linguistic
variable. The lower the number of fuzzy sets that describe each partition, the lower the
number of combinations that can be obtained for generating classi�cation rules. This result
is achieved thanks to the synergy among the initial set of fuzzy rules extracted from the
FDT, granularity learning, rule and condition selection, and fuzzy set parameter learning.
Indeed, the membership function parameter learning allows adapting the fuzzy partitions
to the dataset, also when using a low number of fuzzy sets for each linguistic attribute.
Thus, the number of rules can decrease and the accuracy increase during the evolutionary
process.

Lastly, a brief comparison of the the results of DPAES-FDT-GL with those of a dis-
tributed multi-way fuzzy decision tree (DMFDT) 5 learning algorithm (Segatori et al., 2018),
and of a distributed fuzzy associative classi�er for big data (DFAC-FFP) (Segatori et al.,
2017a) is provided in Table 5.12.

Considering HIGGS, it is the DMFDT that achieves the highest accuracy; there, the
lower complexity of both DPAES-FDT-GL and DFAC-FFP is equalised by a lower classi�-
cation accuracy. Furthermore, while the accuracies of DPAES-FDT-GL and DFAC-FFP are
comparable, the model complexities are di�erent by about 2 order of magnitudes.

On KDD_2, the three algorithms achieve similar accuracy, but the complexity of DPAES-
FDT-GL is one order of magnitude smaller than the other ones.

On Susy DMFDT achieves a classi�cation accuracy of ∼ 79.6%; it is ∼ 1.1% higher of
that achieved by DPAES-FDT-GL, yet it has been obtained with 805, 076 nodes and 758, 064
leaves, thus with a system of 4 orders of magnitude more complex than the one generated
by DPAES-FDT-GL. Finally, it is worth noticing that DPAES-FDT-GL achieves better results
than DFAC-FFP, with a complexity smaller by two orders of magnitude.

5.5 Summary

In this chapter, we have proposed DPAES-FDT-GL; it is a novel approach for generating sets
of fuzzy rule-based classi�ers with di�erent optimal trade-o�s between accuracy and inter-
pretability from big data. The approach is built upon an extension of DPAES-RCS, which

5 While DMFDT exploits the same FDT learning algorithm used to generate the initial set of fuzzy rules
in DPAES-FDT-GL, it employs fuzzy partitions generated by a distributed fuzzy discretizer, leaves labelled
with di�erent classes and a weighted voting inference strategy.
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is a distributed multi-objective evolutionary algorithm recently proposed on the Apache
Spark framework. Two main novelties characterise DPAES-FDT-GL; �rst, the initial set of
candidate rules used in the multi-objective evolutionary learning is extracted from a fuzzy
decision tree (FDT) rather than a crisp decision tree. Second, the granularity of each nu-
merical attribute (that is, the number of fuzzy sets in the partition) can be learnt during the
evolutionary process as well.

The approach has been evaluated and compared with DPAES-RCS, by performing a
set of experiments on 8 big datasets. First, the accuracy achieved by the fuzzy rule-based
classi�ers generated by DPAES-FDT-GL is statistically equivalent to the one obtained by
the classi�ers generated by DPAES-RCS; nevertheless, the FRBCs generated by DPAES-
FDT-GL are characterised by the lowest number of rules, conditions, and fuzzy sets. As
such, DPAES-FDT-GL represents an important step forward in getting more interpretable
fuzzy classi�ers in the setting of big data. Since there exists a number of real applications
that require not only high accuracy but also high interpretability, DPAES-FDT-GL can be
a very interesting and promising approach for such applications.

Then, in order to untie the contribution of the FDT from that of the adopted granularity
learning, we also performed a comparison with DPAES-FDT, a version of DPAES-FDT-GL
that adopts the FDT for generating the initial rule set, but no granularity learning dur-
ing the evolutionary process. The results suggest that, when extracting the initial set of
rules from an FDT, the resulting models are always statistically less complex. Moreover,
even though no statistical di�erences between the complexities of the FRBCs generated by
DPAES-FDT-GL and DPAES-FDT can be found, the activation of the granularity learning
allows reducing, in most of the cases, the number of rules and the TRL of the generated
classi�ers.
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CHAPTER

SIX

FUZZY RULE BASED CLASSIFIERS: AN APPLICATION TO
CNV-BASED TUMOUR CLASSIFICATION

Words strain, Crack and sometimes
break, under the burden, Under the
tension, slip, slide, perish, Decay with
imprecision, will not stay in place, Will
not stay still.

— T.S. Eliot.

This chapter contains material from the following publications:

• Ricatto, M., Barsacchi, M., & Bechini A. (2018). Interpretable CNV-based Tu-
mour Classi�cation using Fuzzy Rule Based Classi�ers. In ACM SAC 2018.
https://doi.org/10.1145/3167132.3167135.

In this chapter we move towards applied fuzzy systems, proposing a novel pipeline to
support tumour type classi�cation and rule extraction based on somatic CNV data. The
pipeline builds an interpretable Fuzzy Rule Based Classi�er (FRBC), on which inference
can be made.

The chapter is organised as follows: Section 6.1 provides an introduction to the prob-
lem; then Section 6.2 describes the proposed pipeline, as well as the classi�cation algorithm.
Section 6.3 provides a case study and benchmarks the approach. Finally, Section 6.4 con-
cludes the chapter, summarising the results.

6.1 Copy Number Variations, Cancer, and Expert Systems

The once posited 99.9% genetic identicalness of all humans has been challenged by a series
of recent discoveries. We now know that the DNA sequence of the genome undergoes
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continuous variations, and this is the process that endows organisms with the ability to
evolve and adapt. Variations in the human genome encompass a wide range of sizes, from
the single base pair to entire chromosomal events (Alkan et al., 2011). Located on the larger
end of the spectrum, structural variations (SVs) are generally de�ned as genomic regions of
DNA approximately 1Kb (1000 bases) or greater in size and can include insertions, deletions
and inversions (Feuk et al., 2006). Even though SVs play a major role in a wide class of
illnesses, their presence is not necessarily associated with diseases or particular phenotype.

The family of DNA structural variants is numerous and multifarious; among them, copy
number variations (CNVs) can be considered one of the most common classes: according
to recent studies, up the 10% of the human genome is currently believed to be altered by
copy number variations (Zarrei et al., 2015). Certainly, CNV can be held responsible for
the majority of base pair variations between genomes. CNVs were initially de�ned as SVs
with copy number change, a�ecting regions with size greater than 1 kilobase (Kb) and
typically less than �ve megabases (Mb) (Freeman et al., 2006). As of today, the lower end of
the range has been pushed down to include variants larger than 50 bp (Zarrei et al., 2015).
The widespread presence of CNVs seems to suggest that they play a relevant contribution
in phenotypic variation (Zarrei et al., 2015); CNV and phenotype were �rst shown to be
associated in 1936, when a duplication of the Bar gene in Drosophila melanogaster was
related to the Bar eye phenotype (Nowakowska, 2017). Furthermore, thanks to several
recent studies, CNVs are known to play an important role in human diseases (Girirajan
et al., 2011), altering the diploid status of particular loci in the genome.

The relationship between copy number variations and cancer has been recently inves-
tigated (Shlien and Malkin, 2009, 2010), and it has been suggested that CNVs could play a
non-trivial role in cancer evolution. It is only recently that researchers started exploiting
somatic CNVs. For example, a recent work has shown how CNVs can be used as a means
for cancer prognostic (Poniah et al., 2017). Moreover, it has been proposed to use CNV
data for the classi�cation of tumours, and the �rst attempts (Zhang et al., 2016; Li et al.,
2014) look promising. However, this particular research �eld it is still in its infancy, and
the relationship between CNVs and di�erent types of cancer remains unclear: this work is
aimed at providing a further contribution.

Data mining (and machine learning) is a thriving �eld; among the wide variety of ap-
proaches, fuzzy rule-based systems (FRBS) o�er highly interpretable results (Baldwin and
Xie, 2005), yet providing nearly-state-of-the-art accuracies. The interpretability of the sys-
tem increases the con�dence in its outputs, and this is of utmost importance in critical
�elds, such as that of medical applications (a brief discussion of the de�nition of inter-
pretability is provided in Chapter 1). Furthermore, fuzzy systems are naturally endowed
with the ability to manage noisy and uncertain data, and sequencing data can be regarded
as uncertain proxy measures for the state of the underlying biological system.

This work focuses on the de�nition of an approach for tumour classi�cation from so-
matic CNV data. We de�ne a powerful classi�cation pipeline able to provide high classi-
�cation accuracies and to produce a small set of understandable simple fuzzy logic rules
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(i.e. IF ... THEN... rules), based on triangular shaped fuzzy sets. Rules can provide insights
into the roles of speci�c genes in speci�c classes of tumours and can be of valuable help in
understanding genes interactions.

6.2 Methods description

The proposed methodology is described in this section; the approach is arranged into three
phases: in the �rst phase, CNV data are �ltered, preprocessed and rearranged (Section 6.2.1)
outputting a representation amenable for the following classi�cation step; subsequently,
the training set is discretized using a Fuzzy Minimum Description Length Principle dis-
cretizer (Fuzzy-MDL), and the dataset is then used to learn a Distributed Fuzzy Decision
Tree (DFDT), thus training a model (Section 6.2.2). Finally, given the discretization and the
learnt model, a Fuzzy Rule Based Classi�er (FRBC) is extracted (Section 6.2.3) and enables
inference on the system.

6.2.1 Data extraction and preprocessing

In this section, a description of the data extraction and pre-processing pipeline is given.
The goal of the whole procedure is to attain a database structured so that every row is a
speci�c patient, every feature is a gene a�ected by a CNV and the value of the feature is
the segment mean of that CNV. A scheme of the whole process is given in Figure 6.1.

Data extraction

The �rst step of the pipeline involves the retrieval of a set of preprocessed (somatic) CNV
data; the description of the CNV extraction process from raw data is beyond the scope
of this work and can be found elsewhere (Kendall and Krasnitz, 2014; Zare et al., 2017).
CNVs can be detected and CNV data can be generated with di�erent approaches; initially
conventional karyotyping was used, while nowadays the two primary technologies are
high-throughput next generation sequencing (NGS) and comparative genomic hybridiza-
tion (aCGH) (Nowakowska, 2017). We aim at proposing an approach that is independent
with respect to the method used in CNV detection. Nonetheless, samples must be nor-
malized prior to the usage, in order to avoid biasing the machine learning algorithm. Fur-
thermore, particular care must be taken when combining samples generated with di�erent
approaches.

In the following, we refer to data organised as in TCGA level 31 data (Chang et al.,
2013); the data are structured such as that each row pertains to a speci�c CNV, and contains
information about the patient id, the chromosome a�ected, the start and end coordinates,

1A thorough description of the relationship between TCGA data types and data levels can be found here
https://cancergenome.nih.gov/abouttcga/aboutdata/datalevelstypes.
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Figure 6.1: Scheme of the proposed data extraction and pre-processing protocol. Data sources
(TGCA data portal and Biomart Ensemble) are pictured in dark grey, intermediate or �nal
data products are coloured in grey while operations on the data (such as �ltering, indexing
and intersection) are reported in light gray.

96



6.2. Methods description

the number of probes and the segment mean 2.
The genes coordinates are retrieved by means of the BioMart tool from the Ensembl

genome browser (Yates et al., 2016); the selected reference genome is the GRCh37/hg19,
that is, the same used as a reference for TCGA patients data. In the following it is assumed
that genes data are structured in a tabular format; each row should refer to a gene and
should be de�ned by four attributes: chromosome, start index, end index, gene name.

Data preparation

The preprocessing phase consists of a �ltering step, in which both CNV and genes data are
�ltered, and of an intersection step, in which CNVs data and genes data are intersected.
With regards to the �ltering step, the following three criteria have been used:

SegmentMean value First, aiming at extracting a set of high con�dence CNVs, �ltering
criteria on the segment mean value has been de�ned; thresholds of 0.2 for ampli�cations
and −0.2 for deletions have been used. These thresholds have been proposed by examining
the distribution of segment mean values from both tumoural and normal samples, and their
e�ectiveness has been proved before (Laddha et al., 2014).

CNV Length The second criterion relates to the CNV length. Only CNVs shorter than
1 megabase (Mb) have been used here, while the longer ones have been �ltering out. We
used a slightly stricter interval, w.r.t the 50b - 3Mb proposed in the CNV map (Zarrei et al.,
2015). This step is necessary as segments that cover large regions, e.g. a whole chromosome
(aneuploidy), may be found; in such cases, the whole region will be covered with a unique
value of segment mean, so that all the genes in the region have the same copy number
value. Then, genes will be indistinguishable in the following operations.

Chromosome Another �ltering criterion is based on the selection of the chromosome to
investigate. In fact, data analysis is often restricted only to autosomes, because of several
factors; �rst, CNV calling in X chromosome has been proved problematic due to the pres-
ence of pseudoautosomal regions (Conrad et al., 2010); moreover, there is a severe lack of
available data for sex chromosomes. Finally, limiting the analysis to autosomes makes this
work comparable to the majority of the researchers’ e�orts in this �eld (Qiu et al., 2017).

In the second phase, an intersection between �ltered CNVs data and genes data is gen-
erated; for each patient, its segmented data are compared with the genes extracted from
BioMart. If the start/end coordinates of the segmented data overlap with the coordinates
of a gene (either both coordinates are inside the genomic interval containing the gene,
both are outside the interval, or one coordinate is inside and the other is outside), the CNV
segment mean of that segment data will be associated to that gene. This operation has

2The segment mean is de�ned as log2
(CN

2
)
, being CN the copy number.
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been carried out using bedtools (Quinlan and Hall, 2010). The intersection process is
portrayed in Figure 6.2

Figure 6.2: Scheme of the intersection process. The start/end coordinates of the segmented
data (�rst row) are compared with the coordinates of the genes (second row). All the genes
for which overlap occurs, either with both coordinates inside the genomic interval contain-
ing the gene, with both outside the interval, or with one coordinate inside and the other
outside, are selected (last row).

As a side-product, each intersection produces a value quantifying the amount of "over-
lap" between the CNV and the gene region; these values can be used to quantify the relative
importance of each feature.
Besides, if more than one intersection has been found for a given gene, the segment mean
value will be an average of all the segment mean values for the intersecting CNVs; this
strategy has been proposed before and has been found appropriate (Qiu et al., 2017). Fi-
nally, intersected data has been reorganised in libsvm format:
<label> <gene1>:<segMean1> ... <geneN>:<segMeanN>.

6.2.2 Fuzzy Discretization and Fuzzy (multi-way) Decision Tree

In this section, a brief description of both the discretization approach and of the selected
classi�cation algorithm are provided.

The Distributed Fuzzy Decision Tree (DFTF henceforth) algorithm, as proposed in (Sega-
tori et al., 2017c), has proved to be very e�ective, and has been selected due to its pecu-
liarities; particularly, it is a suitable starting point for generating an FRBS, as also observed
in Chapter 5. The work�ow of the proposed DFDT learning process consists of the two
following main steps:

1. Fuzzy Partitioning: a strong fuzzy partition is generated on each continuous attribute
by using a novel discretizer based on fuzzy entropy (Al-sharhan et al., 2001); features
for which no discretization occurs will be discarded (Section 3.3.1 provides a complete
description of the approach).
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2. FDT Learning: a (multi-way) Fuzzy Decision Tree (FDT) is induced from the training
data by using a multi-way splitting mechanism based on the concept of fuzzy infor-
mation gain. The approach di�ers from the one described in Chapter 3 and 4 in that
it follows a multi-way splitting criterion instead of a binary one.

In the following, the essential notation will be recalled. Let Cm be a class from a set of
possible classesC =

{
C1, ...,C J

}
. A training set TR can be described as a set of tuples TR =

{(x1,y1), ..., (xN ,yN )}, with each instance x = [x1, ...,xF ], described by a set of features
X = {X1, ...,XF } and each label y de�ned on the set of possible classes; here we used F to
represent the number of features, and J to denote the number of classes.

The Fuzzy Partitioning step takes care of producing, for each continuous feature X f

from the set of features X , a fuzzy partition P f on the universe of discourseU f . A partition
P f , with Tf fuzzy sets on U f , can be described as P f = A f ,1, ...,A f ,TF . Details about fuzzy
partitions are provided in Chapter 2.2.
The strong triangular fuzzy partition is induced by recursive partitioning, using a “Fuzzy
Partitioning based on Fuzzy Entropy” criteria. The stopping condition is similar to the
Entropy Minimization method proposed by Fayyad and Irani (Fayyad and Irani, 1993b)
and the process is repeated for each generated subset until a stopping condition is met.
We recall that a complete description of the algorithm, as well as its detailed mathematical
formulation, is given in Chapter 3.3.1. Interestingly enough, the partitioning procedure
induces a simultaneous feature selection, as the features for which no discretization has
been performed will be discarded.

The Fuzzy Decision Tree is built by means of a recursive node-splitting approach; each
split is chosen such as to maximise a given criterion, in this case the Fuzzy Information
Gain (Zeinalkhani and Eftekhari, 2014). Each split selects a feature f , and induce Tf child
nodes, where each node corresponds to a linguistic value of the fuzzy partitioning P f . Each
feature can be selected only once on a given path from the root to the leaf. The procedure
is iterated until a stopping condition is met (Segatori et al., 2017c)

6.2.3 Building a Fuzzy-Rule-Based-Classi�er

Here, the notion of fuzzy rule-based system is brie�y recalled; a thorough description is
provided in Chapter 2. We then proceed by extending the de�nitions where necessary.

A fuzzy rule-based system (or a classi�er, in this case) consists of two main components:
1) the fuzzy inference system, implementing the fuzzy reasoning process, and 2) the fuzzy
knowledge base (KB) which formalises the knowledge about the problem; the knowledge
base is, in turn, composed of a rule base (RB) containing the set of rules, and the data base
(DB) containing the parameters of the linguistic partitions (Alcalá et al., 2007).

In the following, the DB is directly extracted from the discretizer described in Section
6.2.2; the RB is instead extracted from the learnt fuzzy decision tree, by mapping each path
from the root node to a leaf into a Mamdani type rule (Mamdani and Assilian, 1975).
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In both section 2.3 and 5.2, simple fuzzy rules with a single consequence have been
presented. Conversely, this approach uses a set of rules with a certainty degree for all the
classes in the consequent (Cordón et al., 1999); the rules have the following structure:

If X1 is A1,km,1 and ... and

XF is AF ,km,F then
(
rm1 , ..., r

m
J

) (6.1)

where km,f uniquely identify the fuzzy set selected for the feature f in the m-th rule, and
rmj is the soundness degree for the m-th rule to output the class Cj ∈ C , given the pattern
de�ned by the antecedent. The soundness degrees for the m-th rule, rmj , j = 1, ..., J , being
J the number of classes, depends on the fraction of examples in the m-th leaf of the tree
with class Cjm ; we can thus compute rmj as:

rmj =
|G(m)Cj
|

|G(m) |
, j = 1, ..., J (6.2)

where |G(m) | is the total membership of the examples in the m-th leaf, and |G(m)Cj
| is the

total membership of the examples in the m-th leaf restricted to the class Cj . As such, the
rmj , j = 1, ..., J are real numbers in the interval [0, 1] and sum up to one. Moreover, if only
examples from a single class h are found in them-th leaf, such that:

rmh = 1, rmj = 0, j , h, j = 1, ..., J , (6.3)

the rule reduces to a classic Madmani rule without certainty degree, as described in
Section 2.3:

If X1 is A1,km,1 and ... and

XF is AF ,km,F then Y is Ch .
(6.4)

In the inference phase, given an input pattern x̂ = {x̂1, ..., x̂F }, the m-th rule activates
with a strength (matching degree) Rm(x̂) de�ned as:

Rm(x̂) = T (µA1,km,1
(x̂1), ..., µAF ,km,F

(x̂F )) (6.5)

where T (·) is the t-norm operator and µAf ,km,1
(x̂ f ) is the membership degree of x̂ f in the

fuzzy set uniquely identi�ed for the feature f in them-th rule. In the following experimen-
tation we used the product as t-norm operator.
Then, the association degree of them-th rule with the class Cj , bmj , is computed as:

bmj = h(R
m(x̂), rmj ) (6.6)

being h() a combination operator. We used the product operator as h operator.
Given the association degrees for all the rules in the rule base, we adopted a weighted vote
approach to combine the association degrees; �rst each association degree is weighted by
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a function д: Bmj = д(bmj ). In our work we used the identity function as weight function:
д(x) = x .
Then, for each class Cj , the weighted votes for all the classes are aggregated:

Vj =
∑
m

Bmj (6.7)

Eventually, the class label l is selected by applying a decision function D to all the classes:
D(V1, ...,VJ ); we selected the simplest decision function, the max function:

Cl = arg max
j=1,...,J

Vj . (6.8)

6.3 A potential application to Kidney Cancer

In order to show a potential application of our method, and to measure its e�ectiveness,
we propose a case study in which the approach is applied to the classi�cation of kidney
cancer.

Kidney cancer is known to a�ect nearly 270, 000 patients annually worldwide and is
held responsible for over 115, 000 deaths each year (Linehan, 2012). As true for other tu-
mours, kidney cancer (or Renal Cancer) is not a single disease; indeed, it comprises a num-
ber of di�erent cancers that occur in the kidney, each with a di�erent histology and clinical
course; importantly, each cancer type responds di�erently to therapy and is caused by mu-
tations in di�erent genes. As such, the ability to classify di�erent tumour types on the base
of their CNV footprints could provide clinicians with a powerful instrumental in deciding
the best therapy.

We began collecting from TCGA (Chang et al., 2013) the data of about 890 patients
a�ected by one among Kidney Renal Clear Cell Carcinoma (KIRC), Kidney Renal Papillary
Cell Carcinoma (KIRP) and Kidney Chromophobe Renal Cell Carcinoma (KICH), which are
all subtypes of Renal Cell Carcinoma. The instance label (tumour type) has been assigned
by the TCGA sources after histological examination of the a�ected tissue. The tumour
types, as well as the number of instances for each tumour are reported in Table 6.1.

Table 6.1: Summary of the data collected from TCGA.

Type of Carcinoma Acronym # Samples

Chromophobe Renal Cell Carcinoma KICH 66

Renal Papillary Cell Carcinoma KIRP 290

Renal Clear Cell Carcinoma KIRC 532

It is worth mentioning that TCGA provides, for each tumoural tissue sample, a sample
from the adjacent normal tissue; in order to account for these information, two datasets
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are generated: the �rst (dubbed Not Normal) using only the tumoural samples, the second
(dubbed All Samples) combining, for each patient, the normal and tumoural samples.
When the proposed pipeline is applied, it is �rst observed that total number genes a�ected
by a CNV is 19349, even if a high fraction of them might be unrelated to the speci�c tu-
moural event; the number of a�ected genes for every patient varies between 90 and 779 3.
As such, the data matrix is a sparse one.

The data have been preprocessed according to the pipeline described in Section 6.2.1;
the FRBC algorithm used here has been compared to a random forest classi�er (Breiman,
2001). The average accuracies and the standard deviation obtained on a 10-fold cross-
validation are shown in Table 6.2. Here, the results appear fairly stable across di�erent
folds. Interestingly, the FRBC extracted from the DFDT produces higher mean accuracy
and lower standard deviation than a RF algorithm; indeed, it does so by using a small set
of rules, being more interpretable than an RF. Interestingly, the number of fuzzy rules of
the FBRC is even lower than the number of trees composing the RF.

Table 6.2: Average accuracies and standard deviations obtained by RF and FRBC on the two
datasets, using a 10-fold cross-validation. Not Normal refers to the usage of tumoural sam-
ple only, while in All Samples the data from adjacent tissues is used as additional informa-
tion.

Not Normal All Samples

Algorithm µ σ µ σ

RF 89.57% 3.42% 91.57% 2.75%

FRBC 92.41% 2.87% 92.92% 2.29%

Interestingly enough, if the information provided by the normal and tumoural samples
is naively combined, the classi�cation accuracy increases and the standard deviation de-
creases; we suggest three possible explanation: 1) adjacent tissues can be a�ected by the
same similar CNVs of the tumoral tissue; combining the data could thus causing an increase
of the signal to noise ratio (SNR). 2) Some authors suggested that normal tissue may not
be normal as believed (Russo, 2006), and thus, again, this gives rise to an increased SNR.
Finally, 3) from this kind of data, it can not be known which CNVs have been developed
during lifetime and which are inherited from the family tree; thus, the algorithm can au-
tomatically use these data to spot out if all of the CNVs that patients have in common are
linked to the kidney disease or not.

Beyond the sheer classi�cation accuracy, the proposed approach produces a set of
highly interpretable rules. The average number of rules is ∼ 50. As an example, the �rst

3It should be noted that, due to the �ltering step in the pipeline, this number does not consider the e�ects
of aneuploidies, or CNV larger than 1Mb
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Figure 6.3: The outcome of the fuzzy partitioning process on the TRPN gene. The three
fuzzy sets ATRPN ,1, ATRPN ,2, ATRPN ,2 can be associated with decreased, normal and in-
creased copy number respectively.

three mined rules are reported in the box below:

R1: IF TPRN IS 1 AND IF ATXN7L2 IS 1 AND
IF TBC1D3C IS 1 THEN 3

R2: IF TPRN IS 2 AND IF TBC1D3B IS 1 AND
IF ATXN7L2 IS 3 AND IF TBC1D3C IS 1 THEN 1

R3: IF TPRN IS 3 AND IF ATXN7L2 IS 3 AND
IF TBC1D3C IS 1 THEN 3

As described in Section 6.2.2, each rule is made up of a set of antecedent conditions, i.e.
a set of genes with their associated segment mean values, and a set of consequent values,
i.e. the tumour classes, in this case; if the con�dence value for the dominant class is 1,
only the dominant class is reported. An example of fuzzy partitioning for the TRPN gene
is shown in Figure 6.3.

The automatic discretization provides interpretable partitions, that can be mapped to
linguistic values such as deleted and ampli�ed gene.

6.4 Summary

In this chapter, a novel pipeline for tumour type discrimination from somatic CNV data is
presented and thoroughly described. Inasmuch as CNVs have been proved to be related to
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tumours, the study of CNVs and their relationship with cancer started maturing quickly;
notwithstanding, most of the research still revolve around single nucleotide variants (SNVs)
for tumour characterisation.

It is widely known that classifying tumour from CNV data is a challenging problem,
notably due to the high number of a�ected genes and to the low number of samples. In the
machine learning parlance, it is a member of the set of so-called "Largep Small N " problems.
, To make matters worse, the sparsity of the data matrix further raises the complexity
of the classi�cation task. Here, we tried tackling the problem with a simple pipeline for
analysing CNV data, classifying tumours and extracting a compact set of understandable
rules. First, we generate a set of a�ected genes, by �ltering CNV data and intersecting CNV
coordinates with the coordinates of the genes. The feature sparsity has been handled by
using an automated fuzzy partitioner that outputs interpretable partitions and performs a
concurrent feature selection. The fuzzy decision tree produces a model from which a set of
rules can be extracted, thus building a Fuzzy Rule Based Classi�er (FRBC). The proposed
pipeline is simple to implement and adaptable to a wide range of NGS data, yet it has
demonstrated to be extremely e�ective.

The approach is benchmarked on a set of tumoural samples from TCGA, showing its
e�ectiveness; the approach classi�es the tumours with an accuracy of ∼ 93%, yet using a
compact set of∼ 50 rules. We believe that fuzzy techniques can be very useful in addressing
cancer classi�cation problems from CNV data. The set of understandable rules extracted
from the system can guide clinicians in selecting the best therapy, and help researchers in
understanding the mechanisms beyond the speci�c tumoural event.

Despite the good results illustrated here, several questions remain unanswered; �rst,
the positive e�ect of normal samples on the classi�cation accuracy must be clearly ex-
plained. Moreover, further discriminative power could be achieved considering in which
position inside the gene a CNV occurs (e.g. intronic or exonic); its impact must be carefully
addressed.

A further point that deserves an investigation is whether the set of rules can be shrunk
and mapped back to gene circuits, to better understand the mechanisms underpinning these
diseases.
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CHAPTER

SEVEN

DISCUSSION

More than �fty years after its introduction, fuzzy sets theory is still thriving and continues
to play a relevant role in a wide number of scienti�c applications. Nevertheless, while
the enrichments that fuzzy logic and set theory can provide are manifold, as thoroughly
discussed in Chapter 1, the recognition of fuzzy set and logic inside the machine learning
community remains somewhat limited.

In this thesis, we presented several approaches aimed at improving machine learning
techniques using tools borrowed from fuzzy set theory and logic. Particularly, we tried to
focus more on the machine learning perspective, thus inviting machine learning researcher
to appreciate the modelling strengths of fuzzy set theory.

We begin presenting FDT-Boost in Chapter 3, a boosting approach shaped according
to the SAMME-Adaboost scheme, which leverages fuzzy binary decision trees as base clas-
si�ers. Such trees are kept compact by constraining their depth, without a degradation
of the classi�cation accuracy. The experimental evaluation of FDT-Boost has been carried
out using sixteen classi�cation benchmarks. Comparing our approach with FURIA, one
of the most popular fuzzy classi�ers, with a fuzzy binary decision tree, and with a fuzzy
multi-way decision tree, we show that FDT-Boost is accurate, getting to results that are
statistically better than those achieved by the other approaches. Moreover, compared to a
crisp SAMME-AdaBoost implementation, FDT-Boost shows equivalent performances, but
the relative produced models are signi�cantly less complex.

Then, in Chapter 4, we present a distributed fuzzy random forest DFRF, that leverages
the Apache Spark framework, to generate an e�cient and e�ective classi�er for big data.
The approach is built upon a distributed fuzzy discretizer for big data that provides strong
fuzzy partitions for each continuous attribute; then, an ensemble of distributed fuzzy deci-
sion trees is built, employing the fuzzy information gain as splitting criterion. By perform-
ing a set of experiments on eight big datasets, the approach has been thoroughly evaluated.

In Chapter 5, we propose a novel approach for generating, out of big data, a set of fuzzy
rule-based classi�ers characterised by di�erent optimal trade-o�s between accuracy and
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interpretability. The approach, dubbed DPAES-FDT-GL, extends a state-of-the-art dis-
tributed multi-objective evolutionary learning scheme, implemented in the Apache Spark
environment. In particular, we exploit a recently proposed distributed fuzzy decision tree
learning approach for generating an initial rule base that serves as input to the evolution-
ary process. Furthermore, we integrate the evolutionary learning scheme with an ad-hoc
strategy for the granularity learning of the fuzzy partitions, along with the optimisation
of both the rule base and the fuzzy set parameters. Experimental investigations show that
the proposed approach is able to generate fuzzy rule-based classi�ers that are signi�cantly
less complex than the ones generated by the original multi-objective evolutionary learning
scheme, while keeping the same accuracy levels.

Lastly, we move into a real case scenario, showing how fuzzy systems could be em-
ployed in helping medical decision making; in Chapter 6 we propose a novel pipeline to
support tumour type classi�cation and rule extraction based on somatic CNV data. The
pipeline outputs an interpretable Fuzzy Rule-Based Classi�er (FRBC), on which inference
can be made. The pipeline benchmarking is performed over a set of samples of kidney can-
cer from TCGA. The results show the potential application of the approach: the method
is able to classify between three kidney tumour types, with an accuracy of ∼ 93%, using a
compact set of ∼ 50 interpretable rules.

Much work remains to be done, and fuzzy set theory has still a big role to play in
machine learning.

7.1 Directions for future work

The following subsections present a concise list of future directions which build on the
work presented in this thesis. Here we mainly focus on two particular aspects: FRBSs and
real case applications of fuzzy models.

7.1.1 The future of FRBS

In an age of deep complex black-box models, FRBSs may seem especially out of date; yet,
their continuance is primarily due to their being simple and understandable. Even if the
problem of �nding an agreed de�nition of interpretability is far from being solved — and
maybe even nonsensical, being user and problem dependent — the fact that a system with
only 7 rules is able to achieve nearly state-of-the-art accuracies on a 10M examples dataset
remains astonishing (Chapter 5). Thus, despite having been jettisoned by the machine
learning research community in the nineties, rule-based systems may still prove a worthy
research topic. The extremely fast pace at which the ML community is moving means that
a lot of nook and crannies are left unexplored. More often than not, however, something
worthy is found there; the several recent advancements in FRBCs are there to prove it.

Considering the context of big data, there is still a lot of work to be done; future works
should address the problem, in the speci�c setting of FRBCs, of bounding the size of the
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training set without experiencing losses in the achieved accuracy. In fact, this aspect is
crucial in dealing with Big Data, and e�ective solutions can extend the practical applica-
bility of DPAES-FDT-GL to extremely big datasets, with no signi�cant additional penalties
in the runtimes for the learning phase. Considering EFS, for example, the limiting factor
to overcame when coping with Big Data is the computation of the accuracy on the over-
all training set. This computation depends on the number of instances in the training set
and on the dimensionality of each instance. In Big Data generally both these numbers are
high and then require long runs before achieving satisfactory solutions. Thus, techniques
for reducing the number of attributes and the numerosity of the datasets, preserving the
accuracy achieved by the models, are very appealing.

7.1.2 Applications of fuzzy modelling

In the several decades that have passed since its inception, fuzzy set theory has evolved
as a very powerful and general modelling tool, able to deal with uncertainty in real life
scenarios. In fact, among the many contributions of fuzzy set theory, is that it made re-
searchers more aware of uncertainty. Uncertainty is unavoidable, and, as such, is better to
manage it properly than to simply ignore it.

We believe that, particularly in the application realm (for example, bioinformatics),
there is still a signi�cant contribution to be made. Because of its generality, modelling
uncertain phenomena is indeed where fuzzy set theory really shines. As stated, fuzzyness
describes event ambiguity, rather than uncertainty in event occurrence: since a wide class
of biologically related problems are based on vague assumptions, they may bene�t from
fuzzy set theory and logic.
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