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ABSTRACT 
 

Sociotechnical systems (STSs) indicate complex operational processes composed of interactive 

and dependent social elements, organizational and human activities. This research work seeks to 

fill some important knowledge gaps in system safety performance and human factors analysis 

using in STSs. First, an in-depth critical analysis is conducted to explore state-of-the-art findings, 

needs, gaps, key challenges, and research opportunities in human reliability and factors analysis 

(HR&FA). Accordingly, a risk model is developed to capture the dynamic nature of different 

systems failures and integrated them into system safety barriers under uncertainty as per Safety-

I paradigm. This is followed by proposing a novel dynamic human-factor risk model tailored for 

assessing system safety in STSs based on Safety-II concepts. This work is extended to further 

explore system safety using Performance Shaping Factors (PSFs) by proposing a systematic 

approach to identify PSFs and quantify their importance level and influence on the performance 

of sociotechnical systems’ functions. Finally, a systematic review is conducted to provide a holistic 

profile of HR&FA in complex STSs with a deep focus on revealing the contribution of artificial 

intelligence and expert systems over HR&FA in complex systems. The findings reveal that 

proposed models can effectively address critical challenges associated with system safety and 

human factors quantification. It also trues about uncertainty characterization using the proposed 

models. Furthermore, the proposed advanced probabilistic model can better model evolving 

dependencies among system safety performance factors. It revealed the critical safety investment 

factors among different sociotechnical elements and contributing factors. This helps to effectively 

allocate safety countermeasures to improve resilience and system safety performance. This 

research work would help better understand, analyze, and improve the system safety and human 

factors performance in complex sociotechnical systems. 

 

https://www.sciencedirect.com/topics/engineering/countermeasure
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CHAPTER 1 

INTRODUCTION 

 

 

1.1. Background 
 

The sociotechnical systems (STSs) (e.g., oil and gas, healthcare, aviation, manufacturing, 

construction, power industry, and automotive) indicate complex operational processes composed 

of interactive and dependent social elements, organizational and human activities. These systems 

are mainly attributed to dynamic complexity, relative ignorance, interactable and non-linear 

operations [1,2]. Chemical process industries (CPIs) as a salient example of STSs are indicated by 

nature as one of the most high-tech workplaces, where potentially catastrophic accidents can occur, 

owing to their intensive operations, a huge amount of hazardous material, complicated chemical 

process, rapid developments, complex business systems, and demanding interactive co-operation 

from humans. Recent process installations are equipped with significant reliable devices, advanced 

automation, and control, and various safety management systems to prevent incidents. However, 

major accident analysis reveals extensive continuous improvement is still required in process 

safety, particularly in the area of human and organizational factors [3]. For instance, a quarter of 

the 20 catastrophic accidents in CPIs in the four decades from 1974-2014, occurred recently in the 

five years from 2009 [4]. 

Human factors play a crucial role in this industry life cycle including design, construction, normal 

operations, maintenance, emergency operations, and decommissioning. However, human behavior 

and decision-making have been recognized as the main contributing and prevalent factors in 

abnormal situations and accident causation. A detailed analysis of incidents reveals that Texas City 

Disaster (1947), Piper Alpha disaster (1988), Texaco Refinery fire (1994), Bhopal gas leak tragedy 

(1984), Texas City Refinery explosion (2005), and Deepwater Horizon oil rig (2010), and Chevron 
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Richmond Refinery Accident (2012) are some examples of such major accidents and disasters 

which have received much publicity over past decades all of which have human errors either as a 

main direct cause or as an indirect cause. These accidents imposed countless losses so that a real 

estimation of all social, economic, and environmental damages may be impossible. The lists and 

statistical damage analyses of these catastrophic accidents can be found in numerous pieces of 

literature (Swuste et al., 2020). Human error directly or indirectly, in both individual and 

organizational perspectives, has therefore been recognized as the most responsible, complicated, 

and latent factor contributing substantially to an initiating event of an accident. Retrospective 

studies of major accidents and disasters in critical systems such as CPIs confirm that more than 

80% of accidents in the process industries, 75%–96% of casualties in marine operations, and more 

than 90% of accidents in nuclear power plants (NPPs) have been caused by human failure [7,8]. 

To address this issue therefore human performance indicators such as human error probability 

(HEP) must be carefully and continuously assessed to identify its possible influence on systems 

failure. Human reliability and Factors analysis (HR&FA) have been utilized and then developed 

as the main proactive strategy to tackle this challenge through identifying vulnerabilities within 

tasks and operations, understanding of error cycle and shaping factors, quantifying potential errors, 

and finally, guiding how to improve reliability and safety of the system. It also helps to enhance 

human-centered and error-tolerant design to make socio-technical systems inherently suited to 

operation by humans. Regardless of conducting HR&FA studies to acquire their benefits, 

successful development of other domains of process safety system requires integrating it into them, 

i.e. risk analysis, accident investigation, and safety culture. For instance, Noroozi et al. (2013) 

proved that including human error in the risk analysis of simple process equipment containing a 

pump, a valve, and a separator, added $ 68,615 to the total amount of estimated risk in terms of 
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asset loss, human loss, environment loss, and reputation loss for the accidents scenario [9].   

Considering these losses in a large complex plant adds an enormous amount of risk value [10]. As 

another example, the National Transportation Safety Board (NTSB, US) has reported that among 

18 accidents, in ten of them (1996-2000), human operator failure significantly contributed to the 

occurring initial events while material released to the atmosphere was  11,474,530 L and the 

overall financial damage was more than US $185 million [11]. As a result, the timely establishment 

HR&FA paves the way for a real investment in critical systems. 

Human performance in system safety focus has been investigated from two distinctive perspectives 

of human reliability  analysis (HRA) or human factors. The former mainly emphasizes predicting 

human performance (e.g., error probability), while improving human performance by optimizing 

system or task design is a major concern from the latter point of view.  HRA has been developed 

closely tied to nuclear safety and subsequently progressively become a research and applied area 

that is more connected with reliability engineering than human factors [12]. However, they are 

closely intertwined, and the benefit is reciprocal. For instance, human factors present an empirical 

basis to predict human error probability, as the most common human performance manifestation 

in HRA. On the other side, HRA paves the way to technically model human performance and 

incorporated it in an engineering perspective which consequently can be employed in the system 

design [12,13].  However, the quality of HRA relies on an understanding of human performance 

nature which it mainly most readily built on a human factors foundation  [12]. Furthermore, human 

error risk analysis and HRA often produced specific probability values regarding human-oriented 

functions, while failing to deliver deep insights concerning the sources of vulnerability, and 

complex resonance mechanisms resulted in adverse events, despite the minor improving new HRA 

techniques [13]. Therefore, this is significant room for human factors and HRA to contribute to 
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the science in which a more effective and firmer estimation of human performance and error can 

be obtained [14]. In this sense, there has been a strong interest within both HRA and human factors 

societies to explore the human role in contributing to safer and more resilient systems  [15].  One 

of the increasingly emerging paradigms is resilience engineering. Safety sciences and subsequently 

HRA have customarily centered on revealing factors that undermine existing safety instead of 

designing systems, processes, and organizations that optimize safety, while the latter is a core part 

of resilience engineering. Subsequently, decision makings in designing safety countermeasures are 

according to system thinking focus which will monitor performance variability and dampening 

critical. Therefore,  there is more rooms to scholarly understand how individuals and teams 

contribute to system resilience and safety [16]. 

Several techniques and models have been proposed to analyze human factors and reliability to 

improve system safety in sociotechnical systems. Although these models have brought significant 

improvement in safety and risk models, some significant drawbacks remain. These shortcomings 

include the following; 1) static structures of these models, while most process and human factors 

are variable and often occur in the operational time of a system; 2) uncertainty in input and output 

data, particularly in the form of probability or frequencies due to the lack of enough precise data 

of young emerging technologies; 3) inability to consider conditional dependencies among the root 

failures of complex systems; 4) inability to use predictive modeling to simulate system safety 

barrier’s behavior, and 5) incorporating often operational or mechanical failures into probabilistic 

safety analysis modeling, while human and organizational failures which are the deeper and more 

fundamental cause of accidents are ignored in most models. In other words, the conventional 

approaches cannot be utilized to model dynamic hazards, conditional dependencies, and common 

cause failure modes and they also use crisp and precise data that is rarely available or highly 
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uncertain. However, the existence of great uncertainty in these studies,  because of a lack of data, 

is a strong reason to move towards employing probabilistic  tools such as Bayesian Networks (BN) 

[17,18]. Therefore, the current research work aimed at developing holistic models for addressing 

some substantial concerns and demonstrating the importance of a dynamic approach in the 

HR&FA in STSs. 

 

1.2. Motivation and Objectives 

 

HR&FA plays an essential role in the entire life cycle of complex systems to develop and maintain 

sustainable and resilient operations. These factors significantly contributed to the design, 

construction, normal operation, maintenance, emergency preparedness, and decommissioning of 

complex systems. 

Several techniques, models, or concepts have been proposed for HR&FA in high-risk systems and 

these may be classified into two general approaches. The first classification is based 

on probabilistic risk assessment (PRA), while the second comes from the cognitive theory 

of control. The former was the first introduced while cognitive studies mainly concentrate on 

studying human primary cognitive operations (i.e. perception, understanding, and reasoning tasks) 

to analyze mental workload, decision-making, planning, and situation awareness [19]. In the two 

general research streams, since the ‘70s, many scholars have made both theoretical and empirical 

investigations to improve this domain, and consequently enhance process safety and risk analysis. 

However, there is no comprehensive knowledge in critically analyzing the HR&FA literature on 

CPIs, despite their importance both for the science of process safety and concerning its practical 

implications in decision-making to improve system safety from the human perspective. The 

https://en.wikipedia.org/wiki/Probabilistic_risk_assessment
https://en.wikipedia.org/wiki/Cognitive
https://en.wikipedia.org/wiki/Control_theory
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research work is designed to fill this knowledge gap as well as identify the needs, gaps, and 

challenges of HR&FA. 

However, traditionally established HR&FA models and techniques mainly rely on four main 

assumptions: a) a system can be fully decomposed into clear elements and accordingly events into 

individual acts, b) elements have functioned in a bimodal manner; either work or fail (Fig. 1), c) 

the sequence of events have preestablished and firmed as examined by selected representation and 

finally d) event combinations are linear either straightforward or complex and orderly [2,20]. 

While these assumptions may be partially true for technological systems, it is highly arguable to 

apply for STSs neither for risk assessment nor for accident analysis perspective [21,22]. 

Conventional techniques significantly improved our understanding of human behavior and error 

mechanisms and enhanced system safety and resilience in socio-technical systems. However, there 

are still some crucial challenges in establishing conventional techniques because of either 

insufficient classified data or emerging extensive databases (e.g., accidents data), subjective 

uncertainty and bias, emerging new performance shaping factors (PSFs) associated with Industry 

4.0, industrial internet of things (IIoT), and increasing complex system’s attributes (e.g., dynamic 

complexity, relative ignorance,  interactable and non-linear operations) [23]. 

Moreover, most scientific endeavors to replace expert-driven HR&FA methods with empirical 

data-driven methods have failed due to significant uncertainty in human reliability databases and 

the incapability of conventional techniques to relax them. Despite the emerging Bayesian and 

credal networks and their invaluable contributions, tackling data scarcity using the tacit knowledge 

of domain experts is still the most prevalent and practical way [24]. Hence, it is vital to propose a 

rigor model to address the critical challenges of incomplete and imprecise data in knowledge 

https://www.wordhippo.com/what-is/another-word-for/endeavor.html
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engineering, while it also should help to better understand, analyze, and improve the safety 

performance of complex sociotechnical systems. 

This research is aimed at developing a dynamic risk-based human factors assessment tool for 

complex systems with a primary focus on CPIs. The model integrates the complex, non-linear and 

unstable dependencies among a wide range of endogenous and exogenous factors that contribute 

to system safety in sociotechnical systems. Hence, the research goal is achieved through the 

following objectives. Each of these research objectives is translated into a research task presented in 

Figure 1.1.  

i) Develop a critical analysis of HR&FA which reveals engineering challenges and research 

opportunities. This will serve as a useful mechanism for designing the methodology 

developments, in this study, to improve HR&FA domain 

ii) To develop a dynamic and predictive system safety assessment model considering the 

integration of human failures into mechanical and operational failure, and safety barriers 

under uncertainty. The proposed model can serve as a useful tool for the operational safety 

management of complex engineering systems. 

iii)   To propose a dynamic model to analyze human-factor risk in sociotechnical systems. The 

proposed model is built considering the advanced canonical probabilistic approaches (e.g., 

Noisy Max and Leaky models) that address the critical challenges of incomplete and 

imprecise data. The proposed dynamic model would help better understand, analyze, and 

improve the system safety performance of complex sociotechnical systems. 

iv) To introduce an advanced approach to system safety in sociotechnical systems. The model 

proposed a novel Taxonomy of PSFs, a systematic procedure to quantify the importance level 

and influence of PSFs over the performance variability of sociotechnical systems’ functions 
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(e.g., organizational, human, and technological). It also deals with key challenges in 

knowledge engineering associated with HR&FA in complex systems. 

Vi) To examine the models developed with real-life case studies in various complex systems. 

i) To develop critical analysis in the knowledge engineering process in HR&FA using artificial 

intelligence (e.g., Machine learning, Deep learning) and knowledge-driven systems (e.g., Fuzzy 

expert systems). This will help to properly and healthy direct future research projects in 

HR&FA in complex systems considering the gained first-hand experiences in this research. 

 

Figure 1. 1 An algorithm showing the workflow to meet the present research objectives (RO) 

 

 

 

  

1.3. Research questions 
 

This section present research questions associated with research objectives (ROs) illustrated in Fig 

Grand research question: 
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• How can we improve the system safety and human factors techniques in STSs? 

Research questions associated with RO1: 

• What research streams have been investigated in the three elements of process systems from 

the HRA perspective? 

• How have previous investigations contributed to HRA, and what needs and gaps remain in 

these studies? 

• How should the current drawbacks be dealt with, and what challenges are HRA analysts facing 

in this journey? 

Research questions associated with RO2: 

• How can we address insufficient system safety-driven knowledge in emerging critical 

technologies? 

• How can we deal with subjective uncertainty in knowledge acquisition of system safety 

assessment in emerging critical technologies? 

• How can we dynamically model the evolving risks and system safety barriers’ failures? 

Research questions associated with RO3: 

• Which internal and external factors are associated with the performance variabilities of 

human, organizational, and technical functions in STSs? 

• How can we predict the probability of performance variability and deal with its uncertainty? 

• How can we quantify the intra-effects (coupled dependencies) among VSFs? 

• How can we update the prior probability distributions, given the new evidence? 

• How can we dampen the critical variability in a risk-based decision-making process? 

Research questions associated with RO4: 

• How can we model system safety using performance-shaping factors in STSs? 
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• How can we efficiently deal with subjective uncertainty, fuzziness, and vagueness in 

system safety assessment in STSs? 

• What are the most critical performance shaping factors contributing to system safety 

performance variability and system functions? 

Research questions associated with RO5: 

• How do advanced intelligence approaches apply to risk and safety assessment of human 

activities in complex operations?    

• Do machine learning techniques pave new insights and capabilities in accident learning 

using textual and numerical data? 

• How do fuzzy expert systems quantify the influence of PSFs on human reliability and 

integrate HEP into quantitative risk analysis? 

• Which myths, misapplications, and critical concerns should be considered using these 

advanced intelligent approaches? 

• Using bibliometric data analysis, how is the intellectual structure of knowledge in human 

factors in chemical process industries? 

 

1.4.  Scope and Limitations 
 

This study is developed for complex sociotechnical systems, specifically oil and gas operations. 

This research proposal uses advanced probabilistic and knowledge-driven techniques to focus on 

dynamic risk-based system safety and human factors in complex systems. This study is 

instrumental in understanding, analyzing, and predicting system safety and human performance to 

support dynamic decision-making under uncertainty. 
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System safety and human-factor risks are complex challenges in sociotechnical systems since 

These systems are mainly attributed to dynamic complexity, relative ignorance, and interactable 

and non-linear operations [1,2]. Moreover, it poses critical challenges in their prediction and 

management because of its stochastic nature, subjectivity, and data scarcity. Analyzing the safety 

of these critical systems suffering from human performance variability requires robust and 

dynamic models to capture the associated complexity and uncertainties in system modeling and 

knowledge engineering.  There are several uncertainties with the formation, key parameters, and 

variabilities mechanisms involved in this serious problem. This study is not an attempt to address 

all research gaps associated with the dynamic risk-based assessment of system safety suffering 

from human-factor risks but an attempt to tackle some of the research gaps related to oil and gas 

operations stemming from human and system performance resonance. 

 The unavailability of industrial human data implies that some of the models developed cannot be 

tested and validated with the real operational data set. 

 

1.5. Co-authorship statement  

 

The contributions of Esmaeil Zarei, Prof. Dr. Faisal Khan, and Dr. Rouzbeh Abbassi towards the 

research work and the thesis are discussed here.  

Esmaeil Zarei: Conceptualization and idea formulation, development of methodology, human 

factors, and system safety risk model development, performing data analysis, and model testing; 

writing the original draft of the manuscript along with all supporting documents for submission to 

journals; Reviewing and editing the manuscripts based on feedback from co-authors and journal 

reviewers.  
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Faisal Khan: Idea formulation of research, development of the methodology, development of 

model algorithms, guidance in data analysis, and re-organizing and review of the manuscripts and 

thesis.  

Rouzbeh Abbassi: Idea formulation of research, guidance in data analysis, and re-organizing and 

review of the manuscripts and thesis.  

 

1.6. Organization of the Thesis  

 

This thesis is written in a manuscript-based format. The overall outcomes of this thesis are 

represented in five peer-reviewed journal chapters. In general, chapter 1 is devoted to the 

introduction, while Chapter 8 presents the Summary, Conclusions, and Recommendations. 

Chapters 2 to 6 of this thesis are developed based on the chapter submissions to peer-reviewed 

journals. 

Chapter 2 presents a critical analysis of the state-of-the-art theoretical and empirical findings 

concerning HR&FA in CPIs. This chapter is published in Reliability Engineering & System 

Safety 211 (2021): 107607. 

Chapter 3 presents an innovative and dynamic risk model to analyze hydrogen infrastructure. This 

chapter is published in International Journal of Hydrogen Energy 46, no. 5 (2021): 4626-4643. 

Chapter 4 introduces an innovative and dynamic human-factor risk model to analyze safety in 

sociotechnical systems. This chapter is published in Process Safety and Environmental 

Protection 164 (2022): 479-498. 

Chapter 6 proposed an advanced approach to the system safety in sociotechnical systems. This 

chapter is accepted in Safety Science. 

https://www.sciencedirect.com/science/article/pii/S0957582022005729?casa_token=oEcYOzVvPwAAAAAA:4VWaVV-tmjJwJp4XQyVi-OT7k8QdywOvQjyp7RBW02SE0oh8xZGzBpg-AsVXpZDH1Xaom11R
https://www.sciencedirect.com/science/article/pii/S0957582022005729?casa_token=oEcYOzVvPwAAAAAA:4VWaVV-tmjJwJp4XQyVi-OT7k8QdywOvQjyp7RBW02SE0oh8xZGzBpg-AsVXpZDH1Xaom11R
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Chapter 6 illustrates how have artificial intelligence and expert systems contributed to HR&FA in 

complex systems. This chapter is accepted to present in the 2022 Mary Kay O'Connor Safety and 

Risk Conference. Texas A&M University, Oct 2022. It is also published in Process Safety and 

Environmental Protection (2023), 171: 736-750. 

It should be noted that the literature is done for each task and included in each chapter rather than 

presented as a separate chapter. 
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CHAPTER 2 

Importance of human reliability in process operation: A critical analysis 
 

 

Preface  
A version of this chapter has been published in Reliability Engineering & System Safety 211 

(2021): 107607. I am the primary author along with the Co-authors, Faisal Khan, and Rouzbeh 

Abbassi. I developed the critical analysis of stat-art-of-the theoretical and empirical findings, 

shedding light on the strengths and shortcomings of current literature and identifying the needs, 

gaps, and challenges of HRA in CPI. I prepared the first draft of the manuscript and subsequently 

revised the manuscript based on the co-authors’ and peer review feedback. Co-author Faisal Khan 

helped in the concept development, design of methodology, reviewing, and revising the 

manuscript. Co-author Rouzbeh Abbassi provided fundamental assistance in validating, 

reviewing, and correcting the model and results. The co-authors also contributed to the review 

and revision of the manuscript.  

 

Abstract 
 

Chemical process industries (CPIs) work with a variety of hazardous materials in quantities that 

have the potential to have large health, environmental and financial impacts and as such are 

exposed to the risk of major accidents. The experience with accidents in this domain shows many 

cases which involve complex human-machine interactions. Human Reliability Analysis (HRA) 

has been utilized as a proactive approach to identify, model, and quantify human error highlighted 

as the leading cause of accidents.  Consequently, researchers have actively worked on enhancing 

process safety and risk engineering since the '70s. However, despite its importance and practical 

implications for improving human reliability, there has not been a review of human reliability 

related to processing systems. The present study is aimed at presenting a systematic attempt to 

identify the needs, gaps, and challenges of HRA in CPI. An in-depth analysis of the literature in 
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Web of Science core collection and Scopus databases from 1975 to August 2020 is conducted. 

This analysis focuses on human factors in three critical elements of CPIs: maintenance operations, 

emergency operations, and control room operations. The analysis synthesizes the theoretical and 

empirical findings, shedding light on the strengths and shortcomings of current literature and 

identifying research opportunities. A comparison of HRA in CPIs is undertaken with nuclear 

power plants (NPPs) to better understand the current stage of research and research challenges and 

opportunities.  

 

Keywords: Human Reliability Analysis; Human error; Process industry; Emergency 

management; Control room; Maintenance operations. 

 

2.1. Introduction 
 

 

Chemical process industries (CPIs) are indicated by nature as one of the most high-tech 

workplaces, where potentially catastrophic accidents can occur, owing to their intensive 

operations, a huge amount of hazardous materials, complicated chemical processes, rapid 

developments, complex business systems, and demanding interactive co-operation from humans. 

Recent process installations are equipped with significant reliable devices, advanced automation, 

and control, and various safety management systems to prevent incidents. However, major 

accident analysis reveals extensive continuous improvement is still required in process safety, 

particularly in the area of human and organizational factors [1]. For instance, a quarter of the 20 

catastrophic accidents in CPIs in the four decades from 1974-2014, occurred recently in the five 

years from 2009 [2]. 

Human factors play a crucial role in this industry life cycle including design, construction, normal 

operations, maintenance, emergency operations, and decommissioning. However, human behavior 
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and decision-making have been recognized as the main contributing and prevalent factors in 

abnormal situations and accident causation. A detailed analysis of incidents reveals that Texas City 

Disaster (1947), Piper Alpha disaster (1988), Texaco Refinery fire (1994), Bhopal gas leak tragedy 

(1984), Texas City Refinery explosion (2005), and Deepwater Horizon oil rig (2010), and Chevron 

Richmond Refinery Accident (2012) are some examples of such major accidents and disasters 

which have received much publicity over past decades all of which have human errors either as a 

main direct cause or as an indirect cause. These accidents imposed countless losses so that a real 

estimation of all social, economic, and environmental damages may be impossible. The lists and 

statistical damage analyses of these catastrophic accidents can be found in numerous pieces of 

literature [3,4]. Human error directly or indirectly, in both individual and organizational 

perspectives, has therefore been recognized as the most responsible, complicated, and latent factor 

contributing substantially to an initiating event of an accident. Retrospective studies of major 

accidents and disasters in critical systems such as CPIs confirm that more than 80% of accidents 

in the process industries, 75%–96% of casualties in marine operations, and more than 90% of 

accidents in nuclear power plants (NPPs) have been caused by human failure [5,6]. To address this 

issue therefore human error probability (HEP) must be carefully and continuously assessed to 

identify its possible influence on systems failure. Human reliability analysis (HRA) has been 

utilized and then developed as the main proactive strategy to tackle this challenge through 

identifying vulnerabilities within tasks and operations, understanding of error cycle and shaping 

factors, quantifying potential errors, and finally, guiding how to improve reliability and safety of 

the system. In other words, HRA aims at identifying, modeling, and quantifying human error that 

may occur in different activities. HRA also helps to enhance human-centered and error-tolerant 

design to make socio-technical systems inherently suited to operation by humans. Regardless of 
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conducting HRA studies to acquire their benefits, the successful development of other domains of 

process safety systems requires integrating HRA into them, i.e. risk analysis, accident 

investigation, and safety culture. For instance, Noroozi et al. (2013) proved that including human 

error in the risk analysis of a simple process equipment containing a pump, a valve, and a separator, 

added $ 68,615 to the total amount of estimated risk in terms of asset loss, human loss, environment 

loss, and reputation loss for the accidents scenario [7].   Considering these losses in a large complex 

plant adds an enormous amount of risk value [8]. As another example, the National Transportation 

Safety Board (NTSB, US) has reported that among 18 accidents, in ten of them (1996-2000), 

human operator failure significantly contributed to the  occurring initial events while material 

released to the atmosphere was  11,474,530 L and the overall financial damage was more than US 

$185 million [9]. As a result, timely establishing HRA paves the way for a real investment in 

critical systems.  

Several techniques, models, or concepts have been proposed for analyzing human reliability in 

such high-risk systems and these may be classified into two general approaches. The first 

classification is based on probabilistic risk assessment (PRA), while the second comes from the 

cognitive theory of control. The former was the first introduced while cognitive studies mainly 

concentrate on studying human primary cognitive operations (i.e. perception, understanding, and 

reasoning tasks) to analyze mental workload, decision-making, planning, and situation awareness 

[10]. In the two general research streams, since the ‘70s, many scholars have made both theoretical 

and empirical investigations to improve this domain, and consequently enhance process safety and 

risk analysis. However, there is no systematic study to review the available HRA literature on 

CPIs, despite their importance both for the science of process safety and concerning its practical 

implications in decision-making and improving human reliability. However, several review 

https://en.wikipedia.org/wiki/Probabilistic_risk_assessment
https://en.wikipedia.org/wiki/Cognitive
https://en.wikipedia.org/wiki/Control_theory
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investigations have been made in similar safety-critical industries (i.e. NPPs, presented in Table 

3.4) and even in operations that are less sensitive to safety and risk issues than CPIs. Considering 

this vital interest, the present study is the first study that aims at conducting a systematic 

investigation of HRA in CPIs through an in-depth analysis of the literature in Web of Science core 

collection and Scopus databases from 1975 to 2020. It is noteworthy that there are critical 

operations in hazardous process systems where human interference has enormous potential for 

human error, and subsequently for major accident occurrence. In this critical analysis, hazardous 

and essential operations are classified into control, maintenance, and emergency operations and 

more details are provided in the following sections. Studies have concluded that hydrocarbon 

companies should concentrate their main programs on human factor management in these three 

critical elements [9,11]. Accordingly, the review article focuses on HRA in these three critical 

elements of CPIs including maintenance operations, emergency operations, and control room 

operations (Human- machine interference (HMI)) where most catastrophic accidents have arisen.  

It is believed that managing some emergency operations may need the involvement of control 

room operators to bring an abnormal situation to a normal or safe condition. This condition is 

common in some critical sectors such as NPPs. It is important to notice that emergency response 

management requiring control room interventions is rarely investigated concerning HRA in CPIs. 

Moreover, the vast majority of human reliability literature on control room operations of CPIs has 

focused on normal operations which required intervention by operators. In other words, the HRA 

of control room activities involving managing emergencies has not been investigated enough in 

CPIs yet. Accordingly, we focused on operator reliability analyses that have been conducted in 

normal operations and are considered to be control room operations (section 3.4), while 

emergency operations management which did not have any involvement of control room 
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operators is considered to be emergency operations (section 3.3). It is worth paying attention to 

this matter once there are sufficient investigations of emergency operations in which control room 

activities play a role and which become available in future review studies. 

The main objectives of the present study were to synthesize the theoretical and empirical findings, 

to recognize the main research streams as well as to shedding light on the strengths and 

shortcomings of literature to enable exploration of the research and practice opportunities. 

Moreover, the authors demonstrate a comparison of HRA investigations in CPIs with nuclear 

power plants as similar social-technical systems in a safety-critical perspective to better understand 

the current stage of research in this domain. To this end, the main research questions addressed in 

this review are as follows: 

• What research streams have been investigated in the three elements of process systems from 

the HRA perspective? 

• How have previous investigations contributed to HRA and what needs and gaps remain in 

these studies? 

• How should the current drawbacks be dealt with and what challenges are HRA analysts facing 

in this journey? 

The rest of the paper proceeds as follows. In Section 3.2, the applied methodology is provided, 

while in Section 3.3, the results and discussions are presented. Section 3.4 is given to the 

conclusions of this review. 

  

2.2. Research Methodology 
 

 

This critical review study was conducted based on available literature in the HRA domain in the 

process industry  sector in Web of Science (WoS) core collection and Scopus databases from 1975 
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to 2020.   After selecting appropriate keywords and combining them with Boolean operators (AND, 

OR, NOT, or AND NOT), advanced search operations were conducted in both databanks. Fig. 2.1. 

illustrates the six main steps of the employed framework in the present study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 1 The research methodology adopted for the HRA critical review in the process industry 

 

As can be seen, as around 950 (WoS) and 1470 (Scopus) documents were found in the first 

selection, it was necessary to apply exclusion criteria to allow for a review investigation. This 

research focused on HRA studies in three hazardous elements of CPIs containing maintenance 

operations, emergency operations, and control room operations which were substantially prone to 

catastrophic accidents contributed to by human failure. Hence, studies beyond this scope, HRA in 

beyond maintenance, emergency response, and control room activities in the process industry, 

process industry, chemical industry, 

process systems, oil and gas, offshore, 

process safety, loss prevention, 

maintenance, control room, emergency 

management, petrochemical, harsh 

environment, marine safety 
 

Selected Keywords: 

human error, human reliability, 

human failure, operator error, 

human performance factor, 

performance influencing factor, 

human factor, situation awareness 
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were excluded from the next steps in the present research. In the following steps, firstly all 

abstracts, and then full texts of vague abstracts were reviewed by the research team. Considering 

the duplicated documents and ignoring highly similar papers in methodology and case study 

perspective, 500 credible pieces of literature were finally selected for an in-depth analysis. 

Moreover, the references in the selected papers were also reviewed for further investigation of 

potential omissions of the papers. Finally, we scrutinized the selected documents to respond to the 

research question. 

 

2.3. Results and Discussion 
 

 

In this section, firstly, a brief review of HRA studies is provided and then literature on three 

considered elements (i.e. maintenance, emergency, and control operations) is discussed. The 

authors tried to define the main gaps, needs, and challenges of HRA in the domains of oil and gas 

operations. Moreover, dominant research lines to date, as well as streams and directions for future 

investigations, are specified. 

 

2.3.1. A brief review of HRA Literature 

 
From the initial academic publications (i.e. the '60s) on the general introduction of human error to 

the present (2020), approximately 500 pieces of scientific literature have been published based on 

a core collection of the Web of Sciences database on HRA in CPIs. Fig. 2.2 shows the number of 

scientific publications based on two previous study results and the present study from 1987 to Aug 

2020. Amin et al. (2018) aimed to analyze process safety and risk analysis literature in the process 

industry by August 2020 using WoS Core Collection, Scopus, and Compendex database [12], 

while Tao et al. (2020) analyzed the HRA literature generally in various fields (i.e. NPPs, 

healthcare, chemical plants) by 2018 using Web of Science Core Collection [13]. These review 
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studies have been selected to provide a reference comparison with the present study to illustrate 

the total number of publications and the general trend in these fields. 

  

Figure 2. 2 The number of scientific publications in process safety and human reliability 

 

Overall, the findings illustrated an increasing level of academic publications in three domains over 

the time frame. However, as can be seen, the HRA in the process industry receives much less 

attention in comparison with other sectors. Even considering the study of Tao et al. (2020), which 

reviewed HRA investigations in various domains, there is a marked difference in the number of 

studies conducted in safety and risk analysis in CPIs. The findings of the present research were 

confirmed by other studies. For instance, Ramos et al. (2020) recently argued that the most well-

known HRA techniques have been proposed and utilized in NPPs, whereas the process industry 

has mainly concentrated on process safety in terms of technical aspects of the operation and 

equipment as well as quantitative risk analysis (QRA) [14,15]. Considering the human role as the 

factor most contributing to major accidents, there is, therefore, an urgent call for leading 

researchers and academic centers to pay more attention to this domain. To add a value for HRA 
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practitioners, Table 2.1. presents some examples of CPI facilities addressed by HRA studies where 

human error probability is predicted in sub-task activities in each considered element (i.e. 

maintenance, emergency, and control operations) of CPIs operations. 

 

Table 2. 1 Some examples of human tasks in each operation category and corresponding HEP value 

Typical CPI facilities Operation type Sub task example HEP value 

 Oil and gas facility 

[16] 

Maintenance 

 (i.e. condensate 

pump) 

Conducting pressure and isolation leak tests   1.54E-0.1 

Closing the isolation valve  2.31E-02 

Depressurizing the drain lines 1.54E-04 

Maritime [17] 

Emergency 

management  

(i.e. fire pump on-

board ship) 

Monitoring water pressure (Pre-activity) 7.46E-03 

Monitoring water pressure (Post-activity) 3.64E-02 

Opening inlet and outlet valves  1.77E-01 

Petrochemical plant   

[18 ]  
Control room  

Commissioning boiler 1.44E-01 

Controlling warning signs 4.34E-01 

Controlling of production 4.97E0-1 

 
 
 
 
 

2.3.2. Maintenance operations 
 

 

Maintenance is one of the most vital operations to maintain the desired profitability of the process 

and to optimize the life cycle cost by increasing the availability and reliability of the system [19].   

It is reported that more than $300 billion is spent annually on industrial maintenance and operation 

in the US and around 80% of this value is allocated to addressing the correction of the chronic 

failures of machines, systems, and people [20]. There are different strategies such as budget, 

resources, goals, and types of maintenance according to national standards and internal 

requirements of companies. There are two general types of maintenance philosophy,  namely 

proactive (i.e. Predictive maintenance (PdM), Condition or risk-based maintenance (CBM, RBM), 

Time-based maintenance (TBM), Reliability centered maintenance (RCM)) and secondly reactive 

types (i.e. Emergency maintenance, Deferred corrective maintenance). Personnel is the most 

https://www.onupkeep.com/learning/maintenance-types/emergency-maintenance
https://www.onupkeep.com/learning/maintenance-types/corrective-maintenance
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common and main elements of the maintenance operations in every employed strategy. Moreover, 

human activities are the core ingredient of any maintenance steps, which involves developing an 

action plan, disassembling, inspecting, repairing, reassembling equipment, and reoperation. These 

activities are performed under various and often harsh circumstances which may lead to human 

error such as installing or replacing a wrong part or assembling the part in the wrong sequence 

despite all technological enhancements. Buncefield explosion (2005) (total losses over ₤1 billion, 

injured 43 people), as the largest peacetime explosion in European history, is a concrete example, 

caused mainly due to lack of understanding of relatively new technology and insufficiently detailed 

procedures in maintenance organization. A study revealed that among 60 possible human factors, 

nearly half of them contributed to this explosion occurrence [21]. Bhopal gas leak tragedy (1984, 

claimed death toll over 16,000, at least 558,125 people injured), Piper Alpha disaster (1988, 167 

death toll and $3 billion lost) were also attributed to maintenance failures such as inexperience, 

poor maintenance procedures, and deficient learning mechanisms [22]. Hence, human error 

occurrence in maintenance activities not only increases the overall risk which may result in such 

disasters, but it also fails (maintenance organization in attaining their philosophy of increasing 

productivity, reliability, and availability of a system.  

It is reported that around 20% of all accidents and about 10–15% of all fatalities have occurred in 

maintenance operations in Europe [23]. Furthermore, Reason and Hobbs (2003) pointed out that 

human performance problems that had arisen from maintenance activities comprised the highest 

level of between 42% - 65% compared to levels of other activities within NPPs in the United States 

[22]. Therefore, reaching the desired targets in maintenance operations is required to allow 

successful HAR to minimize the risk of possible errors. To adhere and highlight this philosophy, 

more than 25 studies were conducted by various researchers in the CPIs. Table 2.2 illustrates the 
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most relevant studies to HRA in maintenance operations in the process industries. It is worth noting 

that the studies which had the same findings or aims or applied the same methods, were those that 

brought significant influence on HRA in maintenance activities as shown in Table 2.2. 

 

 

 

 

 

 

 

 

 

 

Table 2. 2 Human reliability analysis studies in maintenance operations in the process industry 

Year Method Main objectives Domain Main findings 

2019[16] 
Evidence theory, 

HEART 

Addressing HEART’s 

deficiency 

Condensate pump in 

Offshore facility 

Estimating HEP more 

accurately 

2019[21] 
Questionnaire-based 

on Reason's model 

Identifying causality of 

HFs 

Instrumentation and 

electrical devices in 

Buncefield explosion (BE) 

28 human factors 

contributed to BE 

from 60 possible 

factors 

2019[24] SOHRA Effect of maintenance 

4.0 and PMS on HR 

Diesel generator in Marine 

system 
HEP reduced by 83% 

2018[25,26] Structured 

questionnaire, BN 

Developing data collection 

and analysis procedures 

 

Marine Engine and Deck 

Departments  

Identifying and 

weighing PSFs, HEP 

estimation 

2017[27,28] SLIM, Modified 

HEART 

Development of a 

monograph for HEP 

assessment 

Condensate pump in 

Marine engines 

Rapid and accurate 

estimation of HEL  

2017[29] Genetic algorithm, 

Simulated annealing 

Effect of fatigue and time 

pressure on grouping 

maintenance activities 

Petrochemical plant 

HE increased by 

simultaneous 

activities 

2016[30] Questionnaire 

Maintainer’s perceptions 

of organizational 

effectiveness and 

operational reliability 

Nine petroleum production 

facilities 

Identified significant 

contributing factors 

to MTTF 
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2016 [31] SLIM 

 

Considering HE in 

maintenance interval 

estimation 

Gas chilling and 

liquefaction units in LNG 

facility 

Shutdown 

maintenance 

activities become 

safer and more 

reliable 

2015[32] SLIM, THERP, 

RFID 

HEP prediction and 

reduction  
Offshore condensate pump 

A net HEP reduction 

of 1.09% using RFID 

tools 

2014[33] 
SLIM, Fuzzy 

cognitive maps 

(FCM) 

Optimization of condition-

based maintenance by 

human error 

Five petrochemical plants 

HE had a significant 

effect on system 

average unit cost 

2013[34] 
Questionnaire-based 

on HFIT and 

interview 

Identify the human factors 

contributing to 

maintenance failures 

Petroleum industry 

Prevalent failures 

attributed to 

assumptions (79% of 

the case, and 

communication 66%) 

2013[7] SLIM 
Integrating human error 

into risk analysis (ETA) 

Offshore facilities (pump, 

separators) 

A significant 

difference in risk 

value occurs if HEP 

is ignored in QRA. 
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As has been indicated, all investigations that have been conducted in recent decades frequently 

employed the conventional HRA techniques (1st and 2nd generations) to assess human reliability. 

As can be seen from Table 2.2, some principal steps have been established in HRA in marine 

maintenance activities. For instance, Islam et al. (2020) integrated evidence theory into the 

HEART method to reduce uncertainty in HEP prediction [16], developed data collection and 

analysis procedures to explore the relative importance of performance-affecting factors [25,26], 

and proposed a monograph for human error likelihood assessment to rapidly and accurately 

estimate HEL (Islam et al. 2017b) for maintenance operations of marine systems. Moreover, a 

specific method based on HEART, named SOHRA, accompanied by marine-specific errors-

producing conditions was developed by [35], although it covers the entire scope of marine 

activities not only maintenance. However, such fundamental attempts have not been observed in 

maintenance operations of onshore facilities where most of the high-risk oil and gas operations are 

performed. Hence, developing and validating more specific techniques and PSFs for these 

activities requires further investigations. 

Another example of studies is the questionnaire-based survey according to Reason's accident 

model which was investigated to identify the causality of HFs in instrumentation and electrical 

devices’ maintenance [21]. This study is a qualitative investigation and suffers from strong 

causation modeling to illustrate how and to what extent the latent factors/errors, directly and 

indirectly, contribute to HRA. As a result, efforts are needed in future studies to draw detailed 

attention to the causality modeling of HFs using advanced modeling techniques. 

Another valuable research employed a new machine-assisted digital approach based on the 

maintenance 4.0 approach, to perform maintenance activities. This investigation showed) that HEP 

decreased by 83% compared to planned maintenance schedule (PMS), the most commonly used 
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maintenance approach on board a ship, by mainly reducing the human workload in maintenance 

operations [24]. This effectiveness also proved that considering human error in condition-based 

maintenance had a significant effect in reducing system average unit cost [33]. This found the 

importance of optimization of the conventional maintenance approaches by considering HRA 

perspective in future research.  

There is a shortage in considering human errors in risk analysis of maintenance operations in CPIs. 

Noroozi et al. (2013), was the only study that presented an excellent attempt at considering human 

error recovery as a safety barrier using the event tree analysis method where maintenance error 

was placed as the initial event. Although this study focused on simple process equipment including 

a valve, a pump, and a separator in offshore facilities, findings confirmed that a significant 

difference in the risk level occurs when human error is included in the risk analysis, and it could 

add $68,615 to the risk value. Nonetheless, this necessity has not received the attention it deserves, 

and more studies are required to incorporate human error into other popular quantitative risk 

analysis methods in complex maintenance operations. Furthermore, integrating human error into 

the risk assessment process of the causal modeling process and mechanical failures needs more 

investigation of maintenance activities.  

Among the available HRA techniques, SLIM, HEART, SOHRA (a specialized version of HEART 

for the maritime field), and THERP methods were frequently employed to assess human reliability 

in maintenance activities. These studies brought significant improvement to HRA in maintenance 

activities, particularly in marine operations. However, the employed methods are located in the 

first-generation category of HRA approaches and suffer from some important methodological 

drawbacks, as follows: 

• Lack of an enough tailored set of PSFs focused on maintenance operations (M-PSFs) in CPIs.  
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• Heavy reliance upon experts’ opinions for selecting M-PSFs and assigning a value to estimate 

HEP. 

• Great epistemic (subjective) and aleatory (objective) uncertainties in human error 

identification and quantification. 

• Inability in human error modeling to illustrate the root cause and their mechanism and latent 

interactions between internal and external factors contributed to error occurrence. 

• Too great a concentration on external influencing factors (i.e., organization, task, operator, 

system) and not enough on internal factors (i.e. Memory faults, Decision-making failures) as 

well as failing to identify error types. 

• Failing to model potential dependencies among PSFs, different tasks performed 

simultaneously, and different groups (HSE, operations, engineering, maintenance) in a 

maintenance cycle. 

• Assigning only binary criteria to human performance (success/failure).  

• Lack of empirical data for model development and validation, and HEP prediction in various 

maintenance tasks. 

• Linear quantification for HEP using multiplying PSFs value by a nominal error rate. 

• Heavy focus on executing the work step and ignoring HRA in other important maintenance 

phases (i.e., system configuration, maintenance plan review). 

• Static structural nature of techniques and inability to capture and model dynamic behaviors of 

the system. 

 

These drawbacks and corresponding challenges have been emphasized in different studies 

[7,16,20,36,37] hence further research and challenges call for future efforts in this research stream. 

As a case in point in NPP’s maintenance, Heo and Park (2010) developed a tailored framework 
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for risk analysis of human errors [38], Khalaquzzaman et al. (2010) proposed a model to estimate 

system unavailability owing to human failure, while Prasad and Prabhu (2010) conducted a 

systematic review of human error in aviation maintenance and inspection [39].  

 

2.3.3. Emergency operations 

 

Emergency operations as a last and critical defense layer are a core section of reactive safety 

measures to mitigate potential losses (i.e., the death toll and injures economic and environmental 

damage) and improve the resilience of critical systems  when a major accident occurs. These 

operations may be divided into three phases: (1) pre-emergency, (2) emergency response, and (3) 

post-emergency. Prevention and mitigation accompany preparedness measures in the first step, 

while response and recovery actions are utilized in the two last phases, respectively. Although 

emergency or crisis management inherently attempts to minimize the risk of catastrophic 

consequences such as fires, explosions, and toxic release scenarios, any human failure can not only 

fail to successfully implement a scheduled plan but can also result in irreversible damage in oil 

and gas installations. Increasing complexity in the real-world, less opportunity to practice, massive 

exposure to the hazardous and harsh physical environments, applying high time pressure, 

unfamiliar situations with incomplete information, simultaneous involvement with different 

disciplines, degradation of infrastructure and plant equipment, and failing safety and control 

systems are the main reasons giving rise to the more likely occurrence of human error in emergency 

operations [40,41]. Moreover, most activities in emergency management are performed by, or rely 

on, human activities or decisions that increase human susceptibility to failure in their desired 

performance. 
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Bhopal (1984) and Piper Alpha disasters (1988), Vermilion Block incident (2010), the Gulf of 

Mexico [40], BP Grangemouth Refinery incidents (2010) [42], and Bouali Sina Petrochemical 

Plant fire (2016), the largest fire in Iran’s petrochemical industry to date, are some well-known 

instances of catastrophic events where human error played a substantial role in increasing 

devastating effects during emergency management. It is highly acknowledged that most of these 

accidents could have been prevented if human factors had been adequately considered during 

design and emergency planning [40]. Furthermore, the vital importance of human factors in 

emergency operations has been identified by several reports published by the HSE UK dealing 

with the inclusion of human factors in CPIs, and the HRA of safety-critical tasks in the offshore 

industry [43,44]. As a result, effectively assessing human reliability in all phases of the emergency 

management cycle plays an important role in operating safer and more resilient organizations. To 

achieve this philosophy, since the 1980s, 20 investigations have been conducted to explore HRA 

in emergency operations of offshore and onshore facilities. The employed methodology, main 

objectives, and achievements of the important and most relevant of these studies are presented in 

Table 3.3.  
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Table 2. 3 Human reliability analysis studies in emergency operations in the process industry 

Year Methodology Main objectives Domain Main findings 

2020[45] 

BN-CREAM, BN-

SLIM, BPL, 

BN-SPARH 

Validation of some BN-

HRA methods by 

simulation data 

Virtual offshore 

evacuation (VOE) 

BN-SLIM is more accurate and 

outperforms others 

2020[46] 
HFACS, Fuzzy-

TOPSIS 

Qualitatively evaluate    

the influence of human 

various factors and errors 

Hypothetical platform 
Enhancing decision making 

during emergency response 

2019[47] 

Virtual offshore 

emergency training 

simulator, BN 

Presenting computational 

human behavior simulation 

model 

Offshore emergencies 

Modeling human behavior 

variability in emergency 

operations 

2019[48] 
Interpretative structural 

modeling (ISM), BN 

Causal factors analysis in 

emergency processes of 

fire accidents 

Oil-gas storage and 

transportation 

Integrating HFs into causality 

modeling in emergency processes 

2018[17] FST, SOHRA 

HE assessment during 

operating procedures of an 

emergency fire 

Pump at the on-board 

ship unclear 
Estimation of HEP 

2016[49] 

 

Simulator, BN, 

questionnaire 

Modeling unobservable 

person-based PIFs by 

behavior indicators 

VOE 
Quantifying unobservable PIFs 

using VE and BN 

2014[50] 
Evacuation protective 

layers diagram, ETA 

Discussing the human and 

organizational factors 

(HOFs) in HE 

Evacuation operations 

on BP Deepwater 

Horizon accident 

Identifying HOFs contributed to 

the unsuccessful evacuation 

operations 

2014[51] 
Computer-aided 

simulation, BN 

Handling the data scarcity 

problem in HRA 
VOE 

Developing a data collection 

methodology 

2013[52] 

Evidence theory, BN, 

Expert judgment, 

SLIM 

Reducing the uncertainty 

and conflict in HEP 

estimation 

Offshore Emergency 

conditions 

 

Providing more reliable and 

precise human error 

estimation 

2010[53] 
HAZOP, Bow-tie 

Risk graph and Matrix, 
Human error risk analysis 

Muster process in 

offshore installations 

Developing an HR risk 

assessment method 

2006[54] HEPI, SLIM 
Risk management of 

human error 

Emergency offshore 

musters 

Developing an HR risk 

management method 

2005[44] SLIM, Questionnaires 
Prediction of HEP in the 

emergency musters 

Offshore production 

platforms. 

Presenting HEP data for offshore 

musters 

1998[55] Data collections Generating HEPs data 
Lifeboat evacuation in 

offshore installations 

Qualitative and quantitative data 

were collected successfully. 

1993[56]* 

1995[57]* 

2013[40] 

The EER HAZOP 

methodology 

Identifying 

systematically the EER 

hazards 

Offshore installations 
Incorporating human failure into 

systematic hazard analysis in EER 

 

1987[58] 
Operator Action Event 

Trees, database 

Assessing HR during the 

detailed engineering phase 

Offshore emergency 

blowdown system 

 

Increasing the design's margin of 

safety by HRA 

* Technology Report 
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Retrospective purpose-based analysis of these articles reveals the main research streams of HRA 

in emergency management as illustrated in Fig. 2.3.  

 

Figure 2. 3 Main research streams in HRA of emergency operations in the process industry 

 

One of the fundamental needs and challenges in HRA already exists in the first research stream 

being the lack of a human error database in emergency activities. The databank is a vital factor 

influencing HRA quality, particularly HEP prediction [59]. Thanks to the availability of virtual 

simulators, significant efforts in recent years have been made by researchers to compensate for 

data scarcity in this research area [47,49,51]. Nevertheless, in comparison with similar critical 

systems like NPPs (i.e. OPERA [60], HERA [61], SACADA [59], CORE-DATA [62]) and the 

aviation domain, developing a structural procedure, the theoretical foundations, and subsequently 

HRA database should be urgently established through active and mutual cooperation by both 

academic and leading oil and gas organizations. Moreover, developing operator training and 

simulating programs that support mutual databanks can be a genuine attempt at HRA. Although 
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retrospective accident analysis demonstrated that the frequency of major accidents and disasters, 

which occurred mainly due to human error in CPIs, is higher than NPP, fewer fundamental 

theoretical and technical developments in this critical domain are presented in comparison to NPP. 

For instance, several specific methods (i.e. AGAPE-ET [63]) and standard taxonomies of PSFs 

[64] for emergency tasks in NPP, or even for railway [65] were developed, while they exist as 

main shortcomings in the process industries. 

Some attempts have been made in the second research line (methodology improvement) category 

by employing the Dempster -Shafer Evidence Theory (DST) and BN techniques. The former was 

used to address uncertainty due to partial ignorance and subjectivity and variability in multi-expert 

judgments, while the latter was utilized to solve unrealistic independence assumptions through 

dependency modeling among human factors and corresponding activities, in the awareness phase 

of muster action [52]. Although DST is a popular tool to deal with uncertainty modeling, it suffers 

however from some important drawbacks, including conflict management when evidence conflicts 

within a scenario. Further, the elements in the frame of discernment must be mutually exclusive in 

DST. These shortcomings have greatly affected the theory’s practical application in uncertainty 

modeling [66,67]. There are huge technical and social differences among potential emergency 

scenarios in oil and gas operations. This issue along with the numerous uncertainty sources in 

expert knowledge elicitation, as the most popular HEP prediction approach, stimulate demand for 

utilizing advanced both non-probabilistic and probabilistic methods or hybrid approaches to tackle 

these issues. For instance, interval or fuzzy calculus, p-box formulations, information theory, 

game-theoretical foundations, Monte Carlo simulation, D Number theory are non-probabilistic, 

while credal set, probability box, and probability distributions as probabilistic techniques can 

integrate into conventional HRA approaches to simultaneously take an advantage of both common 
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HRA and these advanced methods. For  example, D Numbers Theory as a novel and efficient 

alternative way to express uncertain information was systematically developed to tackle these 

drawbacks [68] and was employed by researchers to deal with these issues, i.e. uncertainty, in 

another study [69]. Moreover, these powerful tools have been introduced in the past two decades 

and their applications toward the realistic engineering domain, particularly in human reliability, 

call for new challenges, and further research by HRA practitioners. Other issues arise when expert 

judgments are affected by their multi-background criteria (i.e., different experience, positions, 

educations level, safety attitude, and beliefs) which need to employ some advanced multi-criteria 

decision-making (MCDM) methods to address uncertainty and decision-making challenges. 

Various MCDM methods are available which can be suitable based on study scope and concerns 

to reach a more reliable results [70,71]. Some of these popular MCDM methods include the (fuzzy) 

Best Worst Method (BWM), Analytic network process (ANP), Markovian Multi-Criteria Decision 

Making, VIKOR method, Elimination and Choice Translating Reality (ELECTRE), (fuzzy) 

decision making trial and evaluation laboratory (DEMATEL), and (fuzzy)Technique for the Order 

of Prioritisation by Similarity to Ideal Solution (TOPSIS). Some applications and potential 

extensions of these approaches to deal with probability elicitation issues, using expert judgments, 

were demonstrated in previous studies [72–77]. Recently a constructive validation of BN-HRA 

methods (i.e. BN-CREAM, BN-SLIM, BN-SPARH, BPL), as the third-generation techniques, was 

conducted using offshore evacuation virtual environment data [45]. Apart from proposing new 

generation HRA methods, findings were presented showing that data-based techniques such as 

BN-SLIM and BPL are more successful than the rule-based methods. Nonetheless, further 

investigations must be performed using actual,  appropriate, and different context data under 

different assumptions and model modifications with fewer restriction criteria to reach concrete 

https://en.wikipedia.org/wiki/Analytic_network_process
https://en.wikipedia.org/w/index.php?title=Markovian_Multi_Criteria_Decision_Making&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Markovian_Multi_Criteria_Decision_Making&action=edit&redlink=1
https://en.wikipedia.org/wiki/VIKOR_method
https://en.wikipedia.org/wiki/TOPSIS
https://en.wikipedia.org/wiki/TOPSIS
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conclusions [45]. Apart from the EER, the HAZOP methodology proposed in the early period of 

HRA studies as a technology report [56,57], a tailored  HRA method for emergency operations able 

to address the forgoing methodology shortcomings (see in maintenance operation section), is one 

of the main gaps from a methodological perspective. This is also true for human error risk analysis 

methods utilizing offshore and onshore installations. 

A new advancement in HRA has been recently demonstrated in the human behavioral simulation 

research line to model human behavior variability and unobservable person-based PIFs using a 

virtual offshore emergency training simulator [47,49]. In the former study, the variability arises 

from psychological differences, while the morale, motivation, and attitude of emergency 

responders using behavioral indicators were modeled in the later experiment. These research lines 

may open useful new horizons in the HRA domain and will be great advantages to HR analysts to 

assess HEPs more preciously. Human behavior modeling is a great challenging research stream 

that requires at the least, both simulation as well as physical and cognitive psychology 

considerations [47,78]. As a result, more concerted experiments are required to develop different 

powerful simulators, mechanisms to incorporate all aspects of human performance (i.e., mental, 

physical, emotional) as well as all PSFs hierarchy (i.e., organization, machine, task, environment) 

into new models in future studies. Another need is in exploring potential benefits and challenges 

of using the virtual environment to assess human performance and reliability in emergency 

operations [49,52].  

 

2.3.4. Control room operations  

 

Main control rooms (MCR) are the focal point to efficiently sustain operations in hazardous 

installations, where operators must direct normal tasks and safely deal with all safety-critical 
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situations using complex interfaces. In other words, they are expected to continuously monitor 

activities, identify all abnormalities, and respond quickly to unsafe events occurring in the onsite 

operations. Although these rooms have been substantially equipped with automation, human 

performance remains a vital element to real-time supervision and safe control of the systems 

[79,80]. The main reason is that operation designers are unable to predict all potential failure 

scenarios and cannot provide pre-defined safety measures for every contingency [9]. Furthermore, 

human operators are more flexible and have a great ability in learning and adapt to the peculiarities 

of the system since they are expected to plug the holes in the designer’s imagination [81]. 

However, human error in these operations has been a leading factor in the occurrence of 

catastrophic accidents such as the Milford Haven refinery explosion [82] and more recently, the 

Texas City refinery explosion [83]. Analyzing 500 pipeline incidents revealed that operator errors, 

the most contributing failure among direct causes, were responsible for around 31% of accidents 

[84]. Hence, the prevention of these failures can significantly improve system safety in the oil and 

gas industries. 

Control rooms are substantially complex socio-technical environments and various factors, 

directly and indirectly, influence operator performance. Furthermore, operator performance forms 

a crucial and last layer for addressing abnormal situations when process variables cross their safe 

limits. Occasionally, the operators fail to bring the plant to normal operating conditions due to 

human failures which arise from various latent factors. These variables fluctuate considerably 

including; individual (i.e. situation awareness, fatigue, competency, expertise, experience) ; 

organizational (i.e. safety culture, procedure, communication process, workload, maintenance 

programs, training courses); physical environment (i.e. room layout, poor lighting, noise, glare, 

automation systems, non-ergonomic workstation), and task; (i.e. task attribute/requirement, level 
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of detail, type of HMI interaction, clarity of instruction and terminology) [85]. As a result, if these 

contributing factors do not receive enough attention there is a great potential for human error to 

occur and subsequently major accidents. Moreover, Iqbal et al. (2018) argued that the risk which 

arises from a plant is reliant on the operator's performance. It thus needs to analyze the operator 

reliability considering latent interactions among these contributing factors which hasn’t received 

enough attention in CPIs. 

To address this important issue, several researchers have sought the HRA of MCRs in chemical 

process systems. These investigations might be classified into two main groups. The first group 

focuses on employing probability theory to estimate HEP, while the second group measures 

operators' performances and subsequently their reliability in terms of cognitive and behavioral 

functions such as eye movement, situation awareness (SA), and soft controls. In the first study, 

Vaez. and Nourai. (2013) analyzed the reliability of the combined automatic-operator emergency 

response plan considering operator errors using SPAR-H and the reliability block diagram 

technique to improve the drawbacks of the response plan [86]. A self-developed questionnaire, to 

collect the operators' opinions regarding common performance conditions, and fuzzy rules, to 

quantify them, accompanied by CREAM-BN, to estimate HEP, was used in another study [87]. 

These studies investigated HR from a probabilistic perspective to estimate HEP in control room 

operations, while in recent years new concepts investigated operator performance and reliability 

using cognitive indices. However, some researchers believed that the monitor and inference of 

cognitive and behavioral functions of the operator to understand or diagnose a real-time situation 

might provide numerous opportunities for useful applications. These usages include analyzing 

operator reliability, improving operator training programs, developing a new type of operator 

support system, and human performance measures for human reliability validation [1,88,89]. To 
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this end, a second group of researchers conducted several theoretical and experimental studies. 

From the first group for instance, Zarei et al. (2016) developed an intelligent Adaptive Neuro-

Fuzzy Inference System model to predict operator’s efficiency considering human reliability and 

decision-making styles in petrochemical plant’s control rooms [90], whilst several advancements 

in experimental attempts have been conducted in recent years. In this sense, Ikuma et al. (2014) 

measured operator performance in terms of speed and accuracy by assessing subjective workload, 

eye movement, and situation awareness using a desktop computer-based simulation of a control 

room with two interface designs (i.e. black and gray) [91]. Iqbal and Srinivasan, (2018) considered 

two performance metrics (the margin-to-failure and the available-time) and proposed a strategy 

for estimating control room operators’ reliability using a simulated ethanol production plant. In 

this human subject-based experimental investigation, 128 participants in two groups of experts and 

novice students participated as control room operators to investigate to what extent operator 

reliability is affected by an operator’s experience level [89]. They used failure of operators to direct 

the virtual plant from abnormal situation to the normal limits of their reliability using the above-

mentioned indices.  

Moreover, in recent years, SA, as one of the most influential factors on the cognitive abilities of 

operators and prerequisites of their safety performance, was investigated. The first step in SA is 

the perception of a situation or task element, then the understanding of its meaning, and finally, 

the projection of its status in the future [92]. Sharma et al. (2016) used the information obtained 

from the eye tracker to complete twelve control scenarios during process disturbances using a 

simulated ethanol plant [1,93]. They concluded that successful participants in completing their 

tasks followed distinct eye gaze patterns so that each SA element (i.e. orientation, diagnosis, and 

execution) revealed a particular eye gaze pattern [1,93]. In another study, they proposed gaze 
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transition entropy and dwell time entropy as new quantitative measures of eye gaze tracking [94]. 

They argued that SA estimated by eye tracking is a pertinent online indicator of human error. 

However, they also mentioned that this is the first step and further research needs to be conducted 

because the investigation only focused on outcome-oriented metrics especially work or failure of 

task or completion time (dwell time).  Additionally, detailed cognitive level, multivariate behavior 

model of operators, and other eye-tracking measures such as saccadic duration, saccadic peak 

velocity, and pupil dilation should be included in realistic research of SA. Naderpour and et.al 

(2015) investigated the role of SA in three different major accidents and presented an SA error 

taxonomy. They concluded that SA errors contributing to these accidents can be mainly classified 

as errors due to poor design of operator support systems, inappropriate presentation of information 

in human–system interfaces, and error due to poor mental models [95]. They highlighted an 

urgency in exploring cognitive support systems to decrease the workload and stress of operators, 

and a virtual plant simulator presented as operator training method to improve SA. Nevertheless, 

this is a qualitative effort narrating the SA errors and there is urgent need to develop strong 

approaches able to quantify the different errors in three levels of SA, modeling dynamic 

dependencies and common causes. Mohammadfam et al.  (2019) argued that many organizational, 

situational, and individual factors influence SA and modeling their interactions is a key factor in 

accident prevention [96]. Nonetheless, this important issue has received little attention in the 

process safety domain by researchers to date. Therefore, identifying, modeling, and quantifying 

the various latent variables adversely affecting the SA, investigating which error type (i.e. 

mistakes, lapses, and slips) occurs in different SA levels, the causes behind them, and which 

methodology is most suitable and reliable for studying SA in advanced main control rooms 

(AMCR) of CPIs should all be deeply researched in future studies. In addition, quantifying the 
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effect of various variables and modeling their dependencies presents a real challenge for 

researchers because HRA practitioners suffer from access to sufficient data regarding human 

failures in process industries. For instance, Kulkarni et al. (2019) mentioned that fatigue has been 

identified as an underlying factor in major accidents such as the NASA Challenger explosion, the 

Exxon Valdez oil spill, the Bhopal gas tragedy, and the Three Mile Island nuclear incident [97]. 

As an exemplifier, operators must be at the height of their mental performance to safely recover 

from abnormalities in such high-risk plants. However, fatigued operators in such a stressful 

condition substantially fail to prevent the escalation due to poor decision making because fatigue 

can greatly affect operator capabilities to problem solving, alertness, and mental calculations by a 

decline in electrical activity in parts of the brain [97]. Fatigue which reduces mental or physical 

performance comes from prolonged exertion or insufficient quantity and quality of sleep which 

indicates a complex and latent relationships of these factors [97]. Therefore, simulation-based 

studies using virtual control room operations to investigate the operator performance under 

different scenarios, can substantially contribute to addressing these issues and provide more 

realistic results for effective intervention.  

Another important human reliability issue arises from the increasing level of automation in digital 

control systems (DCS) that has emerged in the AMCR in recent decades. These main rooms are 

adapting by adopting digital and computer technologies such as large display panels, computerized 

displays, soft controls, and computerized procedure systems (CPS) that introduce new ergonomic 

and safety risk factors in this complex environment [98]. For instance, Jou et al. (2011) pointed 

out  that HMI digitalization can decrease alertness and human SA, which in turn may result in 

failures in decisions made in an emergency situation [99]. Several studies argue that by changing 

from conventional displays to computer workstations and soft controls, requiring different human 
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behavior and performance influencing factors, presenting new human error, the way error occurs, 

and PSFs in DCS [100,101]. New PSFs come from new systems of procedures, alarms, decision-

making, and MHI as well as communication differences in size, structure, and team perspective 

[100,102]. Moreover, this digitalization can present a great deal of data and can automatically 

complete many operation interactions at the same time. In this situation, control room operators 

must pay close attention to monitors and analyze systems operation messages and are thus often 

faced with a huge mental workload. If the operators suffer from a lack of SA or are faced with 

other issues, they may be unable to give an accurate and timely response. Consequently,  errors of 

omission or errors of commission commonly occur [99]. Zou et al. (2017) argue that HRA methods 

which are used for analog control rooms are unable to meet the requirements of HRA in new 

rooms, and that new operator reliability assessment methods that can consider the characteristics 

of digitalization related to human factors should be developed accordingly [103]. In stark contrast, 

however, human operators do not provide the appropriate training schedule as well as guidelines 

to identify and deal with these factors. Most importantly, less effort are made to develop specific 

methods to identify, quantify and model PSFs and their causal influencing relationships in the 

chemical process systems. Ramos et al.  (2020) believed that operators in NPPs are mainly 

controlling nuclear reactivity and generating electricity, whereas oil and gas refineries can contain 

up to 15 units or more. Each of the units, including a great number of instruments and equipment, 

accompanied by various chemical operations, require controlling and monitoring by control room 

operators [14]. Nevertheless, great efforts have been established to investigate these challenges in 

other safety-critical systems (i.e. NPPs, aviation) [99,103]. For instance, Zou et al. (2017) listed 

different investigations conducted by the US Nuclear Regulatory Commission, the Electric Power 

Research Institute HRA, and the Korea Atomic Energy Research Institute to research these 
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challenges [103]. They aimed to emphasize the required modifications and considerations which 

must be improved in conventional HRA approaches to minimize the new human and 

organizational risk factors of DCS [103]. There are also some review investigations that discussed 

the effect of digitalization in NPPs [104] which may mean maturity of literature for this issue in 

NPPs, and new HRA techniques (i.e. OTHEA [100]) to meet the requirements of DCS in NPPs. 

As a result, these scientific gaps should be immediately addressed through experimental studies 

by cooperation of scientists and experts of leading oil and gas organizations before major losses 

occur. Although Lee et al. [101] focused on NPPs, the results can be used as a primary foundation 

to analyze HR of AMCR in the process industry. They analyzed 110 PSFs considering the 1st 

generation HRA techniques (i.e., SLIM, HEART, THERP) and 49 PSFs from 2nd generation HRA 

techniques (i.e. CREAM, SPAR-H, ATHEANA). These 159 PSFs were then categorized into nine 

main classes according to findings achieved by mapping each PSF to others, considering their 

concept and application in HRA methods and the context changes in AMCR to be used in HRA of 

this domain. The terms used for these nine candidate groups of PSFs are Stress level, Action type, 

Experience, Time constraints, Places where operator actions are taken, Procedures, Training, 

HMI, and Teamwork. Considering Human Factor Engineering Program review model (HFEPRM) 

based on Nureg-0711 [102] and several investigations for HF issues (HFIs) in advanced MCR 

[101,105], indicated human factor and performance analysis outputs can be considered as input 

data to determine PSFs. Accordingly, Lee et al  [101] identified 46 HFIs mainly either merged in 

AMCR or remaining from conventional MCR in advanced MCR. They classified them into four 

groups being HFIs which come from computerized procedure system (N=13), acquisition of HSI 

information (N=11), HSI control (N=14) and related to training (N=8). The HFIs mainly arise from 

HSIs such as CPS, advanced information systems, soft control, and their related training mainly 
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based on reviewing NUREG reports [102]. More details regarding the systematic approach are 

utilized to ensure this classification can consider the context changes in AMCR are available [101] 

and readers are referred to the original resource to obtain more information. However, an attempt 

has been made to clearly visualize which and how human factors issues cause or impact on PSFs 

in the AMCR based on Lee et al.’s (2011) findings [101]. Therefore, to better understand the 

potential complex integrations among the influencing factors, a qualitative causation model among 

these HFIs in each group and common PSFs in HRA is developed using Bayesian networks (Fig 

4), which is powerful tools in graphical causation modeling. As can be seen from the proposed 

model, complex relationships exist between the human factor challenges in four HFIs groups and 

corresponding PSFs. For instance, HIS as one of PSFs, is influenced by 23 human factor issues 

from four groups. A clear example of these relationships could be the impact of poor operator’s 

situation awareness on HIS and implementation of procedure which is demonstrated using a 

directed arc from the former node to two later nodes (Fig. 2.4) in which each edge corresponds to 

a conditional dependency, and each node corresponds to a unique random variable. 
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Figure 2. 41 Human factor issues (HFIs) and their influence on nine performance shaping factors in 

AMCR based on Lee et al.’s (2011) findings 

 

Although the authors made efforts to provide a comprehensive model with the evidence-based 

causal relations, the developed model needs to be improved as per availability and context of new 

evidence or specific characteristics of studied system. Moreover, establishing empirical studies for 

quantifying the impact of these HFIs and investigating new emerging PSFs as well as utilizing 

new techniques for dependencies modeling, and dynamic modeling of HR are important challenges 

and research opportunities of HRA in oil and gas operations. Hybrid models using dynamic 

 

 
1 The causal arcs among PSFs and HIS are presented by different colors for the sake of increasing the readability 
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Bayesian networks (DBN) and System dynamics (SD) have top priority to present holistic and 

precise causal models of nonlinear behaviors in these complicated systems. Developing data-

driven PSFs assessment models with enough transparency between models and source data, to deal 

with data scarcity and the uncertainty of expert judgments’ should be investigated as novel steps 

in CPIs. It is noteworthy that validation of these models, as well as expert judgment models to 

generalize their applications and results, introduces a set of challenges for HRA practitioners due 

to vast differences between real operational conditions and simulator characteristics [106]. 

Advanced statistical approaches such as Structural Equation Modeling (SEM) and Path Analysis 

methods enable simultaneous modeling, of both direct and indirect (latent) relationships of 

variables recommended for future research. The results of these tools can be incorporated into 

probabilistic approaches such as BNs as a novel step in the quantification of HEP. 

 

2.3.5. Comparison of HRA in CPIs with NPPs 

 

Investigations comparing two similar safety-critical domains may accurately reveal the quality and 

quantity of scientific findings. To this end, this section compares fundamental HRA studies in CPI 

with NPPs in terms of five important criteria including review studies, human error databases, PSF 

taxonomy, special HRA technique, and empirical study in control rooms operations.  

Overall, as seen in Table 2.4, significant efforts in all criteria have been made in NPPs (N=39), 

whereas several studies were conducted in the only simulation-based investigation and 

methodology development in CPIs (N=9). Ten studies focused on reviewing research on different 

HRA concerns (i.e. man-machine interface design, effects of digitalization, cognitive aspects, 

benchmarking issues) in NPPs from 1990 to 2020 (on average three investigations per year). This 

means there has been steady progress towards HRA in this industry. However, to the best of the 

https://www.sciencedirect.com/science/article/pii/S0951832010000372
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authors' knowledge, any scientific inquiry into HRA has not to date been set up in CPIs. 

Considering various issues in HRA, this crucial gap would be highly recommendable to explore 

the main needs and challenges in different aspects of human reliability in such high-risk industries. 

This is true for the existing noticeable gap in the human error database (HED) in CPIs which is 

very important at least to provide reliable data to quantify the HEP in various operations 

(emergency, maintenance control, and normal operations). It is clearly understood that insufficient 

human performance data is identified as a vital factor and main fundamental issue affecting HRA 

quality, particularly in the estimation of HEP [59,107,108], and even in NPPs where significant 

efforts have been made to develop HEP databanks and simulators. As a result, there is an urgent 

need to address these gaps by collaborating in both industrial and academic settings where 

numerous leading companies and universities are involved in the oil and gas industries. 

Nevertheless, in this regard, several international organizations have been developing HRA 

databases and collecting data through comprehensive control room simulator studies. As seen in 

Table 3.4, for instance, SACADA [59], OPERA [60], and HURAM+ [107] are among several 

HRA databases developed from NPP control room simulator studies. 

Kim and Jung [64] concluded that at least 220 PSFs exist in available taxonomies and Lee et al. 

[101] identified 159 PSFs from nine HRA methods. These factors vary from one technique or 

operation to another. Moreover, the number and value of each PSF can substantially change the 

HEP value since it is estimated by multiplying the nominal HEP in PSF values which are mainly 

selected based on expert judgments under great uncertainty. Therefore, developing specific 

taxonomies of PSFs for hazardous activities such as emergency tasks and AMCR operations is 

vital to obtain an accurate HEP estimation. Furthermore, as PSFs have a considerable influence on 

operator performance and reliability, having a standard set of them, can improve human error 
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modeling and consequently, the decision-making process to prevent human errors. As illustrated 

in Table 2.4, only one study has been made to propose HRA taxonomy for marine and offshore 

applications, whereas six types of taxonomy were developed in NPPs. It should be highlighted that 

quantification, intra and inter-dependency modeling, and causality modeling of PSFs require 

urgent efforts to develop advanced methods or models in this field.  

Furthermore, it is believed that most of the first and second-generation HRA methods originally 

developed are based on findings into human behavior and performance data adapted to NPP 

characteristics, while methodology initiatives are less established in other critical domains such as 

CPIs. In recent years, reasonable efforts have also been made to propose new methods to deal with 

new concerns or to improve the conventional methods in both CPIs and NPPs which can be 

observed in Table 2.4. Generally, the number of these methods in NPPs is around double those in 

CPIs. HEPI [54] was proposed for human error estimation in offshore operations, and Petro-HRA 

[109] as a general method for human reliability analysis in the petroleum industry, while Phoenix-

PRO [14] was adjusted for oil and gas operation from original Phoenix which is a qualitative 

general HRA method. In contrast, more specific techniques were presented to be addressed 

especially human error concerns. For instance, AGAPE-ET [63] method for emergency tasks, 

CESA [110] for errors of commission, IDAC [111] for HRA of control room-operating crew 

during an accident,  and OTHEA [100] for digital NPPs were recently proposed. 
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Table 2. 4 Comparison of HRA studies in CPIs with NPPs with respect to five criteria in HRA perspective 

Type of literature Nuclear power plants Chemical process industry 

Review study 

HRA in man-machine interface design [112] 

Effects of digitalization in CR[104] 

Cognitive basis for HRA [113] 

HRA techniques applied for PRA [114] 

Issues in benchmarking HRA methods [115] 

HRA techniques for risk assessment 

[116,117] 

EOC identification [118], quantification[119] 

Need, Status, Trends, and Limitations [120] 

The present study 

Human error database 

(HED) 

OPERA[60], HERA[61], SACADA[59], 

CORE-DATA[62], OPERA [60]  
 

Taxonomy of PSF 

 

Extreme external hazards[121] 

Emergency tasks [64] 

Advanced main control rooms [101,122] 

HRA and system design [123] 

A hierarchical standard set of PIFs[124] 

HENT [125] 

Special HRA technique 

(apart from 1st and 2nd 

generation methods) 

OTHEA[100], NARA[126] 

AGAPE-ET [63], CESA [110], IDHEAS 

[127], Phoenix [128], IDAC [111] 

HEPI [54] 

Petro-HRA [109] 

Phoenix-PRO [14] 

Control room simulator 

(Empirical study) 

• Effects of PSFs on HRA [129–131]  

• HRA in AMCR: 

Communication characteristics in CPS [132] 

Effects of automation decisions [133] 

Error recovery in soft controls [134] 

Diagnosis error [135] 

Reliability in Analog vs. Digital [136] 

Thoughts inferencing by eye 

movement [88] 

Personality effects on diagnosis errors [137] 

• HRA and the Safety-II concept [138] 

Eye-gaze behavior to quantifying SA 

and operator reliability [1,89,93,94] 

 

Assessing operator performance using 

speed and accuracy, workload, SA, and 

eye-tracking [91] 

 

https://www.sciencedirect.com/science/article/pii/S0951832010000372
https://www.sciencedirect.com/science/article/pii/S0951832007002451
https://www.sciencedirect.com/science/article/pii/S0306454920302310
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Empirical studies using control room simulators are the last criterion to compare the advancements 

in the two industries. Srinivasan et al. (2016) believe that conventional human error approaches 

mainly focused on likelihood approaches to analyze human reliability hinder the role of the 

cognitive capabilities of the operators [1,93,94]. His research team conducted several experimental 

investigations by interacting with senior students with the HMI using a simulator of chemical 

process operations (i.e. ethanol plant). Participants’ eye movements were captured employing eye 

trackers while they completed some cognitive tasks (i.e. Successful disturbance rejection, failed 

disturbance rejection) or managing process abnormalities. They used area of interest (AOI) of 

fixation duration, fixation count, dwell duration, saccade duration, and fixation rate distribution 

over the period ranging as cognitive functions of operators and margin-of-failure and available-

time to respond to process events as operator performance indicators [1,93,94].  

On the other hand, several investigations were conducted in NPPs to examine the effects of PSFs 

(i.e. task complexity, training level, operator experience, secondary operation numbers, HSI type 

(digital or analog), mode conversion) on AMCR’s operator performance by participating graduate 

students and licensed operators in which they had to complete various simulated process scenarios. 

Operator performance was estimated in terms of different dependent variables such as operation 

time, error rate, workload, SA, and response time [129–131,135,136]. Moreover, several empirical 

studies were conducted to assess new concerns arising from MACR from in HRA perspective 

which means substantial attention has been paid to digitalization in NPPs compared to CPIs where 

rare efforts have been reported. Some noticeable studies in NPPs include communication 

characteristics in CPS [132], effects of automation decisions [133], error recovery failure 

probability in soft controls [134], diagnosis error [135], and personality effects on diagnosis errors 

[137]. 
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2.3.6. HRA and new safety management paradigms 

 

In recent decades, safety science has been increasingly changed by introducing new paradigms 

such as Resilience Engineering (2006) [139], Safety Differently (2014) [140], and Safety-II (2014) 

[141]. According to resilience engineering, error or failure is not necessarily a consequence of 

malfunction or poor design, but it arises from the adaptations required to address the real-world 

complexity instead of a breakdown or poor function, although it has already been mentioned that 

task analysis will emphasize the identification of error-likely situations not error-likely people 

[142]. 

 People and organizations' performance should be adjusted appropriately based on the current 

circumstances because resilient performance requires more than incident prevention which is at 

the heart of the conventional safety management systems (named Safety-I). In Safety-II, the main 

objective is not just hazard elimination and failure prevention but also how to maximize an 

organisation’s potential for resilient performance through responding, monitoring, learning, and 

anticipating [139]. Moreover, Safety differently introduced by Dekker (2014) as a new human 

factors era, introduces a different type of safety thinking which considers individuals as the main 

origins of diversity, insight, creativity, and wisdom regarding safety instead of risk sources [140]. 

With this end in view, it should take as a solution people to harness, not as a problem to control, 

and safety should be introduced as the presence of positive capacities rather than as an absence of 

negatives [140]. Safety-I presented a protective safety through concentrating on how things can go 

wrong, whereas Safety-II paves a different way to achieve productive safety by mainly focusing 

on how things can and do go right. In this new concept the safety purpose does not just consider 

failure prevention and hazard control, but also how people can maximize the potentials of the 



 

53 

 

organization to achieve a resilient performance in the way it responds, monitors, learns, and 

anticipates [141,143]. To this end, the mechanism and vocabulary used in human error 

management should be changed. For instance, in Safety-I, operator performance measures are as 

a set of limited unsuccessful outcomes such as human errors or failing to manage an abnormal 

situation, while it should be changed to one of many diverse successful results along with a set of 

limited unsuccessful consequences based on Safety-II [141,143].  Ham et al. (2020) is the only 

study in the HRA domain based on this new paradigm that attempts to obtain HRA data from event 

investigation reports using large data analysis in NPPs [138]. To achieve that, they claimed that 

there are at least three challenges including collecting vital information from reports concerning 

the dominant PSFs, considering data from success outcomes, and analyzing the massive amount 

of information [138]. Accordingly, safety can be improved by investing in potential factors 

required for successful cases to occur as well as preventing failed cases. Furthermore, the ways to 

define and measure the value of PSFs concerning success outcomes represent new challenges and 

perhaps strong validation as further research directions to take more advantage of Safety-II concept 

in HRA. Analyzing both success and failure data calls for an urgent need to integrate big data 

mining and learning techniques into conventional HRA methods. Furthermore, HRA practitioners 

should focus on developing a systematic combination of the two approaches of safety thinking in 

the HRA domain especially in complex socio-technical systems because it does not claim to 

entirely substitute the conventional safety thinking with the new [144]. 

 

2.4. Conclusions  
 

 

The present study reviewed the current knowledge regarding HRA in three critical elements of 

chemical process systems in human reliability perspective, namely maintenance operations, 
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emergency management operations, and control room operations. A systematic study, as the first 

review investigation, was conducted to shed new light on the main needs and gaps in the available 

literature and upcoming challenges in future research necessities and opportunities in this domain.  

Moreover, the main research streams and contribution of previous studies into HRA are specified, 

and some novel approaches are suggested to deal with the dominant drawbacks of current HRA 

knowledge. Importance and necessity of a new thinking system about human reliability to take 

more advantages of results of new safety management paradigms is also highlighted. Most of the 

studies have been focused on HEP estimation using conventional methods in maintenance 

activities, while they continue to be accompanied by the virtual offshore simulator and hybrid 

models (i.e., fuzzy theory, BN and TOPSIS) to analyze human error and develop HRA data in the 

emergency management sector. In contrast, some new experiments are performed to assess 

operator reliability and performance using cognitive functions that have not been given the 

attention they deserve in two previous elements of CPIs operations. Fundamental steps should be 

taken to develop HE/HRA database, tailored HRA techniques, and PSFs taxonomies for oil and 

gas operations as well as new advancements of performance simulators and novel human reliability 

modeling methods. Furthermore, integrating dynamic models and human cognitive and behavioral 

theories into conventional HRA techniques can provide a better understanding of human 

performance variability and reliability. This is the first attempt to review the current knowledge in 

this area which can be benefited by further research. It is worth noting that the present study does 

not cover all potential human activities in CPIs. Important operations such as permit to work, 

confined space activities, shutdown and pre-startup of units and management of change are some 

common activities prone to human error in this industry. Exploring available investigations into 



 

55 

 

these activities to deal with difficulties and to give research opportunities can be revealed in future 

academic efforts.  
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CHAPTER 3 

 

A Dynamic Risk Model to Analyze Hydrogen Infrastructure 
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provided support in testing the model. The co-authors also contributed to the review and revision 

of the manuscript.  

 

Abstract 
 

Safety management of hydrogen infrastructure is vital for sustainable progress in the hydrogen 

economy. Accordingly, this paper presents a dynamic and holistic risk model to address some 

significant shortcomings of the current hydrogen risk analysis models. The hydrogen release 

scenarios are modeled using the Bow-tie technique integrated with improved D Numbers Theory 

and Best-Worst Method. This helps to analyze epistemic uncertainty in the prior probabilities of 

the causation factors and barriers. Subsequently, a Dynamic Bayesian Network (DBN) model is 

developed to analyze dynamic risk and deal with aleatory uncertainty. An epistemic uncertainty 

refers to deficiencies by a lack of knowledge or information. The application of the proposed 

model is demonstrated in a water electrolysis process. The results of the case study provide a better 

understanding of the causal modeling of accident scenarios, associated evolving risks with 

uncertainty. The proposed model will serve as a useful tool for the operational safety management 

of the hydrogen infrastructure or other complex engineering systems. 
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Key words: Dynamic risk analysis; hydrogen safety; dynamic Bayesian network; D-number 

theory; Best-Worst Method. 

 

3.1.  Introduction 

 

 The advantages of hydrogen over other conventional energy sources have drawn considerable 

attention to the hydrogen economy in recent years. There are many valuable properties of hydrogen 

including viable clean and green energy, a promising alternative fuel for our future, the highest 

energy content [1,2], its abundance and production using a widely varied combination of energy 

sources, an important role in energy storage and energy security [3], and a universal demand for 

hydrogen gas. Further, global environmental challenges, like global warming, increasing 

greenhouse gas emissions, climate changes, and depleting hydrocarbon resources have resulted in 

an immediate need to transition to a “hydrogen society”. 

In addition to above-mentioned advantages, hydrogen also presents some serious safety risks. It is 

potentially extremely devastating because of its wide explosion limit range (4%-75%), much lower 

minimum ignition energy (0.017 mJ), high deflagration index (DI=550 bar m/s) in comparison 

with methane (DI=55 bar m/s) and gasoline (DI=100–150 bar m/s), high air diffusion coefficient 

(0.61 cm/s), low density and significantly greater flame speed compared with other gases [4,5],  

the possibility for spontaneous ignition of hydrogen release [6], and the ability to easily release 

from sealing parts, for instance, valves and flanges, since it is the smallest molecule [7,8]. These 

issues result in increasing public concern about hydrogen-related safety risks. These concerns have 

been exacerbated by catastrophic disasters such as the hydrogen explosions in the Hindenburg 

disaster (1937, 36 fatalities), Polyethylene plant in Pasadena, Texas (1989, 22 death and 100 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polyethylene
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people injured), the US Space Shuttle challenger (1986, 7 death) [9], Chernobyl disaster (1986, 

4000 death toll, the maximum severity (Level 7) [10], Fukushima nuclear plant (2011, 1 death, 37, 

maximum severity (Level 7)) [11]. Moreover, even non-catastrophic hydrogen accidents, 

particularly in facilities that are located in residential zones such as fuel stations, may result in 

substantial hindrances to the development of hydrogen technologies and subsequent decreases in 

public acceptance [11,12].  Furthermore, there is a probability of major accidents occurring 

because of escalated operations at the hydrogen facilities [13]. Moradi and Groth, (2019) indicated 

safe and reliable systems play an indispensable role in the acceleration of the progress and 

deployment of hydrogen infrastructures. Thus, the safety of the required infrastructure is a vital 

factor for the hydrogen economy to become a reality. 

Several risk models have been developed to assess the safety of hydrogen infrastructures. Rosyid 

et al., (2007)  proposed a Bow tie and consequence modeling-based model to analyze the risk of 

hydrogen economy infrastructures, and likewise, a semi-quantitative model using the Hazard 

Identification (HAZID) technique, Process Hazard Analysis Software Tool (PHAST) software 

accompanied by a risk matrix was proposed by Moonis et al., (2010). In other studies, a  

comprehensive risk analysis framework to model safety risks and catastrophic accidents of 

hydrogen dispersion was applied by some researchers [17–19]. Mohammadfam and Zarei, (2015) 

built Hazard and Operability (HAZOP), Preliminary Risk Analysis (PRA), Event Tree Analysis 

(ETA), and PHAST simulator into a safety and risk analysis model. Moreover, a risk matrix-based 

model to incorporate potential risk influence was developed using fuzzy probability and Bayesian 

belief network models [20]. Recently, some new safety and risk models have been developed, for 

instance,  Hydrogen Risk Assessment Model (HyRAM) [21], and 3D risk management (3DRM) 

[22], dynamic Bayesian network-based model [23], Computational Fluid Dynamics (CFD) 

https://www.oxfordlearnersdictionaries.com/us/definition/english/inevitable
https://www.sciencedirect.com/science/article/pii/S0360319915019205
https://www.sciencedirect.com/science/article/pii/S0360319915019205
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simulation and experimental model [24], and a Bayesian Regularization Artificial Neural Network 

(BRANN) model for parameter uncertainty modeling in fire risk analysis of urban hydrogen 

fueling stations [25]. 

Although these models have brought significant improvement in safety and risk models of 

hydrogen infrastructures, some significant drawbacks still remain. These shortcomings include the 

following; 1) static structures of these models, while most process and human factors are variable 

and often occur in the operational time of a system; 2) uncertainty in input and output data, 

particularly in the form of probability or frequencies due to the lack of enough precise data of 

young emerging technologies like hydrogen; 3) inability to consider conditional dependencies 

among the root failures of complex systems; 4) inability to use predictive modeling to simulate 

system safety barrier’s behavior, and 5) incorporating often operational or mechanical failures into 

probabilistic safety analysis modeling, while human and organizational failures which are the 

deeper and more fundamental cause of accidents are ignored in most models. In other words, the 

conventional approaches cannot be utilized to model dynamic hazards, conditional dependencies, 

and common cause failure modes and they also use crisp and precise data that is rarely available 

or highly uncertain. The above-mentioned studies are good instances of applying  conventional 

Quantitative risk assessment (QRA) to hydrogen facilities using generic  data, assumptions, and 

estimations. However, the existence of great uncertainty in these studies,  because of a lack of data, 

is a strong reason to move towards employing probabilistic  tools such as Bayesian Networks (BN) 

[14,26]. Moradi and Groth (2019) pointed out that the employment of QRA methods along with 

BN techniques is necessary to have robust system-level studies. 

Therefore, the current study aimed at developing a holistic model for addressing some substantial 

concerns and demonstrate the importance of a dynamic approach in the safety analysis of hydrogen 
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infrastructures. In this approach, first, a causal model of hydrogen release scenarios was developed 

through holding focus group meetings with the process, safety, maintenance, instrument, and 

electrical experts (see experts’ profile in Table 4.2 in the appendix). These scenarios begin from 

root events that lead to top events and end with potential consequences by considering the function 

of existing safety barriers, e.g., release or dispersion prevention barriers. After that, this model was 

created in the Bayesian network to provide a clear and graphical model of the accident. Then, a 

new and improved algorithm called D Number Theory along with expert elicitation, and Best-

Worst Method (BWM), were applied to calculate the occurrence probability of root events, the 

failure probability of safety barriers, and uncertainty treatment in the input data. Finally, a 

predictive Dynamic BN (DBN) model was developed to tackle other limitations of the current risk 

analysis models of hydrogen infrastructures which are very important in quantifying conditional 

dependencies, risk updating, and predicting safety barriers’ behavior.  To present the capabilities 

of the model, a real case study was conducted on a hydrogen generation plant by water electrolysis 

which was located in a combined-cycle power plant. It is noteworthy to mention that BWM, as a 

new multi-criteria decision-making (MCDM) method, is according to a systematic pairwise 

comparison of the decision criteria to evaluate a set of alternatives with respect to a set of decision 

criteria [27], while D Number Theory as a new theory is a  generalization of Dempster-Shafer 

evidence theory for efficient modeling of uncertain information [28].       

The rest of the paper proceeds as follows. In Section 2, the developed model is provided, while in 

Section 3, the model application is presented with results and discussion, and in Section 4, the 

conclusion is presented. 

 

3.2.  The proposed dynamic risk model 
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This section provides an overview of the proposed dynamic risk model. The model was built 

applying an improved D Number Theory, BWM, System Hazard Identification, Prediction and 

Prevention (SHIPP) methodology, and DBN to safety and risk assessment of hydrogen 

infrastructure under uncertainty.  The framework of the model development is illustrated in Fig 

.3.1.  

 

 

Figure 3. 1 The framework of the proposed dynamic risk model 

 

3.2.1. Establish the Context (Step 1) 
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In this step, first, the main study objectives, which were provided in the last section of the 

introduction section, were defined. Then, according to the main goals and scope and context of the 

study, all the available materials such as process description, process flow, and pipeline & 

instrument diagrams (PFD, P&ID) and operations and maintenance procedures were investigated 

to identify the system, subsystems, and their functions (see the first section of the model 

application). The developed model can serve for achieving different targets, and as the selected 

aims substantially influence the framework and details of the study, it should be determined at the 

first step. 

 

3.2.2. Causation Factor Modeling (Step2) 
 

Hydrogen release scenarios on a real hydrogen generation plant by water electrolysis, situated in 

a combined-cycle power plant, were developed. To reach this aim, first of all, PFD and P&ID of 

the plant were studied. Then, the plant was divided into three sections according to the main 

functions and labeled: 1) Chemical section, 2) Mechanical section, and 3) Storage section. In each 

section, all possible failures of the main equipment that could lead to a hydrogen release were 

identified. After that, a deductive failure analysis using fault tree analysis (FTA) to identify how 

failures (root and intermediate events) are connected and how they can logically lead to the 

accident scenario in each section was performed. In addition, the potential consequences of the 

hydrogen release were specified via an event tree analysis (ETA) considering the functions (e.g. 

work or fail) of safety barriers including release prevention barrier (RPB), dispersion prevention 

barrier (DPB), ignition prevention barrier (IPB), and escalation prevention barrier (EPB). Finally, 

a comprehensive cause-effect model of the hydrogen release scenario was proposed through ten 

safety meetings with the process, safety, maintenance, instrument, and electrical experts.  
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3.2.3. Probability Elicitation under Epistemic Uncertainty (Step 3) 
 

3.2.3.1. The D number theory 
 

Dempster-Shafer (D-S) evidence theory is one of the well-known approaches for uncertainty 

modeling among all the available methods. However, it suffers from some limitations, including 

conflict management when evidence conflicts within a scenario. Also, the elements in the frame 

of discernment must be mutually exclusive. These limitations have greatly limited the theory’s 

practical application in uncertainty modeling [29,30]. D Numbers Theory, as a new and efficient 

alternative way to express uncertain information, was systematically developed to tackle these 

drawbacks [28]. Hence, the present work is the first study aiming to present an attempt at 

improving and then integrating this novel theory into DBN for effective probability elicitation 

under uncertainty. The main advantages of this theory are provided in the appendix (Section 1).  

The main definitions are as follows. 

Definition One: (D Number), Assuming that Ω is a finite non-empty set, a D number can be 

formulated as Equation 3.1: 

𝐷:Ω → [0,1]                                                                                                                     (3.1) 

where (φ) = 0, and satisfy ∑ 𝐷(𝐴)𝐴⊆𝛺 ≤ 1. The φ in an empty set and 𝐴 is a subset of φ.  

It can be concluded that the definition of D number and basic belief assignment are similar. The 

difference is that according to the D number theory, the elements Ω are not necessarily mutually 

exclusive and Ω will be acceptable if it can satisfy ∑ 𝐷(𝐴)𝐴⊆𝛺 ≤ 1. 

If we assume that the problem set as: Ω = [𝑎1, 𝑎1, … , 𝑎𝑛], and 𝑎𝑛 ∈ 𝑅. In addition, 𝑎𝑖 ≠ 𝑎𝑗 if 𝑖 ≠

𝑗. According to the aforementioned issue, another form of D numbers can be defined by Equation 

3.2: 

𝐷({𝑎1}) = 𝜇1 ,  𝐷({𝑎2}) = 𝜇2 , … . , 𝐷({𝑎𝑛}) = 𝜇𝑛                                                           (3.2) 
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Simply put, it can be denoted as 𝐷 = {(𝑎1, 𝜇1), (𝑎2, 𝜇2),… , (𝑎𝑛, 𝜇𝑛)}, where 𝜇𝑖 ≥ 1 and satisfies 

∑ ≤ 1𝑛
𝑖=1 . 

Definition two: (The D combination rule), Assuming that 𝐷1 and 𝐷2 are two independent D 

numbers and defined as: 

𝐷1 = {(𝑎1
1, 𝜇1

1), (𝑎2
1, 𝜇2

1), … , (𝑎𝑛
1 , 𝜇𝑛

1)}       

𝐷2 = {(𝑎𝑚
2 , 𝜇𝑚

2 ), (𝑎𝑚
2 , 𝜇𝑚

2 ), … , (𝑎𝑚
2 , 𝜇𝑚

2 )},                                                                         

The combination of 𝐷1 and 𝐷2 are indicated as 𝐷 = 𝐷1⊕𝐷2 and can be defined via Equation 3.3: 

 

𝐷(𝑎) = 𝜇                                                                                                                         (3.3) 

where 

𝑎 =
𝑎𝑖
1+𝑎𝑗

2

2
                                                                                                                         (3.4) 

𝜇 =
𝜇𝑖
1+𝜇𝑗

2

2
/𝐶                                                                                                                      

And 𝐶 in Equation 3.4 is defined as follows: 

∑ ∑ (
𝜇𝑖
1+𝜇𝑗

2

2
)𝑛

𝑖=1
𝑚
𝑗=1                                                                                                               (3.5) 

when ∑ 𝜇𝑖
1 = 1𝑛

𝑖=1  , and ∑ 𝜇𝑗
2 = 1𝑛

𝑗=1 . 

∑ ∑ (
𝜇𝑖
1+𝜇𝑗

2

2
)𝑛

𝑖=1
𝑚
𝑗=1 + ∑ (

𝜇𝑐
1+𝜇𝑗

2

2
)𝑚

𝑗=1                                                                                     (3.6) 

when ∑ 𝜇𝑖
1 < 1𝑛 

𝑖=1  , and ∑ 𝜇𝑗 
2 = 1𝑛 

𝑗=1 . 

∑ ∑ (
𝜇𝑖
1 +𝜇𝑗

2 

2 
)𝑛

𝑖=1
𝑚
𝑗=1 + ∑ (

𝜇𝑖
1 +𝜇𝑐

2 

2 
)𝑚 

𝑗=1                                                                                   (3.7) 

when ∑ 𝜇𝑖
1 > 1𝑛 

𝑖=1  , and ∑ 𝜇𝑗 
2 = 1𝑛 

𝑗=1 . 

∑ ∑ (
𝜇𝑖
1 +𝜇𝑗

2 

2
)𝑛 

𝑖=1
𝑚 
𝑗=1 + ∑ (

𝜇𝑐
1 +𝜇𝑗

2 

2
)𝑚

𝑗=1 + ∑ (
𝜇𝑖
1 +𝜇𝑐

2 

 2
)𝑚 

𝑗=1 +
𝜇𝑐
1 +𝜇𝑐

2 

2 
                                         (3.8) 

when ∑ 𝜇𝑖
 1 < 1𝑛 

𝑖=1  , and ∑ 𝜇𝑗
2 < 1𝑛 

𝑗=1 . 
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where 𝜇𝑐
1 = 1 − ∑ 𝜇𝑖

1 𝑛 
𝑖=1  and 𝜇𝑐

2 = 1 − ∑ 𝜇𝑗
2𝑛 

𝑖=1 . 

It should be added that, similar to D-S theory, when the number of observations is increased to 3 

or more, the denominator is also changed accordingly.  

Definition three: (Aggregation of D numbers), supposing that 𝐷 = {(𝑎1, 𝜇1), (𝑎2, 𝜇2), … , (𝑎𝑛, 𝜇𝑛)} 

is a D number, the aggregation procedure of D numbers can be derived as Equation 3.9: 

𝐼(𝐷) = ∑ 𝑎𝑖𝜇𝑖
𝑛
𝑖=1                                                                                                               (3.9) 

 

 3.2.3.2. The procedure of experts’ judgment and BWM 
 

The employed procedure of the experts’ judgment to estimate the probability of root events and 

safety barriers have four different steps which are as follows (i) Employing a heterogeneous group 

of multiple independent experts, (ii) Providing a quality expert profile and expert weighting which 

have considerable effects on the final results, (iii) Collecting the subjective experts’ opinions, and 

(iv) Aggregating experts’ opinions. The details of each expert are provided as follows. 

Step one: Employing a group of experts 

In the present study, A heterogeneous group of experts having different backgrounds and expertise 

was employed to independently express their individual opinions in a democratic decision-making 

style environment. To reduce any ambiguity as well as increase the consistency of experts’ 

opinions in the elicitation procedure, the provided opinions from participants were checked to see 

whether they required further modification or not.       

 

Step two: Providing quality expert profiles and expert weightings 
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Estimating a high realistic importance weight for the employed group of experts is an important 

task.  In the present study, the BWM proposed by Rezaei (2015), as a new and powerful multi-

criteria decision-making approach to estimate the subjective weights of criteria/alternatives in the 

typical decision-making problems, was used to obtain the importance weight of the employed 

experts. Accordingly, in the beginning, the best (i.e. most profitable, most advantageous) and the 

worst (i.e. least profitable, least advantageous) criteria were regarded by an assessor. The 

considered criteria were judged according to the best and worst criteria. Afterward, a 

maximum/minimum objective function was created to calculate the optimum importance weights 

of criteria. The importance of weight for each expert for other criteria was estimated employing 

the same process. The BWM was applied to obtain the importance weight of each expert using the 

following steps: 

(i) Identifying the best or the most important criterion and the worst or the least important 

criterion.  

The best criterion 𝐶𝐵 and the worst criterion  𝐶𝑊 have to be derived using decision-makers from 

the identified 𝑛 criterion.    

  

(ii) Computing the preference of the best criterion over the other criteria.  

In this step, decision-makers express their opinions about the best criterion over other criteria 

using the nine-scale provided in Table 3.1, and the vector of best to other (BO) is defined as 

𝐶𝐵𝑂 
𝑘 , 𝑘 = 1,2,3, … , 𝑙 which was computed by using Equation 3.10: 

 

𝐶𝐵𝑂 
𝑘 = (𝐶𝐵1 

𝑘 , 𝐶𝐵2 
𝑘 , … , 𝐶𝐵𝑛 

𝑘 )                                                                                 (3.10) 

where 𝐶𝐵𝑗 
𝑘 is the opinion of an expert on the 𝐶𝐵 compared to the 𝐶𝑗, and  𝐶𝐵𝐵 = 1.  
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Let us assume that the importance weight of 𝑙 decision-makers is equal. Therefore, 𝑙 best to others’ 

vectors can be further aggregated into single best to others’ vector 𝐶𝐵𝑂 = (𝐶𝐵1, 𝐶𝐵2, … , 𝐶𝐵𝑛) 

using Equation 3.11: 

 

𝐶𝐵𝑗 =
𝐶𝐵𝑗 
𝑘

𝑙
 , 𝑗 = 1,2, . . , 𝑛                                                                                      (3.11) 

Table 3. 1 The nine-scale of comparison 

Scale Descriptions  

1 𝐶𝑖 has equivalence important 𝐶𝑗 

3 𝐶𝑖 has slightly more important than 𝐶𝑗 

5 𝐶𝑖 has obviously more important than 𝐶𝑗 

7 𝐶𝑖 has strongly more important than 𝐶𝑗 

9 𝐶𝑖 has extremely more important than 𝐶𝑗 

2, 4, 6, and 8 Mean value of the aforementioned preference opinions 

(iii) Computing the preference of the other criteria over the worst criterion. 

Similarly, 𝑙 other to worst (OW) vectors 𝐶𝑂𝑊, 𝑘 = 1, 2, 3, … , 𝑙 is computed by being compared to 

the other criteria over the worst criterion utilizing the nine - scale (Table 4.1) by Equation 

3.12: 

 

𝐶𝑂𝑊 
𝑘 = (𝐶1𝑊 

𝑘 , 𝐶2𝑊 
𝑘 , … , 𝐶𝑛𝑊 

𝑘 )                                                                        (3.12) 

 

where 𝐶𝑗𝑊 
𝑘 is the opinion of an expert on the 𝐶𝑗 compared with the 𝐶𝑊, and  𝐶𝑊𝑊 = 1.  

Therefore, 𝑙 others to worsts’ vectors can be further aggregated into a single worst to others’ vector 

𝐶𝑂𝑊 = (𝐶1𝑊, 𝐶2𝑊, … , 𝐶𝑛𝑊) by applying Equation 3.13: 

𝐶𝑗𝑊 =
𝐶𝑗𝑊 
𝑘

𝑙
 , 𝑗 = 1,2, . . , 𝑛                                                                              (3.13)        

                          

(iv) Calculate the optimal weights of criteria. 

In the BWM, the ratio of  
𝑊𝐵

𝑊𝑗
 and 

𝑊𝑗

𝑊𝑊
 followed by 

𝑊𝐵

𝑊𝑗
= 𝐶𝐵𝑗 , and 

𝑊𝑗

𝑊𝑊
= 𝐶𝑗𝑊. To satisfy the 

aforementioned conditions, a solution by maximizing the value of |
𝑊𝐵

𝑊𝑗
− 𝐶𝐵𝑗| and minimizing 
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the value of |𝐶𝑗𝑊 −
𝑊𝑗

𝑊𝑊
| should be derived.  Accordingly, the following optimization model 

was employed to estimate the optimal criteria weight: 

Model 1: 

minmax {|
𝑊𝐵

𝑊𝑗
− 𝐶𝐵𝑗| , |𝐶𝑗𝑊 −

𝑊𝑗

𝑊𝑊
| }  

Subject to. 

∑ 𝑤𝑗 = 1𝑛
𝑗=1   

𝑤𝑗 ≥ 0 , 𝑗 = 1,2, … 𝑛. 

Model 1 can be reintegrated into model 2: 

min 𝜉  

Subject to. 

|
𝑊𝐵

𝑊𝑗
− 𝐶𝐵𝑗| ≤ 𝜉  

|𝐶𝑗𝑊 −
𝑊𝑗

𝑊𝑊
| ≤ 𝜉  

∑ 𝑤𝑗 = 1𝑛
𝑗=1   

𝑤𝑗 ≥ 0 , 𝑗 = 1,2, … 𝑛. 

The optimal weights of criteria were obtained by solving Model 2 and denoted as follows:  

𝑤∗ = (𝑤1
∗, 𝑤2

∗, … , 𝑤𝑛
∗).  

(v) Compute the consistency of the obtained results from decision-makers. 

To compute the value of consistency, first, it is necessary to derive the consistency ratio (CR) 

using Equation (3.14) [31]: 

 

𝐶𝑅 =
𝜉∗

𝐶𝐼
                                                                                                            (3.14) 
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where 𝐶𝑅 is the consistency index regarding the maximum value of 𝜉 based on Table 3.2. The 

smaller value of CR shows better consistency. In the current study, the condition 𝐶𝑅 ≤ 0.1 

was considered to accept the weights of criteria.  

 

 

Table 3. 2 Consistency index (CI) 

𝐶𝐵𝑊 𝐶𝐼 
1 0.00 

2 0.44 

3 1.00 

4 1.63 

5 2.30 

6 3.00 

7 3.73 

8 4.47 

9 5.23 

 

Step three: Collecting subjective opinions 

The group of experts expressed their individual opinions to derive the probability of each event. 

In cases with a lack of data and insufficient information, subjective opinions are collected from a 

group of experts. The estimation of results was provided as intuitionistic fuzzy numbers (IFNs). 

Afterward, the IFNs were converted to D numbers, and subsequently, the combination rule of D 

numbers was used to elicit group opinions. The employed linguistic terms and their IFNs are 

provided in the appendix (section 2) [32].  

 

Step four: Aggregating experts’ opinions 

Based on their quality profile, the group of experts employed may have different opinions. Hence, 

it is necessary to aggregate multiple experts’ opinions to reach a consensus. Once all the IFNs were 

derived from expert evaluations, D number theory was employed to elicit group opinions. All the 

expert opinions were aggregated into the crisp value considering their importance weight based on 

their background information provided by Equation (3.15).  
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𝐴agg = ∑ 𝜔𝑛
∗𝑎𝑖𝜇𝑖

𝑛
𝑖=1                                                                                                     (3.15) 

where 𝐴 is the aggregated opinions obtained from experts and 𝜔 is the importance weight of 

experts, and 𝑎𝑖 and 𝜇𝑖 are the first and second components of D numbers, respectively. 

It should be noted that in the original Equation of D numbers theory (Eq. 9), the importance weight 

of experts was ignored, whereas as a new contribution of this study Equation 9 was modified into 

Equation 15.  Once the aggregated opinions are obtained from the employed expert, the possibility 

can be converted into the probability by Equation 3.16.  

𝑃 = {
1/10𝐾   , 𝐶𝑃 ≠ 0
0           , 𝐶𝑃 = 0

     ,   𝐾 = [(
1

𝐶𝑃
− 1)]

1
3⁄

× 2.301                                                      (3.16)      

where P is the probability of the desired events (i.e., root events, safety barriers), and CP (crisp 

probability) denotes the confidence degree of membership (crisp possibility) obtained from 

Equation 3.15.  

 

3.2.4. Dynamic Bayesian Network (DBN) (Step 4) 
 

3.2.4.1. Dynamic modelling of hydrogen release probability (HRP) and system reliability  
 

 

The prior obtained probabilities were defined as failure probabilities of the root events and safety 

barriers in the Bow time-based model to develop a DBN model. A detailed description of mapping 

BT to DBN can be found in the works of  [33]. A DBN is a long-established extension of static 

BN with additional  algorithms, and it is a well-known tool to model the time series phenomena 

due to its modeling of the dynamic relationships of variables. To recall briefly DBN, it is 

characterized to be a set (𝐴1: 𝐴→)  where 𝐴1 show a BN which presents the prior P(𝑍1), and 𝐴→ 

shows a two-time series temporal network, which defines P(𝑍𝑡|𝑍𝑡−1) using  a directed acyclic 

graph as follows [34]: 
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P(𝑍𝑡|𝑍𝑡−1) =∏𝑃(𝑍𝑡
𝑖|𝑃𝑎(𝑍𝑡

𝑖))

𝑁

𝑖=1

                                                                                                 (3.17) 

where  𝑍𝑡
𝑖 is the i’th node at time t, can be an element of 𝑋𝑡 , 𝑌𝑡 𝑜𝑟 𝑈𝑡 and Pa(𝑍𝑡

𝑖 ) is the parent of 

𝑍𝑡
𝑖 in the network. 

After the first time slice, each nod has a conditional probability table (CPT), which defines 

𝑃(𝑍𝑡
𝑖|𝑃𝑎(𝑍𝑡

𝑖)), and the function of the joint probability density for time t=1 to N is presented as:  

P(𝑍1=𝑇) =∏∏𝑃(𝑍𝑡
𝑖|𝑃𝑎(𝑍𝑡

𝑖))                                                                                                  (3.18)

𝑁

𝑖=1

𝑇

𝑡=1

 

To present the dynamic features of the developed model, the dynamic occurrence probability of 

the hydrogen release scenario and the reliability of the hydrogen generation system within 52 

weeks were modeled using the DBN model. To establish CPT between two-time slices, the 

probability of failure in the current state (t) is considered 1 when failure happens in the previous 

state (t-1), while the probability of failure in the current state is 1 − 𝑒−𝜆𝑇 when failure does not 

take place in the previous state. It is assumed that failures follow a constant failure rate (𝜆) 

distribution that has an exponential distribution function [35,36]. In this case, the reliability of the 

system is 𝑒−ℷ𝑇. It is noteworthy that different applications, for instance, effectiveness of safety 

interventions, and the effect of different pieces of evidence (observations) over a period can be 

investigated using the model.  

 

 

3.2.4.2. Deductive and Abductive reasoning 
 

This section attempts to address some existing limitations of the conventional risk analysis methods 

of hydrogen infrastructures using Bayes' theorem. Therefore, the model was utilized to illustrate 

inferences; predictive modeling (Deductive reasoning) and updating the risk profile under 
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uncertainty (Abductive reasoning). In other words, deductive reasoning (forward analysis) is a 

predictive analysis under uncertainty to estimate the prior occurrence probability of the top event, 

while abductive reasoning (backward analysis), as a unique feature of BN, is a logical inference that 

begins by obtains evidence or a set of evidence, and next looks to determine the simplest and most 

probable explanation for the evidence [37].  

 

3.2.4.3. Critical analysis 
 

Applying only prior or posterior probabilities to determine the factors that contribute the most is 

highly probable to result in incorrect findings. Hence, in the current work, the ratio of variation 

(RoV) of probability, which developed recently as a precise important measure for sensitivity 

analysis in Bayesian assessment of system safety, was utilized to identify the most contributing root 

events to the occurrence of the hydrogen release. The RoV of each root event is estimated as follows 

[38].     

 𝑅𝑜𝑣(𝑋𝑖) =
π(Xi)−θ(Xi)

θ(Xi)
                                                                                                       (3.19) 

 

where π(Xi) and θ(Xi) denote the posterior and prior failure probabilities, respectively, of Xi. 
 

 

3.2.4.4. Predictive modelling of safety barriers and consequences  
 

The predictive safety barrier modeling is mainly conducted based on the SHIPP methodology which 

is a systematic approach to model the safety barrier thereby predicting and preventing future 

accidents in the chemical process industry [39,40]. To calculate the number of abnormal events in 

the next time interval 𝑦𝑡+1, given the observed data, a predictive model was utilized based on Eq. 

(3.20) [40]; 

 

𝑝((𝑦𝑡+1|𝑑𝑎𝑡𝑒) =
𝜆𝑝

𝑦𝑡+1 𝑒𝜆𝑝

𝑦𝑡+1!
                                                                                                (3.20) 

https://en.wikipedia.org/wiki/Logical_inference


 

80 

 

where data = (y1, y2, y3… yt) is the number of abnormal event data in the time t, 𝜆𝑝 is the updated 

rate of abnormal events as calculated via Eq. (3.21): 

 

𝜆𝑝 = 𝐸 [
𝜆

𝑑𝑎𝑡𝑎
] =

𝛼+∑ 𝑦𝑛
𝑛
𝑖=𝑛

𝛽+𝑛
                                                                                                  (3.21) 

where ∑ 𝑦𝑛
𝑛
𝑖=𝑛  is the total number of abnormal events in the time interval n, and 

α and β are gamma distribution parameters of λ which are taken as 0.01. 

By applying the updating mechanism, the posterior failure probability was estimated using Bayes’ 

theorem [41] as presented in Eq. (3.22): 

 

𝑝 (
𝑦𝑖

𝑑𝑎𝑡𝑎
) =

𝑝(
𝑑𝑎𝑡𝑎

𝑦𝑖
)𝑝(𝑦𝑖)

∑𝑝(
𝑑𝑎𝑡𝑎

𝑦𝑖
)𝑝(𝑦𝑖)

                                                                                                         (3.22) 

where 𝑝 (
𝑦𝑖

𝑑𝑎𝑡𝑎
)   indicates the posterior failure probability, 𝑝(𝑦𝑖) is the prior probability 

of 𝑦𝑖, 𝑝 (
𝑑𝑎𝑡𝑎

𝑦𝑖
) is the likelihood failure probability extracted from abnormal event data from the 

plant, and data is the new observation from the plant. The likelihood failure probability of each 

safety barrier can be estimated according to Eq. (3.23 and 3.24): 

 

𝑝 (
𝑦𝑖

𝑑𝑎𝑡𝑎
) =

𝑁𝐹,𝑖

𝑁𝐹,𝑖+𝑁𝑆,𝑖
                                                                                                        (3.23) 

 

𝑁𝐹,𝑖 = ∑ 𝑁𝐶,𝑘𝑘>𝑖  𝑎𝑛𝑑 𝑘 > 𝑖, 𝑖 = 1,2,3,4 𝑎𝑛𝑑 𝐾 = 1,2,3,4,5                                       (3.24) 

where Nc,k  is the number of abnormal events of consequence kth level, NS,i and NF,i   are the number 

of successes and failures for the ith barrier.  

  

3.3. The application of the model 
 
3.  

 3.3.1. Establish the Context (Description of hydrogen generation plant) 
 

To present the utilization of the proposed methodology, a real case study was conducted on a 

hydrogen generation plant by alkaline water electrolysis in a combined-cycle power plant. In the 

https://www.sciencedirect.com/science/article/pii/S0957582010001175#eq0015
https://www.sciencedirect.com/topics/engineering/gamma-distribution
https://www.sciencedirect.com/science/article/pii/S0957582010001175#eq0020
https://www.sciencedirect.com/science/article/pii/S0957582010001175#eq0020
https://www.sciencedirect.com/science/article/pii/S0957582010001175#eq0020
https://www.sciencedirect.com/science/article/pii/S0957582010001175#eq0020
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studied plant, electrolysis employed electricity to break water into hydrogen and oxygen, is a 

successful alternative for hydrogen generation from renewable resources. This reaction happens 

in an electrolysis cell, and it consists of an anode and a cathode separated by an electrolyte. The 

alkaline electrolyzers used an electrolyte  such as sodium or potassium hydroxide, to convey the 

hydroxide ions (OH-) from the cathode to the anode while hydrogen was produced on the latter 

side. This process lead to zero greenhouse gas emissions and the purity of generated hydrogen is 

very high (> 99.999%). For some usages, such as polymer electrolyte membrane fuel cells that 

require  ultra-pure hydrogen,  electrolysis may currently be the only available means to produce 

hydrogen that can meet this demand [42]. Fig. 3.2 illustrates the main equipment of the studied 

hydrogen plant, both structurally and functionally. 

 

Figure 3. 2 A block diagram of hydrogen generation plant by alkaline water electrolysis . 

 

3.3.2. Causation Factor Modeling 
 

The results of causation factor modeling of hydrogen release scenarios in the three sections (i.e., 

chemical, mechanical, and storage sections) are shown in Fig. 3.3a, b, c., while Fig. 3.4. illustrates 

the entire scenario of the studied plant. Applying the Bow tie logic as well as employing well-

rounded engineers with different professional backgrounds to perform the causality modeling 

revealed that a wide range of contributory factors (Fig. 3.3, Table 3.3) was at the root of hydrogen 
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release.  These influential latent factors can be classified as, 1) from individuals (i.e., poor training, 

lack of risk awareness) to organizational factors (i.e., maintenance issues, resource management), 

2) from operational (i.e., overpressure, overcurrent) to mechanical failures (i.e., electrolytic 

corrosions, rectifier malfunctions), and 3) from job difficulties (i.e., workload, shift work) to 

external events (i.e., natural hazards).  A holistic causality modeling in risk analysis studies was 

rarely observed however, identifying all latent failures is vital to effectively developing both 

preventive and mitigating safety measures. This finding helps to extend probabilistic safety 

analysis modeling frameworks to include the effect of human and organizational factors, as more 

fundamental and latent causes of accident occurrence, along with operational and mechanical 

failures which are more observable causes. Moreover, modeling of common-mode failures (CMF) 

and their dependency on using BN improve the transparency and accuracy of causation analysis 

of accident scenarios (Fig. 3.3).  For instance, X24 (lack of on-time preventive maintenance (PM) 

of temperature indicators (not temperature sensor) in chemical sections) contributed to the 

intermediate events of IE16, IE 19, IE21, and IE22 (Fig 3.3a). 

Figure 3. 3a Causality modeling of hydrogen release in the chemical section of the plant 
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 Figure.3.3b. Causality modeling of hydrogen release in the mechanical section of the plant 

Figure.3.3c. Causality modeling of hydrogen release in the storage section of the plant 
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Figure 3. 4 Causality modeling of the cause-effect model of the hydrogen release accident scenario 

 

The hydrogen release probability is estimated at 0.017 (Fig 3.4), which indicates a high value. This 

is due to system degradation and numerous contributing factors to the accident scenario. Tables 

3.3a, b, and c provide the identified root events, a description thereof, and symbols in the  three 

sections (i.e., chemical, mechanical, and storage) of the studied plants.  However, for a better 

understanding of the model's applicability, the intermediate events and their descriptions are 

presented in the appendix (section 3).  Causality modeling revealed that at least 116 root causes 

contributed to hydrogen release in the alkaline water electrolysis plant. Each of the two chemical 

and storage sections is involved equally in the number of contributing events (46 events), while 24 

root events were identified in the mechanical section that caused hydrogen release.  
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Table 3. 3a Subsections, symbols, and root events of the chemical section in the studied plant 

Section, 

subsection 
Symbol root event Subsection Symbol Root event 

1. Chemical section     

 

 

 

 

 

 

 

1.1. Cell 

release 

X1 Electrolytic corrosion  X24 Lack of on-time PM of temperature indicators 

X2 Lack of cathodic protection  X25 Ignorance of useful life 

X3 Lack of maintenance by the manufacturer  X26 Inadequate technical knowledge 

X4 Unavailable technical information   X27 Inadequate training about power system 

X5 Lack of thickness measurement  X28 Operator distraction 

X6 Poor risks awareness/perception  X29 Being multitask/job 

X7 Inadequate safety training 

1.2. Pipeline 

cell 

release 

X30 Equipment exhaustion 

X8 Failure in thickness testing X31 High H2 temperature 

X9 Inadequate budget X32 Overuse of hose 

X10 Shortage of labor X33 Increasing H2 production 

X11 Heavy workload due to power production X34 Hydrogen over-accumulation by sediments 

X12 Overvoltage by failure in Rectifier X35 The entrance of KOH and H2O to pipeline 

X13 Increase KOH density 

1.3. Water cell 

X36 Lack of timely change of pipes 

 

X14 H2O sediment X37 Decarbonated water of cooling system 

X15 Move out KOH from cells X38 Inadequate injection of methyl orange 

X16 Water box function error X39 Failure in manometers 

X17 The entrance of KOH to pipeline X40 Operator failure in checking manometer 

X18 Overcurrent by rectifier 

1.4. Demister 

X41 Exhaustion of junctions. 

X19 Not checking cells temperature X42 Loosening of junctions. 

X20 Lack of a permanent presence operator X43 Failure of thickness testing 

X21 Operator failure (e.g., memory failure) X44 Failure in the cooling system (cooler) 

X22 The closed water circulation path X45 Corrosion with H2O and KOH 

X23 Calibration failure X46 Failure in cell functions 
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Table 3. 3b Subsections, symbols, and root events of the mechanical section in the studied plant 

Section, subsection Symbol Root event Subsection Symbol Root event 

2. Mechanical section 

 

 

 

 

 

2.1. Gas Holder 

 

 

 

 

 

X47 Decarbonated water in gas holder 

2.1. Compressors 

X59 Adjusting sensors and indicators failure  

X48 Aging X60 Flaw communication of compressor and rectifier 

X49 Pure water existence in the gas holder X61 Rectifier’s malfunction 

X50 Clogged the outlet pipe X62 Operator failure in rectifier operations 

X51 The flaw in minimum level sensor 

2.2. H2 gas dryer 

X63 Pressure gage error 

X52 Compressor shut down X64 Poor junctions 

X53 The flaw in compressor activator sensor 

2.3. Pall filter 

X65 Loose bolts 

X54 Being closed of venting pipe X66 Filter saturation 

X55 The flaw in maximum level sensor X67 Flaws in filter replacement process 

X56 Connection failure to the rectifier X68 Poor filtration 

X57 Failure in sensor X69 Lack of timely filter replacement 

X58 Failure in temperature indicator X70 Blocking filter membranes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

87 

 

Table 3.3c. Subsections, symbols, and root events of the storage section in the studied plant 

Section, subsection Symbol Root event Subsection Symbol Root event 

3. Storage section X71 The flaw in Anti-corrosion layer  X94 Shear stress 

 X72 Failure in cathodic protection X95 Heat fatigue 

3.1. Tank Body Corrosion 

X73 Entrancing of H2O into the tank 

3.5. Temperature 

fluctuations 

X96 Lack of sheltering 

X74 Failure in inrepairment and maintenance X97 Inlet  gas temperature higher than normal 

X75 Poor inspection program X98 Overheating of the frozen pipelines  

X76 Erosion X99 Hot work in adjacent 

X77 Poor detection of corrosion X100 Direct sunlight 

X78 Freezing water  X101 Remaining close relief valve 

X79 Water collecting in pits by snow and rain 

3.6. Overpressure 

X102 Inadequate capacity of the relief valve 

X80 Heavy snow and rain X103 Failure in PSV adjusting and repairment 

3.2. Tank rupture due to the 

external event 

X81 Vehicle impact X104 Poor repairment and maintenance 

X82 Aircraft/Helicopter impact X105 Lack of operator’s attention during work 

X83 Earthquake X106 System viruses by a terrorist attack 

X84 Heavy storms X107 Sediment formation 

X85 Flood X108 H2 Freezing 

X86 Terrorist attack X109 Harsh weather  

3.2. Crash heavy 

objects 

X87 Ignoring safety distance for H2 tank 

3.7. Leakage in 

Pipeline 

X110 Poor maintenance 

X88 The flaw in contractors’ safety regulation  X111 Pipe Corrosion 

X89 Falling equipment and machines during PM  X112 Increasing pressure 

X90 Falling trees X113 Freezing H2O and H2O sediment 

X91 Third-party sabotage  

3.8. Tank collapse 

X114 Induced vacuum 

 3.4. Mechanical fatigue 
X92 Tangential stress X115 Excessive outlet flow 

X93 Axial stress X116 Loading stopped 
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3.3.3. Probability Elicitation under Epistemic Uncertainty  
 

The four experts were asked to express their opinions on the linguistic terms to estimate the 

possible occurrence of root events and safety barriers. According to the literature and the present 

study conditions, several criteria including job field, experience, age, and education level were 

considered. For easy reading and understanding of the model application, the experts’ profiles are 

presented in the appendix (section 3), while the corresponding decision weights of experts are 

represented in Table 3.4.  

 

Table 3. 4 Importance weight of experts based on criteria 

Criteria ℭ#1 ℭ#2 ℭ#3 ℭ#4 Final 

weight Weight of criteria 0.234 0.57 0.141 0.055 

Experts 

E1 0.155 0.086 0.143 0.228 0.118 

E2 0.094 0.603 0.143 0.497 0.413 

E3 0.129 0.172 0.143 0.171 0.158 

E4 0.622 0.138 0.571 0.104 0.310 

 

The following four different criteria were employed to evaluate the quality profile of the decision-

makers: job field (ℭ#1), experience (ℭ#2), education level (ℭ#3), and age (ℭ#4). The optimal 

weights of the main criteria were derived as model 3 and are provided in Table 3.5.  

 

Table 3. 5 The optimal importance weight of criteria 

BWM 
Main criteria of decision-makers 

ℭ#1 ℭ#2 ℭ#3 ℭ#4 

Best (ℭ#2) 3 1 5 8 

Worst (ℭ#4) 6 8 5 1 

Optimal weights 0.234 0.570 0.141 0.055 

Reliability score (RS) 0.130  

Note: RS illustrates to what extent the results are reliable, the closer the RS to 

zero is the better.   

  

 

mailto:E@
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The optimal weight of the main criteria was calculated for each expert. To reach this, adopting 

model 2, the optimal weight of the main criteria was derived as model 4 (appendix, section 3) and 

provided in Table 3.6. 

Table 3. 6 The optimal importance weight of experts based on experience criterion 

 

BWM 

decision-makers (employed experts) 

E#1 E#2 E#3 E#4 

Best (E#2) 6 1 4 5 

Worst (E#1) 1 7 3 2 

Optimal weights 0.086 0.603 0.172 0.138 

Reliability score (RS) 0.086  

Note: RS (reliability score) illustrates to what extent the results are reliable, the closer the 

RS to zero is the better. 
 

 

Similar to the experience criterion, presented in the appendix (Section 3), the optimal importance 

weight of all the employed experts in terms of education level, job field, and age was calculated. 

Accordingly, the final importance weight of decision-makers as 𝜔𝐸#1 , 𝜔𝐸#2 , 𝜔𝐸#2 and 𝜔𝐸#3  with 

consideration of all criteria fall to 0.118, 0.413, 0.158, and 0.310, respectively.  

Therefore, BWM, as a new and powerful MCDM technique, can remedy some uncertainties raised 

from the application of input data (i.e., prior profanities) in risk analysis studies. The main reason 

for this capability is that BWM applied a systematic and structured mechanism to perform a 

pairwise comparison of the decision criteria compared to other available MCDM methods which 

provided substantially better results in evaluation criteria (i.e., consistency ratio, minimum 

violation, total deviation, and conformity). This merit leads to not only more reliable and consistent 

results but also avoids false or unrealistic criteria weights [27]. In addition, a consistency ratio was 

used to check the reliability of the comparisons and final outputs. This is the first work to present 

this matter in safety and risk studies of the hydrogen economy.   

In the next step, after collecting all experts’ opinions (appendix, section 2), D number theory was 

employed to elicit group opinions, and the obtained possibility and prior probability in terms of D 

numbers are provided in Table 3.7. To simplify the calculation details, root event X7 (Inadequate 
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safety training) was considered as an example to present the calculations (see the section 4 in the 

appendix) 

Table 3. 7 Possibility and the prior marginal probability of the root events and safety barriers in terms of D numbers 

No. Possibility Probability No Possibility Probability No Possibility Probability 

X1 0.1519 8.27E-05 X44 0.2361 3.95E-04 X87 0.1947 2.03E-04 

X2 0.1561 9.16E-05 X45 0.1845 1.67E-04 X88 0.1783 1.48E-04 

X3 0.1344 5.23E-05 X46 0.1985 2.17E-04 X89 0.1909 1.89E-04 

X4 0.2047 2.41E-04 X47 0.1112 2.51E-05 X90 0.1785 1.49E-04 

X5 0.1560 9.13E-05 X48 0.1551 8.94E-05 X91 0.1892 1.83E-04 

X6 0.1442 6.82E-05 X49 0.2182 3.01E-04 X92 0.1818 1.59E-04 

X7 0.1517 8.23E-05 X50 0.1954 2.05E-04 X93 0.1818 1.59E-04 

X8 0.1399 6.08E-05 X51 0.1791 1.51E-04 X94 0.1823 1.60E-04 

X9 0.1236 3.79E-05 X52 0.1320 4.89E-05 X95 0.1840 1.66E-04 

X10 0.2246 3.33E-04 X53 0.1579 9.54E-05 X96 0.1503 7.97E-05 

X11 0.1988 2.18E-04 X54 0.1815 1.58E-04 X97 0.1897 1.85E-04 

X12 0.2044 2.40E-04 X55 0.2040 2.38E-04 X98 0.1677 1.19E-04 

X13 0.1006 1.67E-05 X56 0.1877 1.78E-04 X99 0.1512 8.13E-05 

X14 0.1814 1.58E-04 X57 0.2008 2.26E-04 X100 0.1206 3.46E-05 

X15 0.1472 7.36E-05 X58 0.1641 1.10E-04 X101 0.1627 1.07E-04 

X16 0.1456 7.08E-05 X59 0.1657 1.14E-04 X102 0.1818 1.59E-04 

X17 0.1759 1.41E-04 X60 0.2008 2.26E-04 X103 0.2108 2.67E-04 

X18 0.1791 1.51E-04 X61 0.1675 1.18E-04 X104 0.2266 3.43E-04 

X19 0.1807 1.55E-04 X62 0.1610 1.02E-04 X105 0.1932 1.97E-04 

X20 0.0958 1.37E-05 X63 0.2171 2.96E-04 X106 0.1664 1.16E-04 

X21 0.1462 7.19E-05 X64 0.1541 8.73E-05 X107 0.1969 2.11E-04 

X22 0.2281 3.51E-04 X65 0.1620 1.05E-04 X108 0.1327 4.98E-05 

X23 0.1757 1.41E-04 X66 0.2083 2.57E-04 X109 0.1634 1.08E-04 

X24 0.2298 3.60E-04 X67 0.1874 1.77E-04 X110 0.2127 2.76E-04 

X25 0.1427 6.56E-05 X68 0.1698 1.24E-04 X111 0.1571 9.36E-05 

X26 0.1896 1.85E-04 X69 0.2032 2.35E-04 X112 0.1759 1.41E-04 

X27 0.1605 1.01E-04 X70 0.1802 1.54E-04 X113 0.1842 1.66E-04 

X28 0.1752 1.39E-04 X71 0.1752 1.39E-04 X114 0.1419 6.43E-05 

X29 0.1206 3.46E-05 X72 0.1383 5.83E-05 X115 0.2051 2.43E-04 

X30 0.1577 9.49E-05 X73 0.1857 1.71E-04 X116 0.2213 3.16E-04 

X31 0.1823 1.60E-04 X74 0.1722 1.31E-04 Safety barriers 

X32 0.0552 1.17E-06 X75 0.1868 1.75E-04 RPB 0.2306 3.64E-04 

X33 0.1446 6.90E-05 X76 0.1957 2.06E-04 DPB 0.2416 4.27E-04 

X34 0.1665 1.16E-04 X77 0.1969 2.11E-04 IPB 0.1755 1.18E-03 

X35 0.1573 9.41E-05 X78 0.2036 2.37E-04 EPB 0.1763 1.42E-04 

X36 0.1843 1.67E-04 X79 0.1545 8.81E-05 IS1 0.1720 1.30E-04 

X37 0.1030 1.85E-05 X80 0.1651 1.12E-04 IS2 0.2300 3.61E-04 

X38 0.1913 1.90E-04 X81 0.1815 1.58E-04 IS3 0.2058 2.46E-04 

X39 0.1788 1.50E-04 X82 0.1079 2.22E-05 IS4 0.1634 1.08E-04 

X40 0.2329 3.77E-04 X83 0.1873 1.77E-04 IS5 0.1636 1.09E-04 

X41 0.1674 1.18E-04 X84 0.1799 1.53E-04 IS6 0.1499 7.88E-05 

X42 0.1909 1.89E-04 X85 0.1350 5.33E-05 IS7 0.1512 8.13E-05 

X43 0.1615 1.04E-04 X86 0.1134 2.71E-05 IS8 0.1456 7.08E-05 

IS, Ignition source; IS1, Hot surfaces; IS2, Static sparks; IS3, Hot work; IS4, Stray current; IS5, Electrical apparatus sparks; IS6, 

Open fires; IS7, Lightning sparks; IS8, Impact sparks. 
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As a result, the uncertain information regarding the prior occurrence probabilities was modeled by 

reasoning and synthetization of information implemented by the D numbers combination rule. The 

applied D numbers theory inherits the advantage of Dempster-Shafer theory and strengthens its 

capability of uncertainty modeling. Xiao, (2019) indicated DNT provides an excellent performance 

to copy with arisen uncertainties from imprecision, fuzziness, and incompleteness in subjective 

judgment, and it is a more reliable and effective expression of uncertain information. The main 

reason to prove its unique ability to represent and tackle the uncertainty is that it has no restrictions 

where the sets on the frame of discernment must be mutually exclusive and collectively exhaustive, 

and the sum of total focal elements of the basic probability assignment must be equal to one 

[28,43]. 

 

3.3.4. Dynamic Bayesian Network 
 

 

3.3.4.1. Dynamic hydrogen release probability modeling and system reliability 

 
 

  

 

 

 

 

 

 

 

 

 

 

Figure 3. 5 Dynamic modeling of hydrogen release probability and the system reliability using DBN 
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The dynamic probability of the hydrogen release scenario and the hydrogen generation system’s 

reliability within 52 weeks are shown in Fig. 3.5 using DBN. As shown in the results, the 

probability increases significantly from 0.017 to 0.375  in the 52nd week. Moreover, the reliability 

of the studied plant decreases substantially from 0.983 to 0.625 in the last week. In other words, 

hydrogen generation system’s reliability declines 36.42% in the next year, which means the system 

degrades dramatically during the time interval. As a result, a catastrophic accident will most likely  

happen soon if the system safety does not improve  fundamentally. Hence, given the results of the 

root events that contribute the most (criticality analysis) to the accident scenarios occurrence, 

implementing preventive safety measures can improve the system’s safety and reliability.  

 

3.3.4.2. Deductive and Abductive reasoning 
 

 

The results of deductive (prior probability) and abductive (posterior probability) reasoning for the 

hydrogen release accident scenario and hydrogen release from the three main sections (e.g., 

chemical, mechanical, and storage) are presented in Table 3.8. The abductive reasoning through 

the developed model (Fig.3.3 and 3.4) showed the prior occurrence probability for the hydrogen 

release accident scenario was 1.71E-02, which is considerably high. Moreover, the results 

illustrated that both the prior and posterior occurrence probability of hydrogen release in the 

storage section was higher than in the other sections. It is noteworthy that the posterior failure 

probabilities in the three sections were obtained 

as 𝑃(𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑖 = 𝑓𝑎𝑖𝑙| 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 =  𝑦𝑒𝑠). In other words, the state of the 

hydrogen accident release scenario was assigned as Yes (Occurrence probability = 1) to update the 

failure probabilities of root events. 
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Table 3. 8 Hydrogen loss scenario and corresponding probabilities  

Scenarios description Prior  Posterior  RoV Criticality 

Hydrogen release accident scenario (HRAS) 1.71E-02 1 - - 

Chemical section release (CSR) 6.44E-03 3.76E-01 5.74E+01 3 

Mechanical section release (MSR) 3.81E-03 2.23E-01 5.74E+01 1 

Storage section release (SSR) 6.97E-03 4.07E-01 5.74E+01 2 

 

Table 3.9 demonstrates the five possible final consequences which can result from the hydrogen 

release according to the functions (work or failure) of the safety barriers. Applying an abductive 

inference on the developed model to predict the prior occurrence probability of the consequences 

indicates that the result of a safe state was more probable than other events because of the lower 

failure probability of the release prevention barriers. In other words, the events with high 

occurrence probabilities have less severe consequences, whereas the events with more severe 

outcomes have lower occurrence probabilities.   

 

Table 3. 9 Consequences, their description, and corresponding prior probability 

Consequence Description Prior probability 

Safe Normal state 1.71E-02 

Near miss No injury 6.23E-06 

Mishap Minor impact on property, human and environment 2.66E-09 

Incident Considerable loss or harm 3.16E-12 

Accident Fatality or fatalities 4.49E-16 

 

3.3.4.3. Critical Analysis 

 

One of the most critical steps in developing a risk management plan is to understand the nature of 

the root events that contribute most often to the occurrence of accident scenarios. With this 

information, safety measures and strategies to mitigate and prevent similar accident scenarios can 

be developed. This should be done by applying a precise approach to accurately specify the 

identified root events.  The findings demonstrated latent events third party sabotage as X91, heavy 

workload due to power generation as X11, excessive outlet flow as X15, lack of on-time repairs, 
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and maintenance as X104 had the contributed most frequently to the occurrence of the accident 

scenario. Therefore, the plant’s risk management plan should consider mitigating these root events 

as the top priority. Furthermore, as can be seen from Table 3.8, the critical analysis of hydrogen 

release indicated that the criticality of the mechanical section was higher than other sections based 

on RoV (Table 3.8). However, it is noteworthy that according to both prior and posterior 

probability, this section had the lowest criticality. Hence, relying on merely prior or posterior 

probability may lead to incorrect results in sensitivity analysis in Bayesian safety assessment. This 

issue is discussed fully and enough evidence to deal with that using a new importance measure 

named RoV is proposed in [38].  

 

 

3.3.4.4. Predictive modeling of safety barriers and consequences 
 

Tables 4.10 and 4.11 provide information about the cumulative number of abnormal events within 

each severity level (e.g., safe, near miss, mishap, incident, and accident)  for the year 2019. This 

data was derived from the hazard analysis process, and likelihood failure probability for safety 

barriers over 12 months, respectively. For simplification, the likelihood failure probability of RPB 

for the first month (0.6000), as an example, calculated based on Eq. (3.21 and 3.22) as 
3+2+1

4+3+2+1
=

0.6000 (Table 3.11). 

 

Table 3. 10 Cumulative number of abnormal events over12 months 

Month Safe Near miss Mishap Incident Accident 

1 4 3 2 1 0 

2 8 9 3 1 0 

3 13 15 5 2 0 

4 30 45 16 9 1 

5 35 60 21 11 1 

6 36 75 22 12 1 

7 48 80 23 13 1 

8 52 88 25 14 1 

9 55 95 25 16 2 

10 56 101 27 16 2 

11 59 108 28 18 2 

12 61 111 28 19 3 
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Table 3. 11 Likelihood failure probability for safety barriers 

Month RPB DPB IPB EPB 

1 6.00E-01 5.00E-01 3.33E-01 0.00E+00 

2 6.19E-01 3.08E-01 2.50E-01 0.00E+00 

3 6.29E-01 3.18E-01 2.86E-01 0.00E+00 

4 7.03E-01 3.66E-01 3.85E-01 1.00E-01 

5 7.27E-01 3.55E-01 3.64E-01 8.33E-02 

6 7.53E-01 3.18E-01 3.71E-01 7.69E-02 

7 7.09E-01 3.16E-01 3.78E-01 7.14E-02 

8 7.11E-01 3.13E-01 3.75E-01 6.67E-02 

9 7.15E-01 3.12E-01 4.19E-01 1.11E-01 

10 7.23E-01 3.08E-01 4.00E-01 1.11E-01 

11 7.26E-01 3.08E-01 4.17E-01 1.00E-01 

12 7.25E-01 3.11E-01 4.40E-01 1.43E-01 
   

 

The capacity for predictive modeling is a unique feature of the proposed model. The ability to 

anticipate future risk levels is a momentous issue in the risk management of dynamic systems where 

safety barriers may degrade over the time. In these contexts, having posterior failure probability 

distribution of safety barriers plays a significant role in improving the system’s safety, and as a result, 

preventing potential major accidents. The predictive probability of the observed abnormal event for 

the next time interval for the given data was calculated using Eq. 3.18 and 3.19. Accordingly,  𝜆𝑝 is 

the posterior rate of abnormal events (Eq. (3.19)) which was 17.91, and the occurrence probability of 

an abnormal event (Eq. 3.18) is equal to 0.0522. In other words, there is a 50.22% chance that an 

abnormal event will occur in the next time interval in the studied plants. 

 

Figure 3. 6 Updated probability of failure distribution of safety barriers for 12 months. 
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Posterior (updated) failure probability estimation of safety barriers for 12 months is illustrated in 

Fig.3.6 The updated probability can be calculated using Bayes’ Equation (Eq. 3.22) through 

utilizing prior probability (Table 3.9) and likelihood failure probabilities (Table 3.11). The 

degradation of safety barriers over the time frame has been confirmed by Bayesian posterior 

probability values (Fig.3.6). The findings depicted a dramatic surge in the failure probability of 

RPB and IPB in the period. This issue is significant enough to result in the lose hydrogen, as a 

more flammable vapor, and then meet an ignition to start a devastating fire or explosion. 

 
 

 

 Figure 3. 7a Posterior probability distribution of consequence occurrence of safe events over 12 

months.  
 

 

Figure 3.7b. Posterior probability distribution of consequence occurrence of near miss events over 12 

months. 
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Figure 3.7c. Posterior probability distribution of consequence occurrence of incident events over 12 

months. 
 

 

Figure. 3.7d. Posterior probability distribution of consequence occurrence of accident events over 12 

months. 
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becoming fifty-eight times lower than the previous amount (Fig. 3.7a). This result proves that 

substantial degradation begins over time on the system safety, and consequently, because of this 

issue, the posterior occurrence probabilities of near misses, mishaps, incidents, and accidents are 

increased considerably (Fig. 3.7 b, c, and d).  The posterior occurrence probabilities of the accident 

as the most catastrophic consequence escalated dramatically, increasing six-fold from 4.49E-16 

(Table 4.8) to 6.99E-17 (Fig. 4.7d). 

 

3.3.5. Discussion on the Comparison of the Models 
 

This section is dedicated to presenting a brief comparison of the eleven safety and risk models 

applied recently on hydrogen infrastructures. Seven features that are very important in dynamic 

risk management of the critical systems were selected to compare the models. It is noteworthy that 

this section presents a comparison in dynamic risk management perspectives and the assignment 

of less credit to some models does not mean that they suffer from great disadvantages, or it has not 

have any superiority/application in risk studies. In general, most of the proposed models are unable 

to derive benefits from these essential dynamic traits. This deficit highlights that the novel and 

recent dynamic methods are not employed commonly in hydrogen safety and risk studies. This 

issue was confirmed in another study conducted recently to review state-of-the-art technologies 

and risk and reliability analysis of hydrogen storage and delivery [14].  

One of the most vital issues in safety and risk models is their capability to deal with uncertainty. 

This issue is made more challenging by the lack of data and valid, well-specified models available 

for emerging technologies in hydrogen production, storage, and transportation. 

More specifically speaking, epistemic (subjective) uncertainty is increased by a lack of knowledge 

and can be addressed when enough information becomes available.  
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Table 3. 12 Taxonomy of the recent risk and safety models of hydrogen infrastructures (i.e., Production Plants, Refueling Stations, Storage and Transportation) 

Model Methodology Deal with Uncertainty Reasoning Dynamic Probability 

Elicitation 

PPM Criticality 

RCA* 

Dependency 

Modeling Aleatory Epistemic Abductive Deductive 

Kim et al., (2011) Qualitative FTA and 

FMEA, Risk index 

         

Haugom and Friis-

Hansen, (2011) 

Qualitative BN, ETA, 

Risk Matrix 

   ✓      

Lins and De 

Almeida, (2012) 

ETA, Equiprobable 

Interval Method, 

Probit Models 

 ✓  ✓  ✓    

Al-shanini et al., 

(2014) 

SHIPP methodology ✓  ✓ ✓   ✓   

Mohammadfam and 

Zarei, (2015) 

HAZOP, PRA, ETA, 

PHAST, MTL-STD-

882, F–N curve 

 

 

✓  ✓      

Duan et al., (2016) Fuzzy probability, 

BN, AHP, Risk 

Matrix 

✓ ✓    ✓    

Skjold et al., (2017) HyRAM, CFD ✓   ✓      

Groth and Hecht, 

(2017) 

HyRAM Programs ✓   ✓      

Chang et al., (2019) DBN ✓  ✓ ✓ ✓  ✓ ✓  

Shi et al., (2020) BRANN, PHAST ✓      ✓   

The Present Model DNT, BWM, SHIPP, 

BT, DBN 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

*RCA; Root Cause Analysis, PPM; Probabilistic Predictive Modeling 
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In the context of the incompleteness of reliability data (i.e., failure rate) and inconsistencies 

between the applied model and the system model, the DNT along with expert judgment and BWM 

are more suitable to tackle this epistemic uncertainty in failure probability elicitation compared to 

other popular approaches in particular evidence theory (Dempster–Shafer theory) and analytic 

hierarchy process (AHP).  

In comparison with the conventional risk analysis models applied to hydrogen infrastructures 

(Table 3.12), the developed dynamic risk model provided strong modeling of complex stochastic 

processes. This capability is because of using Direct Acyclic Graph, modeling common cause 

failures and dependency among root events, applying conditional probability table instead of 

deterministic gates (i.e., AND, OR), employing exact inference algorithms, and updating the 

occurrence probability. These abilities not only provide constructive information for decision-

makers but significantly, also address aleatory uncertainty. Aleatoric uncertainty refers to the 

data's inherent randomness that cannot be explained away. Some of these features were 

demonstrated in a model developed by Chang et al., (2019) and also Shi et al., (2020) demonstrated 

that BRANN can reduce the scenario-related parametric uncertainty by 97% in fire and explosion 

risk analysis of hydrogen refueling stations. Further, when new knowledge or evidence of the 

studied system becomes available, a risk analyst can model and explain the new situation of the 

system by employing the deductive reasoning (i.e., probability updating) of the developed model. 

Continuing this work over a life cycle of the system leads to the development of a tailored model 

and as a result, both data and knowledge, and aleatory uncertainty can be reduced naturally.  

In the present model, criticality analysis of root causes to recognize the most contributing 

significant factors in occurrence accident scenarios was conducted using RoV of probabilities 

which provide more precise results [38,48]. Another positive aspect of the proposed model is the 
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ability to perform predictive modeling. Having incomplete knowledge regarding the safety 

barriers’ performance when a critical system fails, and hazardous consequences trends, increase 

our uncertainty in effectively designing safety mitigating measures. To address this important 

issue, SHIPP methodology integrated into the model to provide dynamic predictive modeling of 

safety barriers and consequences over the desired time interval. The model provides a prediction 

based on posterior failure rate data that has lower uncertainty compared to a prediction based on 

prior data because the model is worked according to Poisson distribution with the posterior rate of 

abnormal events [40]. Further, predictive modeling of safety barriers deviations is worthwhile in 

developing risk-based preventive maintenance programs, hence it can be contributed to improving 

system reliability, minimizing demand failures, and profitability of the operation.  

 

Figure 3. 8 Benchmarking some results of the proposed model with Bow tie (BT) model 
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reasoning to estimate the prior occurrence probability of the hydrogen release accident scenario 

(HRAS), chemical section release (CSR), mechanical section release (MSR), storage section 

release (SSR) accompanied by possible consequences (i.e., safe, near miss) of hydrogen release.   

As can be seen from the findings there is a substantial correlation between the results of two models 

(Fig. 4.8).  Using CPT instead of deterministic gates (AND, OR), which used in BT model, as well 

as considering conditional dependencies among nodes and common mode failures, and inference 

algorithm in the proposed model are the main reasons why there is a little difference between the 

two model results.  

 

 3.4. Conclusion 
 

 

Safety is one of the most critical challenges for the sustainable development of the hydrogen 

economy. Reaching the vision of using hydrogen as a low-carbon fuel source to phase out 

conventional fossil fuels and limit global warming, requires researchers to establish strong and 

novel safety assessment models to provide more effective safety measures. In considering such 

weighty matters, the present study aimed to develop an improved dynamic approach to safety 

modeling. This was done by integrating the D number theory, best-worst method, and SHIPP 

methodology into the DBN for the safety assessment of hydrogen infrastructure under uncertainty. 

To present the capabilities and practicality of the proposed model to perform a dynamic risk 

analysis, a real case study was conducted on a hydrogen production process in a power plant. The 

main conclusions of the present study are as follows: 

• The model provides a dynamic and holistic cause-consequences modeling of the hydrogen 

loss accident scenario, which presents the accident profile from root causes to final 

consequences. This modeling revealed and incorporated a wide range of contributing latent 



 

 103 

factors both from individual to organization failures and from operational to mechanical as 

well as natural hazards into a probabilistic risk analysis which were ignored in the most 

previous models. 

• A hybrid and improved algorithm containing DNT and BWM, as the latest and more 

reliable MCDM technique, was employed to substantially deal with epistemic uncertainty 

in input data (i.e., prior probabilities). This is the first that study presented an attempt to 

integrate this algorithm into DBN, as a well-known probabilistic safety analysis method, 

in safety and risk studies. This effort leads to addressing the potential uncertainties and 

subsequently, more realistic results and effective final decision 

•  Identifying a wide range of latent failures and precisely prioritizing them which 

contributed the most to the occurrence of the accident scenario using the RoV of 

probabilities was another positive aspect of the model. 

• Simulation and predictive modeling of the posterior failure probability distribution of 

safety barriers, consequences, hydrogen release probability, and system reliability can 

tackle uncertainty in the safety and risk preventive and mitigative decisions.  

Although integrating DNT and BWM into DBN provides great advantages and capabilities in a 

unique model, it may have some limitations and some attempts should be made address them. For 

instance, a powerful consequence modeling under uncertainty may be needed in risk analysis of 

some critical infrastructures, this concern was outside the scope of the present model due to the 

huge complexity it would impose on the proposed model. Moreover, integrating a dynamic 

influence diagram into the model to explore the effects of the most contributing root events in 

decreasing the hydrogen release probability and dealing with uncertainty in decision-making could 

be investigated in future studies. Finally, we call for further investigation especially using 
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experimental data to explore and evaluate the proposed model’s applications and validity in 

various hydrogen operations in the future studies 
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Appendix: 

 
 

 Section 1: The Number Theory advantages 

 

Considering the merits of D-S theory, D Numbers Theory also has the following advantages: 

(i) D numbers theory has a robust and powerful hypothesis compared to D-S theory, which is 

that all elements in the frame of decrements must be mutually exclusive. It simply means 
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that the hypothesis is a complex task to be satisfied in evaluations of the linguistic terms, 

which are based on fuzzy expressions like “high”, “moderate”, and “low”. Therefore, D 

numbers theory, using a non-exclusive hypothesis in the framework of evaluation will be 

much more reliable (Fig. 3.9) 

(ii) D numbers can deal with the incompleteness information in the evaluation procedure. In D-

S theory, a basic belief assignment must be made with completeness restrictions, which 

simply means that the summation of all focal elements should be equal to 1. That is, the 

experts’ judgment may be insufficient in some situations. Accordingly, the evaluation is 

merely based on partial information, which D numbers and D-S theory can obtain incomplete 

basic belief assignments. In this view, D number theory has much more applicable. 

 

 

 

 

 

 

 

Figure 3. 9 The structure of D-S and D number theory  [222] . 

 

Section 2: linguistic terms, their IFNs, experts’ profiles and their judgments 

The utilized linguistic terms and their intuitionistic fuzzy numbers (IFNs) are provided in Table 

4.13. 
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Table 3. 13 Rating for the possibility of each event 

Qualitative terms IFNs 

Extremely low (EL)  (0.10,0.90) 

Very low (VL)  (0.25,0.70) 

Low (L)  (0.30,0.60) 

Fairly low (FL)  (0.40,0.50) 

Medium (M)  (0.50,0.50) 

Fairly high (FH)  (0.60,0.30) 

High (H)  (0.70,0.20) 

Very high (VH)  (0.75,0.20) 

Extremely high (EH)  (0.90,0.10) 

 

The employed experts’ profiles: 

 

Table 3. 14 Experts’ profile  

No Job field Experience (years) Education level Age 

Expert 1 (E#1) Health, Safety, and Environment (Head) 3 BSc 35 

Expert 2 (E#2) Maintenance engineering (Head) 12 BSc 38 

Expert 3 (E#3) Instrumentation engineering (Technician) 5 BSc 32 

Expert 4 (E#4) Process engineering (Supervisor) 4 MSc 29 
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The employed experts’ judgments: 

 

 Table 3. 15 Recognized root events and their corresponding possibility in the qualitative (linguistic) terms 

No. 
Expert opinion  

No. 
Expert opinion  

No. 
Expert opinion 

E#1 E#2 E#3 E#4  E#1 E#2 E#3 E#4 E#1 E#2 E#3 E#4 

X1 FH VH H VH  X44 FL M FL M  X87 VL L H M 

X2 VL H VL M  X45 H VH L M  X88 VL FL FH VH 

X3 VL H L  L  X46 FL H M M  X89 L L M L 

X4 M M FH H  X47 VH EH FH EH  X90 VL FH VL L 

X5 M H H VH  X48 FH VH FH H  X91 VL FL FL VL 

X6 VH H H VH  X49 FH M FL FL  X92 M L H FH 

X7 FL H VH VH  X50 FL M EL VL  X93 M L H FH 

X8 L H EH VH  X51 FH FH VL FH  X94 FL L FH FH 

X9 FL H EH EH  X52 H H EL H  X95 M FL FH H 

X10 M M EH M  X53 H H VL FH  X96 FH VH VH H 

X11 FL M L H  X54 FL FH VL L  X97 H FL L FL 

X12 M H M M  X55 FL FH L M  X98 M FL VL EL 

X13 L EL EL EL  X56 FL FH VL FL  X99 L L VL EL 

X14 L L VH FL  X57 L FH VL M  X100 H VH EH EH 

X15 H VH H VH  X58 L FH EL VL  X101 L FH VH H 

X16 H VH VH H  X59 FH FH EL FH  X102 M FH H FH 

X17 FL L H FH  X60 FH FH VL M  X103 M M H FH 

X18 L L VL L  X61 FH FH L H  X104 FL M H M 

X19 FL L L VL  X62 H FH EL FH  X105 FH M H VH 

X20 H EH EH EH  X63 M M L FH  X106 EL VL VL L 

X21 H H FH H  X64 FH H FL H  X107 H L FH M 

X22 M M M L  X65 FH H M H  X108 FL EL FH H 

X23 H M L L  X66 H FL FL M  X109 L H FH FH 

X24 FH M VL M  X67 FH FL VL FH  X110 L FH M M 

X25 VH H VH H  X68 FL FH L H  X111 FH H H FH 

X26 M L VH FL  X69 FL FH VL M  X112 FL FH H FH 

X27 FL VH L VH  X70 FH FL EL FL  X113 FL FL H FH 

X28 H FH L FH  X71 H L FH FH  X114 L EL VL L 

X29 H VH EH EH  X72 FH FH M M  X115 FL VL FL M 

X30 VH VH H FH  X73 VH FH FL FL  X116 M FL FL M 

X31 FL L L FH  X74 VH FL FH H  SB1 FH M L M 

X32 FL L FL L  X75 M FH M H  SB2 FH M M M 

X33 L H H H  X76 VH FL M FH  SB3 M FL L L 

X34 FH H FL FH  X77 H FH FH M  SB4 L VL VL VL 

X35 H H M H  X78 M FH H M  SB5 L VL FH VL 

X36 L H VL M  X79 M H VH H  SB6 L FH H VL 

X37 H VL EH H  X80 FL FH VH H  SB7 VL M L M 

X38 M FH FL FH  X81 FL L VL FH  SB8 M FL FL FL 

X39 M FH L VH  X82 VL EL H EL  SB9 L H L L 

X40 FL M FH M  X83 L VL M VL  SB10 VL L EL VL 

X41 L VH H FL  X84 L FH L L  SB11 FH VL L EL 

X42 FH FH M L  X85 EL L H EL  SB12 L L VL EL 

X43 M H VL VH  X86 VL EL VL EL  SB13 L L H EL 
 

EH  VH  H  FH  M  FL  L  VL  EL  
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Section 3: Intermediate events and their descriptions of the accident scenario  

 

 

Table 3. 16 Intermediate events of the accident scenario in the studied plant 

Symbol Description Symbol Description 

1) Chemical section  

Leak from cell 

     Body leak 

IE24 Pressure indication error 

IE1 Corrosion 2) Mechanical section 

IE2 Overpressure Gas holder 

IE3 Over temperature IE25 Body corrosion 

IE4 Failure in repair and maintenance IE26 Increase H2 temperature 

IE5 Pouring of KOH on cells body IE27 Overpressure and increase H2 volume 

IE6 Ignorance of useful time IE28 Failure in compressor function 

IE7 Failure in operator tasks IE29 Rectifier malfunction 

IE8 Blockage vent pipelines (O2, H2O, KOH) Compressor 

IE9 Blockage in H2 pipe IE30 Deactivate compressor 

IE10 KOH sediment IE31 The flaw in the outlet pipe 

IE11 Cells function error IE32 High pressure in H2 

IE12 Rectifier malfunction 3) Chemical section 

IE13 Cooling system function error IE33 Body Corrosion 

IE14 The flaw in temperature indicator IE34 Tank rupture due to the external event 

IE15 Operator ignorance to start cooling systems IE35 Crash heavy objects 

IE16 Failure in ammeter  IE36 Mechanical fatigue 

IE17 Exceeding correct by the operator IE37 Temperature fluctuations 

IE18 Ignoring of cells temperature IE38 Increase Pressure 

 Pipeline leak IE39 Internal corrosion 

IE19 Hose rupture IE40 External corrosion 

IE20 Pipeline overpressure IE41 Environmental Factors 

IE21 Loose fasteners and fittings IE42 Clogged outlet pipe 

Water cells IE43 Failure in tank pressure indicator 

IE22 Corrosion of water cell pipes IE44 Failure in pressure safety valve 

IE23 Failure in manometers section   

 

 

Section 4: The optimal weights for the main criteria and each expert 

Using model 2 (BWM-based), the optimal weights of the main criteria were derived as model 3 as 

follows.  

Model 3: 

min  𝜁∗  

Subject to: 

|𝜔 ℭ#2
∗ − 3 ∙ 𝜔 ℭ#1

∗ | ≤  𝜁∗, |𝜔 ℭ#2
∗ − 5 ∙ 𝜔 ℭ#3

∗ | ≤  𝜁∗, |𝜔 ℭ#2
∗ − 8 ∙ 𝜔 ℭ#4

∗ | ≤  𝜁∗ , 
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|𝜔 ℭ#1
∗ − 6 ∙ 𝜔 ℭ#4

∗ | ≤  𝜁∗, |𝜔 ℭ#2
∗ − 8 ∙ 𝜔 ℭ#4

∗ | ≤  𝜁∗, |𝜔 ℭ#3
∗ − 5 ∙ 𝜔 ℭ#4

∗ | ≤  𝜁∗ ,  

𝜔 ℭ#1
∗ + 𝜔 ℭ#2

∗ + 𝜔 ℭ#3
∗ + 𝜔 ℭ#4

∗ = 1 , 

𝜔 ℭ#1 
∗ , 𝜔 ℭ#2 

∗ , 𝜔 ℭ#3 
∗ , and 𝜔 ℭ#4

∗ ≥ 0 . 

To estimate the optimum experts’ importance weight, the experience criterion has been taken as 

an instance. Adopting model 2, the optimal weight of the main criteria was derived as model 4 as 

follows: 

Model 4:  

min  𝜁ℭ#2  

Subject to: 

|𝜔 𝐸#2
ℭ#2 − 6 ∙ 𝜔 𝐸#1 

ℭ#2 | ≤  𝜁ℭ#1 , |𝜔 𝐸#2 
ℭ#2 − 4 ∙ 𝜔 𝐸#3 

ℭ#2 | ≤  𝜁ℭ#2 , |𝜔 𝐸#2 
ℭ#2 − 5 ∙ 𝜔 𝐸#4 

ℭ#2 | ≤  𝜁ℭ#2  

|𝜔 𝐸#2 
ℭ#2 − 7 ∙ 𝜔𝐸#1 

ℭ#2 | ≤ 𝜁ℭ#2  , |𝜔 𝐸#3 
ℭ#2 − 3 ∙ 𝜔 𝐸#1 

ℭ#2 | ≤  𝜁ℭ#2  , |𝜔 𝐸#4 
ℭ#2 − 2 ∙ 𝜔 𝐸#1 

ℭ#2 | ≤  𝜁ℭ#2  

𝜔 𝐸#1 
ℭ#2 + 𝜔 𝐸#2 

ℭ#2 + 𝜔 𝐸#3 
ℭ#2 + 𝜔 𝐸#4 

ℭ#2 = 1 , 

𝜔 𝐸#1 
ℭ#2 , 𝜔 𝐸#2 

ℭ#2  , 𝜔 𝐸#3 
ℭ#2 , and 𝜔 𝐸#4 

ℭ#2 ≥ 0. 

 

Section 5: Example for D Number theory for prior probability calculation 

 

To simplify, take X7 (Inadequate safety training) as an example. With considering definition of D 

numbers explained in section 1.2, the linguistic terms, given by four experts, fall into “FL”, “H”, 

“VH”, and “VH” categories. The integrated D numbers theory was attained as follows using 

Equations 3.13-3.14; 

𝐴agg = (0.118 × 0.4 × 0.5) + (0.413 × 0.7 × 0.2) + (0.158 × 0.75 × 0.2) + (0.310 × 0.75 ×

0.2) = 0.1517  

Accordingly, the possibility of X7 can be transferred into the probability using Equation 3.16 as: 

 𝑃 = 1/10[(
1

0.1517 
−1)]

1
3⁄

× 2.301 = 8.2341𝐸 − 05 
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CHAPTER 4 

A dynamic human-factor risk model to analyze safety in sociotechnical systems  
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Abstract 

 

The performance of sociotechnical elements varies owing to a wide range of endogenous and 

exogenous influencing factors. These are called uncoupled variability as per Safety-II. The 

uncoupled variability has drawn rare attention, despite its vital importance in major accidents 

analysis as per Safety-I and Safety-II paradigms. Accordingly, Subsequently, Dempster - Shafer 

Evidence theory is employed to elicit knowledge under epistemic uncertainty. The proposed 

causation model is integrated into Dynamic Bayesian Networks to support decision-making under 

aleatory uncertainty. Finally, a criticality matrix is developed to evaluate the performance of the 

system functions to support decision-making. The proposed model is built considering the 

advanced canonical probabilistic approaches (e.g., Noisy Max and Leaky models) that address 

the critical challenges of incomplete and imprecise data. The proposed dynamic model would help 
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better understand, analyze, and improve the safety performance of complex sociotechnical 

systems. 

 

Keywords: System safety; Performance variability; Functional resonance analysis; Performance 

shaping factors; Human-organization factors. 

 

4.1. Introduction 

 

The sociotechnical systems (STSs) (e.g., oil and gas, healthcare, aviation, manufacturing, 

construction, power industry, and automotive) indicate complex operational processes composed 

of interactive and dependent social elements, organizational and human activities. These systems 

are mainly attributed to dynamic complexity, relative ignorance, interactable and non-linear 

operations [1,2]. However, traditionally established safety and risk analysis models and techniques 

mainly rely on four main assumptions: a) a system can be fully decomposed into clear elements 

and accordingly events into individual acts, b) elements have functioned in a bimodal manner; 

either works or fail (Fig. 5.1), c) the sequence of events have preestablished and firmed as 

examined by selected representation and finally d) event combinations are linear either 

straightforward or complex and orderly [2,3]. While these assumptions may be partially true for 

technological systems, it is highly arguable to apply for STSs neither for risk assessment nor for 

accident analysis perspective [4,5]. 

It should be noted that several techniques are proposed to analyze a system’s functions and model 

the industrial processes, such as Structured Analysis and Design Technique (SADT) [6], Function 

Analysis System Technique (FAST) [7], Multilevel Flow Modeling (MFM) [8], Analysis of 

Consequences of Human Unreliability (ACIH) [9] and Functional Resonance Analysis Method 
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(FRAM) [2]. The first three methods use to mainly develop a graphical representation illustrating 

functions of systems (e.g., project, product, or process) and existing logical relationships among 

them. ACIH uses diagrammatic notation and textual presentation to analyze the functional and 

technical context of the system, focused on human unreliability and associated consequences.  

Safety I often defined as freedom from unacceptable risk and assume that things go wrong due to 

the failure of system components (e.g., human error, mechanical failure, managerial failure) [10]. 

Accordingly, the cause-consequence relationship is established by identifying and quantifying 

relationships, and safety can be improved either by preventing causes or mitigating consequences. 

In contrast, Safety II presumes safety as the ability to succeed under varying conditions and focuses 

on both windows as ‘few things as possible go wrong’ to ensuring that ‘as many things as possible 

go right’, with the primary focus on the latter perspective [11]. People are considered as a resource 

required to obtain safety, not as a source of error or hazards. According to Safety-II thinking, 

everyday performance variability yields the necessary adaptations in response to actual 

variabilities, which is why things go right [10]. According to a proactive approach, this thinking 

perspective constantly tries to monitor and predict events and developments. Compared to Safety 

I, this thinking method needs different techniques and models to identify and manage performance 

variability. The resilience paradigm comes from Safety I and Safety II. A system is resilient if it 

can adjust its functioning before, during, or after any disturbances and opportunities and keep safe 

operations under expected and unexpected conditions [12,13].  

As a safety paradigm, Resilience engineering proposed an approach that begins by identifying and 

describing characteristic functions and focuses on improving the system's ability to monitor, learn, 

anticipate, and respond [14]. This approach has been proposed by Hollnagel (2012) named 

Functional Resonance Analysis Method (FRAM) [2]. In line with improving the system from a 
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learning perspective, Vanderhaegen et al. have presented an outstanding possibility to design 

systems capable of learning using human error. They proposed an approach called the 

Benefit/Cost/Deficit (BCD) model [15] and validated it using the neural network and case-based 

reasoning systems. They applied it for car driving to reveal benefits, costs, and deficits considering 

performance criteria (e.g., safety, action opportunity, driver comfort, and time spent). They also 

suggested integrating the probability theory into BCD and learning from organizational factors to 

improve the prediction systems. This is in line with some parts of the present study, where various 

organizational factors included in the proposed Taxonomy and advanced probabilistic model are 

utilized to predict performance variability. 

However, FRAM has rapidly risen in popularity and is considered in the present study for the 

following reasons. First, this method primarily focuses on system safety and human factors 

analysis, especially in sociotechnical systems. Second, FRAM acknowledged how it is possible to 

do safety analyses without decomposing systems into components and without being dependent 

on the notion of causality, which is important in Safety II. Third, FRAM provides a much stronger 

intellectual background, the principles, mechanisms, and a deep understanding of performance 

variabilities of each system’s function and the entire system. This is particularly important for 

uncoupled performance variability as the primary concern in the present study and system safety. 

Fourth, the previous studies have proved a capability and necessity for integrating probability 

theory and Bayesian Network into FRAM to characterize uncertainty and address issues related to 

the qualitative nature of this method. Finally, considering the mentioned attitudes of STSs, and the 

superiorities of FRAM, the authors believed this method could better address the research 

questions of the present study. 
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Three different mechanisms result in performance (output) variability in STSs based on FRAM, 

as shown in Fig. 5.1. The first type is internal or endogenous variability, which means deviation 

in normal performance can be a product of the variability of the function itself, while variability 

because of the influence of the working environment, the actual situation in which function is 

performed, is called external or exogenous variability. The third one is named functional upstream-

downstream coupling, which means variability of the downstream function can be affected by the 

output of the upstream function either in damping or amplifying states (Fig. 4.1) [2]. In this study, 

we called the first and second types of variabilities uncoupled performance variability. Function 

representation and variability propagation process are represented in Fig . 4.1. Accordingly, the 

hexagon demonstrates a FRAM function graphically, where each corner or vertex represents an 

aspect (e.g., Input, Time, Control, Precondition, Resource, and Output). 

 
Figure 4. 1 Function representation and variability propagation process 

 

To enhance this new safety paradigm, some researchers made their efforts to implement the FRAM 

in safety, risk, and accident applications in different domains, for instance, healthcare [16], aviation 

[17], construction [18], and oil and gas [19]. These applications highlighted the superiority of 

FRAM for analyzing risks and managing safety in modeling complex systems [20] and the 

possibility of demonstrating how systems work [21], and presenting a deeper understanding of 

STSs [22]. The other groups improved the FRAM primarily to deal with its qualitative nature as 
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one of the main drawbacks. To this end, integrating FRAM into Monte Carlo simulations [20,23], 

proposing rules for variability propagation and aggregation [24], integrating the Accident 

Causation Analysis and Taxonomy (ACAT) into FRAM [25], combining fuzzy logic into FRAM 

[26], proposing simple aggregation rules [27], integrating FRAM into machine learning [28] and 

data-driven techniques  [29] and integrating FRAM with fuzzy CREAM to semi-quantitatively 

visualize the safety of sociotechnical systems [30]  have been the most interest of the researchers. 

However, like other systemic approaches, FRAM is still primarily qualitative. More studies are 

required to provide comparative analysis results for risk scenarios to support making risk-based 

decisions in a rigorous approach [31]. It is highlighted that more specific quantification and 

handling of the quantitative aspects of variabilities are needed [24]. The abovementioned research 

mainly focused on presenting new quantification techniques for only coupled variability, while no 

systematic investigation has been paid to analyze probabilistically uncoupled performance 

variability caused by internal and external variability shaping factors (VSFs). It is believed that 

there will, of course, always be cases in STS where the variability magnitude of a single function 

(activity) is enough that adverse outcomes (e.g., accident, incident) would be unavoidable [32]. 

This is vital that a system be able to monitor, learn, anticipate, and respond to critical variabilities 

arising from internal and external variability of functions.  

Therefore, the present study aimed to address the below essential concerns mainly associated with 

uncoupled variability modeling, which subsequently can be a new extension in FRAM and system 

safety performance in STSs. We use the term "performance variability" in the rest of this work and 

mean only uncoupled performance variability of the system's functions and system understudy for 

the sake of readability. Accordingly, this work attempt to answer the following research questions: 

https://www.oxfordlearnersdictionaries.com/us/definition/english/unavoidable
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1. Which internal and external factors are associated with the performance variabilities of human, 

organizational, and technical functions in STSs? 

2. How can we predict the probability of performance variability and deal with its uncertainty? 

3. How can we model and quantify the intra effects (coupled dependencies) among VSFs? 

4. How can we update the prior probability distributions given the new evidence? 

5. How can dampen the critical variability in a risk-based decision-making process? 

 

4.2. Methodology 

 

This section explains the proposed holistic taxonomy  of VSFs based on different FRAM-driven 

functions and sociotechnical design hierarchy (e.g., individual, task, Human-Machine Interface 

(HMI), plant, organization, and culture). Dempster- Shafer Evidence theory (DSET) and Monte 

Carlo simulation methods, along with their integration into Dynamic Bayesian networks (DBNs) 

are employed to deal with critical challenges in knowledge engineering. This is a new hybrid 

approach used in the functional resonance analysis domain for probabilistic modeling of 

performance (uncoupled) variability under uncertainty. A new procedure is also developed to 

capture the inter-dependencies among VSFs in Bayesian Network modeling. Finally, a criticality 

matrix is proposed to evaluate the performance variability using a risk-based perspective to firmly 

support the decision-making process in damping the critical variabilities before leading to major 

system disruption. The proposed model is illustrated step by step in Fig 4.2. As can be seen, overall, 

the proposed model contains four main steps considered to achieve the specific objectives by 

employing the proposed techniques sequentially. 
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4.2.1. Developing a holistic taxonomy of variability shaping factors (VSFs) 

 

The first step of the developed methodology is characterizing the system functions, which means 

identifying the functions (activities) necessary in everyday work to achieve the system's purpose. 

This should be proceeded to fully detail how activities are performed instead of as an overall task 

or operation. These functions constitute the FRAM model. This study used common approaches 

[2], such as hierarchical task analysis (HTA), interactive interviews, and direct observation. We 

also examined the system's technical and process descriptions to characterize the system's 

functions of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2 The framework of the proposed model 

Performance shaping (influencing/enforcing) factors (PSFs) are rooted in Safety-I from at least the 

age of human reliability analysis (HRA), where they have been considered the primary source of 

performance variability in terms of human error occurrence [33,34]. To this end, human error 
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probability (HEP) is mainly estimated by multiplying the nominal value of human error occurrence 

by the accumulative effects of various PSFs in HRA methods. Assigning proper factors, associated 

numerical values for their effects, and importance level (weight) have been of utmost interest and 

challenges for HRA practitioners [33,34]. Several taxonomies and hierarchies (e.g., factors, sub-

factors, and indicators) of PSF have been proposed mainly in nuclear power plants, such as 

emergency tasks, advanced main control rooms, and extreme external hazards listed [33]. We 

carefully examined more than four hundred influencing factors on performance from fifteen 

different PSF taxonomies. They have frequently been utilized in human reliability methods such 

as the Technique for human error rate prediction (THERP), Success likelihood index method 

(SLIM), Human error assessment and reduction technique (HEART), Cognitive reliability 

and error analysis method (CREAM), Information, decision, and action in crew context (IDAC), 

A technique for human error analysis (ATHEANA), Standardized plant analysis risk-human 

reliability analysis (SPAR-H), Analysis of consequences of human unreliability (ACIH), and 

Bellami's, and Gerdes' taxonomies,  from 1983-2007, along with the latest scientific achievements 

such as [35,36]. However, they mainly focused on specific concerns such as cognitive or behavior 

failures in human functions, while organization and technology functions were missed [35]. 

Moreover, some of them suffer from overlapping or ambiguity [36], and missing factors arise from 

the new advancements (e.g., Industry 4.0), such as digitalization factors [37]. Accordingly, it is 

hard to apply them from a sociotechnical perspective [35]. Hence, in this study, a holistic VSFs 

taxonomy for STSs considering the FRAM paradigm, sociotechnical design hierarchy (e.g., 

individual, task, HMI, plant, organization, culture), and the concept of human-center design is 

developed. Therefore, this taxonomy is intended to consider all aspects of STSs together and can 

be used to examine influencing VSFs in a wide range of complex systems.  

https://www.tandfonline.com/doi/abs/10.1080/09617353.2015.11691047
https://books.google.com/books?hl=en&lr=&id=-Y4MI8cMSpMC&oi=fnd&pg=PP1&dq=CREAM,+human+error&ots=EUcRoZ6Ftr&sig=B2YT3sOoJ9z1eE1gY7UhzhsVBgE
https://books.google.com/books?hl=en&lr=&id=-Y4MI8cMSpMC&oi=fnd&pg=PP1&dq=CREAM,+human+error&ots=EUcRoZ6Ftr&sig=B2YT3sOoJ9z1eE1gY7UhzhsVBgE
https://inis.iaea.org/search/search.aspx?orig_q=RN:27066091
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4.2.2.  Developing the advanced probabilistic model under uncertainty 
 

The performance (output) variability of functions is often evaluated or observed based on two 

manifestations (phenotypes) named Time (e.g., too early, on time, too late, and not at all) and 

Precise (e.g., precise, acceptable, imprecise, and wrong). A function may often be conducted in a 

timely manner, but it can be performed too early or too late due to dynamic variability [20]. This 

is also true for the function’s output, how much is precise in dynamic working circumstances. In 

this sense adopting discrete probability distribution can better define and evaluate the performance 

variability of different functions and how likely various VSFs vary functions' performance in a 

real case under uncertainty [2,23]. Assessing human and organizational performance variability is 

required to use SMEs' judgments and then define the probability of variability. However, SMEs 

themselves are blamed for subjectivity and variability, which come from their different heuristic 

reasoning and uncertainty due to partial ignorance [31,38]. Hence, numerous STSs can't define a 

precise measurement from experiments or when information is extracted from expert elicitation 

[39]. To solve this limitation, we first employed the Dempster - Shafer Evidence theory (DSET) 

to combine multi-SMEs' knowledge to obtain prior information about the likelihood (prior 

probability) of VSFs and then the Monte Carlo Simulation (MCS) method to characterize 

uncertainty in the probability of performance variability modeling. These results also make a 

bridge to precisely construct the Bayesian network model of influence diagram regarding the 

VSFs. This hybrid probabilistic approach is proposed to precisely predict the probability of 

performance variability and deal effectively with its uncertainty which is the second research 

question in the present study. The details of this section are discussed in the following subsections. 

4.2.3. Dempster - Shafer Evidence theory (DSET) 
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The DSET is used to elicit knowledge of SMEs regarding the prior probability distribution of 

performance variability and address the epistemic and aleatory uncertainty. It includes three vital 

functions as the basic probability assignment function (bpa or m), the Belief function (Bel), and 

the Plausibility function (Pl). The axioms of the bpa are characterized by three equations in Eq. 

5.1. As mentioned, the bpa illustrated by m, allocates assigning of the power set to the interval 

from 0 to 1, where its value for null set is 0 and accumulative of its value for all subsets of the 

power set would be 1. The m(A)) means the bpa for a specific set A and indicates the proportion 

of all available and relevant evidence to support that a specific element of X (the universal set) 

exists in set A, but in no special subset of A [40]. Furthermore, any further evidence on the subsets 

of A is demonstrated by another bpa, i.e., B, m(B) means the bpa for the subset B.  

𝑚:𝑃(𝑋) → [0,1],      𝑚(∅) = 0,           ∑ 𝑚(𝐴) = 1

𝐴∈𝑃(𝑋)

 (1) 

where P (X) means the power set of X, ∅ is the null set, and A is a set in the power set (𝐴 ∈ 𝑃(𝑋)) 

[47]. 

The orthogonal sum combination rule aggregates multiple SMEs' knowledge based on each degree 

of belief. Considering there are N SMEs' knowledge, The DSET combination rule is used as 

depicted in Eq. 5.2.  

𝑚1−𝑛 = 𝑚1  ⨁𝑚2 . . . ⨁𝑚𝑛                                                                      (5.2)                                                                               

In the next step of using the DSET combination rule, the normalization process ignores all 

conflicting evidence and develops an agreement among the multiple knowledge sources by using 

normalizing factors equaled to 1 − 𝑘. It is noteworthy that K indicates the basic probability mass 

associated with the degree of conflict between SMEs. K denotes bpa related to the conflict. This 

is obtained by summing the products of the bpa's of all sets where the intersection is null. This rule 
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is commutative associative but not idempotent or continuous. Considering that SME's (knowledge 

sources) are independent, a conjunctive operation (AND) is used in the combination rule. For 

instance, the joint 𝑚13(𝐴) by aggregation of three sets of evidence (e.g., 

𝑚1(𝐵),𝑚2(𝐶) 𝑎𝑛𝑑 𝑚3(𝐷)) which are obtained from three independent sources (e.g., SMEs), for 

the same event, is estimated using Eq. 5.3. 

𝑚13(𝐴) =
∑ 𝑚1(𝐵)𝑚2(𝐶)𝑚3(𝐷)𝐵∩C∩D=A

1 − 𝑘
        , 𝑤ℎ𝑒𝑛 𝐴 ≠ ∅.       𝑚13(∅) = 0  (5.3) 

𝑤ℎ𝑒𝑟𝑒 𝐾 =∑ 𝑚1(𝐵)𝑚2(𝐶)𝑚3(𝐷)
𝐵∩C∩D=∅

                                                     (5.4)  

                                                                   

An interval's lower (Belief) and upper bounds (Plausibility) are obtained from the bpa. In the 

conventional sense, the precise probability of performance variability of interest (e.g., VSF or 

function) falls within the interval, effectively addressing the parameter (data) uncertainty. As 

presented in Eqs. (5.5 and 5.6), the Belief function presents the summation of all bpa's associated 

with the proper subsets (E) of the set of interest (X), while the Plausibility function provides the 

sum of all bpa's concerning of the sets € intersect the set of interest (X).  

𝐵𝑒𝑙 (𝑋) =  ∑ ∏ 𝑚𝑖(𝐸𝑖)

1≤𝑖≤𝑛𝐸|𝐸⊆𝑋

                                                                                               (5.5) 

 Pl(X) = ∑ ∏ 𝑚𝑖(𝐸𝑖)

1≤𝑖≤𝑛𝐸|𝐸∩𝑋≠∅

= 1 − Bel (�̅�), Bel (�̅�) =  ∑ ∏ 𝑚𝑖(𝐸𝑖)

1≤𝑖≤𝑛𝐸|𝐸⊆�̅�

     (5.6) 

where �̅� denots the complement of 𝑋, which means Belief is driven by the fact that all bpa 

should sum to 1. 

It is often independently treated the PSFs' effect in many HRA methods and studies [41,42], while 

psychology and human factors engineering are acknowledged that there is a relationship between 
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various influencing factors which amplify the influence of each other [41]. Accordingly, we 

proposed a practical guideline (Table 5.1) to revise better the estimated probability of VSFs 

considering their inter-relationship to reflect their effect on the performance variability of different 

functions. We defined the five levels from zero to complete dependency (influence) and took 

advantage of the dependency modeling framework proposed by the Standardized Plant Analysis 

Risk (SPAR) HRA (SPAR-H) Method [43]to revise the initial probability of the studied factors as 

per each level as shown in Table 4.1. Then the liner opinion pool as an appealing approach is used 

to aggregate the probability distributions [51] which are obtained from SMEs as Eq. (5.7). 

P𝑎𝑔𝑔 =∑𝑊𝑖RP𝑉𝑆𝐹𝑖

𝑛

𝑖=1

(5.7) 

In which 𝑛 is the number of SMEs, RP𝑉𝑆𝐹𝑖 is the revised probability for 𝑉𝑆𝐹𝑖, is estimated based 

on the dependency level expressed by expert 𝑖, while 𝑊𝑖 denotes the weight of SMEs based on 

their profile quality which is the sum to one. This is to practically yield an answer for the second 

research question regarding quantifying the intra-effects (coupled dependencies) among VSFs. 

This process updates the prior probability (PP) of the factor of interest according to the dependency 

level. 

 

Table 4. 1 Obtaining the inter-dependency effect among the variability shaping factors (VSFs) 

Dependency level Description Revised probability (RV) of 𝑉𝑆𝐹𝑗 

Complete (C) 
It is certainly that VFS𝑖 dramatically increase the influence of 

VFS𝑗 over the function of interest.  RP𝑉𝑆𝐹𝑗 =
(1 + PP𝑉𝑆𝐹𝑖)

5
+ PP𝑉𝑆𝐹𝑗 

High (H) 
It is highly likely that VFS𝑖 increase the influence of VFS𝑗 over 

the function of interest. RP𝑉𝑆𝐹𝑗 =
(1 + PP𝑉𝑆𝐹𝑖)

10
+ PP𝑉𝑆𝐹𝑗 

Moderate (M) 
It is moderately likely that VFS𝑖 increase the influence of VFS𝑗 

over the function of interest. RP𝑉𝑆𝐹𝑗 =
(1 + PP𝑉𝑆𝐹𝑖)

20
+ PP𝑉𝑆𝐹𝑗 

Low (L) 
It is somewhat likely that VFS𝑖 increase the influence of VFS𝑗 

over the function of interest. RPVSF𝑗 =
(1 + PP𝑉𝑆𝐹𝑖)

30
+ PP𝑉𝑆𝐹𝑗 

Zero (Z) 
There is not any evidence that VFS𝑖 increase the influence of 

VFS𝑗 over the function of interest. 

RP𝑉𝑆𝐹𝑗 = PP𝑉𝑆𝐹𝑗 
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5.2.1. Leaky Noisy-Max structure-based DBNs modeling 

Bayesian Networks (BNs) can be represented as (𝐺, 𝜃), is one of the most popular models to 

effectively model probabilistic subjects that demonstrates as a set of random variables (nodes) and 

their associated conditional dependencies by directed acyclic graph (DAG) indicated by G.  A G 

is a pair (V, E), where V is a finite, non-empty set whose elements are the nodes and V called 

directed edges (arcs) and if (𝑥, 𝑦) ∈ 𝐸, it means there is an arc from x to y, and y is conditionally 

dependent on x (logical relationship between nodes). 𝜃 represents a CPT that indicates the 

quantitative causality between nodes in DAG. The superiority of BNs mainly comes from its 

flexible structure, probabilistic reasoning engine, capability to capture different types of data (e.g., 

fuzzy, crisp, imprecise) [44], and dynamic nature of systems that able BN to be a popular method 

for modeling safety and risk in complex systems [45]. Considering 𝑉 =

{𝑉𝑆𝐹1, 𝑉𝑆𝐹2, … , 𝑉𝑆𝐹𝑛, 𝑇𝑖𝑚𝑒, 𝑃𝑒𝑟𝑐𝑖𝑠𝑒} with n VSFs (e.g., complexity, fatigue, and procedure) and 

two performance variability phenotypes (e.g., Time and Precise) presents a set of nodes or random 

variables which illustrate a probabilistic causation model of the function of interest as simply 

shown in Fig. 4.3. After estimating the prior probability distribution of VSFs (root nodes), using 

DSET, and conditional probability distribution of intermediate nodes (e.g., Time and Precision in 

Fig. 5.3), the joint probability distribution of a set of variables can be therefore defined as a product 

of the conditional probability of each variable given the associated values of the parent variables 

as demonstrated as Eq. 5.8.  

𝑃(𝑉) = 𝑃(𝑉𝑆𝐹1, 𝑉𝑆𝐹2, … , 𝑉𝑆𝐹𝑛, 𝑇𝑖𝑚𝑒, 𝑃𝑒𝑟𝑐𝑖𝑠𝑒) = ∏ 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))
𝑛
𝑖=1                                (5.8) 
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where 𝑃𝑎(𝑋𝑖) denotes the parent set of variables 𝑋𝑖 (𝑒. 𝑔. 𝑉𝑆𝐹1, 𝑉𝑆𝐹2, … , 𝑉𝑆𝐹𝑛, 𝑇𝑖𝑚𝑒, 𝑃𝑒𝑟𝑐𝑖𝑠𝑒), 

accordingly the probability of 𝑋𝑖  is estimated as: 

𝑃(𝑋𝑖) = ∑ 𝑃(𝑉)𝑉

𝑋𝑖

                                                                                                   (5.9)                                                                                      

 

Figure 4. 3 A simple Bayesian probabilistic influence model of a hypothetical function output variability 

 

One of the main challenges in BN modeling is defining conditional probability tables (CPTs) 

because their elements grow exponentially with increasing the parent nodes. As an example, when 

a node has five or ten parents with a binary state, the user must specify 25 = 32 and 210 = 1014 

parameters, respectively, while if its parent has three stats, it increased dramatically to 243 (for 

five parents) and 59049 (for ten parents) parameters, which is often impossible in most real 

complex systems. Likewise, computations to update BNs by message propagation increase 

exponentially, making a substantially cumbersome inference. Canonical probabilistic models, such 

as Noisy-MAX/OR, Noisy-MIN/AND, and Noisy Adder gate, were introduced to deal with this 

issue. These models are not only valuable tools for reducing the computation by the independence 

that they model implicitly but also for knowledge engineering that makes users easily construct 

and solve the complex causation models [46]. These models were introduced by Pearl (1988) [47] 
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for binary nodes, and then by Henrion (1989) [48] was extended for binary leaky Noisy-OR gates, 

while the multi-valued Noisy-OR gates were developed independently by Diez (1993) [49] and 

Srinivas (1993) [50]. In this study, the Noisy-Max and Leaky Noisy-Max gates models have been 

integrated into BNs modeling to capture internal and non-linear logical relations between parents 

and their child nodes and deal with CPT's computation issues that arise from the exponential 

growth of parent numbers. It is noteworthy that these gates are a proper generalization of 

conventional (Leak) Noisy (OR)-gates which can be applied for multi-state (n-ary) variables [51]. 

It is assumed that parents can independently affect their child's nodes. Using this BN modeling 

technique, considering a child node is affected by its parents independently of one another 

(disjunctive interaction), the overall influence of all parents on a child node is obtained using Eq. 

5.10 [52]. 

P (𝑋|𝑃𝑎(𝑋)) = 1 − ∏ (1 − 𝑃𝑋𝑖)                

𝑖∈𝑝𝑎(𝑋)

                                                                     (5.10) 

where  𝑃𝑋𝑖 denotes the probability of X given that its 𝑖th parent is present, and the rest are absent, 

which can be represented as Eq. 5.11. and estimated by Eq. 5.12. 

𝑃𝑋𝑖 = 𝑃 (𝑋 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝑃𝑎1(𝑋𝑖), 𝑃𝑎2(𝑋𝑖),… , 𝑃𝑎𝑗(𝑋𝑖), 𝑃𝑎𝑗+1(𝑋𝑖),… , 𝑃𝑎𝑛(𝑋𝑖))                  (5.11) 

𝑃𝑋𝑖 =
𝑃(𝑋|𝑃𝑎𝑖) − 𝑃(𝑋|𝑃𝑎𝑖)

1 − 𝑃(𝑋|𝑃𝑎𝑖)
                                                                                                         (5.12) 

 The real operation of STSs is influenced by numerous direct and indirect (latent) factors, and even 

using powerful probabilistic models such as BN doesn't result in completely modeling due to the 

limited number of nodes. This issue also arises from failing to model all influencing variables and 

their interactions, or SMEs may miss to identify them and do not deem it appropriate to build up a 

finer representation for the system [51]. It is often vital to include the cause of variabilities (e.g., 
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common causes of failure) in reliability modeling that define the system to fail even in the presence 

of components up [51]. Hence, to address this drawback, have precise safety analysis, and deal 

with uncertainty in quantifying the causality model, we employed Leaky Noisy-OR gate, which 

represents all the unknown influencing factors affecting the set of 𝑉, in BN modeling. Moreover, 

this gate is also useful when the variable 𝑋 has a primary occurrence probability regardless of its 

parents. The functions' performance in the FRAM model can vary in terms of time and precision 

even if any VSFs do not influence their outcome. Accordingly, if the initial (background) 

probability of variability, 𝑃𝑙𝑒𝑎𝑘 is considered an independent parent in time and precise nodes 

regardless of VSFs, the conditional probability of child node X, considering its parents and its 

prior probability, is estimated by Eq. 5.13. It should be noted that although the leak probability can 

be estimated from simulation and database, in most practical applications is elicited from SMEs 

knowledge [52,58]. In this case, to obtain it from the knowledge engineer, the question would be, 

"what is the probability that variable 𝑋𝑖 results in 𝑌 if all other potential parents (causes) of 𝑌 not 

exist (e.g., absent)? 

P (𝑋|𝑃𝑎(𝑋)) = 1 − [(1 − 𝑃𝑙𝑒𝑎𝑘) ∏ (1 − 𝑃𝑖)

𝑖∈𝑃𝑎(𝑋)

]                                                              (5.13) 

In which  PLeak = (X = Present|𝑃𝑎1(𝑋𝑖), 𝑃𝑎2(𝑋𝑖),… , 𝑃𝑎𝑗(𝑋𝑖), 𝑃𝑎𝑗+1(𝑋𝑖),… , 𝑃𝑎𝑛(𝑋𝑖), 𝑃𝑎𝐿(𝑋𝑖)), 

𝑃𝑎𝐿(𝑋𝑖) denotes independent parent and 0 ≤ PLeak ≥ 1 

 

In the noisy Max, each W𝑖 (e.g., Time and Precision) indicates that the value of Y (e.g., 

Performance variability) is affected by F𝑖 (e.g., VSF𝑖, … , VSF𝑛). The obtained value produced by 

the individual  F𝑖𝑠 is y = f𝑀𝐴𝑋(𝑧). Hence, Y and W𝑖𝑆 must share the same domain. Each W𝑖 denots 
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that F𝑖 have raised the value of Y to a certain amount, and its actual value is the maximum of the 

W𝑖𝑠. It should be noted that the capital letters (e.g., 𝑊𝑖, … ,𝑊𝑛) is used to denote the variables, 

while their value is presented by the lower-case letters (e.g., 𝑤𝑖, … , 𝑤𝑛). It is noteworthy that this 

Noisy MAX model only needs that Y is considered as an ordinal variable and doesn't force any 

conditions on the domains of F𝑖𝑠 or on the values of the 𝑝𝑦
𝑓𝑖𝑠, which means the probability of each 

value (𝑓𝑖) of the random variable 𝐹𝑖  influences of the value of (y) of Y. To obtain the CPT of the 

Noisy MAX, it first obtained 𝑃(𝑌 ≤ 𝑦|𝑓) for all y's values and all configurations of 𝑓 using Eq. 

(5.13), and then considered that f𝑀𝐴𝑋(𝑧) = max(𝑧1, … , 𝑧𝑛), which implies that f𝑀𝐴𝑋(𝑧) ≤ 𝑦 if and 

only if 𝑤𝑖 ≤ 𝑦 for all 𝑖. Accordingly, Eq. (14-18) is used to complete the CPTs.  

𝑃(𝑦|𝑓) = ∑ ∏𝑃(𝑤𝑖|𝑓𝑖)

𝑖𝑤|𝑓(𝑤)=𝑦

 (5.14) 

 

𝑃(𝑌 ≤ 𝑦|𝑓) = ∑ ∏ 𝑃(𝑤𝑖|𝑓𝑖) = ∑ …∑ ∏ 𝑃(𝑤𝑖|𝑓𝑖) =𝑖𝑤𝑛≤𝑦𝑤1≤𝑦𝑖𝑤|𝑓𝑀𝐴𝑋(𝑤)≤𝑦  ∏ (∑ 𝑃(𝑤𝑖|𝑓𝑖)𝑤𝑖≤𝑦
)𝑖 (5.15)

  

If we consider accumulative parameters as Eq. (5.14) and then it becomes as Eq. (5.16) 

 

𝑃(𝑊𝑖 = 𝑦|𝑓𝑖) = ∑ 𝑃(𝑤𝑖|𝑓𝑖)     

𝑤𝑖≤𝑦

(5.16) 

 

𝑃(𝑌 ≤ 𝑦|𝑓) =∏ ∑ 𝑃(𝑤𝑖|𝑓𝑖)     

𝑤𝑖≤𝑦𝑖

(5.17) 

 

Finally, each value of the corresponding CPT would be estimated using Eq. (5.18). 

 

𝑃(𝑦|𝐹) = {

𝑃(𝑌 ≤ 𝑦|𝐹) − 𝑃(𝑌 ≤ 𝑦 − 1|𝐹)      𝑓𝑜𝑟 𝑦 ≠ 𝑦𝑚𝑖𝑛

𝑃(𝑌 ≤ 𝑦|𝐹)                                         𝑓𝑜𝑟 𝑦 = 𝑦𝑚𝑖𝑛 
    (5.18) 

 

We estimate the prior probability for each VSFs using DST, and the prior probability of each state 

of performance phenotypes (e.g., Time and Precision) applying Bayesian modeling so far. We then 
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can use the deductive reasoning of BNs to predict the probability distribution of performance 

variability, which results in an accurate estimation [53]. Given the Time and Precision with four 

multi sates, each function performance has 16 states under stochastic combination, as illustrated 

in Table 5.2. We defined a procedure to capture the various integration of performance 

manifestations' states considering the three levels for function performance variability as Highly 

Variable (HV), Variable (V), and Non-Variable (NV) as presented in Table 4.2. It should be noted 

that when the combination of Time (e.g., Too early) and Precision (e.g., Precise) results in (low or 

high) dampening in performance quality, we considered as Non-Variability in the function's 

performance. 

 

Table 4. 2 Function performance states based on the stochastic combination of performance phenotypes 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Time TE TE TE TE OT OT OT OT TL TL TL TL NA NA NA NA 

Precision P A IP W P A IP W P A IP W P A IP W 

PV NV NV V HV NV NV V HV V V HV HV HV HV HV HV 

TE; Too Early, OT; On Time, TL; Too Late, NA; Note at all.    P; Precise, A; Acceptable, IP; Imprecise, W; 

Wrong.     PV; Performance Variability, NV=Non-Variability, V; Variable, H; Highly Variable 

 

 We defined the scores 3, 2, and 1, respectively, for Highly Variable, Variable Non-Variability 

states of performance variability and then derived the mean and standard deviation values for the 

predicted output variability. After that, we conducted MCS to characterize the uncertainty. We 

assumed the normal probability distribution for performance variability [23] and obtained the 

mean and standard deviation. It is a prevalent approach for estimating the information regarding 

the distributions, which also considers the model uncertainty [54]. Accordingly, we used MCS as 

a sophisticated sampling method for generating a sequence of random variables based on the 

predicted expected values. This advantage allows the algorithms to narrow in on the parameter 
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value approximated from the distribution, even with many random variables, and precisely deal 

with the uncertainty. This study assigned a normal distribution for performance variability, its 

phonotypes, and related parameters (e.g., leak probability), which is frequently used for system 

performance and its parameters [10,24]. 

Identifying the most contributing (critical) factors to performance variability is vital for safety and 

resilience application in complex systems [13]. However, deciding on only prior or posterior 

probabilities to identify critical components will likely lead to inaccurate results [55]. Hence, we 

employed a Bayesian network-driven importance measure for system safety named Ratio of 

variation (RV), which denotes the normalized difference of the posterior and prior probability of 

variable of interest and can be used in dynamic BN inference [44,56]. 

 

𝑅𝑜𝑉 (𝑉𝑆𝐹𝑖) =
𝑃(𝑉𝑆𝐹𝑖|𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) − 𝑃𝑃(𝑉𝑆𝐹𝑖)

𝑃𝑃(𝑉𝑆𝐹𝑖)
                                             (5.19) 

where PP(VSFi) stands for the prior probability of variability shaping factor i in the  probabilistic 

model using BN and P(VSFi|Function Performance = highly variable) denotes posterior 

(updated) probability of VSFi given that the associated function performance is instantiated to its 

new evidence or state of interest (e.g., highly variable). This diagnostic inference of the model 

helps capture the new field or experiment information to update the model and address the model 

uncertainty. 

As it is mentioned in the literature review, the previous studies considered performance variability 

as a static property of the system. It is an oversimplified assumption for complex systems when 

interacting with human, organizational, technological, and environmental factors. To capture the 

dynamic nature of performance variability in complex systems, we utilized the Dynamic Bayesian 

network (DBN), which is frequently employed to model temporal changes in risk and reliability 
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studies. DBN is generally used to determine the temporal probability of a random variable (e.g., 

VSFs, time, precision, and performance variability), as illustrated in Eq. (5.20). Moreover, we will 

illustrate how we can update the prior distributions given the new evidence, covering the fourth 

research question. 

𝑃 (𝑍𝑡|𝑍𝑡−1) =∏𝑃(𝑍𝑡
𝑖|π(𝑍𝑡

𝑖), 𝜋(𝑍𝑡−1
𝑖 ))

𝑁

𝑖=1

   (5.20)              

where, 𝑍𝑡
𝑖 is the random variable at time t,  π(𝑍𝑡

𝑖) is the parent nodes of 𝑍𝑡
𝑖 at time t and π(𝑍𝑡−1

𝑖 ) 

is the parent nodes in time t-1.  

It is noteworthy that conventional BNs can only capture conditional dependency mainly arising 

from common-cause failures due to its limitation in cyclic modeling, while DBNs can also model 

dependency based on mutual cause-effect relationships among VSFs. Moreover, DBN can 

effectively be utilized to capture the influence of safety countermeasures to dampen the system's 

critical variabilities and failure analysis, considering the potential degradation of influencing 

factors of interest over time. 

 

4.2.4. Proposing the criticality matrix 
 

Supporting the decision-making process requires a framework for evaluating the performance 

variability to dampen the critical ones. This section develops a criticality matrix with two 

dimensions of estimated severity and probability of variability due to VSFs. First, we designed a 

score scale for the probability of variability levels as high (score = 3), moderate (score 2), and 

lower (score = 1) based on their importance from the safety and risk engineering perspective. 

Consequently, given the mean (expected value) of the discreet probability distribution and the 

criticality magnitude of each function, it will be placed in one of the Low (I), Tolerable (II), and 

High (III) levels as presented in Fig. 4.4. Table 4.3 represents how should be done at and 
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considered each criticality level, in Safety-II perspective, concerning an individual or collective 

approximate adjustments necessary for everyday work and preventing adverse outcomes from 

having sustainable and resilience systems. The proposed variability matrix is expected to pave a 

practical and straightforward way to dampen the critical variability in a risk-based decision-

making perspective, defined as the current study's last research question. 

 Probability of Variability (expected value) 

Magnitude level Non-Variable  Variable High-Variable 

Major   II  III III 

Moderate   I  II III 

Marginal  I  I  II 

 Figure 4. 4 A matrix used to evaluate the criticality level of performance 

variability 
 

Table 4. 3 Criticality level of performance variability and descriptions. 
Criticality level Description 

III Adverse outcome is inevitable, and dampening must be done before function 

(activity) begins.  
II Function variability should be carefully monitored and being under control. 
I This can be considered as an asset since it emerges from approximate 

adjustments which is necessary for everyday work. 
 

 

4.2.5. The model validation 

 

Model validation plays a vital role in this methodology since it provides a sensible confidence 

value regarding the model's findings. Four approaches for pragmatically validating a risk analysis 

including a complete benchmark exercise, partial benchmark exercise, reality check, and 

independent peer-review are recommended. This research utilized a partial benchmark exercise, a 

mix of a reality check and independent peer-review (SMEs), and sensitivity analysis in Bayesian 

networks to validate the proposed model. As per the author's understanding, it is hard to benchmark 

the model entirely. Hence, we compare the study's findings with some parts of similar research 

results conducted in human reliability/factor analysis. 
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Moreover, the findings are examined with the experiences and safety data of the understudied field 

and SMEs' knowledge. Finally, we used two types of sensitivity analysis that are most popular in 

probability parameters of Bayesian Networks to evaluate the model's effectiveness and accuracy. 

We used the GeNIe 3.0 Academic (http://www.bayesfusion.com) for Bayesian Network modeling. 

This program used an algorithm developed by [57] to conduct the sensitivity analysis in Bayesian 

networks. This algorithm efficiently obtains a full set of derivatives of the updated (posterior) 

probability distributions (e.g., VSFs) considered a set of target nodes (e.g., Performance variability 

or its phenotypes) over each of the numerical parameters of the proposed probabilistic model. 

These derivatives denote the importance of precision of the model's quantitative parameters for 

estimating the posterior probability distributions of the targets. Accordingly, the nodes contain 

essential parameters to estimate the posterior probability distributions of the target nodes, which 

can be specified in the Bayesian Network modeling. After that, we examine the accuracy of these 

results during the independent peer-review and consistency check with the other model results. 

Moreover, we performed another sensitivity analysis to partially validate the model considering 

the three principles, which must therefore be satisfied as follows [58]: 

Principle 1: A relative increase or decrease in the posterior probability distribution of the child 

nodes (e.g., VSFs) should certainly observe by a slight change in the prior probability of each 

associated parent.  

Principle 2: Considering the prior probability distribution of each parent, its impact magnitude on 

the child node probability should keep consistent. 

Principle 3: The overall impact magnitudes of the mix of the probability variations 

from 𝑍 attributes (evidence) on the values should be consistently higher than the one from the set 

of Z−R (R ∈ Z) attributes (sub-evidence). 

 

http://www.bayesfusion.com/
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4.3. Case study description: Maintenance operation in oil and gas facilities 

 

This section is devoted to illustrating the practicability of the developed model for uncoupled 

variability modeling of system performance. A maintenance operation cycle that includes pre- and 

post-maintenance activities is considered for testing the model. Although it can be identical in 

most industries, we tend to focus on it in the oil and gas facilities in the South Pars Gas Complex 

(SPGC) which is located in Pars Special Economic Energy Zone, Asaluyeh, Bushehr  Province, 

Iran (Fig. 5.5). This energy source is the world's second-largest natural gas reservoir and contains 

offshore and onshore facilities. Its operation involves fourteen gas refineries, more than ten 

offshore platforms, 100 wells and 500 km pipelines, and twelve petrochemical plants. It is 

frequently acknowledged that maintenance activities give rise to numerous human and technology 

failures that result in catastrophic accidents [33]. Moreover, a considerable portion of the budget 

(e.g., more than $300 billion in the USA) is annually spent on these operations  [33]. Given a wide 

range of VSFs (e.g., harsh environments, poorly written maintenance procedures, poor work 

layout, complex maintenance tasks, crew characteristics, logistics) impact on safety and risk of 

maintenance in critical sectors, it can be a suitable application for serving the purpose of the present 

study.  
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(a) A part of gas refineries                                                                (b) A petrochemical plant 
 

Figure 4. 5 The Studied area, Pars Special Economic Energy Zone, an example of chemical processing 

plants (a, b) 

 

4.4. The proposed model application (Result and discussion) 

 

4.4.1. Characterizing the system's functions  
 

As per the methodology, the system's functions should be first studied, constituting the FRAM 

model of maintenance operation in everyday work. The human-oriented functions of the studied 

maintenance operation are demonstrated in Table 4.4, while the organization and technology-

oriented ones are presented in Table 4.5. Overall, thirty-one functions directly associated with the 
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maintenance operation are identified. Nineteen functions are human-oriented activities, while 

organization and technology are associated with five and seven functions. 

Since the FRAM deals with what happens or what has happened or is likely to happen rather than 

with what is or was assumed to happen, the functions referred to activities rather than 

to tasks in the present research. The FRAM uses the term ‘function’ as in the goals-means relation, 

where a function indicates the means that are necessary to achieve a goal. More generally, a 

function refers to the activities or set of activities that are required to produce a particular outcome. 

A function describes what people, individually or collectively, have to do to achieve a specific 

aim. A function can also refer to what an organization does. A function can finally refer to what a 

technological system does either by itself (an automated function) or in collaboration with one or 

more humans (an interactive function or co-agency) [2]. 

 

Table 4. 4 The human-oriented functions of the studied maintenance operation 

No. Function Description  

1 Assessing maintenance 

needs and orders 

Preventive or corrective maintenances (e.g., planned or unplanned) is issued as an order or need by 

maintenance and its subdepartments (e.g., mechanical, machinery, electrical, instrument and maintenance 

service) 

2 Approving maintenance 

order  

The committee members from the operation, safety and firefighting, maintenance, production, and planning 

departments are discussed the submitted orders. 

3 Planning and referring the 

work to the crew group 

The method (production and planning) department assigns the operation department as owner and changes 

the work order to work. Then the work is referred to the applicant department or unit. 

4 Applying for the permit 

to work (PTW) 

After preparing the work order, the required equipment diagnose and tags use by the hardware and software 

platforms. The responsibilities are defined and the PTW is referred to the operation department. 

5 Assessing risks and 

developing emergency 

response planning (ERP) 

After hazard identification and evaluating their risk level, safety countermeasures  are all in place before 

pre-maintenance. On-site supervisors issued the Toolbox Risk Identification Card (TRIC) attached to the 

PTW order. The ERP committee is developed the required action plan. 

6 Determining and 

certifying require 

isolations and preparation 

After examining all lines, their pressure, vent, bleeds, and close, lock, and tag isolation valves, the most 

appropriate isolation approach is determined. Obtain certificates and keys, assign lockout boxes, and 

deliver the keys to supervisors. Review the related work orders to ensure no operational conflict or other 

work. 

7 Knowledge management  Holding a safety talk to learn from past on-site and offsite incidents and holding safety toolbox meetings 

(TBM) to build a learning organizational safety culture and reinforce the safety standard and procedures. 

8 Performing chemical 

process isolation 

All affected equipment and pipelines are isolated from main chemical process lines by bypassing the feeds 

into other pipeline pathways. Finally, the process isolation certificate is attached to the PTW sheet. 
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9 Depressurizing, draining, 

and purging  

All affected pipelines and equipment are depressurized and cleaned to ensure they are ready for safe 

maintenance. Inert materials (nitrogen or steam) are used to provide a free hydrocarbon gas environment. 

10 Performing mechanically 

and electrically isolation 

Blinding or blanking, disconnecting, and misaligning all affected lines and performing lockout and tag-out 

procedures for all energy sources. Finally, these isolations certificate is attached to the PTW sheet. 

11 Performing pressure and 

isolation leak test 

Performing the hydrostatic (water) or pneumatic (air or inert gas) pressure tests to identify the potential 

leak points and ensure the system is fully isolated. 

12 Applying for 

maintenance inhibition 
Isolating and deactivating All gas detectors, fire and gas systems, fire and smoke detectors, and sensors. 

13 Preforming gas and 

oxygen testing 

Employing a gas analyzer to measure flammable gases by a certified person and toxic and oxygen 

concentrations by the HSE department before, during, and at the end of work. 

14 Confirm PTW and 

monitor its validity  

Reviewing all requirements must by area authority, supervisor (permit issuer), and HSE to ensure meet 

them and not exist any cross-reference, approving PTW and place it on board and worksite. If the work 

must continue beyond the allowed period, PTW is closed, and a new one is prepared. 

15  Performing maintenance Carry out maintenance of the equipment as per scheduled and approved program. 

16 Reassembling the 

components 

Checking all lines and equipment for obstruction and removing mechanical and electrical isolation (lock 

and tags) to open valves and connect lines. 

17 Preparing for start-up and 

conducting the pressure 

tests 

Returning all lockout keys and certificates, giving back worksite authority to area authority, and document 

reinstatement by supervisor. Opening the valve and reinstate to perform test pressure, then removing air 

from lines and open valves and test for the leak to ensure equipment are placed in their safe conditions. 

18 Conducting the Pre-

Startup Safety Review 

(PSSR) and running 

operation 

Employing the PSSR procedure by the committee to make sure all safety requirements are in place 

properly. Finally, running the system to begin the normal operation if there is not any non-compliance. 

19 Monitoring the 

Simultaneous Operations 

(SIMOPS) limitations 

Ensuring the safety of operations and more coordination when maintenance and production are performed 

simultaneously. 

 

 

 

Table 4. 5 The organization and technology-oriented functions of the studied maintenance operation 

F N Function Description  

20* 
Establishing and holding the crew 

training programs 

All crew members must generally receive training programs regarding the standard 

operation procedures, HSE risks, effective communication, emergency response 

management based on their responsibilities and authority. Some staff must be 

continuously trained with technical courses and get certified. 

21 

Providing the required hardware 

(e.g., tools, instruments, and 

programs), software (e.g., SOP, 

PFD, P&ID), legal support) 

The necessary equipment (e.g., proper gas tester, PPE, LOTO, isolators) and software 

are available to conduct activities safely. Maintenance contractors' safety and financial 

requirements are clearly reflected and confirmed in official documents by the site leader. 

22 

Establishing the Radar system to 

improve the spirit of team 

working, mutual communication, 

and safety culture 

The organization should clarify team roles and provide a solid culture to communicate 

openly and effectively, trust and support each other, appreciate the ideas diversity, high 

engagement level, and create strong team spirit among and between both contractor and 

site leader crew members 

23 Managing human resources 

Competent crew members from maintenance contractors to site leaders hired, trained, 

and certified based on the required standard procedures considering the operation, 

maintenance, and safety requirements. Contractors are asked to provide a proper 

organization chart and a competent maintenance crew. 
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4.4.2. FRAM-driven HOT Taxonomy of VSFs for STSs  
 

Considering the function types in the FRAM model, sociotechnical design hierarchical (e.g., 

individual, task, HMI, plant, organization, culture), and the concept of human-center design, a 

holistic taxonomy of VSFs for STSs is proposed (Table 4.6). The authors prepared a template (e.g., 

the checklist) to obtain the data systematically and identify which VSFs influence each function. 

After reviewing extensive literature on performance-shaping factors concerning safety I  and II, the 

authors developed the initial taxonomy of VSFs for STSs. After that, it was shared with thirteen 

subject matter experts (SMEs) in the studied field (Pars Special Economic Energy Zone) to capture 

field experiences and two full academic professors with great experience in both studied operation 

and research methodology. The field SMEs participated in various departments such as operation, 

maintenance, management, health, safety, and environment. Through several interactive meetings, 

they were first provided with detailed information regarding the research methodology and 

objectives. After collecting their knowledge and feedback on the revised ones, 25 new influencing 

factors were added, some factors were merged or removed, and finally, the novel FRAM-driven 

24 
Protection of environmental 

programs 

Critical systems and packages are available to ensure pollution by hydrocarbons (e.g., 

sewage, solid disposal, flow monitoring) are protected. 

25** Pressure and leak test system These devices measure the pressure and specify any leakage in the area of interest. 

26 Gas analyzer and leak tester The related device measures the concentration of gases of interest. 

27 
Depressurizing, draining, and 

purging system 

This system reduces the operational pressure and cleans the component for safe 

maintenance.  

28 
Isolation systems (flange, gaskets, 

stud bolts, valves) 

This system safely separates the operation zones from the components under 

maintenance. 

29 Lockout and Tagout system This system prevents any energy sources from unsafe start-up during maintenance. 

30 
Portable Fire and Gas detection 

packages 
Replacement for disabled Fire and Gas Detection system in maintenance areas 

31 
Escape, Evacuation and Rescue 

(EER) Facilities 

Ensure the availability of escape, evacuation, and rescue apparatus based on emergency 

response procedure and plan 

* Organization and ** technology-oriented functions 
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HOT taxonomy was developed. It contains 80 contributing factors to human factions, 26 

organization functions, and 16 technology functions. It was developed in line with the FRAM 

paradigm, sociotechnical design hierarchy (e.g., individual, task, HMI, plant, organization, 

culture), and human-center design concept. Therefore, this taxonomy captures all aspects of STSs 

and subsequently provides a deep understanding of complex system elements, their interaction, 

and their influence on system performance systems. This importance can substantially improve the 

designing of technical systems, business processes, organizational structures, and human 

operations [59]. This attempt addresses the research question: which internal and external factors 

are associated with the uncoupled variabilities of human, organization, and technical functions in 

everyday work? 

 

Table 4. 6 A holistic FRAM-driven HOT (human-organization- technology) Taxonomy of VSFs for STSs 

Function category  VSFs category VSFs sub-groups Variability Shaping Factors (VSFs) and their ordinal coding 

Human 

Human-driven 

factors 

Physical condition  Physical Fatigue, Physical abilities, Age, Gender; (VFS#1-4) 

Physiological and 

Phycological factors 

Problem-solving style, Morale, Motivation, (Safety)Attitude, Situational 

awareness, Vigilance,  Cognitive bias, Emotional arousal (Stress), Self-

confidence, Perception and appraisal, Mental Fatigue, Circadian rhythm 

(disorders); (VFS#5-16) 

Memorized information 
Working and intermediate memory, Long-term memory, Experience and 

knowledge, Skills, Information uncertainty; (VFS#17-21) 

Task-driven 

factors 

Task type and cognition 

Observation, Diagnostic, Monitoring, Planning, Execution (e.g., 

Construction, Operational, Maintenance, Commissioning or 

Decommissioning); (VFS#22-26) 

Task attribute 

Task mode (Parallel task and dependent task), Shift working, 

Task scheduling (Time of day and task duration) 

Task urgency (Available task time), Task complexity, Task risks, Task 

novelty, Task workload (Manual labor strength and Cognitive resource 

demand), Task consequence (e.g., Financial); (VFS#23-35) 

Organization-

driven   factors 

Strategy-oriented factors 
Safety measures program, Perceived safety culture/climate, Safety 

incentive; (VFS#36-38) 

Strategy-oriented factors 

Resources management (workforce, procedures, tools availability and 

quality), Goal substitution, Organisational double-binds (e.g., safety and 

productivity conflicts), Perceived organizational support, External 

demands to quality and quantity; (VFS#37-43) 

Management-oriented 

factors 

Training program, Staffing and scheduling management, Monitoring 

teamwork, Monitoring work conditions, Monitoring skills and 

competencies, Monitoring procedures; (VFS#44-49) 

Technology-

driven factors 

Human-machine 

interface (HMI) 

Digitalization level, Controller layout and availability, Indicator layout, 

Displayer availability, Warning light, Alarm sound systems; (VFS#45-

55) 

Technical system 

State 

Operating parameter (State, Change rate and number of parameter 

anomalies), Number of abnormal operating phenomena, Ambiguity in 

system response; (VFS#56-58) 
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Environment-

driven factors 
Harsh environment 

Temperature, Humidity, Air pressure, Noise, Vibration,  Lighting, Toxic 

gas, Dust and fume, Wind speed, Radiation, Natural hazards (e.g., 

Rainfall); (VFS#59-69) 

Team-driven factors 

Cohesiveness, Coordination, Communication, Composition (crew 

arrangement and structure), Leadership, Team roles and responsibility, 

Team norms; (VFS#70-76) 

Social-driven factors 
Expectations to oneself or colleagues, Compliance with the group 

working standard, Social norms, Religious beliefs; (VFS#77-80) 

Organization 

Strategy-driven factors 

Authority gradient, Organizational safety culture, Organizational trust, 

Goal substitution, Simultaneous goals, Organizational vision, Strategy 

and goals, Organizational structure and practices, Organisational 

double-binds; (VFS#1-9) 

 Knowledge management factors 

Performance feedback process, Communication effectiveness, 

management of change, Organisational learning, Organizational 

memory, Resource availability, Operating environment; (VFS#10-16) 

External factors  
External demands to quality and quantity, Customer 

demand/expectation, Natural disasters, Sanction; (VFS#17-20) 

National factors  

Physical/legislative/business environment, National culture, Regulatory 

scrutiny, Regulatory environment, Commercial resource; Religious 

beliefs; (VFS#21-26)  

Technology 

Safety-oriented factors 

Failure or malfunction detection systems, Reliability and availability, 

Inspection's methods and intervals, Warranty and supply management, 

Resilience, Inherent safety design, Redundancy (Standby or Active), 

Management of change, Maintenance policies; (VFS#1-9)   

Operation-oriented factors 
Physical (harsh) environment, Operator characteristics, process or 

operational conditions, Operating procedures; (VFS#10-13)   

Mechanical degradation-oriented factors 

Wear and tear conditions, Corrosion and erosion, Mechanical 

degradation/integrity, Inner workings and Damage mechanisms (rate 

and severity), Equipment or device age (aging); (VFS#14-18)   
 

4.4.3. Integrating DSET into DBNs results 
 

This section provides the probability-oriented findings for the variability of functions' performance 

(output) using DSET and their integration into a Dynamic Bayesian network while efficiently 

addressing the main challenges in handling uncertainty. It should be noted that there have not been 

any direct questions or interviews to obtain data. Experts already involved through previous steps 

(e.g., 4.1. Characterizing the system's functions and 4.2 FRAM-driven HOT Taxonomy of VSFs 

for STSs) learned and obtained information regarding the research methodology. The employed 

SMEs are first asked to express their knowledge on how likely function’s performance X varied 

[Yes] and not [No] varied by VSF Z using the developed Survey in Excel.  In this sense, they 

defined the probability of performance variability between 0 to 1 for each function considering the 

proposed VSFs. After that, the knowledge of SMEs is aggregated and then yields to interval 

estimation of variability for each function using the DSET. To illustrate the computation process, 
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Table 4.7 represents the details and results for obtaining probability distribution of variability for 

performance function "F#8 = Performing chemical process isolation" stem from a VSF called 

"N#59 "Ambient temperature" as an instance. We used the Basic Probability Assignment function 

(bpa or m), the Belief function (Bel), and the Plausibility function (Pl), which respectively estimate 

the most likely, min, and max values. This deals with fuzziness uncertainties in knowledge 

elicitation, while probability distributions are used to characterize the stochastic uncertainty caused 

by the randomness of variables, lack of knowledge, and potential biases among SMEs [60,61].  

Regarding critical challenges in knowledge engineering, dissonance engineering pave the way to 

treat dissonance [62]. Cognitive dissonance means an incoherence between cognitions, such as 

between elements of knowledge or between knowledge sets. It can happen when something sounds 

incorrect, i.e., it will be, is, maybe or was not correct, and be explained as gaps or conflicts between 

the individual or collective knowledge [63]. Erroneous affordances and contradictory knowledge 

are two salient types of dissonance in human reliability and risk analysis [62,64]. The dissonance 

discovery and control include the dissonances’ influence evaluation, accepting or refusing 

dissonances, reinforcing the frames of reference, and subsequently improving the system 

resilience. We want to draw readers' attention to this important subject in knowledge acquisition, 

and dealing with it seems to be beyond the present study. We would like to refer interested scholars 

to the primary literature, where more explanations and practical cases can be easily found [62–65].  

 

 

 

 

 

 

 

 

 

 



 

 143 

Table 4. 7 The prior probability distribution of performance variability for F#8 

"Performing chemical process isolation" caused by variability shaping factor N#59 

"Ambient temperature" 

  {Yes} {No} {Yes, No}   

m1(Ex#1) 0.40 0.50 0.10   

m2(Ex#1) 0.30 0.62 0.08   

m3(Ex#1) 0.45 0.44 0.11   

Sets No. m1 m2 m3 Sets (A) Probability 

1 {Yes} {Yes} {Yes} {Yes} 0.0540 

2 {Yes} {Yes} {Yes, No} {Yes} 0.0132 

3 {Yes} {Yes, No} {Yes} {Yes} 0.0144 

4 {Yes, No} {Yes} {Yes} {Yes} 0.0135 

5 {Yes} {Yes, No} {Yes, No} {Yes} 0.0035 

6 {Yes, No} {Yes} {Yes, No} {Yes} 0.0033 

7 {Yes, No} {Yes, No} {Yes} {Yes} 0.0036 

8 {No} {No} {No} [No] 0.1364 

9 {No} {No} {Yes, No} {No} 0.0341 

10 {No} {Yes, No} {No} {No} 0.0176 

11 {Yes, No} {No} {No} {No} 0.0273 

12 {No} {Yes, No} {Yes, No} {No} 0.0044 

13 {Yes, No} {No} {Yes, No} {No} 0.0068 

14 {Yes, No} {Yes, No} {No} {No} 0.0035 

15 {Yes} {Yes} {No} {Ø} 0.0528 

16 {Yes} {No} {Yes} {Ø} 0.1116 

17 {No} {Yes} {Yes} {Ø} 0.0675 

18 {Yes} {No} {No} {Ø} 0.1091 

19 {No} {Yes} {No} {Ø} 0.0660 

20 {No} {No} {Yes} {Ø} 0.1395 

21 {Yes} {No} {Yes, No} {Ø} 0.0273 

22 {Yes} {Yes, No} {No} {Ø} 0.0141 

23 {Yes, No} {Yes} {No} {Ø} 0.0132 

24 {No} {Yes} {Yes, No} {Ø} 0.0165 

25 {No} {Yes, No} {Yes} {Ø} 0.0180 

26 [Yes, No] {No} {Yes} {Ø} 0.0279 

27 {Yes, No} {Yes, No} {Yes, No} {Yes, No} 0.0009 

𝐾 =∑ 𝑚1(𝐵)𝑚2(𝐶)𝑚3(𝐷)
𝐵∩C∩D=∅

= 0.3566 ∑ 𝑚(𝐴) = 1

𝐴∈𝑃(𝑋)

 

 
𝒎𝟏𝟑(𝐴 = {𝑌𝑒𝑠}, {𝑁𝑂}𝑎𝑛𝑑 {𝑌𝑒𝑠, 𝑁𝑜})

=
∑ 𝑚1(𝐵)𝑚2(𝐶)𝑚3(𝐷)𝐵∩𝐶∩𝐷=𝐴

1 − 𝐾
 

{Yes} {No} {Yes, No} 

 

0.3136 

 

0.6838 

 

0.0026 

𝑩𝒆𝒍 (𝑋) =  ∑ 𝑚(𝐸)

𝐸|𝐸⊆𝑋

 0.1055 

 

0.2301 

 

0.0009 

 

𝐏𝐥(X) = ∑ 𝑚(𝐸)

𝐸|𝐸∩𝑋≠∅

= 1 − Bel (�̅�) 0.7699 

 

0.8945 

 

0.6644 

 

 

The DSET's findings were assigned as a prior probability distribution of VSFs, as parent nodes, in 

the Bayesian Network's causality model. We used the proposed causation model to take unique 

advantages of the Bayesian Network, especially conducting precise predictive and diagnostic 
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inferences, updating the model given new evidence, modeling dependencies among VSFs, and 

addressing the model uncertainty. We developed the causality model of performance variability for 

all proposed functions. As an example, the probabilistic causation model for Function #18 

(Conducting the Pre-Startup Safety Review (PSSR) and run operation) is demonstrated in Fig 4.5. 

The advanced canonical models (e.g., Leaky Noisy-Max) were utilized to solve the CPTs associated 

with the child nodes (e.g., human factors, organization factors). Table 4.8 (Part A) presents the CPT 

computation process of the child node related to VSF#15 (Mental Fatigue), considering Function 

#18 as an instance. Furthermore, the detailed calculation process is shown in Part (B) Table 4.8, 

considering VSF#15 (Sate= High) and VSF#12 (Emotional arousal (Stress), Sate= High), while the 

knowledge of three experts is used to obtain the inter-dependency effect among these two factors. 

We used the proposed procedure to capture inter-dependency among contributing factors and then 

liner opinion pool, as an appealing approach, to aggregate the probability distributions as presented 

in Table 4.8. 

We also used the Leaky Noisy-OR gate to capture the inter-dependency effects that arise from 

explicitly unknown factors or SMEs' ignorance about the VSFs interactions. This helps to deal with 

the aleatory uncertainty caused by incompleteness or ignorance. Leap probability obeys the 

Gaussian probability density [66] and the confidence level was considered 99% and 95% (e.g., in 

this CPT), that is PL = 0.04 (VSFs state = High), and 0.01 (VSFs state= Moderate). Accordingly, 

the value of leak probability in Table 5.8 reflects the sum of the initial (prior) probability of VSF15 

and the probability associated with explicitly unknown factors or SMEs' ignorance about the VSFs 

interactions. As can be seen from Table 4.8, the synergism effect of the six VSFs resulted in a 

probability increase from 0.0602 to 0.1212 for VSF15 (Mental Fatigue), which denotes dependency 

among Mental Fatigue and those contributing factors performing the Pre-Startup Safety Review 
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(PSSR) and run operation function (#18). We found that modeling all possible dependencies among 

variables leads to too cumbersome computations and difficulties running the Bayesian Network 

model, especially in performing predictive and diagnostic reasoning. Accordingly, we only present 

the dependencies among variables in Fig. 4.6, where all three SMEs believed the dependency level 

is equal to or greater than Moderate among VSFs. However, we assumed that considering the 

confidence level (95%) and leak probability in the probabilistic model addressed this issue and did 

not affect the results accordingly. Moreover, the model served for knowledge engineering associated 

with the causality mechanisms that exist or emerge among VSFs by capturing both dependency and 

conditional independency among VSFs and performance manifestations (phenotypes). The 

conditional independencies come from the Markov chin condition, which means a node is 

independent of its non-descendants given its known parents. 
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Figure 4. 6 The probabilistic causation model for performance variability of Function#18 (Conducting the 

Pre-Startup Safety Review (PSSR) and run operation) 
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Table 4. 8 The CPT computation for VSF#15 (Mental Fatigue) considering Function #18 (Conducting the PSSR and run operation) 

Part (A)  VSF1 VSF12 VSF16 VSF27 

  High Moderate Low High Moderate Low High Moderate Low High Moderate Low 

VSF15 PP 0.0373 0.0002 0.9625 0.0102 0.0004 0.9893 0.0118 0.0003 0.9879 0.0452 0.0001 0.9546 

High 0.0602 0.1121 0.1102 0 0.1460 0.1452 0 0.1053 0.1048 0 0.1072 0.1052 0 

Moderate 0.0012 0.0531 0.0513 0 0.0870 0.0862 0 0.0463 0.0458 0 0.0482 0.0462 0 

Low 0.9385 0.8348 0.8385 1 0.7670 0.7686 1 0.8484 0.8494 1 0.8446 0.8486 1 

  VSF31 VSF34 VSF58    

  High Moderate Low High Moderate Low High Moderate Low    

VSF15 PP 0.0208 0.0003 0.9789 0.0460 0.0010 0.9530 0.0168 0.00004 0.9831 Leak RPVSF15 

High 0.0602 0.1455 0.1438 0 0.1490 0.1452 0 0.0941 0.0936 0 0.1002 0.1212  

Moderate 0.0012 0.0865 0.0848 0 0.0901 0.0862 0 0.0351 0.0346 0 0.0112 0.0216  

Low 0.9385 0.7680 0.7714 1 0.7609 0.7686 1 0.8708 0.8718 1 0.8886 0.8571  

Part (B) 

Example for the CPT estimation Dependency level (DL) Weight of SME 
    

VSF15 PP VSF12 PP Ex#1 Ex#2 Ex#3 Ex#1 Ex#2 Ex#3 Confidence level= 95% (in this CPT) 

High 0.0602 High 0.0102 High High Moderate 0.3688 0.3292 0.3020 
Leak probability for VSF15=High 

= 0.0602+0.04= 0.1002 DL = High, RP𝑉𝑆𝐹15 =
(1 + PP𝑉𝑆𝐹12)

10
+ PP𝑉𝑆𝐹15 ==

(1 + 0.0102)

10
+ 0.0602 = 0.1612 

DL = Modearte,   RP𝑉𝑆𝐹𝑗 =
(1 + PP𝑉𝑆𝐹12)

20
+ PP𝑉𝑆𝐹15 =

(1 + 0.0102)

20
+ 0.0602 = 0.1107 Leak probability for VSF15=Medium 

= 0.0012+0.01=0.0112 

 P𝑎𝑔𝑔 =∑𝑊𝑖RP𝑉𝑆𝐹𝑖

𝑛

𝑖=1

=∑(0.3688 × 0.1612)(0.3292 × 0.1612)(0.3020 × 0.1107)

3

𝑖=1

= 𝟎. 𝟏𝟒𝟔𝟎 
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After defining the CPTs, Bayesian network inferences can be performed. We defined three levels 

from Highly Variable (HV), Variable to Non-Variable for performance variability considering the 

combination of performance phenotypes' states (Time= Too Early, On Time, Too Late, Note at all 

and Precision= Precise, Acceptable, Imprecise, Wrong) for each function. Deductive reasoning is 

employed to predict performance variability's probability distribution, which results in an accurate 

estimation. Table 5.9 presents the findings of the probability distribution of variability for output 

(performance) for all maintenance functions and their ranking based on criticality in performance 

variation. We first derived the mean and standard deviation values for the corresponding scores 

based on the predicted output variability and conducted Monto Carlo Simulation to characterize 

the uncertainty  accordingly. We assumed the normal probability distribution for performance 

variability [23,67] and obtained the mean and standard deviation, as shown in Table 5.9, by 

performing the 100,000 iterations using the Excel program. As demonstrated, functions include 

#F9 (Depressurizing, draining and purging), F#17 (Preparing for start-up and conducting the 

pressure tests), and F10 (Performing mechanically and electrically isolation) introduced the 

highest variability, respectively, among the Human-oriented functions. In comparison, 

F#21(Providing the required hardware, software, and legal support) from Organization and F#27 

(Depressurizing, draining, and purging system) from Technology-oriented functions have the 

most critical variability from a probabilistic perspective.  
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Table 4. 9 Probability distribution of variability for functions output (performance) in maintenance operation 

Rank Function 
Variability Level (State) Corresponding Sores 

Mean SD 
Uncertainty 

HV V N-V 3 2 1 LB UP 

1 F9 0.2091 0.5681 0.2228 0.6273 1.1362 0.2228 1.9871 0.6570 1.3301 2.6440 

2 F17 0.1815 0.5331 0.2854 0.5445 1.0662 0.2854 1.8921 0.6754 1.2186 2.5657 

3 F10 0.1681 0.5192 0.3127 0.5043 1.0384 0.3127 1.8565 0.6782 1.1774 2.5356 

4 F4 0.1521 0.4661 0.3818 0.4563 0.9322 0.3818 1.7672 0.6936 1.0704 2.4640 

5 F18 0.1382 0.4227 0.4391 0.4147 0.8454 0.4391 1.6993 0.6941 1.0247 2.4127 

6 F15 0.1301 0.4261 0.4438 0.3903 0.8522 0.4438 1.6864 0.6976 1.0013 2.3967 

7 F6 0.1267 0.4091 0.4642 0.3801 0.8182 0.4642 1.6627 0.6906 0.9720 2.3534 

8 F5 0.1206 0.3931 0.4863 0.3618 0.7862 0.4863 1.6345 0.6879 0.9469 2.3221 

9 F14 0.1131 0.3481 0.5388 0.3393 0.6962 0.5388 1.5744 0.6861 0.8885 2.2603 

10 F19 0.1099 0.2821 0.6080 0.3297 0.5642 0.6080 1.5021 0.6854 0.8166 2.1876 

11 F8 0.1021 0.2684 0.6295 0.3063 0.5368 0.6295 1.4225 0.6734 0.7493 2.0957 

12 F11 0.0921 0.2372 0.6707 0.2763 0.4744 0.6707 1.4215 0.6542 0.7672 2.0758 

13 F16 0.0791 0.1891 0.7318 0.2373 0.3782 0.7318 1.3472 0.6204 0.7268 1.9676 

14 F13 0.0531 0.1641 0.7828 0.1593 0.3282 0.7828 1.2704 0.5509 0.7197 1.8211 

15 F12 0.0481 0.1276 0.8243 0.1443 0.2552 0.8243 1.2237 0.5195 0.7041 1.7433 

16 F7 0.0201 0.1008 0.8791 0.0603 0.2016 0.8791 1.1409 0.4016 1.0094 1.8124 

17 F1 0.0161 0.0961 0.8878 0.0483 0.1922 0.8878 1.1284 0.3795 0.7493 1.5075 

18 F2 0.0105 0.061 0.9285 0.0315 0.1220 0.9285 1.0790 0.3103 0.7687 1.3893 

19 F3 0.0053 0.0378 0.9569 0.0159 0.0756 0.9569 1.0486 0.2380 0.8107 1.2865 

1 F21 0.1176 0.2567 0.6257 0.3528 0.5134 0.626 1.4921 0.6965 0.7956 2.1886 

2 F22 0.1062 0.2392 0.6546 0.3186 0.4784 0.655 1.4514 0.6783 0.7733 2.1295 

3 F23 0.0776 0.2165 0.7059 0.2328 0.433 0.706 1.3719 0.6235 0.7484 1.9954 

4 F20 0.0348 0.1107 0.8545 0.1044 0.2214 0.855 1.1801 0.4663 0.7138 1.6464 

5 F24 0.0218 0.0937 0.8845 0.0654 0.1874 0.885 1.1375 0.4026 0.7349 1.5401 

1 F27 0.1336 0.3647 0.5017 0.4008 0.7294 0.502 1.6317 0.7070 0.9293 2.3341 

2 F28 0.1252 0.3029 0.5719 0.3756 0.6058 0.572 1.5330 0.7054 0.8279 2.2381 

3 F25 0.1195 0.2374 0.6431 0.3585 0.4748 0.643 1.4766 0.6989 0.7777 2.1755 

4 F29 0.1032 0.1946 0.7022 0.3096 0.3892 0.702 1.4012 0.6683 0.7332 2.0692 

5 F26 0.0676 0.1234 0.809 0.2028 0.2468 0.809 1.2588 0.5718 0.5070 2.0106 

6 F30 0.0539 0.1021 0.844 0.1617 0.2042 0.844 1.2098 0.5231 0.6868 1.7328 

7 F31 0.0367 0.0996 0.8637 0.1101 0.1992 0.864 1.1732 0.4653 0.7079 1.6385 

HV= Highly Variable, V= Variable, N = Non-Variable, LB= Lower Bound, UB= Upper Bound 
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Figure 4. 7 Criticality analysis of variability shaping factors (VSFs) using Ratio of Variation (RoV) of the 

probabilities (F#18) 

 
Figure 4. 8 Comparison of posterior, prior, and Ratio of Variation (RoV) of the probabilities for F#18 

 

One of the unique capabilities of the proposed model is evidence (belief) propagation to update 

the model findings and subsequently threaten uncertainty using backward inferences. Fig 4.7. 

illustrates the Ratio of Variation (RoV) of the probabilities of the VSFs related to function F#18 

(Conducting the Pre-Startup Safety Review (PSSR) and run operation) as an example. Moreover, 

the prior, posterior, and RoV of the main category of influencing factors probabilities are presented 

in Fig 5.6. The posterior (updated) probability distribution was obtained given 

P(Xi (𝑒. 𝑔. , 𝐻𝑢𝑚𝑎𝑛, 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛,… 𝑆𝑜𝑐𝑖𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟)|Function Performance = ℎ𝑖𝑔ℎ𝑙𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

. Considering the normalized probability using the RoV as a Bayesian Network-oriented 
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importance measure [55,56] it is revealed that Teamwork and Human-driven factors respectively 

contributed most to probabilistic performance (output)  variation. In contrast, Environmental and 

Social factors imposed the least effect on performance variability in F#18. Give the results of Table 

4.9 and Fig 4.8 as an example. The proposed model paves the way for making the right decision 

to prioritize which function effectively, the main element of the sociotechnical system (e.g., 

human, organization, task, technology), and VSFs give rise to most likely variability in system 

performance. Accordingly, they should be dampened first as the critical safety investment factors 

to improve system resilience and safety. 

 

 

 

 

 

 

 

 

Figure 4. 9 Unrolled dynamic mutual cause-effect dependencies modeling using DBN 

 

a) BN 
b) DBN 
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Figure 4. 10 The results of dynamic mutual dependencies modeling using DBN 

 

 
Conventional BNs can only capture conditional dependency mainly arising from common-cause 

failures due to its limitation in cyclic modeling, while DBN can also model dependency stemming 

from mutual cause-effect relationships among VSFs. Therefore, we employed DBN to address this 

issue, impacting the results of predictive inference in BNs. For the sake of exemplifying and better 

illustration, we chose a part of the presented model in Fig. 5.6 and assumed the below 

circumstances: 

• Operator performance is influenced by Mental Fatigue, Physical Fatigue, Stress, and Task 

demand, while each of them is impacted by contributing factors such as Task Complexity, 

Task (Information) Uncertainty, Parallel and Dependent tasks, as presented in Fig 5.8(a). 

• It is assumed that there are mutual cause-effect dependencies between Task Complexity 

and Task (Information) Uncertainty, Task Complexity and Stress, Task (Information) 
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Uncertainty and Stress, and finally, between Mental Fatigue and Physical Fatigue. They 

are specified by the red-directed arc in Fig 5.9(b) and captured by DBN modeling. 

• We considered binary states as High (Poor) or Low (Good) for studied variables and three 

intervals of time to illustrate the model, as demonstrated in Fig 4.9. It should be noted that 

prior probabilities obtained for Function#18 are considered in BN. 

DBN can effectively deal with the temporal dependencies modeling. As can be seen from Fig 5.10, 

the probability of poor performance of the operator during the conducting Function#18 increased 

from 0.17 (BN in Fig 5.9(a)) to 0.25 (DBN in Fig 4.9(b)) when potential mutual relationships 

among influencing factors are captured. Moreover, for other factors such as Mental Fatigue, the 

probability of Mental Fatigue = high rose from 0.07 to 0.17.  

It is argued that safety (I, II, and III) and anticipation of function outcomes cannot be meaningfully 

defined and interpreted without addressing risk and using risk sciences [3,12,68]. Accordingly, 

safety cannot be meaningfully defined, assessed, and managed without considering risk [12]. 

Hence, we wanted to treat performance variability using contemporary risk science where 

considerations are given to uncertainty [12,69]. In this sense, we focused on the probability aspect 

of performance variability in the present study considering its importance and necessity to address 

current issues, especially uncertainty characterization in this matter. Moreover, it is frequently 

acknowledged that a function may often be conducted in a timely manner, but it can be performed 

too early or too late due to dynamic variability [20]. This is also true for function’s output, how 

much is precise in dynamic working circumstances. In this sense adopting discrete probability 

distribution can better define and evaluate the performance variability of different functions, and 

how likely various VSFs vary functions' performance in a real case under uncertainty [2,23]. 

Finally, the probabilistic model’s findings yield to development of the criticality matrix (section 
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2.3.), which strongly supports the decision-making process to precisely identify safety-critical 

investment factors and functions and, as a result, effectively damping critical variabilities. It paves 

a way to relax the difficulties in dampening the critical performance resonance in a rational risk-

based approach. 

We agree that a qualitative model is easier to build and more understandable. However, the 

qualitative nature of the model and subsequently their inability to support the decision-making 

process in a rigor and quantitative manner are frequently highlighted in the literature 

[20,23,24,69,70]. More studies are required to provide comparative analysis results for risk 

scenarios to support making risk-based decisions in a rigorous approach [31]. Accordingly, this 

study has been designed to serve this purpose by developing an extension of FRAM. 

 

4.4.4. The risk-based criticality matrix 
 

We also proposed a tailored criticality matrix to evaluate the performance variability of the 

system's functions in a risk-based decision-making process, as illustrated in Fig 5.11. It results in 

a more reasonable and accurate procedure for dampening the critical variabilities by capturing both 

the magnitude and probability of critical variations under uncertainty instead of merely variability 

likelihood.  It should be noted that the SMEs have been asked to determine the magnitude of 

performance variability of each function considering the maintenance process and operational 

circumstances in the studied plants. It may vary in other processing plants with different conditions 

and operational requirements. We will explore estimating variability magnitude in another study, 

which seems to be beyond this part of the study scope, and would like to focus on probabilistic 

modeling of performance variability in this study. As can be seen, the Functions F#4 and F#6 that 

have highly variable (critical) performance fell in Tolerable Risk level (II) and subsequently do 

not impose serious risk as high-risk level (III) functions such as F#9 and F#10. It should be noted 
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that boundaries among the probability and magnitude levels are defined considering the South Pars 

Gas Complex (SPGS) requirements where highly dense and critical infrastructures from gas 

refineries, petrochemical plants, and pipelines to residential areas are intertwined with each other. 

However, the proposed matrix has the flexibility to define or extend based on user requirements 

to serve a system of interest.  

Magnitude 

Probability of Variability (expected value) 

Non-Variable 

≤1.30 

Variable 

1.30 -1.55 

High-Variable 

≥1.55 

Major 
 II 

F#20 

III 

F#22, F#25 

III 

F#18, F#15, F#27, F#28 

Moderate 
 I 

F#26, F#30 F#31 

II 

F#16, F#19 F#23 

III 

F#9, F#10, F#5, F#17 

Marginal 

 I 

F#1, F#2, F#3 F#7, 

F#13, F#12, F#24 

 I 

F#8, F#11 F#21, F#29 

 II 

F#4, F#6, F#14 

Figure 4. 11 A criticality matrix for a risk-based evaluation of the performance variability 

 

Functions that fall in level III impose a serious adverse outcome, and dampening must be done 

before function (activity) begins to have a resilient system, while functions in level II should be 

carefully monitored and controlled before jumping into a higher risk level. However, as per the 

Safety-II principle, variability in level I, which includes around half of the functions in this study, 

can be considered an asset since it emerges from approximate adjustments necessary for everyday 

work. As a result, this study specified in a rigorous manner which functions should be given the 

highest priority in defining safety countermeasures to dampen the variability of their output before 

leading to major accidents in maintenance operations. 

 

4.4.5. Validation of the results 
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We used several approaches to validate the proposed model and its findings. First, the results were 

shared with five independent SMEs to check their consistency considering the field (SPGC) 

experiences and expert knowledge. They approved the study findings, especially ranking functions 

concerning their variability magnitude, probability, and criticality level. We also reviewed the 

accident investigations [71] issued concerning the major accidents in the Iranian chemical plants 

from 2007 to 2022. Most of the high-risk functions in the present research have been recognized 

as severe failures that significantly contributed to catastrophic accidents. To explain, considering 

the Bouali Sina Petrochemical Plant fire (2016), the largest fire in Iran's petrochemical industry to 

date with up to $200 million in financial loss, failures in functions including F#18, F#15, F#28, 

F#10 and F#17 are among the leading causes of this catastrophic accident [72]. 

Moreover, the partial benchmark exercise is also used to validate the results, although it is hard to 

find a similar study. Noroozi et al., (2013) employed the Success Likelihood Index Method (SLIM) 

to analyze human error in maintenance activities. This study revealed that human error most likely 

occurred during depressurizing lines (2.9E 01), performing mechanical isolation (1.09E 01), and 

assessing the risk of activity (6.5E 02) which is respectively reflected in F#9, F#10, and F#5 as the 

highly critical functions in the present study. Hence, our study aligns with Noroozi's research in 

this perspective, although the applied methodology differs in some aspects. [74] employed Graph 

Theory to quantify the human error in maintenance activities that model the identified factors and 

their interactions/interrelationships in terms of human error digraph. [75] used the three most 

common HRA techniques, including HEART, SPAR-HR, and BN, to obtain human error 

probabilities and evaluate obtained findings’ consistency in maintenance. They found that the 

results of the three techniques are similar and consistent. However, both studies focus on only 

human-oriented activities, while successful pre-and post- maintenance activities require intensive 

https://www.sciencedirect.com/topics/engineering/petrochemical
https://www.sciencedirect.com/topics/social-sciences/petrochemical-industry
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technological and organizational involvement. Ignoring such essential functions also lead to a lack 

of understanding of the contributing factors and mechanisms. This can lead to severe failures in 

organizational operations as the leading line and technology operations as the fundamental line in 

complex system’s maintenances. However, the present research delivered an in-depth insight into 

those functions and their influencing factors under uncertainty. Noroozi et al. (2013) applied an 

interval approach for uncertainty propagation as the only previous research that considered this 

issue. However, we utilized the DSET, DBN, and MCS, which are the most effective approaches 

to dealing with uncertainty in knowledge engineering. Furthermore, we employed an interval-

valued set to propagate uncertainty in the quantifying process.  

Finally, we conducted a sensitivity analysis to validate the proposed probabilistic model and 

parameter used in Bayesian network modeling. As shown in Table 5.10, the results satisfied the 

three axioms explained in the methodology part. To illustrate, when the probability of VSF#56 

(Operating parameter (State, change rate, and the number of parameter anomalies) = high) is 

assigned to be 0.1, the expected value of the function (F#18) performance variability is increased 

to 1.7008 ± 0.6979 from initial (prior) values as 1.6991± 0.6977. Based on this change, if the 

probability of VSF#57 (number of abnormal operating phenomena = high) is assigned to be 0.1, 

the expected value of the function (F#18) performance variability is increased to 1.70366 ± 0.6981. 

Then if the probability of VSF#58 (Ambiguity in system response = high) is also assigned to be 

0.1, the expected value of performance variability is increased to 1.7070 ± 0.6984. Accordingly, 

the variation of function performance satisfies the three axioms and can be used to validate the 

developed model partially. Furthermore, an increase in the posterior probability of function 

performance variability (state= Highly variable) increased the posterior probability of the main 

category of contributing factors (e.g., human, organization, and social factors). 
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Table 4. 10 Sensitivity analysis results in partial validation of the proposed model (Function#18) 

Scenario VSFs and probability  Variability level 
Posterior 

Probability 

Function Performance 

Variability (Mean ± SD) 

Prior 

Probabilities 

VSF#56(state=High, P=0.0588) High Variability 0.1382 

1.6991± 0.6977  VSF#57(state=High, P=0.0266) Variability 0.4227 

VSF#58(state=High, P=0.0168) Non-Variability 0.4391 

Posterior 

one VSFs 

VSF#56(state=High, P=0.1) High Variability 0.1387 

1.7008 ± 0.6979  VSF#57(state=High, P=0.0266) Variability 0.4235 

VSF#58(state=High, P=0.0168) Non-Variability 0.4379 

Posterior 

two VSFs 

VSF#56(state=High, P=0.1) High Variability 0.1394 

1.70366 ± 0.6981  VSF#57(state=High, P=0.1) Variability 0.4248 

VSF#58(state=High, P=0.0168) Non-Variability 0.4358 

Posterior 

three VSFs 

VSF#56(state=High, P=0.1) High Variability 0.1403 

1.7070 ± 0.6984  VSF#57(state=High, P=0.1) Variability 0.4263 

VSF#58(state=High, P=0.1) Non-Variability 0.4333 

 

 

Figure 4. 12 The model sensitivity analysis targeted performance variability phototypes nodes (Time and 

Precision) 

 

The model sensitivity analysis was conducted for Bayesian Network modeling using a module 

available in GeNIe 3.0 Academic (http://www.bayesfusion.com). The employed algorithm [57] 

http://www.bayesfusion.com/
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efficiently obtained a complete set of derivatives of the updated (posterior) probability 

distributions of all VSFs) considered the performance variability phenotypes (Time and Precision) 

as a set of target nodes over each of the numerical parameters of the proposed probabilistic model. 

These derivatives denoted the importance of precision of the model quantitative parameters for 

estimating the posterior probability distributions of the targets. Accordingly, the nodes of all VSFs 

in the Bayesian Network model that contains important parameters to estimate posterior 

probability distributions of the target nodes are specified based on their contribution. Fig 4.12 

illustrates the model sensitivity analysis results for Function#18 as an example. The nodes (VSFs) 

with the highest red color intensity mean the most important factors, while less intensity indicates 

the less importance of the corresponding factors. For example, as can be seen from Fig 5.11, the 

social factors (VSFs#77-80) introduced the least and teamworking factors (VSF#71-76) the most 

contributing factor in Time and Precision during conducting the Pre-Startup Safety Review (PSSR) 

and run operation (F#18). This is true for the rest of the nodes, and SMEs confirm these results. 

 

4.4.6. Future applications of the proposed model 
 

The present research focused on a proactive perspective to predict system performance variability 

and explore critical safety investment factors. Although we proposed a risk-based decision-making 

process to improve system safety, the developed model can also be used for risk assessment. 

Furthermore, the proposed model can also be employed as a reactive approach to retrospectively 

analyze and investigate accident scenarios to reveal the most contributing factors in accident 

occurrence and system's weakness from a sociotechnical perspective. Furthermore, we will seek 

human reliability analysis using the proposed approach in future research. 
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4.5. Conclusions 

 
The safety performance of sociotechnical systems and their main elements (e.g., human, 

technology, organization) critically varied due to numerous contributing endogenous and 

exogenous influencing factors. This variability is called uncoupled variability, leading to 

catastrophic accidents with far-reaching consequences in critical systems from the chemical 

industry to healthcare. This research first introduced a  dynamic hybrid model based on advanced 

techniques to illustrate how uncoupled performance variability can be rigorously modeled. The 

proposed model builds upon findings in Safety-II, especially from a functional safety perspective, 

and performance variability arises from endogenous and exogenous factors in complex systems. 

The real case study illustrated the capability and effectiveness of the proposed approach to model 

performance variability associated with system resilience and safety in complex systems. The 

model captured various (inter) dependencies, and uncertainties (e.g., stochastic and fuzziness) and 

addressed the main challenges in knowledge acquisition and engineering in this domain. The 

results of the present study would be a full complement of existing knowledge regarding coupled 

variability. In the previous studies, the decision to dampen the critical variabilities has been made 

just based on coupled variability, which stems from upstream functions. Moreover, this approach 

hindered and excluded some optimal safety countermeasures to dampen criticality. Accordingly, 

capturing uncoupled and coupled variabilities yields a deep understanding and more practical and 

versatile countermeasures to improve system safety and resilience cost-effectively. Given the 

application, the main contributions of the proposed model are as follows: 

• The proposed VSFs Taxonomy filled the gaps in the current performance shaping factors 

taxonomies, and it ties in closely with sociotechnical system engineering. 
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• The DSE theory differently addressed subjective uncertainty arising from insufficient data 

and vagueness in the knowledge elicitation process, which is crucial in dealing with human 

and organizational-oriented factors.  

• The proposed probabilistic model and mathematical procedures established a prefund 

causality model which could integrate sociotechnical systems elements, address 

computations challenges related to CPTs, and characterize randomness and incompleteness 

uncertainties.  

• The proposed DBNs model is a non-linear performance variability causation model aiming 

to trace thoroughly interconnected accident causal factors, conduct forward and backward 

inferences, update model parameters and outcomes extensively used in the advanced 

system safety and reliability assessment.  

• The risk-based criticality matrix strongly supports the decision-making process to precisely 

identify safety-critical investment factors and functions and, as a result, effectively 

damping critical variabilities. It paves a way to relax the difficulties in dampening the 

critical performance resonance in a rational risk-based approach. 

• The proposed model can be applied for both proactive (e.g., safety performance and risk 

assessment) and reactive safety assessment (e.g., accident analysis) and can capture all 

aspects of STSs. Accordingly, it provides a deep understanding of complex system 

elements, their interaction, and their influence on system safety and resilience performance. 

It should be noted that the present research has also had some limitations, which should be 

considered in its applications and improved in future research. There are some challenges, such 

as potential conflicts and dissonance in the knowledge engineering process, which might affect 

the findings of this study. We would like to focus on proposing a holistic approach to model 

https://www.oxfordlearnersdictionaries.com/us/definition/english/thoroughly#thoroughly_sng_2
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uncoupled performance variability in a risk-based manner, and there was no room to address 

these concerns in the present study. Moreover, we used DSET to elicit expert knowledge to 

determine prior probability distributions, while more research should be conducted to compare 

and validate the knowledge acquisition process. To illustrate, the employed experts had almost 

the same professional profile (e.g., work experience, education, and position). Accordingly, 

we assumed the same importance level for their beliefs. Second, some detailed techniques 

might better quantify the potential dependencies among VSFs, while we intended to present a 

simple and practical approach. The main reason behind this decision was to avoid increasing 

the model complexity and intensely focus on the present research concerns. Several methods 

such as Analytic network process (ANP), Analytic hierarchy process (AHP) and Decision 

making trial and evaluation laboratory (DEMATEL), and Cognitive map (CM) and their 

extensions have been regularly employed to consider potential dependencies in safety 

probabilistic analysis [34,76]. The proposed model is tested based on SME’s knowledge, while 

simulation or historical data should be assigned to illustrate and improve the model’s 

compatibility and weakness. This provides the possibility to compare and assess the robustness 

of the results. Finally, employing mirror effect-based and reinforced learning systems to 

manage variability can be an academic opportunity to be investigated in future studies. 
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CHAPTER 5 
 

An advanced Approach to the System Safety in Sociotechnical Systems 
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Abstract 

 

The safety performance of complex systems and their main components (e.g., human, 

organization, and technology) vary due to numerous performance shaping factors (PSFs). 

However, previous research mainly focused on studying limited PSFs related to human functions, 

while organization and technology functions have often been ignored. This paper proposed a 

systematic approach to identify PSFs and quantify their importance level and influence on the 

performance of sociotechnical systems’ functions. To this end, we first developed a holistic PSFs 

Taxonomy based on sociotechnical systems design and then employed novel Interval-Valued 

Spherical Fuzzy Sets (IVSFS) and Best Worst Method to quantify the importance of performance. 

We tested the proposed model’s capability on maintenance operations in the chemical process 

plants and compared the model with the previous research considering fourteen criteria. The 

findings revealed the approach's effectiveness in dealing with epistemic uncertainty, vagueness, 

and fuzziness in the knowledge acquisition process. It revealed the critical safety investment 
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factors among different sociotechnical elements and contributing factors to maintenance 

operations. This helps to effectively allocate safety countermeasures to improve resilience and 

system safety performance. 

  

 

Keywords: Operational safety; Performance variability; Functional resonance analysis; 

Performance shaping factors.  

 

5.1. Introduction 
 

Complex systems such as oil and gas facilities contain numerous operational and organizational 

processes that must handle interactive and dependent social elements, organizational and human 

activities. These systems are mainly attributed to interactable, non-linear, and relative ignorance 

of dynamic complex operations [1,2]. Ignorance is a fact of sociotechnical systems (STSs) because 

it is impossible to fully explain their parameters in space or time and the whole behavior of the 

systems. This stems from uncertainty about the future, oversimplification in representative models 

of STS, illusory comprehension, and lack of imagination [2]. Dynamic complexity introduces a 

circumstance where effect and cause are subtle and effects over time of interventions are not easy 

to notice. Interactable systems are elaborate with many details, prone to substantial change, partly 

incomprehensible, heterogeneous, and possibly irregular. In other words, the interactable system 

is highly problematic or impossible to follow and understand how to function. Moreover, its 

performance is irregular and cannot be specified in detail, and it is not rational to decompose it [2–

4]. 

In contrast, it is acknowledged that entirely possible to describe a system in a different approach, 

mainly from how it functions perspective instead of what the elements (parts) are and how they 
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are architecturally assembled [4]. Accordingly, a group of coupled or mutually dependent 

functions constitute the system and can be understood by a complete description of their functions. 

In this sense, what seems to be indispensable are the performance of functions and entire systems, 

the variability of function performance, and whether the functional outcomes are acceptable or 

lead to undesirable events. As a result, understanding to what extent and how the system's 

performance varies can effectively support decision-making process in safety and resilience 

engineering [5]. Accordingly, there is a necessity to shift from "human error" to "human and 

system performance variability (resonance)" during the risk and safety assessment in STSs [2]. It 

is believed that conventional methods cannot understand risks associated with performance 

variability [6,7]. As a result, it is vital to move toward the system methods to deal with the risk-

driven issues in STSs [7,8]. 

Resilience engineering proposed an approach called the Functional Resonance Analysis Method 

(FRAM) [2], which is more compatible with the characteristics of complex sociotechnical systems 

[9]. This popular method begins by identifying and describing characteristic functions and focuses 

on improving the system's ability to monitor, learn, anticipate, and respond [3]. This is necessary 

for complex systems that a system can monitor, learn, anticipate, and respond to critical 

variabilities arising from internal and external variability of functions. It is believed that there will, 

of course, always be cases in STS where the variability magnitude of a single function (activity) 

is enough that adverse outcomes (e.g., accident, incident) would be unavoidable [10]. 

However, a rare attempt has been made to systemically identify various endogenous and 

exogenous factors contributing to the performance resonance of complex systems. Even popular 

human reliability or human factors analysis techniques, such as SLIM, HEART, CREAM, SPAR-

H, HFACS, and STAMP, only examined a few limited operator performance shaping factors 

https://www.oxfordlearnersdictionaries.com/us/definition/english/unavoidable
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(PSFs), even though complex system’s performance may critically vary due to numerous human, 

organizational, environmental, and social factors. Therefore, the present study aims to propose a 

systematic approach to entirely explore PSFs, their optimal importance, and the extent to which 

PSFs contribute to critical system performance. Moreover, the model deal with all kinds of 

sociotechnical system functions (e.g., human, organization, and technology) and paw a practical 

way to precisely identify safety investment elements in a system-based hierarchical structure (e.g., 

PSFs level, PSFs sub-groups, PSFs category, system function level). In the rest of the paper, the 

proposed methodology is first explained, then it procced with the model application’s findings and 

discussion, and finally main conclusions.  

 

5.2. Methodology 

 

This section presents a holistic taxonomy of PSFs based on different FRAM-driven functions and 

sociotechnical design hierarchy (e.g., individual, task, Human-Machine Interface (HMI), plant, 

organization, culture). Then, a novel Interval-Valued Spherical Fuzzy Sets (IVSFS) is explained, 

which is employed to quantify the magnitude of performance variability arising from the influence 

of PSFs.  The Best Worst Method is employed to obtain the importance level of PSFs in each 

system function, and finally, an Overall Variability Index (OVI) is proposed, which yields to rank 

of the system functions based on their criticality level. 

 

5.2.1. Propose a taxonomy of performance shaping factors (PSFs) for complex systems 
 

Several taxonomies and hierarchies (e.g., factors, sub-factors, and indicators) of human PSFs have 

been proposed mainly in nuclear power plants [11]. However, they suffer some important 

drawbacks, including a) They fail to introduce influencing factors on organization and technology 

functions, despite their importance in system failure [12], b) Those focus on human performance, 
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only concerned about specific aspect on human performance (e.g., cognitive or behavior failures), 

c) Most taxonomies missed factors arise from the new advancements (e.g., Industry 4.0), such as 

digitalization factors [13], d) a limited set of PSFs on human functions (often nine factors) are 

considered in the previous studies [14], while human performance is affected by a wide range of 

endogenous and exogenous factors. As a result, they fail to model safety performance from 

sociotechnical perspective [12]. Accordingly, a new PSFs taxonomy for STSs considering the 

FRAM paradigm, sociotechnical design hierarchy (e.g., individual, task, HMI, plant, organization, 

culture), and the concept of human-center design is developed. Therefore, this taxonomy is 

intended to consider all aspects of STSs together and can be used to examine influencing PSFs in 

a wide range of complex systems. It is expected that using this model provides a better 

understanding of complex system elements, their interaction, and their influence on system 

performance. This importance can substantially improve the designing of technical systems, 

business processes, organizational structures, and human operations [15].  

 

5.2.2. A novel Interval-Valued Spherical Fuzzy Sets (IVSFS) 
 

Assessing to what extent the performance of different functions is affected by various PSFs is a 

multi-criteria decision-making process under uncertainty while dealing with it is a prominent issue 

in safety management. Supporting decision-making requires numerical values that reach exact 

values is impossible in many actual conditions. This is owing to the diverse nature of influencing 

factors, uncertainty, and fuzziness of the practical decision-making environment, and the lack of 

information [16,17]. It is argued that human functions experience substantial variability in terms 

of both frequency and magnitude, while organizational functions vary with low frequency but high 

severity [2]. Accordingly, these issues become vital and sensitive when modeling human or 

organizational factors has to be considered [18,19]. To overcome this challenge and apply a 
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rigorous approach, fuzzy set theory achieved the most popularity in many scientific domains, from 

health care to engineering [20,21]. In this sense, Zadeh (1965)  defined the fuzzy set, which only 

quantifies the membership degree but excludes the non-membership, on this basis, several 

extensions of fuzzy sets  (e.g., Intuitionistic, Neutrosophic, Hesitant, Pythagorean, Picture fuzzy 

sets) have been successfully introduced [22]. Recently, Kutlu Gündo˘ gdu and Kahraman (2019) 

proposed a novel fuzzy set named three-dimensional spherical fuzzy set (SFS) to address the 

limitations  encountered in the previous extensions and deal with more widely uncertain 

information, vagueness originate from the human judgments, ambiguity in the decision-making 

process and clarify hesitancy of decision makers' judgments [23]. A geometric illustration 

of Intuitionistic (IFS),  Pythagorean (PFS),  Neutrosophic sets (NS), and SFS is presented in Fig. 

5.1. As can be seen, using this novel sets decision-makers able to define their hesitancies 

independently to decide with a larger three-dimensional domain (Fig. 5.1) through a linguistic 

evaluation scale according to the IVSFSs presented in Table 5.1 [24]. Therefore, SFSs are among 

the most important and underlying concepts to accommodate more uncertainties than existing 

fuzzy set structures. In SFSs, while the squared sum of three parameters (e.g., membership, non-

membership, and hesitancy) is between 0 and 1, each of them can be independently estimated from 

0 and 1. The shape of this new fuzzy sets is the outcome of these two conditions. These novel sets 

enable decision-makers to independently define their degree of hesitancy (𝛾𝐴�̃�(𝑧), 𝐸𝑞. 1) to decide 

environment with a larger domain. The superiority of the SFSs comes from collecting the 

scientifically accepted advantages of other fuzzy sets extensions (e.g., PFS and NS in a unique 

theory), while not including the criticized aspect of the neutrosophic theory, i.e., a sum of μ, v, and 

π larger than 1 and the criticized aspect of PFS theory, i.e., disregarding an independent hesitancy 

[22–24]. 
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Figure 5. 1 (a) A geometric illustration of  IFS, PFS, NS, and SFS, (b) Spherical fuzzy digraphs for five 

experts [23]. 

 

More details about the advantages of SFS are available and referred to primary literature [22] to 

narrow down the main concerns of the present study (performance variability in STSs). Moreover, 

we used the interval-valued spherical fuzzy sets to effectively characterize the potential uncertainty 

associated with the expert elicitation process [23]. Accordingly, the following sections allocate to 

define IVSFS, arithmetic operations, aggregation, and defuzzification operations. 

Definition 1: Considering SFSs 𝐴�̃� of the discourse universe of Z is indicated by Eq. (6.1). 

𝐴�̃� = {𝑧, (𝛼𝐴�̃�(𝑧), 𝛽𝐴�̃�(𝑧), 𝛾𝐴�̃�(𝑧)) |𝑧 ∈ 𝑍} (6.1)        

where for each z, the values (𝛼𝐴�̃�(𝑧), 𝛽𝐴�̃�(𝑧) 𝑎𝑛𝑑  𝛾𝐴�̃�(𝑧) indicate the degree of membership, non-

membership, and hesitancy of z to 𝒜˜, respectively, and associated principles are as follows: 

𝛼𝐴�̃�: 𝑍 → [0,1],          𝛽𝐴�̃�: 𝑍 → [0,1],                  𝛾𝐴�̃�: 𝑍 → [0,1],    

𝑎𝑛𝑑 

0 ≤ 𝛼2𝐴�̃�(𝑧) + 𝛽
2
𝐴�̃�
(𝑧) + 𝛾2

𝐴�̃�
(𝑧) ≤ 1           ∀𝑧 ∈ 𝑍 (6.2)     

 Definition 2: Considering the IVSFSs 𝐴�̃� of the discourse universe of Z is specified by Eq. (6.3). 
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𝐴�̃� = {𝑧, ([𝛼
𝐿
𝐴�̃�
(𝑧), 𝛼𝑈𝐴�̃�(𝑧)], [ 𝛽

𝐿
𝐴�̃�
(𝑧), 𝛽𝑈

𝐴�̃�
(𝑧)] , [ 𝛾𝐿

𝐴�̃�
(𝑧), 𝛾𝑈

𝐴�̃�
(𝑧)]) |𝑧 ∈ 𝑍} (6.3) 

where 0 ≤ 𝛼𝐿𝐴�̃�(𝑧) ≤ 𝛼
𝑈
𝐴�̃�
(𝑧) ≤ 1,  0 ≤ 𝛽𝐿

𝐴�̃�
(𝑧) ≤ 𝛽𝑈

𝐴�̃�
(𝑧) ≤ 1 

𝑎𝑛𝑑 

 0 ≤ (𝛼𝑈𝐴�̃�(𝑧))
2

+ (𝛽𝑈
𝐴�̃�
(𝑧))

2

+ (𝛾𝑈
𝐴�̃�
(𝑧))

2

≤ 1 

For each z ∈ 𝑍, L and U are the lower and upper degrees of membership (𝛼𝐴�̃�(𝑧)), non-membership 

(𝛽𝐴�̃�(𝑧)) and hesitancy (𝛾𝐴�̃�(𝑧)) of z to 𝐴�̃� presented in Table 5.1 based on corresponding linguistic 

terms and fuzzy numbers. The intervals 𝛼𝑈 and 𝛽𝐿 demonstrate the degree of belongingness and 

non-belongingness of 𝑧 , respectively, while 𝛾2 denotes the hesitancy degree of element z in the 

universe independently from the two former elements. 

 

 

Table 5. 1 Linguistic evaluation scales and their interval-valued spherical fuzzy sets  

Linguistic terms Score 
Interval-valued 

[𝑎, 𝑏], [ 𝑐, 𝑑], [ 𝑒, 𝑓] 

Absolutely more influence/important/probably (AMI) 9 [0.85, 0.95], [0.10, 0.15], [0.05, 0.15] 

Very high influence/ important/ probably (VHI) 8 [0.75, 0.85], [0.15, 0.20], [0.15, 0.20] 

High influence/ important/ probably (HI) 7 [0.65, 0.75], [0.20, 0.25], [0.20, 0.25] 

Slightly more influence/ important/ probably (SMI) 6 [0.55, 0.65], [0.25, 0.30], [0.25, 0.30] 

Slightly low influence/ important/ probably (SLI) 5 [0.50, 0.55], [0.45, 0.55], [0.30, 0.40] 

Low influence/ important/ probably (LI) 4 [0.25, 0.30], [0.55, 0.65], [0.25, 0.30] 

Very low influence/ important/ probably (VLI) 3 [0.20, 0.25], [0.65, 0.75], [0.20, 0.25] 

Absolutely low influence/ important/ probably (ALI) 2 [0.15, 0.20], [0.75, 0.85], [0.15, 0.20] 

No influence/ equal important / probably (NI) 1 [0.10, 0.15], [0.85,0.95], [0.05, 0.15] 

 

Definition 3: The aggregation of fuzzy sets using a novel Interval-valued Spherical Weighted 

Arithmetic Mean (IVSWAM). Considering �̃�𝑗 = 〈[𝑎𝑗 , 𝑏𝑗], [𝑐𝑗, 𝑑𝑗], [𝑒𝑗, 𝑓𝑗]〉 is an IVFSS and 

weighted arithmetic Mean of n sets concerning weight (𝑤𝑗), which means the decision maker's 

weight (importance level), who express their opinion in linguistic evaluation scale (terms) as Table 

5.2, 𝑤𝑗 = (𝑤1, 𝑤2, … , 𝑤𝑛); 𝑤𝑗 ∈ [0,1], and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, IVSWAM is specified as: 
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IVSWAM(�̃�1, �̃�2, … , �̃�𝑛) =∑𝑤𝑗 . �̃�𝑗

𝑛

𝑗=1

=

{
 
 
 
 

 
 
 
 

[
 
 
 

(1 −∏(1 − 𝑎𝑗
2)

𝑤𝑗

𝑛

𝑗=1

)

1

2

,(1 −∏(1 − 𝑏𝑗
2)

𝑤𝑗

𝑛

𝑗=1

)

1

2

]
 
 
 

, [∏ 𝑐𝑗
𝑤𝑗 ,

𝑛

𝑗=1

∏ 𝑑𝑗
𝑤𝑗 ,

𝑛

𝑗=1

] ,
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(∏(1 − 𝑎𝑗
2)

𝑤𝑗
−∏(1 − 𝑎𝑗

2 − 𝑒𝑗
2)

𝑤𝑗

𝑛

𝑗=1

𝑛

𝑗=1

)

1

2

,(∏(1 − 𝑏𝑗
2)

𝑤𝑗
−∏(1 − 𝑏𝑗

2 − 𝑓
𝑗
2)

𝑤𝑗

𝑛

𝑗=1

𝑛

𝑗=1

)

1

2

]
 
 
 

}
 
 
 
 

 
 
 
 

 (6.4)

 

                                                                                                                                                                              

For the sake of simplifying, we represent the lower and upper values of membership degree with 

a and b, non-membership (𝛽𝐴�̃�) with c and d, while hesitancy (𝛾𝐴�̃�) with e and f. It is important to 

clarify that the IVSWAM aggregates experts' opinions regarding both the weight and influence of 

internal and external factors. In other words, first assigned experts are asked to express their belief 

regarding how much various factors can vary functions performance, and then how important they 

are considering the real working circumstances. The optimal weights (𝑊𝑗) of heterogeneous group 

decision-makers (j=1, 2,…, n) is calculated based on their profile quality characterizing factors 

considering professional position (PP), experience time (ET), education (E) and age (A) (Table 

5.2) [40]. To this end, we employed a new robust and popular approach named the Best-Worst 

Method (BWM), which is proposed to solve multi-criteria decision-making (MCDM) problems 

[25], and Eq. (6.5) [26]. 

OWj =
∑ 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑠𝑐𝑜𝑟𝑒𝑖 × 𝑂𝑊𝐶𝑖
4
𝑖=1

∑ ∑ 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑠𝑐𝑜𝑟𝑒𝑖 × 𝑂𝑊𝐶𝑖
4
𝑖=1

6
𝑆𝑀𝐸𝑠=1

                                                                     (6.5) 

where 𝑂𝑊𝑗 is the optimal weight of employed subject matter experts (j=1, 2…, 6) who have 

received a score based on their characteristics in each criterion (e.g., experience, education) using 

Table 5.2. 𝑂𝑊𝐶𝑖 denotes the optimal weight of criteria (i=1,.., 4) obtained using BWM.  
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Table 5. 2 Weighting score of heterogeneous group decision-makers [27] 

Criteria Classification Score Criteria Classification Score 

Professional 

position 

Academician 5 

Education 

level 

PhD 5 

Operation manager 4 Master 4 

Engineer 3 Bachelor 3 

Technician 2 Diploma  2 

Worker 1 School level 1 

Experience 

time (year) 

≥26  5 

Age (year) 

≥50 4 

16 - 25 4 40-49 3 

11 - 15 3 30-39 2 

6 – 10 2 < 30 1 

≤5 1   

 

Definition 3: The score function used for the defuzzification of IVSFS number �̃� is calculated as 

Eq. 6.6, while the accuracy function is defined as Eq. 6.7. 

𝑆𝑐𝑜𝑟𝑒 (�̃�) = 𝑆(�̃�) =
𝑎2 + 𝑏2 − 𝑐2 − 𝑑2 − (

𝑒
2)

2

− (
𝑓
2
)
2

2
  (6.6)

 

where Score (�̃�) = S(�̃�) ∈  [−1, +1]. It is noteworthy that the greater �̃� results in the larger 

S(�̃�). Especially, when �̃� = {[1,1], [0,0], [0,0]} then 𝑆(�̃�) = 1, while �̃� is the smallest spherical 

fuzzy set number, �̃� = {[0,0], [1,1], [0,0]}, then 𝑆(�̃�) = −1. 

Accuracy (�̃�) = 𝐻(�̃�) =
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑒2 + 𝑓2

2
 (6.7) 

                               

In which 𝐻(�̃�) ∈ [0, 1], and �̃�1 < �̃�2 if and only if  𝑆(�̃�1) < 𝑆(�̃�2) 𝑜𝑟 𝑆(�̃�1) = 𝑆(�̃�2) and 𝐻(�̃�1) <

𝐻(�̃�2). 

Finally, after collecting the experts' opinions using the linguistic evaluation scale (Table 5.1) as 

input data and employing Eqs.6.4 and 6.6, the performance variability's magnitude of different 

functions due to the influence of internal and external factors is calculated. It is essential to model 

the accumulative influence of various PSFs in a real operating scenario. To this end, Eq. 6.8 is 

proposed to estimate the overall influences of factors named Overall Variability Index (OVI) as: 
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OVI𝑥 = (∑𝜆𝑖𝑤𝑖

𝑛

𝑖=1

) 𝑡𝑓  (6.8) 

where 𝜆𝑖 represents to what extent PSF𝑖 (i =1, 2, …, n) influence (obtained using IVSFSs) over 

output (performance) variability of function 𝑥 , 𝑤𝑖 indicates the importance level (weight) of 

variability shaping factor 𝑖 (i =1, 2, …, n) and 𝑡𝐹 means the time fraction related to the working 

Time.  

It should be noted that BWM was used to calculate the importance level of PSFs. The BWM 

utilizes an optimization model by a structured pairwise comparison to obtain the optimal weight 

of each PSF, and its value denotes how much the SMEs prefer the 𝑃𝑆𝐹𝑖 over 𝑃𝑆𝐹𝑗. This structured 

technique makes the decision easier, more understandable, and most importantly, results in more 

consistent comparisons and subsequently more reliable results (e.g., weights, ranking). This 

technique contains six steps as follows [25,28]: 

Step 1: Specifying the set of influencing criteria: Considering the proposed taxonomy of PSFs and 

SMEs' belief, the set of influencing factors over the system performance or function under study 

are defined.  

Step 2: Defining the most important (best) and the least important (worst) factors (criteria). It is 

noteworthy that decision-makers don't make a comparison in this step, and they just determine the 

best and worst factors.  

Step 3:  Establish the preference of the best factor over all the reset factors using a scale from 1 

(Equal importance) to 9  (Absolutely more important) according to Table 5.1. The resulting Best-

to-Rest (BR) vector would be as Eq. (6.9): 

𝑃𝐵 = (𝑝𝐵1, 𝑝, … , 𝑝𝐵𝑛)                                                                                                          (6.9) 

where 𝑃𝐵𝑗 denotes the preference of the best factor 𝑋 over the factor 𝑗 (j=1,…, n). 
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Step 4: Establish the preference of all the factors over the worst factor using the same scale as the 

previous step that the results of Others-to Worst (OW) vector would be as Eq. (6.10): 

𝑃𝑤 = (𝑝1𝑊, 𝑝2𝑊, … , 𝑝𝑛𝑊)
𝑇                                                                                                       (6.10) 

where 𝑝𝑗𝑤 presents the preference of the factor 𝑗 over the worst factor 𝑊 

Step 5: Find the optimal weight of each factor  (𝑊1
∗,𝑊2

∗, … ,𝑊3
∗). The optimal weight of the factor 

is the one where for each pair of 𝑊𝐵 𝑊𝑗⁄  and  𝑊𝑗 𝑊𝑤⁄ , we have 𝑊𝐵 𝑊𝑗⁄ = 𝑝𝐵𝑗 and 𝑊𝑗 𝑊𝑤⁄ = 𝑝𝑗𝑊. 

It should be found a solution where the maximum absolute differences |
𝑊𝐵

𝑊𝑗
− 𝑝𝐵𝑗| and |

𝑊𝑗

𝑊𝑊
− 𝑝𝑗𝑊| 

for all 𝑗 would be minimized to meet these conditions for all 𝑗. Given the non-negativity and 

sum conditions for the estimated weights,  the optimization model is formulated as follows 

Eq. (6.11) (Model 1): 

𝑚𝑖𝑛max
𝑗
{|
 𝑊𝐵

𝑊𝑗
− 𝑝𝐵𝑗| , |

 𝑊𝑗

𝑊𝑊
− 𝑝𝑗𝑊|} 

Subject to ∑ 𝑊𝑗 = 1, 𝑊𝑗 ≥ 0, for all 𝑗𝑛
𝑗=1 .                                                                         (11, Model 1) 

The optimal weight of factors is obtained by converting the previous model into the below linear 

Model 2 as Eq. (6.12): 

min 𝜉  

Subject to 

|
𝑊𝐵

𝑊𝑗
− 𝑝𝐵𝑗| ≤ 𝜉, for all 𝑗,    |

𝑊𝑗

𝑊𝑊
− 𝑝𝑗𝑊| ≤ 𝜉, for all 𝑗 

∑ 𝑊𝑗 = 1, 𝑊𝑗 ≥ 0, for all 𝑗𝑛
𝑗=1 .                                                                                          (12, Model 2) 

For any estimation of 𝜉, the first set of model (2) constraints by and the second set of constraints 

by, the solution space of the model (2) can be an intersection of 4𝑛 − 5 linear constraints 
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(2(2𝑛 − 3) comparison constraints and one constraint for the sum of the weights). Finally, the 

optimal weight of the factor of interest and 𝜉∗ can be obtained by solving the model (2). 

Step 6: Consistency check: A comparison is entirely consistent when 𝑝𝐵𝑗 × 𝑝𝑗𝑊 = 𝑝𝐵𝑊 (the 

preference of the best factor over the worst factor) for all 𝑗. However, it may happen for some 𝑗 

not to be fully consistent that can be measured the consistency level using a robust index called 

consistency ratio (CR) using Eq. (6.13). 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 (𝐶𝑅) =
𝜉∗

𝐶𝑜𝑛𝑠𝑖𝑡𝑒𝑛𝑠𝑦 𝐼𝑛𝑑𝑒𝑥
                                                                    (6.13) 

where CR ∈ [0,1] and the lower CR means that the comparisons are more consistent and 

subsequently yield more reliable results. Moreover, given the number of criteria and maximum 

value of pairwise comparison, a threshold value for CR is presented that can be considered to find 

the acceptable level. The maximum value of the consistency index for various estimations of 𝑝𝐵𝑊 

is presented in Table 5.3. 

 

Table 5. 3 Consistency index (CI) for different values of 𝑝
𝐵𝑊

 

𝑝
𝐵𝑊

 1 2 3 4 5 6 7 8 9 

CI (max 𝜉) 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 

 

It is acknowledged that working time impacts human performance resonance, so as time continues, 

operators' performance often varies negatively in complex systems [43,44]. It is believed that 

human function has the highest reliability, lowest performance variability in the first hour of the 

processing shift, and lowest reliability, highest performance variability at the eighth hour of a 

regular working shift [29]. We define different multipliers according to the working Time (WT) 

for a regular shift duration (T = 8 hr) as WT ≤ 2 hr, time fraction 𝑡𝑓 = 1, for 2 < WT ≤ 4 hr, 𝑡𝑓 =

2,  for 4 < WT ≤ 6 hr, 𝑡𝑓 = 3, and as WT > 6 hr, 𝑡𝑓 = 4. It should be noted that for specific 
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functions (e.g., technology and organization), their performance is not substantially affected by 

the working Time, time fraction, 𝑡𝐹 , can be ignored in estimating the overall variability of function 

performance. This section is defined to precisely answer the to what extent do internal and external 

factors are associated with the performance variabilities of human, organizational, and technical 

functions? 

 

5.3. Result and Discussion 

 

5.3.1. Cases study: Maintenance operation in oil and gas facilities 

 

A maintenance operation cycle containing both pre-and post-maintenance activities is considered 

for testing the model's capability and effectiveness. Although it is often undifferentiated in most 

industries, we would like to concentrate on it in the chemical processing facilities in the South Pars 

Gas Complex (SPGC) located in Pars Special Economic Energy Zone, Asaluyeh, Bushehr 

Province, Iran. This energy source is identified as the world's second-largest natural gas reservoir 

and contains both offshore and onshore facilities. Its operation involves fourteen gas refineries, 

twelve petrochemical complexes, more than ten offshore platforms, 100 wells and 500 km 

pipelines. It is frequently recognized that human, technological and organizational failures in 

maintenance operations of critical systems, such as general and civil aviation, nuclear power and 

oil and gas, lead to catastrophic accidents [11,14]. Some of these disasters include Three Mile 

Island, Piper Alpha, Bhopal, American Airlines Flight 191, Japan Airlines Flight 123, Clapham 

Junction rail crash. Moreover, a considerable portion of the budget (e.g., more than $300 billion 

in the USA) is annually allocated to these operations  [11]. This maintenance operation is 

considered a sociotechnical system as many crews from different departments (e.g., operation, 

safety, and environment, maintenance, human resources, logistics) are individually and 
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collectively involved. Moreover, organizational (production, stakeholders, market) and technology 

concerns are inextricably intertwined with human functions in maintenance of such large critical 

processing plants. Given a wide range of PSFs (e.g., harsh environments, poorly written 

maintenance procedures, poor work layout, complex maintenance tasks crew characteristic, 

logistics), impact on safety and risk of maintenance in the critical sectors, it can be a suitable 

application for serving the purpose of the present study.  

 

5.3.2. Characterizing the system's functions  
 

The system's functions should be first studied, which constitutes the FRAM model of maintenance 

operation in everyday work. To this end, the maintenance operations’ functions were identified, 

revised, and described considering everyday maintenance work (work as done, not as imagined) 

by actively participating fifteen experts from the operation, maintenance, management, safety, and 

environment departments. The human-oriented functions of the studied maintenance operation are 

demonstrated in Table 5.4, while the organization and technology-oriented ones are presented in 

Tables 5.5 and 5.6. Overall, thirty-one functions directly associated with the maintenance 

operation are identified. Nineteen functions are human-oriented activities, while organization and 

technology are associated with five and seven functions. This step yields a deep understanding of 

different individual and team activities in the maintenance operation. 

 

 
 

 

Table 5. 4 The human-oriented functions of the studied maintenance operation 

No. Function Description  

1 Assessing maintenance 

needs and orders 

Issuing the preventive or corrective maintenances (e.g., planned or unplanned) as an order or need 

by the maintenance department or its subdivisions (e.g., mechanical, machinery, instrument) 

2 Approving maintenance 

order  

Assessing the orders by committee members from the operation, safety and firefighting, 

maintenance and sub-units (e.g., Instrument, Electricity), production, and planning departments. 

3 Planning the work and 

referring to working crew 

After approving orders, details and resources of work as materials, maintenance sub-department 

responsible for, human force, timetable, etc., are defined and then referred to the working crew. 
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4 Applying for the permit 

to work (PTW) 

Using the PTW procedure, the required equipment diagnoses and tags. After specifying 

responsibilities, the PTW is referred to the operation department. 

5 Assessing potential risks 

and developing 

emergency response 

planning (ERP) 

Identifying HSE hazards, analyzing their risks, and ensuring the recommended safety measures 

are all in place. The Toolbox Risk Identification Card (TRIC) is issued by supervisors on-site and 

attached to the PTW order. If it needs to develop an ERP, it is in place by the ERP committee. 

6 Determining and 

certifying require 

isolations and preparation 

Identifying the most appropriate isolation approach and checking all lines, their pressure, vent, 

bleeds, and close, lock and tag isolation valves. Obtaining required certificates and keys and 

assigning lockout box and delivering the keys to supervisors. Review the related work orders to 

ensure no operational conflict or other work. 

7 Knowledge management  Holding a safety talk to learn from past on-site and offsite incidents and holding safety toolbox 

meetings (TBM)  to build a learning organizational safety culture and reinforce the safety standard 

and procedures. 

8 Performing chemical 

process isolation 

All affected equipment and pipelines are isolated from main chemical process lines by bypassing 

the feeds into other pipelines pathways. Finally, the process isolation certificate is attached to the 

PTW sheet. 

9 Depressurizing, draining, 

and purging  

All affected pipelines and equipment are depressurized and cleaned to ensure they are ready for 

safe maintenance. Inert materials (nitrogen or steam) are used to provide a free hydrocarbon gas 

environment (LFL&LEL= 0). 

10 Performing mechanically 

and electrically isolation 

Blinding or blanking, disconnecting, and misaligning all affected lines and performing lockout 

and tag out procedures for all energy sources. Finally, these isolations certificate is attached to the 

PTW sheet. 

11 Performing pressure and 

isolation leak test 

Performing the hydrostatic (water) or pneumatic (air or inert gas) pressure tests to identify the 

potential leak points and ensure the system is fully isolated. 

12 Applying for 

maintenance inhibition 

Isolating and deactivating All gas detectors, fire and gas systems, fire and smoke detectors, and 

sensors. 

13 Preforming gas and 

oxygen testing 

Employing a gas analyzer to measure flammable gases by a certified person and toxic and oxygen 

concentrations by the HSE department before, during, and at the end of work. 

14 Confirm PTW and 

monitor its validity  

Reviewing all requirements must by area authority, supervisor (permit issuer), and HSE to ensure 

meet them and not exist any cross reference, approving PTW and place it on board and worksite. 

If the work must continue beyond the allowed period, PTW is closed, and a new one is prepared. 

15  Performing the required 

maintenance 

Carry out maintenance of the equipment (e.g., pump, compressor) as per scheduled and approved 

program. 

16 Reassembling the 

components 

Checking all lines and equipment for obstruction and removing mechanical and electrical isolation 

(lock and tags) to open valves and connect lines. 

17 Preparing for start-up and 

conducting the pressure 

tests 

Returning all lockout keys and certificates, giving back worksite authority to area authority, and 

document reinstatement by supervisor. Opening the valve and reinstate to perform test pressure, 

then removing air from lines and open valves and test for the leak to ensure equipment are placed 

in their safe conditions. 

18 Conducting the Pre-

Startup Safety Review 

and running operation 

Employing the PSSR procedure by the committee to make sure all safety requirements are in place 

properly. Finally, running the system to begin the normal operation if there is not any non-

compliance. 

19 Monitoring the 

Simultaneous Operations 

(SIMOPS) limitations 

Ensuring the safety of operations and more coordination when maintenance and production are 

performed simultaneously. 

 

Table 5. 5 The organization-oriented functions of the studied maintenance operation 

F N Function Description  

20* 
Establishing and holding the crew 

training programs 

All crew members must generally receive training programs regarding the standard 

operation procedures, HSE risks, effective communication, emergency response 

management based on their responsibilities and authority. Some staff must be 

continuously trained with technical courses and get certified. 
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Table 5. 6 The technology-oriented functions of the studied maintenance operation 

F N Function Description  

25 Pressure and leak test system These devices measure the pressure and specify any leakage in the area of interest. 
26 Gas analyzer and leak tester The related device measures the concentration of gases of interest. 

27 
Depressurizing, draining, and 

purging system 
This system reduces the operational pressure and cleans the component for safe 

maintenance.  

28 
Isolation systems (flange, gaskets, 

stud bolts, valves) 
This system safely separates the operation zones from the components under 

maintenance. 
29 Lockout and Tagout system This system prevents any energy sources from unsafe start-up during maintenance. 

30 
Portable Fire and Gas detection 

packages 
Replacement for disabled Fire and Gas Detection System in maintenance areas 

31 
Escape, Evacuation and Rescue 

(EER) Facilities 

Ensure the availability of escape, evacuation and rescue apparatus based on emergency 

response procedure and plan 

 

5.3.3.  Performance shaping factors (PSFs) Taxonomy results 
 

After systematically analyzing the literature, the first taxonomy draft has been shared with thirteen 

safety practitioners from different academia and industry background. They were first provided 

with detailed information regarding the research methodology and objectives through several 

interactive meetings. After collecting their knowledge and feedback and thoroughly discussing in 

several meetings, 25 new influencing factors were added, some factors merged or removed, and 

finally, the holistic FRAM-driven HOT (Human-Organization-Technology) taxonomy was 

developed. It contains 80 contributing factors to human factions, 26 organization functions, and 

16 technology functions. It was developed in line with the FRAM paradigm, sociotechnical design 

21 

Providing the required hardware 

(e.g., tools, instruments, and 

programs), software (e.g., SOP, 

PFD, P&ID), legal support) 

The necessary equipment (e.g., proper gas tester, PPE, LOTO, isolators) and software 

are available to conduct activities safely. Maintenance contractors' safety and financial 

requirements are clearly reflected and confirmed in official documents by the site leader. 

22 

Establishing the Radar system to 

improve the spirit of team 

working, mutual communication, 

and safety culture 

The organization should clarify team roles and provide a solid culture to communicate 

openly and effectively, trust and support each other, appreciate the ideas diversity, high 

engagement level, and strong team spirit among and between both contractor and site 

leader crew members 

23 Managing human resources 

Competent crew members from maintenance contractors to site leaders hired, trained, 

and certified based on the required standard procedures considering the operation, 

maintenance and safety requirements. Contractors are asked to provide a proper 

organization chart and a competent maintenance crew. 

24 
Protection of environmental 

programs 

Critical systems and packages are available to ensure pollution by hydrocarbons (e.g., 

sewage, solid disposal, flow monitoring) are protected. 
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hierarchy (e.g., individual, task, HMI, plant, organization, culture), and human-center design 

concept. Therefore, this taxonomy manages to capture all aspects of STSs and subsequently 

provides a deep understanding of complex system elements, their interaction, and their influence 

on system performance. It is expected that using this model provides a better understanding of 

complex system elements, their interaction, and their influence on system performance. This 

importance can substantially improve the designing of technical systems, business processes, 

organizational structures, and human operations [15]. Considering the function types in the FRAM 

model, a novel taxonomy of PSFs is proposed in Tables 5.7-5.9.  
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Table 5. 7 Taxonomy of Human Performance Shaping Factors (PSFs) in Sociotechnical Systems 

PSFs category PSFs sub-groups Performance Shaping Factors (PSFs) and their ordinal coding 

Human-driven 

factors 

Physical condition  Physical Fatigue, Physical abilities, Age, Gender; (PFS#1-4) 

Physiological and 

Phycological factors 

Problem-solving style, Morale, Motivation, Safety attitude, Situational awareness, 

Vigilance,  Cognitive bias, Emotional arousal (Stress), Self-confidence, Perception 

and appraisal, Mental Fatigue, Circadian rhythm (disorders); (PFS#5-16) 

Memorized 

information 

Working and intermediate memory, Long-term memory, Experience and 

knowledge, Skills, Information uncertainty; (PFS#17-21) 

Task-driven 

factors 

Task type and 

cognition 

Observation, Diagnostic, Monitoring, Planning, Execution (e.g., Construction, 

Operational, Maintenance, Commissioning or Decommissioning); (PFS#22-26) 

Task attribute 

Task mode (Parallel task and dependent task), Shift working, Task scheduling 

(Time of day and task duration), Task urgency (Available task time), Task 

complexity, Task risks, Task novelty, Task workload (Manual labor strength and 

Cognitive resource demand), Task consequence (e.g., Financial); (PFS#23-35) 

Organization-

driven   factors 

Strategy-oriented 

factors 

Safety measures program, Perceived safety culture/climate, Safety incentive; 

(PFS#36-38) 

Strategy-oriented 

factors 

Resources management (workforce, procedures, tools availability and quality), 

Goal substitution, Organisational double-binds (e.g., safety and productivity 

conflicts), Perceived organizational support, External demands to quality and 

quantity; (PFS#37-43) 

Management-oriented 

factors 

Training program, Staffing and scheduling management, Monitoring teamwork, 

Monitoring work conditions, Monitoring skills and competencies, Monitoring 

procedures; (PFS#44-49) 

Technology-

driven factors 

Human-machine 

interface (HMI) 

Digitalization level, Controller layout and availability, Indicator layout, Displayer 

availability, Warning light, Alarm sound systems; (PFS#45-55) 

Technical system 

State 

Operating parameter (State, Change rate and number of parameter anomalies), 

Number of abnormal operating phenomena, Ambiguity in system response; 

(PFS#56-58) 

Environment-driven factors 
Temperature, Humidity, Air pressure, Noise, Vibration,  Lighting, Toxic gas, Dust 

and fume, Wind speed, Radiation, Natural hazards (e.g., Rainfall); (PFS#59-69) 

Team-driven factors 
Cohesiveness, Coordination, Communication, Composition (crew arrangement and 

structure), Leadership, Team roles and responsibility, Team norms; (PFS#70-76) 

Social-driven factors 
Expectations to oneself or colleagues, Compliance with the group working 

standard, Social norms, Religious beliefs; (PFS#77-80) 
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Table 5. 8 Taxonomy of Organization Performance Variability Shaping Factors (PSFs) in Sociotechnical Systems 

PSFs sub-groups Performance Shaping Factors (PSFs) and their ordinal coding 

Strategy-driven factors 

Authority gradient, Organizational safety culture, Organizational trust, Goal 

substitution, Simultaneous goals, Organizational vision, Strategy and goals, 

Organizational structure and practices, Organisational double-binds; (PFS#1-9) 

Knowledge management 

factors 

Performance feedback process, Communication effectiveness, Management of 

Change, Organisational learning, Organizational memory, Resource availability, 

Operating environment; (PFS#10-16) 

External factors 
External demands to quality and quantity, Customer demand/expectation, Natural 

disasters, Sanctions; (PFS#17-20) 

National factors 
Physical/legislative/business environment, National culture, Regulatory scrutiny, 

Regulatory environment, Commercial resource; Religious beliefs; (PFS#21-26)  

 

 

Table 5. 9 Taxonomy of Technology Performance Shaping Factors (PSFs) in Sociotechnical Systems 

PSFs sub-groups Performance Shaping Factors (PSFs) and their ordinal coding 

Safety-oriented factors 

Failure or malfunction detection systems, Reliability and availability, Inspection's 

methods and intervals, Warranty and supply management, Resilience, Inherent safety 

design, Redundancy (Standby or Active), Management of Change, Maintenance 

policies; (PFS#1-9)   

Operation-oriented factors 
Physical (harsh) environment, Operator characteristics, process or operational 

conditions, Operating procedures; (PFS#10-13)   

Mechanical degradation-oriented 

factors 

Wear and tear conditions, Corrosion and erosion, Mechanical degradation/integrity, 

Inner workings, and Damage mechanisms (rate and severity), equipment or device 

age (aging); (PFS#14-18)   

 

 

5.3.4. The novel Interval-Valued Spherical Fuzzy Sets (IVSFS) results 

 

This section presents the employed IVSFS for effective knowledge acquisition concerning the 

magnitude of performance. Table 5.10 illustrates the SMEs profile, optimal weight of considered 

criteria to estimate each experts' importance level using the Best-Worst Method, and weighting 

score of heterogeneous decision-makers group. After aggregating the experts' judgment, the Score 

Function was employed for the defuzzification process. Considering the taxonomy, including 80 

PSFs for nineteen human-driven functions, 26 PSFs for five organizational, and 18 PSFs for seven 

technology-driven functions, it is tough to demonstrate the entire computation process related to 

all PSFs overall functions. To illustrate the estimating process of the knowledge acquisition for 



 

 187 

performance variability magnitude using IVSFS, let's consider "Monitoring procedures" as PSF 

50 over the ninth human function, "Depressurizing, draining and purging" as an instance (Table 

5.11).  

 

Table 5. 10 The employed subject matter experts (SMEs) and their profile characteristics and optimal weight of 

expert (OWE) 

Ex. No Company Position 

(Cr#1) 

Age 

(Cr#2) 

Experience 

(Cr#3) 

Education 

(Cr#4) 

 

Exp #1 Gas refinery Safety Engineer 36 11 M.Sc.  

Exp #2 Gas refinery Department Head 48 18 Ph.D.  

Exp #3 Offshore platform Safety Supervisor 33 10 Ph.D.  

Exp #4 Petrochemical Department Head 40 15 M.Sc.  

Exp #5 Academic Department Head 42 15 Ph.D.  

Ex. No Cr#1 Cr#2 Cr#3 Cr#4 OWE 

Exp #1 0.4342 0.1579 1.4605 1.1579 0.1703 

Exp #2 0.7237 0.2368 1.9474 1.4474 0.2310 

Exp #3 0.4342 0.1579 1.4605 1.4474 0.1856 

Exp #4 0.5789 0.2368 1.9474 1.1579 0.2080 

Exp #5 0.7237 0.2368 1.4605 1.4474 0.2052 

Optimal weight of criteria 0.1447 0.0789 0.4868 0.2895 

Consistency ratio 

(CR) = 0.0921 
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Table 5. 11 The computation process of estimating the performance variability magnitude for the "Depressurizing, 

draining and purging" function cased by "Monitoring procedures"   
Ex. No OWE Linguistic terms The corresponding IVSFS 

Ex#1 0.1703 Slightly low influence [0.50, 0.55], [0.45, 0.55], [0.30, 0.40] 

Ex#2 0.2310 Slightly more influence [0.55, 0.65], [0.25, 0.30], [0.25, 0.30] 

Ex#3 0.1856 Very high influence [0.75, 0.85], [0.15, 0.20], [0.15, 0.20] 

Ex#4 0.2080 Absolutely more influence [0.85, 0.95], [0.10, 0.15], [0.05, 0.15] 

Ex#5 0.2052 Very high influence [0.75, 0.85], [0.15, 0.20], [0.15, 0.20] 

SMEs' 

judgment 

aggregati

on 

IVSWAM(�̃�1, �̃�2, … , �̃�5) =∑𝑤𝑗 . �̃�𝑗

5

𝑗=1

 

[
 
 
 
 
 
 
 

(1 −∏(1− 0.502)0.1703
5

𝑗=1

(1 − 0.552)0.2310(1 − 0.752)0.1856(1 − 0.852)0.2080(1 − 0.752)0.2052)

1
2

,

 (1 −∏(1 − 0.552)0.1703
5

𝑗=1

(1 − 0.652)0.2310(1 − 0.852)0.1856(1 − 0.952)0.2080(1 − 0.852)0.2052)

1
2

]
 
 
 
 
 
 
 

,

[∏0.450.17030.250.23100.150.18560.100.20800.150.1703,

5

𝑗=1

∏0.550.17030.300.23100.200.18560.150.20800.200.2052
5

𝑗=1

] ,

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 

∏(1 − 0.502)0.1703(1 − 0.552)0.2310(1 − 0.752)0.1856(1 − 0.852)0.2080(1 − 0.752)0.2052
5

𝑗=1

−∏(1 − 0.502 − 0.302)0.1703
5

𝑗=1

(1 − 0.552 − 0.252)0.1856(1 − 0.752 − 0.152)0.2018(1 − 0.852 − 0.052)0.2080(1 − 0.752 − 0.152)0.2052

)

 
 
 

1
2

,

(

 
 
 

∏(1− 0.552)0.1703(1 − 0.652)0.2310(1 − 0.852)0.1856(1 − 0.952)0.2080(1 − 0.852)0.2052
5

𝑗=1

−∏(1− 0.552 − 0.402)0.1703
5

𝑗=1

(1 − 0.652 − 0.302)0.2310(1 − 0.852 − 0.202)0.1856(1 − 0.952 − 0.152)0.2080(1 − 0.852 − 0.202)0.2052

)

 
 
 

1
2

= [0.71, 0.83], [0.19, 0.25], [0.18, 0.24] ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Score 

function 

(SF)  
𝑆𝑐𝑜𝑟𝑒 (�̃�) =

0.712 + 0.832 − 0.192 − 0.252 − (
0.18
2
)
2

− (
0.24
2
)
2

2
= 0.5368 

Modified 

Score =
(0.5368 + 1)

2
= 0.7684 

Accuracy 

function Accuracy (�̃�) = 𝐻(�̃�) =
0.712 + 0.832 + 0.192 + 0.252 + 0.182 + 0.242

2
= 0.6888 

 

Finally, the accumulative influence of various PSFs called the OVI was estimated for all developed 

human, organization, and technology functions. It is essential to note that various influencing 

factors introduce a different level of importance in real operation scenarios, which should be 

considered when their influence on performance variability is aggregated. We utilized the BWM 

as a popular optimization model to obtain the optimal weight of each PSFs using a structured 
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pairwise comparison. The BWM developer recommended that when the number of criteria is more 

than nine, a clustering approach facilitates the computation and comparison process as well as 

leads to reliable results. The proposed PSFs taxonomy used a structural approach (e.g., FRAM 

paradigm, sociotechnical design hierarchical) for clustering the factors in each PSFs sub-groups. 

Accordingly, we use this clustering perspective for specifying each cluster. To illustrate, 

considering the human faction, we first used the PSFs category to define seven sets from human-

driven factors to social-driven factors. Then PSFs sub-groups are utilized to specify small clusters 

for the sub-groups that contained more than nine PSFs. As instance, the human-driven factors 

category was classified into three sub-groups a) physical condition, b) physiological and 

phycological factors and c) memorized information. Finally, the best (most important) and worst 

(least important) factors in each PSFs category, groups (sets), and sub-groups were determined. 

This helps SMEs make a pairwise comparison among the main sets and sub-sets of PSFs and reach 

a deeper analysis and understanding of factors' impact. After employing the BWM, multiply the 

weight obtained for each criterion belonging to each sub-set by the weight of the whole sub-set 

resulting in the overall optimal weight (OOW) of the criteria. Note that the sum of the total weights 

of all criteria should be 1.0. It should be mentioned that the results reflect the employed SMEs' 

knowledge, studied field data, and practical and theoretical findings regarding the PSFs and may 

differ in other research with different operational and cultural circumstances. Table 5.12 

demonstrates the summarized computation process, as an instance, for PSFs Physical Fatigue, 

Physical abilities, Age and Gender, which are associated with PSFs sub-groups of Physical  

condition from the PSFs category of Human-driven factors. Considering that maintenance 

operations, as done every day in the studied field, require actively involving skilled personnel from 

various departments and backgrounds such as operation, safety, environment, maintenance and 
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instrument and electricity from both owner and contractor. Accordingly, teamwork-driven factors 

directly play a vital role in establishing successful maintenance. However, social factors seem to 

influence less at performance variability of maintenance functions. Accordingly, these two PSFs 

categories received the highest and lowest importance level. The lower Consistency ratio (CR) ∈

[0,1] means the more consistent the comparisons and subsequently more reliable results that its 

value was acceptable for all comparisons in the present research. The overall optimal weight 

(descending sequence) of all PSFs associated with the FRAM-driven HOT (human-organization- 

technology) Taxonomy is presented in Fig. 5.2-5.4.  
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Table 5. 12 Overall importance level estimating for PSFs in sub-groups "Physical condition" and main group "Human-driven factors." 

PSFs category   

Task-driven 

factors 

 

Organization-

driven factors 

 

Technology-

driven factors 

 

Team-driven 

factors 

 

Social-driven 

factors 

 

Environment-

driven factors 
Human-driven factors 

0.1898 0.1604 0.2203 0.0398 0.2501 0.0298 0.1098 

∑ 0.1898 + 0.1604 + 0.2203 + 0.0398 + 0.2501 + 0.0298 + 0.1098 = 17
𝐼=1 , Consistency ratio (CR) = 0.0731 

PSFs sub-groups Optimal weight PSFs Optimal weight OOW NOOW 

Physical condition 0.0833 Physical Fatigue 0.4808 =0.1898×0.0833×0.4808=0.0076 0.0076 

Physiological and 

Phycological factors 
0.5833 Physical abilities 0.1538 =0.1898×0.0833×0.1538= 0.0024 0.0024 

Memorized information 0.3333 Age 0.3077 =0.1898×0.0833×0.3077= 0.0049 0.0067 

∑0.0833 + 0.5833 + 0.3333 = 1

3

𝐼=1

 

Consistency ratio (CR) = 0.0833 

Gender 0.0577 =0.1898×0.0833×0.0577= 0.0009 0.0013 

∑ 0.4808 + 0.1538 + 0.3077 + 0.0577 = 14
𝐼=1 , Consistency ratio (CR)= 0.0655 

 

OOW = Overall Optimal Weight, NOOW = Normalized Overall Optimal Weight 

 

Figure 5. 2 The overall optimal importance level of human performance shaping factors
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Figure 5. 3 The overall optimal importance level of organization performance shaping factors 

Figure 5. 4 The overall optimal importance level of technology performance shaping factors 

 

Finally, after aggregating the experts' knowledge and obtaining the importance level of PSFs, it is 

important to model the accumulative influence of various PSFs on the developed functions in a 

real operating scenario. To this end, Eq. 6.8 is proposed to estimate the overall influences of factors 

named OVI. In this research, the value of 𝜆𝑖 is equal to the modified Score obtained by Score 
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Function. We excluded the parameter of Time (𝑡𝐹) in obtaining the overall variability because 

functions are performed in non-sequential order and by different crews. We believed that working 

time does not considerably impact human performance variability as functions do not follow a 

fixed time manner in the studied plants. However, if the same operators perform the activities in a 

sequential working time, 𝑡𝐹 should include to capture the working time on operator performance 

variability.  

Let's consider the first technology function named "Pressure and leak test system" to illustrate the 

quantification process of OVI. Its performance is influenced by 18 factors presented in Table 5.13. 

As can be seen from the results, OVI is obtained at 0.6449 for this function which is considered 

high considering  OVI𝑥 ∈ [0,1] in such a safety-critical operation. 

 

Table 5. 13 The overall variability index (OVI) estimation for Function "Pressure and leak test system (F25)" 

No. Performance shaping factors (PSFs) 

Normalized 

overall optimal 

weight (𝑤𝑖) 

The modified 

Score (𝜆𝑖) 
𝜆𝑖𝑤𝑖  

PSF1 Physical (harsh) environment 0.0487 0.6798 0.0331 

PSF2 Operator characteristics 0.0197 0.5587 0.0110 

PSF3 Maintenance policies 0.0567 0.6507 0.0369 

PSF4 Inspection’s methods and intervals 0.0530 0.6317 0.0335 

PSF5 Warranty and supply management 0.0199 0.5421 0.0108 

PSF6 Reliability and availability 0.1289 0.6685 0.0862 

PSF7 Inner workings and Damage mechanisms 0.0231 0.5573 0.0129 

PSF8 Wear and tear conditions 0.0160 0.5866 0.0094 

PSF9 Mechanical degradation/integrity 0.0769 0.6042 0.0465 

PSF10 Corrosion and erosion 0.0493 0.7459 0.0368 

PSF11 Management of change 0.0529 0.6770 0.0358 

PSF12 Resilience 0.1124 0.7401 0.0832 

PSF13 Inherent safety design 0.0793 0.7232 0.0573 

PSF14 Redundancy (Standby or Active) 0.0181 0.6460 0.0117 

PSF15 Process or operational conditions 0.0232 0.7504 0.0174 

PSF16 Equipment or device age (aging) 0.1351 0.6914 0.0934 

PSF17 Operating procedures 0.0342 0.7046 0.0241 

PSF18 Failure or malfunction detection systems 0.0526 0.7253 0.0384 
                                                                 ∑ 𝑤𝑖 = 1

18
𝑖=1                     OVI𝐹25 = ∑ 𝜆𝑖𝑤𝑖

18
𝑖=1 = 𝟎. 𝟔𝟒𝟒𝟗 

 

https://www.synonyms.com/synonym/non-sequential
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The performance variability magnitude findings for the developed functions (human (N=19), 

organization (N=5), and technology (N=7)) are presented in Table 5.14. The Interval-valued 

Spherical Weighted Arithmetic Mean (IVSWAM) presents the aggregated knowledge of five 

SMEs and considerably addresses the epistemic uncertainty and bias in the knowledge elicitation 

process. The OVI also captured the importance level of PSFs (N= 124), which are 80 factors for 

human functions, 26 and 18 factors for organization and technology functions, respectively. The 

findings revealed the criticality ranking of functions' variability in each category. Accordingly, the 

highest performance variability of human functions is respectively associated with F#18 

(Conducting the Pre-Startup Safety Review (PSSR) and run operation, OVI=0.5947), F#15 

(Performing the required maintenance, OVI=0.5829), and F#9 (Depressurizing, draining, and 

purging, OVI=0.5782). Furthermore, critical variability for organizational functions is associated 

with F#22 (Establishing the Radar system to improve the spirit of team working, mutual 

communication and safety culture, OVI=0.6996) and F#20 (Establishing and holding the crew 

training programs, OVI=0.6737), while for technology function is contributed by F#27 

(Depressurizing, draining, and purging system, OVI=0.6807) and F#25 (Pressure and leak test 

system, OVI=0.6781), respectively. The percentage of total human errors which have caused 

system failure is significantly higher in maintenance operations than in the assembly, and 

installation, and operational errors in the system life cycle [30]. This indicates the seriousness of 

safety concerns in maintenance activities closely intertwined with complex operations and 

interactions among different departments.  
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Table 5. 14 The ranking of maintenance functions using IVSWAM, OVI 

Function IVSWAM* OVI** Rank Function IVSFAM  OVI Rank 

Human        

F1 38.1379 0.5367 11 F18 43.5903 0.5947 1 

F2 32.3418 0.5367 12 F19 43.1018 0.5730 5 

F3 33.2104 0.4530 19 Organization    

F4 37.2812 0.4998 17 F20 15.9191 0.6737 2 

F5 41.6207 0.5635 7 F21 14.8249 0.6275 4 

F6 36.4654 0.4910 18 F22 16.8923 0.6996 1 

F7 39.2180 0.5246 15 F23 15.8309 0.6572 3 

F8 40.8271 0.5375 10 F24 15.6833 0.6230 5 

F9 44.1555 0.5782 3 Technology    

F10 42.6572 0.5620 8 F25 11.8835 0.6781 2 

F11 40.8175 0.5331 13 F26 11.7444 0.6628 5 

F12 38.1999 0.5077 16 F27 12.1378 0.6807 1 

F13 41.9230 0.5417 9 F28 12.1082 0.6756 3 

F14 39.2202 0.5291 14 F29 10.8107 0.6228 7 

F15 43.4942 0.5829 2 F30 11.6936 0.6629 4 

F16 42.0252 0.5647 6 F31 11.4248 0.6560 6 

F17 42.5486 0.5760 4     

*Interval-valued Spherical Weighted Arithmetic Mean, **Overall Variability Index 

 

It should be noted that the results of performance magnitude are in line with the studied field 

experiences and confirmed by all SMEs, which proves the capability of the proposed model to 

precisely quantify the performance variability's magnitude and deal with the epistemic 

uncertainties that arise from fuzziness, vagueness, and lack of knowledge. Furthermore, using the 

interval values can better characterize the potential variation of findings and result in accurate 

findings in fuzzy mathematics which effectively addresses the aleatory uncertainty in the 

magnitude of functions' performance variability [18]. In SFSs, the sum of the square of 

membership, non-membership, and hesitation degrees is less than or equal to 1. This entirely copes 

with stress on SMEs to give preference values without any limitation based on their knowledge, 

despite the other fuzzy sets [22,23]. Moreover, hesitancy degree indicates ignorance or 

indeterminacy stems from insufficient or lack of information. Accordingly, it is crucial to be 

independently and explicitly expressed and measured regardless of membership and non-

membership degree [22]. Hence, the employed sets in the present research can accurately reveal 
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the SMEs' judgments and are more efficient in knowledge engineering to capture uncertainty, 

vagueness, and imprecision as key challenges existing in this domain.  

As mentioned above, the performance variability magnitude of each maintenance function caused 

by PSFs has been investigated so far. However, exploring which contributing factors most vary 

the performance of the entire maintenance process would effectively assign safety 

countermeasures to dampen critical variabilities before they lead to system disruption. We pointed 

out those factors using two approaches using Eq (6.14) to estimate the Optimal Total Influence 

(OTI) and Total Influence (TI) of each PSFs on the maintenance process system. The former 

indicates the overall influence of each PSFs over the entire maintenance system considering its 

optimal importance level (weight), while the latter reflects the overall influence of each PSF 

without capturing its importance level. 

OTI𝑃𝑉𝑆𝐹𝑖 = (∑V𝑖,𝑗

𝑛

𝑗=1

𝑊𝑖) ,     TI𝑃𝑉𝑆𝐹𝑖 = (∑V𝑖,𝑗

𝑛

𝑗=1

)                                                                  (6.14)  
 

OTI𝑃𝑉𝑆𝐹𝑖 denotes the Optimal Total Influence of 𝑃𝑆𝐹𝑖 (𝑖=80 for human-oriented functions, 𝑖=26 for 

organization-oriented functions and 𝑖=16 for technology-oriented functions). V𝑖,𝑗 indicates the 

variability level imposed by 𝑃𝑉𝑆𝐹𝑖 over function 𝑗 (𝑛𝑗=19 for human, 𝑛𝑗=5 for organization and 

𝑛𝑗=7 for technology). 𝑊𝑖 represent optimal importance level of 𝑃𝑆𝐹𝑖 is obtained using Best Worst 

Method and illustrated in Fig. 5.2-5.4. TI𝑃𝑉𝑆𝐹𝑖 stand for total influence of 𝑃𝑆𝐹𝑖 by ignoring its 

importance level. 
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Figure 5. 5 The influence of PSFs on human-oriented functions of maintenance operation 

 

Fig 5.5 illustrates the extent to which PSFs contributed to human performance most in the entire 

process of maintenance operations, considering or ignoring their importance level. This 

accumulated influence of each PSFs on nineteen human-oriented functions of pre- and post-

maintenance activities. The findings revealed that 𝑃𝑆𝐹19 (Experience and knowledge, TI=14.10), 

𝑃𝑆𝐹20 (Skills, TI=13.81) and 𝑃𝑆𝐹21 (Information uncertainty, TI=13.34) have the highest impact 

on human performance. This means that human-driven factors contributed to most among the PSFs 

category (e.g., human, task, organization, team, environment, and social). However, when it 

changes to capturing the importance level of each PSFs, 𝑃𝑆𝐹74 (Leadership, OTI=0.69), 

𝑃𝑆𝐹74(Perceived safety culture/climate, OTI=0.50), 𝑃𝑆𝐹40(Resources management, OTI=0.41) 

are leading factors in performance variability. This implies that human-driven factors are direct, 

while team- and organization-driven factors are indirect(latent) components of sociotechnical 

systems that cause performance resonance. 
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Figure 5. 6 The influence of PSFs on organization functions of maintenance operation 

 

The contribution of PSFs to the performance of organizational functions is presented in Fig 5.6  

As can be seen, PSF83  (Organizational safety culture, TI=3.61), PSF88 (Organizational vision, 

TI=3.55), PSF89 (Strategy and goals, TI=3.54) are leading among the studied factors. However, 

considering the importance level of PSFs, there is a prominent difference among the 

organizational-driven factors, which are respectively led by PSF89 (OTI=0.50), PSF83 (OTI=0.45) 

and PSF88 (OTI=3.55). Hence, these three factors have been recognized as significant sources of 

variability (resonance) in organizational performance and should be the main priority in safety 

intervention programs.  
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Figure 5. 7 The influence of PSFs on technology functions of maintenance operation 

 

Technology-driven failures have always been highlighted as prevalent sources of system failure in 

process safety and risk engineering [31]. However, a few systemic investigations have been 

conducted to reveal which factors contribute most to technical disruptions in the system safety 

domain. This research analyzed the impact of eighteen responsible elements for the technology-

driven failures from a process safety and risk perspective. As can be noticed from Fig 5.7, there is 

a slight difference among studied factors to the varying performance of technological functions, 

although PSF112 (Reliability and availability, TI=4.92), PSF123 (Operating procedures, TI=4.88) 

and PSF118 (Resilience, TI=4.84) have a higher impact.  Nevertheless, capturing the importance 

level of PSFs, PSF122 (Equipment or device age (aging), OTI=0.64 and PSF112 (OTI=0.63) 

remarkably determine the performance of technological functions. These results are consistent 

with the fact that most processing plants in the studied area end up their useful life. The obtained 

importance level of contributing factors mainly reflects their importance in the studied oil and gas 

plants concerning their safety, operational, technical, and organizational requirements and 

circumstances. However, the Total Influence (TI) findings of PSFs may be more practical than 
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those that reflect OTI in a wide range of complex systems. Overall, the findings indicate safety 

investment factors in each category of sociotechnical systems’ functions (i.e., human, 

organizational, and technological), subcategories, and factor levels. Accordingly, the proposed 

approach entirely supports the decision-making process to dampen critical variability effectively. 

 

5.3.5. Comparison with the previous research  
 

Comparing the proposed model with similar research is one of the most common and practical 

approaches to illustrate the model's superiority. We found six studies focused on analyzing PSFs, 

human factors, and reliability in maintenance tasks in various industrial domains. We considered 

fourteen important factors to compare the present research to the previous ones, as presented in 

Table 5.15. As can be seen, the previous investigations only focus on human-oriented activities, 

while successful pre- and post- activities of maintenance required intensive technological and 

organizational involvement. Ignoring such essential functions also lead to a lack of understanding 

of contributing factors and mechanisms, which can cause severe failures in organizational 

operation as leading line and technology operations as the fundamental line in complex system 

maintenance. However, the present research delivered an in-depth insight into those functions and 

their influencing factors under uncertainty.  

System safety performance assessment often requires subject matter experts’ knowledge 

acquisition which entails handling epistemic uncertainty, vagueness, and fuzziness in the decision-

making environment. Moreover, quantifying system performance should also address objective 

uncertainty in the computation process and yield reasonable numerical results. Noroozi et al. 

(2013) applied an interval approach for uncertainty propagation, the only previous research that 

considered this issue. However, we utilized the latest extensions of fuzzy set theory as one of the 

most effective approaches to deal with epistemic uncertainty in knowledge engineering. 
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Furthermore, we employed an interval-valued set to propagate uncertainty in the quantifying 

process.  

In safety management, identifying safety critical investment factors is a core part of designing 

effective countermeasures to prevent or mitigate system failures. However, previous research in 

maintenance activities has not paid attention to this concern. In contrast, the present study reveals 

critical functions and PSFs that paw a way to proactively support decision-making in safety 

management.   

However, it should be noted that employing a probabilistic approach to analyze system 

performance is beyond the present study’s scope, and it is acknowledged that human functions 

experience the most likely and organizational functions the least likely performance resonance 

[3,4,10]. Numerous human reliability methods have been frequently used to analyze human 

performance probabilistically. Furthermore, modeling dependencies among PSFs is another 

important concern in system performance assessment. This study proposed 124 PSFs over 19 

functions, and potential modeling dependency dramatically  increases this study's complexity. 

Hence, we preferred not to deal with these concerns in the present research to address other vital 

objectives deeply. Several methods such as Analytic Network Process (ANP), Analytic Hierarchy 

Process (AHP) and Decision making trial and evaluation laboratory (DEMATEL), and Cognitive 

Map (CM) and their extensions have been regularly employed to consider potential dependencies 

in safety probabilistic analysis [18,33]. 
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Table 5. 15 Maintenance studies concerning safety, human factor, and reliability in complex systems 

Studies  

 

Features 

[34] [35] [36] [37] [38] [32] This 

study 

Human Functions ✓ ✓    ✓ ✓ 

Organizational Functions       ✓ 

Technological Functions       ✓ 

Identification of PSFs   ✓ ✓   ✓ 

Importance level of PSFs ✓  ✓   ✓ ✓ 

Dependency among PSFs   ✓    - 

Handling subjective uncertainty       ✓ 

Handling objective uncertainty      ✓ ✓ 

PSFs’ criticality analysis   ✓    ✓ 

Functions’ criticality analysis      ✓ ✓ 

Quantitative results ✓ ✓   ✓ ✓ ✓ 

Probabilistic analysis ✓ ✓    ✓ - 

Studied PSFs  

(H, T, M, TM, E, O, S*) 

Selective 

(H,T,TM,O) 

Selective 

(H,T,TM,O 

Selective 

(H,T,M,TM,E) 
All H & O 

Selective 

(H,T,E) 
All 

Number of studied PSF 9 9 38 34  12 124 
*Human (H), Task (T), Machin (M), Teamwork (TM), Environmental (E), Organizational (O), Social (S) 

 

 

5.4. Conclusions 

 

The safety performance of sociotechnical systems and their main elements (e.g., human, 

technology, organization) critically varied due to numerous contributing endogenous and 

exogenous factors. This paper first introduced a  model to identify system safety performance 

shaping factors and then rigorously quantified safety performance affected by various endogenous 

and exogenous factors considering sociotechnical system design under uncertainty. The proposed 

PSFs Taxonomy is a forward step to fill the gaps remaining in existing PSFs taxonomies, and it 

ties in closely with sociotechnical system engineering. The applied novel three-dimensional 

spherical information sets differently addressed fuzziness, vagueness, and subjective uncertainty 

in the knowledge acquisition process, which is one of the key challenges in system safety and 

human-organizational factor analysis. The model captured the optimal importance level of 

contributing factors in system safety performance analysis and proposed variability indices. 

Quantifying these indices yielded to clearly specify safety investment elements in system 
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hierarchies from factor level to three types of system functions. This provides a deep understanding 

of complex system elements, their interaction, and their influence on system safety performance 

and paws a rational way to effectively dampen critical performance resonance based on different 

human, organizational, and technological functions before the system fails. Comparing the present 

research with the previous studies pointed out new aspects of the proposed model in the safety 

assessment of maintenance operations. Although we tested the model capabilities in a proactive 

assessment, it can also be utilized in reactive approaches such as accidents investigation and 

analysis. Furthermore, the model has potential application to assess resilience engineering because 

a signification relationship between PSFs and system resilience, especially in industrial 

maintenance departments, has been reported.  
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CHAPTER 6 

 

How have artificial intelligence and expert systems contributed to human 

reliability and factor analysis in complex systems? 
 

Preface  
 

A version of this chapter has been presented in the 2022 Mary Kay O'Connor Safety and Risk 

Conference. Texas A&M University, Oct 2022 and published in Process Safety and 

Environmental Protection (2023), 171 736-750. I am the primary author along with the Co-

authors, Faisal Khan, and Rouzbeh Abbassi. I developed a systematic review and analysis of 

artificial intelligence and expert systems contributions to human reliability and factor analysis in 

complex systems. I prepared the first draft of the manuscript and subsequently revised the 

manuscript based on the co-authors’ and peer review feedback. Co-author Faisal Khan helped in 

the concept development, design of methodology, reviewing, and revising of the manuscript. Co-

author Rouzbeh Abbassi provided fundamental assistance in reviewing and correcting results. The 

co-authors also contributed to the review and revision of the manuscript. 

 

Abstract 

 

Human reliability and factors analysis (HR&FA) have been thoroughly explored from various 

aspects (e.g., engineering, psychology, physiology, and ergonomics) in critical systems. 

Accordingly, numerous conventional techniques have been developed and applied to improve 

system safety from the human perspective. However, emerging socio-technical systems, industry 

4.0, and artificial intelligence reveal these methods' incapability and the necessity for developing 

state-of-the-art intelligent approaches. Hence, this work is designed to demonstrate how artificial 

intelligence and expert systems have contributed to HR&FA, focusing on machine and deep 
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learning, and knowledge/data-driven modeling approaches. The systematic review primarily 

investigated the applications, contributions, challenges, and research gaps in HR&FA using those 

intelligent approaches. We analyzed seven vital elements of HR&FA to illustrate these 

contributions. Furthermore, this work highlighted some important myths, misapplications, and 

critical concerns that should be addressed using these advanced approaches. This research yields 

detailed insights into HR&FA using artificial intelligence and expert systems. 

 

Keywords: Human error; Human reliability; Human Performance; Human factors; Artificial 

intelligence; Expert systems. 

 

6.1. Introduction 

 

Human reliability and factors analysis (HR&FA) play an essential role in the entire life cycle of 

complex systems to develop and maintain sustainable and resilient operations. These factors 

significantly contributed to design, construction, normal operation, maintenance, emergency 

preparedness, and decommissioning. In addition, a careful examination of the catastrophic accidents 

from Bhopal (1984), and the Deepwater Horizon oil spill (2010) has shown that human factors have 

played a leading role in their occurrence. The retrospective analysis also shows that human factors, 

individually or collectively, are recognized as dominant contributing factors in all complex systems’ 

accidents (e.g., process industries (>80%), nuclear power plants (≈90%), and marine operations (75% 

to 96%)) [1]. Therefore, numerous human factors, reliability techniques, and models have been 

developed to identify, analyze, and prevent human-oriented failures. They significantly improved 

our understanding of human behavior and error mechanisms and enhanced system safety and 

resilience in socio-technical systems. However, there are still some crucial challenges in establishing 
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conventional techniques because of either insufficient classified data or emerging extensive 

databases (e.g., accidents data), subjective uncertainty and bias, emerging new performance shaping 

factors (PSFs) associated with Industry 4.0, industrial internet of things (IIoT), and increasing 

complex system’s attributes (e.g., dynamic complexity, relative ignorance,  interactable and non-

linear operations) [2]. Artificial intelligence models (e.g., machine learning, deep learning, data-

driven) and fuzzy expert systems have been increasingly considered as a proper response to address 

most of those issues. They have proved the proficient approach in classification, knowledge 

acquisition, reasoning, and diagnosis of complex problems, which are of utmost importance in human 

factors and reliability analysis.   

Moreover, knowledge acquisition through domain experts and historical or observed data are still the 

main resources to establish successful human reliability and human factors analysis in numerous 

domains. However, using them systematically requires employing fuzzy expert systems and artificial 

intelligence models. Several genuine attempts have been made in this direction, but a systematic 

review with a primary focus on their applications, contributions, challenges, myths and 

misconceptions, and research gaps in human reliability and human factors analysis have not been 

observed yet. Hence, it is hard to ascertain how those models and systems have contributed to human 

factors and reliability analysis, despite their numerous applications and conducted systematic reviews 

in different domains (e.g., healthcare, autonomous systems, computer sciences) and other safety 

concerns (e.g., engineering risk assessment [3]).  

Accordingly, this research was designed to fill this scientific gap by synthesizing stat-of-the-art 

achievements. This research aims to explore the contribution of artificial intelligence and fuzzy 

expert system considering seven major concerns in human factors and reliability analysis, including 

a) Quantifying human error probability, b) Quantifying the influence of PSFs, c) Modeling human 
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behavior and factors, d) Integrating human factors into risk assessment, e) Learning from Accidents, 

f) Critical analysis and finally, g) uncertainty analysis. We also want to focus primarily on the process 

industry and compare this sector with other complex domains, considering the HR&FA literature 

using artificial intelligence and fuzzy expert systems. The rest of the paper is as follows. The 

methodology is presented in Section 2, while the results and discussion of artificial intelligence and 

fuzzy expert systems are thoroughly presented in Section 4. The final section is devoted to key 

findings of the present results. 

 

6.2. Methodology 

 

This systematic research reviewed HR&FA literature associated with artificial intelligence and fuzzy 

expert systems in Scopus databases from 1978 to 2022. After selecting the appropriate keywords and 

combining them with the Boolean operators, we performed advanced searches. We found 64 primary 

records related to artificial intelligence and 650 in fuzzy expert systems. After scrutinizing the 

collected documents, 56 (artificial intelligence) and 502 (fuzzy expert systems) literature are 

reviewed during this research. We focused on their application in HR&FA in complex industrial 

systems. 

 

6.3. Results and Discussion 

 

6.3.1. Intellectual structure of knowledge using Bibliometric data analysis 

 

A bibliometric survey in the Scopus database shows 56 documents using artificial intelligence and 

502 documents using fuzzy expert system to investigate HR&FA from 1978 to 2022, May. The 

trend and type of publications for each domain are presented in Fig.6.1. The content analysis 

indicates that conference proceedings (48%) and then journal articles (43%) are the most common 
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literature for the fuzzy expert system, while it is apposite by artificial intelligence, where journal 

papers are significantly dominant (58.50%). Overall, both domains drew increasing attention over 

the period, while the fuzzy expert system employed earlier rose substantially after 2008. One of 

the main reasons for this increase might be the capability and practicality of fuzzy expert systems 

in handling primary challenges in HR&FA, such as data scarcity, subjective uncertainty, and 

incomplete information in tacit knowledge elicitation. Tacit knowledge is related to emotions, 

beliefs, intuition, understanding, experiences, and expertise of domain experts. Knowledge is the 

key to success and competitive advantage for most organizations. Multi-granularity linguistic term 

sets help identify and create knowledge of domain experts, and fuzzy set theory paves a way to 

transfer tacit knowledge to explicit ones and handle potential challenges [4,5].  

 

  

Figure 6. 1 The time trend and content presentation of fuzzy expert systems (FES) and artificial 

intelligence (AI) in human reliability and factors analysis (Scopus database since 1978) 
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6.3.2. Contribution of artificial intelligence in HR&FA 
 

Modeling human factors and predicting human performance are among the main concerns that 

have been studied using artificial intelligence techniques in recent years. Researchers use 

historical, observational, and simulation data or subject matter experts’ knowledge to feed various 

artificial intelligence techniques. Deep learning is one of the subsections of artificial intelligence. 

It is the science of extracting patterns and knowledge from a raw data set generated in an 

organization, community, or any other set. In the past, when the amount of data generated was 

minimal, many managers could grasp the concepts behind them by taking a simple look and 

manually separating the data. Nevertheless, when we are faced with a considerable amount of data, 

this is practically impossible, and the limited power of any human being will not be responsible 

for analyzing this data and extracting its patterns. Different intelligent algorithms can categorize, 

analyze, and extract concepts embedded in accident data and support making informed decisions. 

In other words, in today's management world, intuition has no place in decision-making, and 

managers should make appropriate decisions based on the data extracted in each case. Several 

kinds of research have been conducted to explore such capabilities of the machine and deep 

learning in HR&FA, which will be thoroughly discussed in the following section with a focus on 

human error prediction, human factors analysis, accidents learning (textual and numerical data) 

and finally critical analysis of artificial intelligence literature in HR&FA. 

 

6.3.2.1. Human error prediction 
 

Several researchers argued that predicting human error using machine learning techniques is more 

accurate than statistical techniques. Ouache et al. (2022) introduced evidence reasoning (ER) and 

a machine learning-based framework to analyze human error-induced firs in residential buildings. 
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ER is used to assess potential human error factors pessimistically by focusing on critical risk levels. 

They also used classification-based machine learning to examine fire accident data, select potential 

factors, train models, and assess fire effects. They considered decision trees, discriminate analysis, 

support vector machines, nearest neighbors, ensemble classification, and Bayesian's artificial 

neural network (ANN) to classify, quantify, and predict human error factors. Their findings 

showed that Bayesian's ANN model has the highest accuracy and efficiency in predicting and 

classifying human error factors among the models used. 

Data-driven models have been drawn to increasing popularity to deal with issues associated with 

insufficient data and parameter and model uncertainties in recent years. Moreover, they help 

develop a causality model to demonstrate how various contributing factors threaten human 

reliability or shape operators’ performance quantitatively, while it has been solely explored 

using bivariate statistical analysis and historical data. Model construction and parameterization in 

data-free modeling techniques mainly depend on experts’ knowledge [6], which usually introduces 

uncertainty and bias. In contrast, data-driven methods assign empirical data to direct the search-

based learning algorithms with objective results. In this sense, Liao et al. (2018) proposed a data-

driven influence model (DDIM) to explore the relationship between occupational environment and 

human error (e.g., wrong sequence). They used the cognitive reliability and error analysis method 

(CREAM) to collect prior knowledge to develop a knowledge-combined structured learning 

algorithm in the Bayesian network structure.  However, they made several assumptions, ignored 

parameter learning and estimation, excluded cognitive factors that suffer from lack of data and 

various human error modes, and the causal relationships’ relative importance to focus on proposing 

a data-driven influence model.  
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In a different context, Hu et al. (2015) proposed a dynamic data-driven model to predict operator 

error using advances in neurophysiologic sensors. In their study, a human operator connected to 

three devices of commercial alarm sensors grade-B, shimmer, and an eye-tracking sensor while 

doing a computer-based Stroop test. The proposed dynamic system model employed Principal 

Components Analysis and the Least Squares Complex Exponential methods to analyze the 

collected raw data. Their findings show that under stressful conditions, the obtained model can 

mathematically capture mental states to predict human error  [7]. 

Empirical data on human reliability is still inadequate to understand the connections between 

human errors and their contributing factors. Advanced probabilistic methods like Bayesian 

networks are employed to relax this issue and capture uncertainty and imprecise data. However, 

defining the conditional probability tables, the core part of those methods requires factual data, 

which is often unavailable.  This issue is often addressed by making assumptions and experts' 

intuition and experiences which create an unjustified sense of confidence in the findings [8]. To 

tackle this drawback, a data-driven human reliability analysis model based on the credal networks 

and interval probabilities is developed to model imprecision empirical data [8]. The proposed 

model presents the possibility of defining and quantifying the influence of PSFs over the nominal 

probability of human error in an invariable and unbiased manner without relying on domain 

experts’ knowledge.  

 

6.3.2.2. Human factor analysis 
 

Human factor analysis is one of the most challenging domains in safety and ergonomics sciences 

which has rapidly risen in popularity in recent decades.  It has been analyzed using conventional 

and tailored techniques such as HFACS or statistical analysis employing historical accident data. 

It pays a way to support decision-making in various practical approaches such as preventing similar 

https://www.sciencedirect.com/topics/engineering/imprecision
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accidents, improving operator and system performance, and designing and optimizing the system 

or task of interest.  It is acknowledged that conventional methods introduced a substantial lack of 

versatility as model structures and categories might not be applicable in different applications. 

Moreover, the predefined categories and contributing factors  taxonomy might alter or constrain 

the investigations’ findings. Finally, quantifying the psychological factors often suffer from 

subjective uncertainty, bias, and insufficient information, which significantly relies on expert 

experiences and understanding. Furthermore, statistical analysis requires enough and consistent 

human factor data collection [9]. However, data-driven approaches have been considered as a 

potential response to address these drawbacks in human factor analysis. To illustrates, [9] proposed 

a data-driven model to reveal the leading human factors in maritime accidents. They included 94 

human factors that contributed to 91 accidents used to develop a data-driven model to predict nine 

accidents type (e.g., Grounding, Capsizing, Collision) based on contributing factors. They utilized 

Ensemble and Kernel methods which used learning algorithms in optimal linear or non-linear 

combinations to reach better predictive performance in a binary decision tree (i.e., presence or 

absence of each human factor in occurrence of each accident type). After that, they employed 

Random Forests (RF) and Multiclass -Support Vector Machine with Boolean Kernels (MSVM-

BK) to rank the most influencing factors. 

Although this model seems less costly, more accurate, practical, and versatile than HFACS, it still 

requires substantial examinations to perform an unbiased estimator of the generalization error, 

model error, and predictions. Furthermore, the employed algorithms considered a Boolean manner, 

influence or not influence of human factors over accident occurrence,  and ignored the interaction 

and dependencies among factors which are far away from the accident characterization defined by 

system accident models [10]. One of the main challenges in data learning is the optimal selection 
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of hyperparameters used in all learning algorithms to develop model structures (e.g., conceptual 

or causation) [11]. The resampling methods are among the effective ones where the main dataset 

is resampled many times, either by replacing or not, to create training, validation, and test 

independent datasets. Moreover, statistical relevance, enough human factor data, and consistent 

data collection procedure with data-driven approaches to accurately link the data with accident 

reports are highly demanded to improve the data-driven model’s performance in human factor 

analysis. 

In applying data mining and machine learning to explore human factors, Madeira et al. (2021) 

proposed a hybrid intelligent model to identify and classify primary human factors that caused 

aviation incidents using aviation incident reports as descriptive text data. They first proposed an 

HFACS-ML framework to address the challenges of inconsistency between databased reports and 

standard HFACS structure. In this research, a text pre-processing and Natural Language 

Processing (NLP) pipeline are used for the feature extraction, allowing assigned computers to 

efficiently read and drive numerical vector projections from the accident causes reports. After that, 

semi-supervised Label Spreading (LS) and supervised Support Vector Machine (SVM) techniques 

are utilized to model data, while Random search and Bayesian optimization methods are employed 

to analyze hyper-parameters and the model performance improvement. They used Micro F1 score 

to measure the proposed model performance. Their findings show that the semi-monitored LS 

algorithm provides more accurate findings with small data sets. On the other hand, the supervised 

SVM is more reliable for larger and uniform datasets. It was also found that the Bayesian 

optimization utility, when properly adjusted, gives a better result for finding near-optimal meta-

parameter combinations over non-convex objective functions. This investigation shed some light 

on understanding such intelligent techniques' capabilities to achieve desirable performance in 
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human factors analysis [12]. However, further research requires deeply interpreting the proposed 

model’s performance in capturing larger sets of both labeled and unlabelled data. Nonrandom 

selection methods such as Active Learning, which prioritizes the labeling of uncertain points, 

should be employed and compared in constructing labeled data sets. Furthermore, a concrete and 

sound performance prediction model entails intensely dealing with redundancy and noise in feature 

selection analysis.    

Some researchers integrated intelligent techniques to improve the proposed model’s predictive 

outcomes. In this line, Yu et al. (2018) combined Fuzzy C-Means clustering (FCM) into 

Backpropagation neural networks (BPNN) to propose a human factor accident prediction model 

for improving flight safety through accident prevention. FCM is derived from K-means and uses 

the fuzzy theory concept to improve clustering accuracy using flight accident data. Despite the K-

means, it allows every data member to be a member of different groups wherein subordination 

degrees were different. BPNN employed the gradient descent method to minimize error functions 

and derive delta rules which diminish the gaps between the estimated and actual output.  They 

compared predictive accuracy indices such as Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE) in the two prediction groups using FCM-BPN and FCM lonely. The 

findings demonstrated that the MAE and MAPE scores improved using FCM-BPN [13]. However, 

further research to include more human factors into the model and compare it with the other 

predictive models requires assessing the quality of results. 

MacKinnon et al. (2020) studied machine learning and human factors analysis in maritime 

navigation. Their findings provided two key points. First, deep machine learning requires 

significant data. Unlike the automotive industry, it is challenging to obtain on-site data. Simulation 

technologies may bridge this gap; however, this approach may eliminate natural behaviors. 
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Second, artificial intelligence and automation come from different technology providers. Given 

the developed algorithm, monitoring and regulating these technologies and their use in navigation 

may be necessary. Moreover, Fan et al. (2020) incorporated human factors in the risk assessment 

of maritime accidents using the data-driven Bayesian network. They attributed the reason for using 

this method to the ability to determine the dependency between different factors using the limited 

data available and the higher accuracy of calculations in the Bayesian network compared to 

classical approaches such as fault tree and event tree due to considering the nonlinear relationships. 

Data-driven algorithms also can deal with the exponential increase of computation burden in 

defining the conditional probability tables, which is the core and hardest element in Bayesian 

network modeling. 

 

6.3.2.3. Accidents learning (textual and numerical data) 
 

Learning from accidents is still considered for improving the system safety and resilience. 

However, capturing data on new major accidents and updating the already proposed accident 

models are cumbersome because it requires much time to digest detailed reports. In this sense, it 

is asserted that machine learning techniques already developed and trained with previous accident 

data can promptly recognize the most relevant features and then dynamically update the developed 

accident causation model [14]. In this regard, Morais et al. (2019) employed a machine learning 

tool to update Bayesian network probabilities by scanning new reports without traditional work's 

time-consuming and costly approach. They first used the Cognitive reliability and error analysis 

method (CREAM) taxonomy to develop a human error model and mapped identified 

organizational, technological, and individual factors into the Bayesian Network model. The 

proposed approach was based on text recognition and text classification, integrated into a support 

vector machine for text classification as per a predefined classification to develop a "virtual risk 



 

218 

 

expert". The proposed model trained up with US National Transportation Safety Board (NTSB), for 

aviation accidents and the U.S. Chemical Safety and Hazard Investigation Board (CSB) for chemical 

accidents. The model accuracy increases from 85% (trained only by NTSB data) to 91% when 

capturing information from both databases. The results showed that human factors become 

apparent when the model is taught using data from the chemical industry and not only from 

aviation, which indicates the importance of interdisciplinary knowledge transfer. This study 

indicates the possibility of the real-time updating of the model parameters (e.g., human error), and 

it is essential to reveal the leading causes of accidents. 

Furthermore, safety incident reports are often recorded in textual format with different structures 

and taxonomies.  Systematic analysis of them always hinders by allocating huge resources (e.g., 

time, trained workforce, cost) and is considered a time-consuming, error-prone, cumbersome, and 

bureaucratic process which leads to inconsistencies in safety assessments [7]. However, machine 

learning algorithms can quickly and deeply explore and learn from such rich textual data. These 

capabilities yield invaluable insights into the different contributing factors to human factors and 

reliability, the revelation of complex dependencies among factors, and categorical and predictive 

safety outcomes. Natural language processing (NLP), support vector machine (SVM), artificial 

neural network (ANN), decision tree (DT), radial basis function (RBF), and latent semantic 

analysis (LSA) are among the most popular techniques to serve for that purpose. This is also true 

for learning from numerical data like frequencies and statistical data of accidents and their 

influencing factors. 

 

6.3.2.4. Critical analysis of artificial intelligence literature in HR&FA 
 

This section briefly highlights some critical issues using artificial intelligence techniques. The deep 

analysis of these concerns is beyond the present research, and we want to bring the researcher’s 
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attention to this critical subject by exemplifying some drawbacks. Wen et al., (2022) reported six 

significant myths and misconceptions, with twelve subcategories frequently found in process 

safety research using data-driven methods. They defined myths and misconceptions as “the 

application of a method or a model and the representation of data without adhering to their 

respective scientific norms”. They identified that 33.6% (168 papers) of 500 collected articles hold 

288 cases of those myths and misconceptions that rare attentive to data representation (163 cases), 

and ignore appropriate Bayesian network assumptions (55 cases) considered as the dominant ones. 

They also reported digit inconsistency, the inaccurate calculation of significant digits, false 

precision, and improper uncertainty as the most frequently observed misconceptions in data 

presentation. Proper choosing the hyperparameters is a core part of developing and learning the 

proposed model structure in machine learning and data-driven models, which highly determine the 

model performance. Given the Artificial neural network (ANN), as one of the most popular 

intelligent techniques, several vital hyper- parameters define the appropriate and accurate neural 

network. For example, the hidden layers' quantity and their neurons, function type for activation, 

dropout and learning rate, optimization algorithm and epochs, and iterations numbers. 

Nevertheless, Wen et al., (2022) presented that most studies have not suitably addressed these core 

elements using ANN in process safety investigations as researchers arbitrarily assigned two or 

three hyperparameter sets and accordingly reported their findings. However, this crucial concern 

can be simply handled by employing hyperparameter optimization algorithms like grid search and 

random search. Informing how well the proposed model accurately works depends on error 

analysis and reporting it. A survey indicated that some papers had not reported any accuracy 

indicators and error analysis, and numerous studies have varying error degrees in their data 

presentation [15]. 
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6.3.3. Contribution of Fuzzy expert system in HR&FA 
 

 

This section discusses the application of fuzzy expert systems, which work based on fuzzy logic 

and fuzzy set theory (FST), focusing on some essential concerns in HR&HF analysis. Most 

scientific endeavors to replace expert-driven human reliability analysis methods with empirical 

data-driven methods have failed due to significant uncertainty in human reliability databases and 

the incapability of conventional techniques to relax it. Despite the emerging Bayesian and credal 

networks and their invaluable contributions, tackling data scarcity using the tacit knowledge of 

domain experts is still the most prevalent and practical way[16]. Hence, this section explores how 

and which HR&FA concerns are improved through knowledge engineering using fuzzy expert 

systems. 

 

6.3.3.1. Human error probability (HEP) prediction 
 

HEP prediction is a core step to managing human error and improving system safety and resilience 

from a human performance perspective. To this end, enough numerical data should be available, 

while lacking human performance data is the most prevalent and crucial challenge in all industrial 

sectors. However, several genuine attempts have been established (e.g., databases, simulation data) 

to threaten these issues, and knowledge acquisition of subject matter experts (SMEs) is still 

considered a global and successful solution in HR&HF analysis. However, this popular approach 

has been strongly criticized since it purely relies on SMEs' experiences and understanding, which 

introduces bias, subjective uncertainty, and insufficient information. To address this challenge, 

FST is considered an accepted and practical response [17,18]. In this regard, numerous studies 

have been conducted in different industrial sectors, and unique ones are illustrated in Fig. 6.2, 

considering their applications and contributions. As presented in Fig 6.2, different extensions of 

https://www.wordhippo.com/what-is/another-word-for/endeavor.html
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FST have been utilized to estimate HEP in various domains, from transportation to manufacturing 

plants. In essence, linguistic terms (e.g., low, high, very high) are used to elicit SMEs' knowledge 

regarding the parameter of interest (e.g., the generic task types (GTTs) and error-producing 

conditions (EPCs)) while conducting task analysis-based scenario. After that, fuzzy computations 

employ to aggregate SMEs' knowledge, estimate the fuzzy probability, and finally transform it into 

crisp HEP. Various aggregation functions such as Averaging, Conjunctive, Disjunctive, and 

Symmetric are available, and Weighted Arithmetic Means from Averaging class is the most 

popular ones in human reliability analysis. Membership functions (e.g., Triangular, Trapezoid, 

Sigmoidal, Gaussian) demonstrate the aggregated information. Finally, the estimative value has 

been assigned into employed the HRA technique (i.e., HEART, CREAM, THERP) to predict HEP. 

It should be noted that FST substantially also treats subjective uncertainty during the HEP process. 

However, using FST to estimate probability values assigned in risk and reliability analysis, several 

critical issues have been identified. Considering its importance, we would like to discuss these 

challenges in the Critical analysis subsection. 
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Figure 6. 2 The applications and contributions of fuzzy sets in predicting HEP in the complex system
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6.3.3.2.  Quantification of PSFs influence 
 

PSFs have been consistently recognized as the most contributing element to  occurring human error 

or shaping human performance in all human reliability analysis techniques. Accordingly, HEP is 

adjusted based on PSFs’ influence on task-based scenarios. However, assigning a precise quantity 

associated with these factors, which reflects their impact and importance (weight) on operator 

commission, is one of the most exciting and demanding research topics [1]. These factors are 

associated with the organization, task design, human-system interface, environment, and 

individual or collectively operator attributes which such context diversity makes them more 

challenging in human reliability analysis. Allocating an optimal weight for the contributing 

characteristics is inquiring in most multi-criteria decision-making (MCDM) methods. It is a fact 

that various influencing factors do not have the same priority in all-natural conditions, and those 

values substantially can influence the outcome (e.g., over or underestimation) of the decision-

making function. Hence, it is crucial to deeply pay attention to quantifying their impact and weight 

in estimating HEP. Experimental data can only provide information for a few sets of these factors 

under a specific simulation environment. Accordingly, knowledge elicitation from SMEs and 

relaxing their issues using FST has been the most available and practical alternative in recent 

decades. 

FST provides rigorous mathematical computations to quantify subject-matter experts' knowledge, 

which we can obtain in real situations under uncertainty. Two essential quantities associated with 

PSFs have been frequently estimated using FST. Firstly, to what extent do these factors impact 

human unreliability, and then how much should be assumed importance level (weight) of their 

factors and assigned SMEs in human performance. The former concern is tackled by integrated 

linguistic terms and FST, while the latter requires integrating MCDM into FST to precisely 
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estimate. In this sense, some researchers employed the Fuzzy Analytical Hierarchy Process 

(FAHP) to obtain PSFs importance level in machinery maintenance [19], oil cargo handling 

process [20], expert domain weight in assessing human factors of hot tapping operation in natural 

gas facilities [21]. They requested the experts to approximate the pairs of facets based on a fuzzy 

guide argument and then figured the weight of the segments by aggregating the experts' views. 

Other groups employed the Fuzzy Best-Worst Method (FBWM) along with fuzzy Vlse 

Kriterijumska Optimizacija Kompromisno Resenje (VICOR) in Shale gas fracturing [22], FBWM  

and HFACS  to analyze human factors in chemical process accidents [23,24], a hybrid D-

DEMATEL–IFISM (D number Decision Making Trial and Evaluation Laboratory- Fuzzy 

Interpretive Structural Modeling) method. These hybrid models provide deep insights (e.g., 

importance, intensity, impact, and dependencies) into leading factors affecting the occurrence of 

workplace accidents in micro-enterprises [25]. The fuzzy-VICOR is a suitable agent because of its 

capability to prioritize PSFs when faced with various inconsistent variables.  

The BWM, which raise more in popularity in recent years, utilizes an optimization model by a 

structured pairwise comparison to obtain the optimal weight of each PSF in a more rigorous 

mathematical manner than AHP. FST deal with epistemic uncertainty, vagueness, and fuzziness 

in the knowledge acquisition process and inconsistency and conflict among knowledge sources 

[17]. 

 Integrating FST into MCDM techniques paves a way to model intra-dependency among PSFs 

under uncertainty. It is hard to treat it using statistical tests due to insufficient data for a wide range 

of PSFS. This is another crucial concern in predicting HEP precisely and human performance.
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Dealing with all these integrations helps develop the causality map, which is problematic in 

conventional HRA methods. The MCDM techniques play a considerable role in handling this 

crucial matter and have risen in favor in recent years. Some significant contributions and their 

application are presented in Fig. 6.3. Among the different methods, integrating FST into Analytic 

Network Process (ANP)[26,27], DEMATEL [28], Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS) [29], Cognitive Map [30] and their hybrid extensions (e.g., 

ANP-DEMATEL, ANP-TOPSIS) has been raise most popularity in different sectors. FBWM uses 

an optimized two-pairwise comparison with less bias, more consistency, and time efficiency than 

other techniques. The contributions of these studies can be discussed in two overall aspects. First, 

they made reasonable attempts to improve the capabilities of conventional HRA techniques (e.g., 

CREAM, HEART) to capture inter-dependencies among different PSFs in a cost-effective and 

time-saving manner. Second, employing fuzzy sets can effectively handle the inherent ambiguity, 

vagueness, and data scarcity encountered in the knowledge elicitation process [31]. It also 

significantly helps map the proposed causation model into advanced probabilistic techniques such 

Bayesian Network to take advantage of such powerful reasoning models (e.g., handling parameter 

and model uncertainty, deductive and abductive reasoning, parameter and model learning) [32]. It 

should be noted that fuzzy expert systems can be used to model dependence between successive 

actions, another type of dependency in human reliability analysis. Zhang et al., (2021) proposed a 

new method to assess such dependence in human reliability analysis using linguistic hesitant fuzzy 

information. They confirmed the dependence degree between successive actions by integrating 

hesitant fuzzy sets into the THERP method through an empirical healthcare dependence analysis. 

 

 

https://www.sciencedirect.com/science/article/pii/S1738573321002631
https://www.sciencedirect.com/science/article/pii/S1738573321002631
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Figure 6. 3 Intra-dependency modeling among PSFs using hybrid fuzzy MCDM techniques 

 

 

6.3.3.3. Integrating HEP into quantitative risk analysis  
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process systems, and traffic operations.  Fuzzy sets have been evolving with eleven extensions 

from the ordinary sets (Zadeh, 1967) to Spherical sets (Katlu Gondogdu, 2018) to improve their 
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also observed that those fuzzy sets were often incorporated into Fault tree analysis, Bow tie, and 

(dynamic) Bayesian network in descending order.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 4 Integrating human error in quantitative risk analysis using fuzzy set theory 

 

Integrating human 

error analysis in 

QRA

Process system
High-speed 

railway 

Road 

transportation 
A city gate natural gas station: 

Assessing the system safety risk by 

considering human factors

Vehicle left road: Quantifying the 

probabilities related to human error in 

FTA

Traffic operation: Investigating the effects 

of human error on accident risk in in-depth 

analysis

ɣ-ray irradiator: Quantifying the 

probabilities related to human error in 

FTA

System generation tube rapture: 

Investigating the importance of human 

error risk in the system based on the 

FHERAM index

Control and management: 

Quantification of probabilities related to 

human error in BN

The ability of Intuitionistic fuzzy to 

quantify ambiguous human parameters 

and overcome subjectivity

Contributions 

Industry/field

Using fuzzy sets to overcome the 

ambiguity of crisp probability concepts 

in the BN

Applicability of fuzzy sets in the absence 

of specialized information in accident 

investigation

Applicability of fuzzy sets in calculating 

risk with low uncertainty in complex 

systems based on past incident information

Application: Study description 

The ability of fuzzy sets to overcome 

ambiguity and uncertainty in the 

concept of human error in the system by 

considering recovery factors

The ability of Intuitionistic fuzzy sets to 

quantify ambiguous human parameters 

and overcome subjectivity

Nuclear 

industry

 

 



 

228 
 
 

It should be noted that fuzzy inference systems are also used to propose human error risk analysis 

models [38]. This model was built based on fuzzy logic and IF-THEN rules which can yield more 

realistic results than the traditional human reliability analysis considering its capability to handle 

uncertainty and imprecision in the knowledge acquisition process. However, considering too 

numerous quantitative risk analyses with a deep focus on mechanical and process failures, 

integrating human error into risk analysis has drawn less attention, despite its leading role in major 

accidents. 

6.3.3.4. Human factors analysis 

 

Human and organizational factors (HOFs) play a vital role in safe designing, sustainable operating, 

and successfully managing abnormal situations in a complex system. HOFs individually or 

collectively contain various elements from operators to senior managers, affecting all activities at 

different organizational levels. Major accidents have always been rooted in issues related to HOFs. 

For illustration, poor maintenance, operators’ error, insufficient knowledge about existing risks, 

poor communication, inadequate safety management, and lack of senior management’s 

commitment to safety frequently have contributed to catastrophic accident occurrence (e.g., 

Bhopal disaster, Piper Alpha explosion, Deepwater Horizon oil spill, and Texas City Refinery 

explosion). Therefore, human factor analysis and behavior modeling is a core part of safety 

management in socio-technical systems. However, like human reliability elements, quantitative 

analysis of HOFs suffers from data scarcity which requires domain experts’ knowledge and 

highlights the necessity of employing fuzzy expert systems to handle this challenge. In this sense, 

a few researchers genuinely took some forward steps. Liu et al., (2008) developed fuzzy Petri nets-

based techniques to verify and validate fuzzy rules-based human behavior models in military 

simulation systems. They first developed a static verification of human behavior models using 
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fuzzy rules and then a dynamic validation of human behavior models employing fuzzy Petri nets. 

They argued that their research addressed the drawbacks of conventional verification and 

validation methods for human behavior models as the proposed model is more systematic, 

straightforward, and comprehensible. However, further investigations are required to refine human 

behavior models' errors, applicability, and performance accuracy.  

Recognizing human behavior is a crucial challenge in intelligent surveillance systems with various 

industrial applications in abnormal situations and emergency detection. Batchuluun et al., (2017) 

proposed a fuzzy system-based behavior recognition model by integrating both behavior prediction 

and recognition. They used surveillance cameras with visible light and far-infrared light to capture 

eleven different human behaviors (e.g., from Lying down and Standing to Punching and Running) 

in both daytime and nighttime. They developed a fuzzy system-based classifier of behaviors to 

fuse the recognized data to predict behaviors. The experimental findings have confirmed the 

superior accuracy and processing time compared to previous conventional techniques. 

The main advantage of Intuitionistic fuzzy sets over type-1 and type-2 is utilizing Euclidean 

geometric operations to specify the space between non-membership and membership regarding 

threat consistency between experts to handle the randomness. These benefits have allowed it to 

deliver more precise findings. In this sense, some researchers integrated intuitionistic fuzzy sets 

with AHP and BWM, considering HFACS taxonomy to determine how much various human 

factors contributed to process accidents. They mapped the proposed model of HFACS into Fuzzy 

Bayesian Network to take advantage of advanced probabilistic reasoning. These studies deal with 

fuzziness and vagueness in quantifying human factors’ influence and subjective uncertainty in the 

computation process of knowledge engineering [21,24,41–43].  

 

6.3.3.5. Critical analysis of fuzzy expert systems 

 

https://www.wordhippo.com/what-is/another-word-for/comprehensible.html
https://www.sciencedirect.com/topics/computer-science/classification-machine-learning


 

230 
 
 

Literature analysis indicates that fuzzy expert systems have been employed in estimating human 

error probability far more than other human behavior and factor analysis aspects. We understand 

that lack of data and perhaps lack of other alternatives for methodology would be the primary 

motivation to serve fuzzy expert systems for this purpose. However, we would like to highlight 

some critical concerns and call for action to find proper alternatives, despite these systems being 

the accepted approach to treatment domain experts’ knowledge.  Domain experts’ knowledge 

acquisition in HR&FA begins by obtaining their opinions about human error probability or their 

modifiers, such as PSFs, using linguistic term sets. Using the corresponding fuzzy set numbers, 

aggregation methods are utilized to elicit the fuzzy numbers from the expressed linguistic terms. 

After the defuzzification process and employing related equations (e.g., Onisawa), the crisp 

possibility and failure probability are estimated. We classified these concerns into six groups as 

follows and would like to refer the interested readers to [18], where the authors are thoroughly 

discussed considering the page limitation of this research. 

 

I) Various fuzzy numbers yield different and inconsistent probability values; which ones would 

be more accurate and reliable? 

II) Various aggregation techniques result in distinct probability values, which aggregation method 

seems much more reliable? 

III) Enforcing linguistic term sets to the domain experts would present limitations in freely stating 

their knowledge. 

IV) We would eliminate a wide range of essential probability quantities by employing linguistic 

term sets and then corresponding fuzzy numbers. Any probability values less than 1.63E-05 

and more than 0.078 are excluded from any available combinations of fuzzy numbers.  

https://www.wordhippo.com/what-is/another-word-for/dissimilar.html
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V) Utilizing different fuzzy numbers cannot provide a confidence level for the obtained findings.  

VI) Employing each fuzzy number results in different findings in the critical ranking of 

contributing factors or human error modes. It not only imposes more ambiguities but also might 

wrongly assign safety countermeasures in the decision-making process; hence, which is more 

precise and reliable? 

VII) The aggregated findings from domain experts’ knowledge by capturing their importance 

level are sensitive to outliers. 

 

Therefore, these concerns introduce important criticisms and question fuzzy set theory in human 

error probability estimation. Accordingly, it might be necessary to cease using it for this purpose 

or apply it with the most caution to avoid poor decision-making in human error management from 

a human reliability perspective. The new extensions of the Belief function theory  [44] might be 

an alternative at the moment as it can deal with some of those concerns more rigorously with the 

possibility of quantifying uncertainty using the plausibility function.  

 

 

6.3.3.6. Uncertainty treatment in knowledge engineering and input data 
 

 

HR&FA is challenged with various types of uncertainties (i.e., epistemic (model uncertainty), 

aleatory (data uncertainty)), the same as other scientific disciplines.  Uncertainty refers to how 

computations and estimations counter reality or the measurement of the goodness of an evaluation. 

Machine and deep learning models are used for making inferences and predictions subject to noise 

and error (2). For instance, uncertainty sources arise when training and test data are incompatible, 

while class overlap and incomplete, noisy, discordant, or multimodal data lead to data uncertainty 

[45]. Surprisingly, most artificial intelligent articles in HR&FA failed to discuss and adhere to a 

systematic procedure to address uncertainties or have not quantified the uncertainty. Hence, we 
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would like to shed some light on the importance, sources, and proper techniques to threaten 

uncertainty in artificial intelligent systems. 

At least four uncertainties are reported in different steps of deep learning, which include a) The 

training data selection and collection, b) The training data completeness and accuracy, c) 

Performance bounds and limitations of the deep learning model, and d) The model performance. 

Moreover, similar data-driven models present at least four overlapping challenges: The absence of 

theory and causality models, sensitivity to imperfect data, and computational costs [46]. Hence, it 

is of utmost importance that the artificial intelligence methods’ reliability, efficiency, and accuracy 

be evaluated and uncertainty represented in a trustworthy form prior they applied in practice [47]. 

Epistemic uncertainty can be formulated as a probability distribution over the model parameters, 

while aleatory uncertainty is an inherent property of the data distribution, not a model property, 

and accordingly, it is not reducible [45]. Standard deep learning techniques suffer from presenting 

reliable information about their predictions. Bayesian deep learning (BDL) and Bayesian Neural 

Networks (BNNs) can deal with uncertainties associated with the model parameters as they are 

strongly addressed overfitting problems and can be trained using small and extensive databases. 

Bayesian techniques include Monte Carlo (MC) dropout, Markov chain Monte Carlo (MCMC), 

Variational inference (VI), Bayesian Active Learning (BAL), Bayes By Backprop (BBB), 

Variational autoencoders, Laplacian approximations are most common methods to quantify 

uncertainty in deep learning systems. Each technique has its pros and cons, and hence careful 

selection should be considered depending on the nature of the phenomena under study, objectives, 

input data requirement, computational capacity and requirement, and employed intelligent model’s 

limitations and assumptions [45,48]. In essence, Bayesian techniques employed probability 

functions and Bayes’ rules to quantify uncertain information and make inferences. 
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In machine learning, mainly supervised learning benchmarks, Neural Networks result in highly 

competitive accuracy but poor predictive uncertainty quantification meaning they are prone to 

overconfident estimations [49]. Hence, calibration and domain shift methods are suggested to 

quantify uncertainty in Neural Networks’ applications. The former specifies the discrepancy 

between long-run frequencies and subjective forecasts, while the latter considers the generalization 

of predictive uncertainty to a domain shift that measures whether the network knows what it knows 

[45]. Furthermore, possibility theory, the imprecise probability theory, and the belief function 

theory are other approaches to quantify uncertainty, despite the lack of consensus on the best 

approach.  

Estimating knowledge uncertainty is substantially more problematic than estimating data 

uncertainty. Dempster-Shafer (DS) theory utilizes belief and plausibility functions to handle 

uncertainty stemming from knowledge, opinions, judgments, and evidence which can yield a more 

realistic and flexible treatment [2,48]. Epistemic uncertainty often stems from knowledge 

attributes, such as lack of, insufficient, imprecision, subjectivity, and ignorance, which can be 

refined and eliminated in the knowledge engineering process.  Moreover, other kinds have also 

been recognized apart from the main type of uncertainty, including vagueness (fuzziness) and 

ambiguity. Fuzzy set theory and linguistic term sets provide robust computation to deal with these 

uncertainties and epistemic as they could be represented with a fuzzy interval centered [5].  

 

6.3.4. Bibliometrics analysis of HR&FA in chemical process systems (CPIs) 
 

 

CPIs have handled inherently high-risk operations with far-reaching potential consequences. 

HR&FA has been considered a core element of safety management systems in designing and 

operating most industrial activities.  Human reliability primarily begins with task-based scenario 

development and then proceeds with human error identification, PSFs’ influence specification and 
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ends by quantifying HEP in each step and entire takes. This section is designed to answer the 

following questions associated with the evolution of HR&FA on CPIs: (i) Who are the top 

contributing authors behind the citations? (ii) How much global popularity does this field possess? 

(iii) Which scientific records have impacted most in initiative research? (iv)Which journals draw 

the most attention in this domain?  (v) What are the key areas?  (vi) What is the industries' 

contribution? (vii) What are the most popular techniques to analyze HR&FA on CPIs? 

Furthermore, we discussed how much artificial intelligence and fuzzy expert systems have 

contributed and should deserve further consideration in chemical industries. 

 

 

 
 

Figure 6. 5 Coupling authors 

 

Figure 6. 6 Coupling countries 

 

 

 

A significant increase in the number of studies in the two recent decades is found, and we analyzed 

around 500 documents, the highest type of journal articles (277), followed by proceedings papers 

(151).  A uniformity measure that adopts citation analysis to build a similarity relationship among 

https://www.wordhippo.com/what-is/another-word-for/uniformity.html
https://www.wordhippo.com/what-is/another-word-for/uniformity.html
https://en.wikipedia.org/wiki/Citation_analysis
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documents is considered in bibliographic couplings, such as authors coupling. It happens when 

two documents or authors reference a joint third work or scholar in their bibliographies. It is a 

manifestation that a probability those two works or researchers treat a related subject matter. Figs 

6.5 and 6.6 present coupling authors and countries regarding HR&FA on CPIs. An author, number 

of documents, and co-citation strengths are respectively defined by each sphere, size of a sphere, 

and arc displays, as illustrated in Fig. 6.5. The co-citation network of notable contributors indicate 

five main clusters which are specified by different colors. Although Srinivasan R, Srinivasan B, 

and Bhavsar P formed the cluster with a minimum number of authors, Khan F. and Veitch B, 

MacKinnon S and Musharraf M make the strongest co-citation link. These two groups, along with 

Abbassi R and Akyuz E are the most vibrant researchers in this domain. It is recognized that 

HR&FA is a global concern, and top sex active contributors are from the USA (80, Texas A&M 

University), Norway (59, Norwegian University of Science and Technology and University of 

Stavanger), UK (57, Universities of Aberdeen and Liverpool), Canada (45, Memorial University 

of Newfoundland), China (39, China University of Petroleum) and Iran (28, Shiraz University of 

Medical Sciences). These countries, along with Australia (25, University of Tasmania), Brazil (23, 

University of São Paulo), Italy (23, Polytechnic University of Milan), and the Netherlands (20, TU 

Delft), build the most vibrant and top ten coupling countries. It can be noted that other scholars 

and countries worldwide have significantly impacted the aforementioned scientist and countries.  

https://en.wikipedia.org/wiki/Citation
https://en.wikipedia.org/wiki/Bibliography
https://scholar.google.com/citations?view_op=view_org&hl=en&org=8597344877261034358
https://scholar.google.com/citations?view_op=view_org&hl=en&org=8597344877261034358
https://scholar.google.com/citations?view_op=view_org&hl=en&org=14548340185041024401
https://scholar.google.com/citations?view_op=view_org&hl=en&org=17452456186544668394
https://scholar.google.com/citations?view_op=view_org&hl=en&org=814705155794667179
https://scholar.google.com/citations?view_op=view_org&hl=en&org=814705155794667179
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                  Figure 6. 7 Co-Citation references                                          Figure 6. 8 Co-Citation sources                      

 

 

Fig. 6.7. illustrates the co-citation references used semantic similarity measure for documents that 

have been cited together by other articles. When two papers receive more co-citation, they have 

higher co-citation strength, meaning they are more probably semantically related. It yields a 

forward-looking assessment of document similarity and indicates the evolution of an academic 

domain. As can be seen from Fig. 6.7, there are four clusters of the references-based network of co-

citation and documents of Reason, J (Human error,1990), Hollnagel, E (Cognitive 

reliability,1998), and Kirwan B (Human factor, 1994) have been substantially cited by others 

which means more likely are most promising documents in this field. The authors believe that 

three original works developed or supported numerous HR&FA techniques and models. For 

example, the taxonomy and concept of human error proposed by Reason, J, [50] yield significant 

research initiatives in human reliability and factors analysis in complex systems. The co-citation 

https://en.wikipedia.org/wiki/Semantic_similarity
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journals are presented in Fig 6.8. Reliability Engineering & System Safety, Safety Sciences, and 

Loss Prevention in the Process Industries are the chief sources of documents.  

 

 
Figure 6. 9 Co-occurrence keywords 

 

Fig. 6.9 presents the main research insights, trends, and structure of HR&FA investigated in the 

CPIs. As illustrated, six major clusters contain the most popular techniques, subjects, and sectors 

in each group. For instance, in a green research trend focused on marine, the CREAM method is 

frequently used for human reliability analysis and human error quantification, while HFACS is 

employed to analyze human-organizational factors in dominant maritime accidents such as 

collisions and fire. Those methods support the decision-making process in maritime safety. 

Another example is specified by the yellow color, where concerns like situation awareness, mental 
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workload, and human error in control rooms of the chemical industry are investigated. Those 

human factors elements are inextricably intertwined with inherent safety design principles and 

process safety. Moreover, novel real-time monitoring approaches such as eye-tracking are used to 

model these vital safety concerns [51,52]. Among the probabilistic techniques, Fault tree analysis 

(FTA), Bow tie, and Bayesian Networks are commonly used to quantify human error probability. 

CREAM, Human error assessment and reduction technique (HEART), and Success Likelihood 

Index Method (SLIM) are the most prevalent human reliability analysis methods, while it is valid 

for HFACS techniques in human factor analysis on CPIs. Fuzzy logic or theory and MCDM have 

been frequently employed to improve conventional methods. 

We surprisingly found that most of the top hundred authors have been affiliated with only 

academic organizations, meaning that industry contributions or joint collaborative projects 

between industry and academia are rare. DNV GL is the only industrial sector directly contributing 

to this field. Other studies reaffirmed that despite a healthy contribution from the industry, joint 

collaborations or industry-oriented works are rare in process safety and risk assessment [53]. We 

also discovered that artificial intelligence techniques have remarkably drawn less attention in 

HR&FA than in other scientific disciplines, despite increasing dramatically in many fields. 

Retrospective statistics proved that CPIs substantially prone to catastrophic accidents with far-

reaching financial, human, and environmental losses. In contrast, a well-organized global accident 

database to record chemical process incidents has not been established [1]. If there are, the need 

to publicly access to those large databases from industries and agencies is highly demanded [54]  

as it can substantially support developing machine learning algorithms to support risk and accident 

analysis. This might be among the main reasons why data-driven and deep learning methods have 

been rarely used in CPIs, despite their meaningful capabilities in deeply analyzing accident 
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databases, which is impossible by conventional accident analysis and statistical techniques. 

Furthermore, humans are still core elements in the entire life cycle of oil and gas operations and 

are directly involved in most high-risk activities such as control room operations, maintenance, 

emergency management and normal operations. Accordingly, it is the right time to establish 

industry partnership works to fill this crucial gap in HR&FA.  

 

6.4.  Conclusion  

 

 
Knowledge acquisition through domain experts and historical or observed data are still the main 

resources to establish successful human reliability and human factors analysis in numerous 

domains. However, taking advantage of them requires employing fuzzy expert systems and 

artificial intelligence models. Several genuine attempts have been made in this direction, but a 

systematic review with a primary focus on their applications, contributions, challenges, myths, 

misconceptions, and research gaps in human reliability and human factors analysis have not been 

observed yet. Accordingly, this research was designed to fill this scientific gap by synthesizing 

state-of-the-art achievements. Apart from highlighting how artificial intelligence and expert 

systems contributed to different elements of human reliability and factor analysis, the key findings 

of this research and future research directions are as follows: 

 
• Text recognition, classification, and natural language processing algorithms can digest 

accident report highly cost and time-effectively. They can be integrated into deep learning 

algorithms to update the model parameters and make new inferences. This is technically a 

forward step to improve learning from accidents. 

• Advanced machine learning techniques can classify the various contributing factors, from 

big data to human error and accidents. It reveals latent dependencies and meaningful and 

https://www.sciencedirect.com/topics/engineering/natural-language-processing
https://www.sciencedirect.com/topics/engineering/machine-learning-technique
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non-linear interactions among diverse influencing factors. This capability yields a more 

accurate prediction and a deep understanding of the accident causation mechanisms. 

• Data-driven models can provide accident causation models with versatile applications. The 

main reason can be that they do not force us to follow a specific taxonomy and structure in 

developing causality models, which are prevalent drawbacks of conventional accident 

analysis techniques and models. These models can address issues related to subjective 

uncertainty stemming from expert knowledge acquisition. They also can be a potential 

response to drawbacks of statistical analysis, which requires enough and consistent human 

factor data collection. 

• Researchers should be aware of several crucial myths and misconceptions in using artificial 

intelligence systems that need to be addressed in future research. 

• Fuzzy expert systems and their interactions with MCDM have significantly contributed to 

improving the knowledge acquisition process required for human factors modeling, human 

error probability estimation, performance shaping factors’ influence quantification, and 

dependency modeling. 

• There might be time to be more cautious or desist from using fuzzy set theory to estimate 

human error probability in sociotechnical systems. This might be more sensitive when the 

obtained results are used to make critical decisions. 

• There is a real need to establish more joint collaborative works between academics and 

industry to benefit the machine and deep learning techniques in the HR&FA field. 

 

 

 

https://www.sciencedirect.com/topics/engineering/accident-causation-model
https://www.sciencedirect.com/topics/engineering/multi-criteria-decision-making
https://www.sciencedirect.com/topics/engineering/probability-estimation
https://www.sciencedirect.com/topics/engineering/fuzzy-set-theory
https://www.sciencedirect.com/topics/engineering/joints-structural-components
https://www.sciencedirect.com/topics/engineering/collaborative-work
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CHAPTER 7 

Summary, Contribution, Conclusions and Recommendations 
 

 

7.1. Summary 
 

 

This study demonstrates the novel applications of the advanced system engineering methods for 

dynamic risk-based system safety and human factors analysis in critical sociotechnical systems. 

The existing mechanistic models for system safety and human factors susceptibility assessment 

are not dynamically structured, unable to capture the unstable, dynamic, and non-linear 

interactions among contributing factors of critical sociotechnical systems and their key element’ 

functions (e.g., human, organization, technology, and environment. Dynamic risk-based 

assessment techniques for system safety and human factor performance are developed to capture 

the significant factors’ non-linear interactions; they address the knowledge gaps and aid 

performance management of the complex sociotechnical systems. System safety and human factor 

performance in sociotechnical elements varies owing to a wide range of endogenous and 

exogenous influencing factors. These are called uncoupled variability as per Safety-II. The 

uncoupled variability has drawn rare attention, despite its vital importance in major accidents 

analysis as per Safety-I and Safety-II paradigms. Accordingly, we proposed a novel dynamic 

model which can analyze both the probability and magnitude of performance variability. This 

research integrated system thinking into system safety and human factor performance modeling. 

This research also proposed a holistic VSFs taxonomy for STSs considering the FRAM paradigm, 

sociotechnical design hierarchy (e.g., individual, task, HMI, plant, organization, culture), and the 

concept of human-center design is developed. Therefore, this taxonomy is intended to consider all 
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aspects of STSs together and can be used to examine influencing VSFs in a wide range of complex 

systems. 

 

7.2. Contributions and novelty 
 

This doctoral research's main contributions and novelties are in the area of dynamic risk-based 

human factor and system safety assessment of complex sociotechnical systems using advanced 

system engineering methods and models. The highlights of the contributions are listed below:  

• A critical analysis of the state-of-the-art theoretical and empirical findings concerning 

HR&FA in CPIs is proposed. As the first review investigation, it is first also identified the 

needs, gaps, and challenges of HR&FA in CPIS. An in-depth analysis of the literature in Web 

of Science core collection and Scopus databases from 1975 to August 2020 is conducted. This 

analysis focuses on human factors in three critical elements of CPIs: maintenance operations, 

emergency operations, and control room operations. The analysis synthesized the theoretical 

and empirical findings, shed light on the strengths and shortcomings of current literature and 

identifying research opportunities. A comparison of HRA in CPIs is undertaken with nuclear 

power plants (NPPs) to better understand the current stage of research and research challenges 

and opportunities. Importance and necessity of a new thinking system about human reliability 

to take more advantages of results of new safety management paradigms is also highlighted.  

• A novel dynamic model by integrating human and organizational failures into conventional 

failure modes (e.g., mechanical, operational, and environmental) and system barriers into 

system safety is developed under uncertainty for emerging complex systems. The 

application of the proposed model is demonstrated on a water electrolysis process. The 

hydrogen release scenarios are modeled using the Bow-tie technique integrated with 

https://www.sciencedirect.com/topics/engineering/water-electrolysis
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improved D Numbers Theory and Best-Worst Method. This helps to analyze epistemic 

uncertainty in the prior probabilities of the causation factors and barriers. Subsequently, a 

Dynamic Bayesian Network (DBN) model is developed to analyze dynamic risk and deal 

with aleatory uncertainty. This part of the present research presented a dynamic and holistic 

risk model to address some significant shortcomings of the current system safety risk 

analysis models in hydrogen infrastructures. The results of the case study provide a better 

understanding of the causal modeling of accident scenarios, associated evolving risks with 

uncertainty. The proposed model will serve as a useful tool for the operational safety 

management of the hydrogen infrastructure or other emerging complex engineering 

systems.  

• A dynamic human-factor risk model to probabilistically analyze system safety in 

sociotechnical systems is developed. Accordingly, as the first attempt, this study proposes 

a systematic model to analyze performance variability in human, organizational, and 

technology-oriented functions caused by various variability shaping factors (VSFs). The 

model contains three main phases. First, a FRAM (Functional Resonance Analysis 

Method) - driven Human-Organization-Technology Taxonomy is developed. 

Subsequently, Dempster - Shafer Evidence theory is employed to elicit knowledge under 

epistemic uncertainty. The proposed causation model is integrated into Dynamic Bayesian 

Networks to support decision-making under aleatory uncertainty. Finally, a criticality 

matrix is developed to evaluate the performance of the system functions to support 

decision-making. The proposed model is built considering the advanced canonical 

probabilistic approaches (e.g., Noisy Max and Leaky models) that address the critical 

challenges of incomplete and imprecise data. A maintenance operation cycle that includes 

https://www.sciencedirect.com/topics/engineering/epistemic-uncertainty
https://www.sciencedirect.com/topics/engineering/epistemic-uncertainty
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pre- and post-maintenance activities is considered for testing the model. The proposed 

dynamic model would help better understand, analyze, and improve the safety performance 

of complex sociotechnical systems.  

• An advanced approach to assess system safety in sociotechnical systems is proposed. It 

proposed a systematic approach to identify PSFs, quantify their importance level and 

influence on the performance of complex sociotechnical systems’ functions. To this end, 

we first developed a new holistic PSFs Taxonomy based on sociotechnical systems design 

and then employed novel Interval-Valued Spherical Fuzzy Sets (IVSFS) and Best Worst 

Method to quantify the importance of performance. We tested the proposed model’s 

capability on maintenance operations in the chemical process plants and compared the 

model with the previous research considering fourteen criteria. The findings revealed the 

approach's effectiveness in dealing with epistemic uncertainty, vagueness, and fuzziness in 

the knowledge acquisition process. It revealed the critical safety investment factors among 

different sociotechnical elements and contributing factors to maintenance operations. This 

helps to effectively allocate safety countermeasures to improve resilience and system safety 

performance.  

• Finally, we revealed how have artificial intelligence and expert systems contributed to 

HR&FA in complex systems. The systematic review primarily investigated the 

applications, contributions, challenges, and research gaps in HR&FA using those 

intelligent approaches such as machine and deep learning, and knowledge/data-driven 

techniques. We analyzed seven vital elements of HR&FA to illustrate these contributions. 

Furthermore, this work highlighted some important myths, misapplications, and critical 
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concerns that should be addressed using these advanced approaches. This research yields 

detailed insights into HR&FA using artificial intelligence and expert systems.  

 

7.3. Conclusion 
 

The significant conclusions drawn from the current research is summarized as follows: 

 

7.3.1. Critical analysis of human reliability and factors in CPIs 
 

 

This research presents the first critical analysis of human reliability and factors analysis in CPIs as 

a salient instance of critical sociotechnical systems. The experience with accidents in this domain 

shows many cases which involve complex human-machine interactions. Consequently, 

researchers have actively worked on enhancing process safety and risk engineering since the '70s. 

However, despite its importance and practical implications for improving human reliability, there 

has not been a review of human reliability related to processing systems. This research identified 

the needs, gaps, and challenges of HR&FA in three critical elements of chemical process systems, 

namely maintenance operations, emergency management operations, and control room operations. 

Moreover, the main research streams and contributions of previous studies into HRA are specified, 

and some novel approaches are suggested to deal with the dominant drawbacks of current HRA 

knowledge. The importance and necessity of a new thinking system about human reliability to take 

more advantage of the results of new safety management paradigms is also highlighted. Most of 

the studies have been focused on HEP estimation using conventional methods in maintenance 

activities, while they continue to be accompanied by the virtual offshore simulator and hybrid 

models (i.e. fuzzy theory, BN and TOPSIS) to analyze human error and develop HRA data in the 

emergency management sector. In contrast, some new experiments are performed to assess 

operator reliability and performance using cognitive functions that have not been given the 

https://www.sciencedirect.com/topics/engineering/probability-estimation
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attention they deserve in two previous elements of CPIs operations.  Furthermore, integrating 

dynamic models and human cognitive and behavioral theories into conventional HRA techniques 

can provide a better understanding of human performance variability and reliability. A comparison 

of HRA in CPIs is undertaken with nuclear power plants (NPPs) to better understand the current 

stage of research and research challenges and opportunities. 

 

7.3.2. Developing a novel dynamic model to analyze risk in emerging critical systems 

 

Safety management of emerging critical and complex technologies such as hydrogen 

infrastructure is vital for sustainable progress especially in the hydrogen economy as global 

demand. Reaching the vision of using hydrogen as a low-carbon fuel source to phase out 

conventional fossil fuels and limit global warming, requires researchers to establish strong and 

novel safety assessment models to provide more effective safety measures. Accordingly, this study 

presented an improved dynamic and holistic risk model to address some significant shortcomings 

of the current hydrogen risk analysis models. This was done by integrating the improved D number 

theory, best-worst method, and SHIPP methodology into the DBN for the safety assessment of 

hydrogen infrastructure under uncertainty. The model provides a dynamic and holistic cause-

consequences modeling of the hydrogen loss accident scenario, which clearly presents the accident 

profile from root causes to final consequences. Firstly, this modeling revealed and incorporated a 

wide range of contributing latent factors both from individual to organization failures and from 

operational to mechanical as well as natural hazards into a probabilistic risk analysis which were 

ignored in the most previous models. Secondly, a hybrid and improved algorithm contain DNT 

and BWM, as the latest and more reliable MCDM technique, was employed to substantially deal 

with epistemic uncertainty in input data (i.e., prior probabilities). This is the first that study 

https://www.sciencedirect.com/topics/engineering/hydrogen-infrastructure
https://www.sciencedirect.com/topics/engineering/hydrogen-infrastructure
https://www.sciencedirect.com/topics/engineering/hydrogen-economy
https://www.sciencedirect.com/topics/engineering/latent-factor
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presented an attempt to integrate this algorithm into DBN, as a well-known probabilistic safety 

analysis method, in safety and risk studies. This effort leads to addressing the potential 

uncertainties and subsequently, more realistic results and effective final decisions. Thirdly, it 

yielded predictive modeling of the posterior failure probability distribution of safety barriers, 

consequences, hydrogen release probability, and the system reliability can tackle uncertainty in 

the safety and risk preventive and mitigative decisions. 

 

7.3.3. Proposing a novel human-factor risk model to analyze system safety performance 

in complex STSs 

 

This phase of the study was intended to explore system safety and human factors beyond of Safety-

I paradigm. Accordingly, we employed advanced system thinking methods to analyze human 

factors challenges as per Safety-II. Accordingly, as the first attempt, this study proposes a 

systematic model to analyze performance variability in human, organizational, and technology-

oriented functions caused by various variability shaping factors (VSFs). The proposed FRAM 

(Functional Resonance Analysis Method) - driven Human-Organization-Technology Taxonomy 

filled the gap in PSFs impact on human reliability. Dempster - Shafer Evidence theory is employed 

to elicit knowledge under epistemic uncertainty. The proposed causation model is integrated into 

Dynamic Bayesian Networks to support decision-making under aleatory uncertainty. The proposed 

model is built considering the advanced canonical probabilistic approaches (e.g., Noisy Max and 

Leaky models) that address the critical challenges of incomplete and imprecise data. The proposed 

VSFs Taxonomy filled the gaps in the current performance shaping factors taxonomies, and it ties 

in closely with sociotechnical system engineering. The DSE theory differently addressed 

subjective uncertainty arising from insufficient data and vagueness in the knowledge elicitation 

https://www.sciencedirect.com/topics/engineering/epistemic-uncertainty
https://www.sciencedirect.com/topics/engineering/probabilistic-approach
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process, which is crucial in dealing with human and organizational-oriented factors. Moreover, the 

proposed probabilistic model and mathematical procedures established a prefund causality model 

which could integrate sociotechnical systems elements, address computations challenges related 

to CPTs, and characterize randomness and incompleteness uncertainties. Furthermore, the 

proposed DBNs model is a non-linear performance variability causation model aiming to trace 

thoroughly interconnected accident causal factors, conduct forward and backward inferences, and 

update model parameters and outcomes extensively used in the advanced system safety and 

reliability assessment. The risk-based criticality matrix strongly supports the decision-making 

process to precisely identify safety-critical investment factors and functions and, as a result, 

effectively damping critical variabilities. It paves a way to relax the difficulties in dampening the 

critical performance resonance in a rational risk-based approach. Finally, the proposed model can 

be applied for both proactive (e.g., safety performance and risk assessment) and reactive safety 

assessment (e.g., accident analysis) and can capture all aspects of STSs. Accordingly, it provides 

a deep understanding of complex system elements, their interaction, and their influence on system 

safety and resilience performance. 

 

7.3.4. Proposing an advanced approach to the system safety in sociotechnical 

systems 

 

Th  is phase of the present research aimed at proposing a systematic framework to assess system 

safety performance using performance shaping factors in complex sociotechnical systems. The 

safety performance of complex systems and their main components (e.g., human, organization, 

and technology) vary due to numerous performance shaping factors (PSFs). However, previous 

research mainly focused on studying limited PSFs related to human functions, while organization 

https://www.sciencedirect.com/topics/engineering/critical-damping
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and technology functions have often been ignored. This part of the present investigation proposed 

a systematic approach to identify PSFs and quantify their importance level and influence on the 

performance of sociotechnical systems’ functions. To this end, we first developed a holistic PSFs 

Taxonomy based on sociotechnical systems design and then employed novel Interval-Valued 

Spherical Fuzzy Sets (IVSFS) and Best Worst Method to quantify the importance of performance. 

We tested the proposed model’s capability on maintenance operations in the chemical process 

plants and compared the model with the previous research considering fourteen criteria. The 

applied novel three-dimensional spherical information sets differently addressed fuzziness, 

vagueness, and subjective uncertainty in the knowledge acquisition process, which is one of the 

critical challenges in system safety and human-organizational factor analysis. The model captured 

the optimal importance level of contributing factors in system safety performance analysis and 

proposed variability indices. Quantifying these indices yielded to clearly specify safety investment 

elements in system hierarchies from factor level to three types of system functions. This provides 

a deep understanding of complex system elements, their interaction, and their influence on system 

safety performance and paws a rational way to effectively dampen critical performance resonance 

based on different human, organizational and technological functions before the system fails. 

Comparing the present research with the previous studies pointed out new aspects of the proposed 

model in the safety assessment of maintenance operations. Although we tested the model 

capabilities in a proactive assessment, it can also be utilized in reactive approaches such as accident 

investigation and analysis. Furthermore, the model has potential application to assess resilience 

engineering because a signification relationship between PSFs and system resilience, especially in 

industrial maintenance departments, has been reported. It also revealed the critical safety 

investment factors among different sociotechnical elements and contributing factors to 
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maintenance operations. This helps to effectively allocate safety countermeasures to improve 

resilience and system safety performance. 

 

7.3.5. Develop a systematic review of how to account artificial intelligence in 

human factor analysis of complex systems 
 

Human factors analysis (HFA) has been explored from various aspects (e.g., engineering, 

psychology, physiology, and ergonomics). Numerous conventional techniques have been 

developed and applied to improve system safety from the human perspective. However, emerging 

socio-technical systems, industry 4.0, and the use of artificial intelligence-driven systems reveal 

these methods' incapability. This necessity is developing intelligent approaches that account for 

integrating artificial intelligence (AI) into human factors.  This work reviewed the integration of 

artificial intelligence and expert systems into HFA. It focuses on using machine, deep learning, 

and knowledge/data-driven modeling approaches to HFA. The systematic review investigated the 

applications, contributions, challenges, and research gaps in HFA in complex systems. We 

analyzed seven vital elements of HFA to illustrate these concerns. This work also highlighted 

important myths, misapplications, and critical concerns that need to be addressed using advanced 

approaches. Apart from highlighting how artificial intelligence and expert systems contributed to 

different elements of human reliability and factor analysis, the key conclusion of this research are 

as follows: a) Machine learning and data-driven models help address subjective uncertainty, bias, 

and insufficient information stem from domain experts’ experiences and understanding of human 

error probability prediction, b) Text recognition, classification, and processing algorithms can 

update the model parameters highly cost and time-effectively. They integrate them into deep 

learning algorithms, updating the model and making new inferences. This is technically a forward 
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step to improve learning from accidents, c) Advanced Machine learning techniques classify the 

various contributing factors from big data into human error and accidents and reveal latent 

dependencies and meaningful and non-linear interactions among them. This capability yields a 

more accurate prediction and deep understanding of the accident causation mechanism, d) Data-

driven models can provide accident causation models with versatile applications. The main reason 

can be that they do not force to follow a specific taxonomy and structure in developing causality 

models, which are prevalent drawbacks of conventional accident analysis techniques and models.  

These models can address issues related to subjective uncertainty stemming from expert 

knowledge acquisition. They also can be as a potential response to drawbacks of statistical 

analysis, which requires enough and consistent human factor data collection and finally E) Fuzzy 

expert systems and their interactions with MCDM have significantly contributed to improving the 

knowledge acquisition process regarding human factors modeling, human error probability 

estimation, performance shaping factors’ influence quantification, and dependency modeling. 

 

7.4. Recommendations 
 

 

Based on the completed objectives, the following areas are recommended for further investigation: 

 

• Fundamental steps should be taken to develop HE/HRA database, tailored HRA 

techniques, and PSFs taxonomies for oil and gas operations as well as new advancements 

of performance simulators and novel human reliability modeling methods. Furthermore, 

integrating dynamic models and human cognitive and behavioral theories into conventional 

HRA techniques can provide a better understanding of human performance variability and 

reliability. It is worth noting that the present study does not cover all potential human 

activities in CPIs. Important operations such as permit to work, confined space activities, 
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shutdown and pre-startup of units and management of change are some common activities 

prone to human error in this industry. Exploring available investigations into these 

activities to deal with difficulties and to give research opportunities can be revealed in 

future academic efforts. 

• Although integrating DNT and BWM into DBN provides great advantages and capabilities 

in a unique model, it may have some limitations and some attempts should be made to 

address them. For instance, a powerful consequence modeling under uncertainty may be 

needed in risk analysis of some critical infrastructures, this concern was outside the scope 

of the present model due to the huge complexity it would impose on the proposed model. 

Moreover, integrating a dynamic influence diagram into the model to explore the effects 

of the most contributing root events in decreasing the hydrogen release probability and 

dealing with uncertainty in decision-making could be investigated in future studies. Finally, 

we call for further investigation especially using experimental data to explore and evaluate 

the proposed model's applications and validity in various hydrogen operations in future 

studies. 

• This study proposed 124 PSFs over 19 functions, and potential modeling dependency 

dramatically  increases this study's complexity. Hence, we preferred not to deal with these 

concerns in the present research to address other vital objectives deeply. Several methods 

such as Analytic Network Process (ANP), Analytic Hierarchy Process (AHP) and 

Decision-making trial and evaluation laboratory (DEMATEL), and Cognitive Map (CM) 

and their extensions have been regularly employed to consider potential dependencies in 

safety probabilistic analysis. 
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• There might be time to be more cautious or desist from using fuzzy set theory to estimate 

human error probability in critical systems. 

• There is a real need to establish more joint collaborative works between academics and 

industry to benefit the machine and deep learning techniques in the HR&FA field. 

 

 


