12,319 research outputs found

    Travel Recommendation via Author Topic Model Based Collaborative Filtering

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    Full text link
    Collaborative filtering algorithms haven been widely used in recommender systems. However, they often suffer from the data sparsity and cold start problems. With the increasing popularity of social media, these problems may be solved by using social-based recommendation. Social-based recommendation, as an emerging research area, uses social information to help mitigate the data sparsity and cold start problems, and it has been demonstrated that the social-based recommendation algorithms can efficiently improve the recommendation performance. However, few of the existing algorithms have considered using multiple types of relations within one social network. In this paper, we investigate the social-based recommendation algorithms on heterogeneous social networks and proposed Hete-CF, a Social Collaborative Filtering algorithm using heterogeneous relations. Distinct from the exiting methods, Hete-CF can effectively utilize multiple types of relations in a heterogeneous social network. In addition, Hete-CF is a general approach and can be used in arbitrary social networks, including event based social networks, location based social networks, and any other types of heterogeneous information networks associated with social information. The experimental results on two real-world data sets, DBLP (a typical heterogeneous information network) and Meetup (a typical event based social network) show the effectiveness and efficiency of our algorithm

    Towards Question-based Recommender Systems

    Get PDF
    Conversational and question-based recommender systems have gained increasing attention in recent years, with users enabled to converse with the system and better control recommendations. Nevertheless, research in the field is still limited, compared to traditional recommender systems. In this work, we propose a novel Question-based recommendation method, Qrec, to assist users to find items interactively, by answering automatically constructed and algorithmically chosen questions. Previous conversational recommender systems ask users to express their preferences over items or item facets. Our model, instead, asks users to express their preferences over descriptive item features. The model is first trained offline by a novel matrix factorization algorithm, and then iteratively updates the user and item latent factors online by a closed-form solution based on the user answers. Meanwhile, our model infers the underlying user belief and preferences over items to learn an optimal question-asking strategy by using Generalized Binary Search, so as to ask a sequence of questions to the user. Our experimental results demonstrate that our proposed matrix factorization model outperforms the traditional Probabilistic Matrix Factorization model. Further, our proposed Qrec model can greatly improve the performance of state-of-the-art baselines, and it is also effective in the case of cold-start user and item recommendations.Comment: accepted by SIGIR 202

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Leveraging Mobile App Classification and User Context Information for Improving Recommendation Systems

    Get PDF
    Mobile apps play a significant role in current online environments where there is an overwhelming supply of information. Although mobile apps are part of our daily routine, searching and finding mobile apps is becoming a nontrivial task due to the current volume, velocity and variety of information. Therefore, app recommender systems provide users’ desired apps based on their preferences. However, current recommender systems and their underlying techniques are limited in effectively leveraging app classification schemes and context information. In this thesis, I attempt to address this gap by proposing a text analytics framework for mobile app recommendation by leveraging an app classification scheme that incorporates the needs of users as well as the complexity of the user-item-context information in mobile app usage pattern. In this recommendation framework, I adopt and empirically test an app classification scheme based on textual information about mobile apps using data from Google Play store. In addition, I demonstrate how context information such as user social media status can be matched with app classification categories using tree-based and rule-based prediction algorithms. Methodology wise, my research attempts to show the feasibility of textual data analysis in profiling apps based on app descriptions and other structured attributes, as well as explore mechanisms for matching user preferences and context information with app usage categories. Practically, the proposed text analytics framework can allow app developers reach a wider usage base through better understanding of user motivation and context information

    Predicting Tie Strength between Facebook Friends to Improve Accuracy in Travel Recommendation Systems

    Get PDF
    People rely on their trusted circle of friends for advice and recommendations on everything from travel destinations to purchase decisions. With the extensive use of social networks these relationships are now taken to an electronic platform, where they manifest as likes, comments, wall posts, etc., on social media networks. This paper explores the novel idea that such user relationships can be extracted to significantly improve the accuracy of commercial recommendation systems by identifying otherwise hidden relationships between users. A multiple linear regression based model capable of extracting such user relationships and their corresponding strength efficiently is introduced under this research and the above hypothesis is tested by integrating the predictive model to an existing social media based travel recommendation system. Finally, experimental results of the proposed model are produced, proving the capability of the model in achieving a significant increase in accuracy in travel recommendations, affirming the considered hypothesis
    corecore