935 research outputs found

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Analog Property Checkers: A Ddr2 Case Study

    Get PDF
    The formal specification component of verification can be exported to simulation through the idea of property checkers. The essence of this approach is the automatic construction of an observer from the specification in the form of a program that can be interfaced with a simulator and alert the user if the property is violated by a simulation trace. Although not complete, this lighter approach to formal verification has been effectively used in software and digital hardware to detect errors. Recently, the idea of property checkers has been extended to analog and mixed-signal systems. In this paper, we apply the property-based checking methodology to an industrial and realistic example of a DDR2 memory interface. The properties describing the DDR2 analog behavior are expressed in the formal specification language stl/psl in form of assertions. The simulation traces generated from an actual DDR2 interface design are checked with respect to the stl/psl assertions using the amt tool. The focus of this paper is on the translation of the official (informal and descriptive) specification of two non-trivial DDR2 properties into stl/psl assertions. We study both the benefits and the current limits of such approach

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    High-level asynchronous system design using the ACK framework

    Get PDF
    Journal ArticleDesigning asynchronous circuits is becoming easier as a number of design styles are making the transition from research projects to real, usable tools. However, designing asynchronous "systems" is still a difficult problem. We define asynchronous systems to be medium to large digital systems whose descriptions include both datapath and control, that may involve non-trivial interface requirements, and whose control is too large to be synthesized in one large controller. ACK is a framework for designing high performance asynchronous systems of this type. In ACK we advocate an approach that begins with procedural level descriptions of control and datapath and results in a hybrid system that mixes a variety of hardware implementation styles including burst-mode AFSMs, macromodule circuits, and programmable control. We present our views on what makes asynchronous high level system design different from lower level circuit design, motivate our ACK approach, and demonstrate using an example system design

    The review of heterogeneous design frameworks/Platforms for digital systems embedded in FPGAs and SoCs

    Get PDF
    Systems-on-a-chip integrate specialized modules to provide well-defined functionality. In order to guarantee its efficiency, designersare careful to choose high-level electronic components. In particular,FPGAs (field-programmable gate array) have demonstrated theirability to meet the requirements of emerging technology. However,traditional design methods cannot keep up with the speed andefficiency imposed by the embedded systems industry, so severalframeworks have been developed to simplify the design process of anelectronic system, from its modeling to its physical implementation.This paper illustrates some of them and presents a comparative studybetween them. Indeed, we have selected design methods of SoC(ESP4ML and HLS4ML, OpenESP, LiteX, RubyRTL, PyMTL,SysPy, PyRTL, DSSoC) and NoC networks on OCN chip (PyOCN)and in general on FPGA (PRGA, OpenFPGA, AnyHLS, PYNQ, andPyLog).The objective of this article is to analyze each tool at several levelsand to discuss the benefit of each in the scientific community. Wewill analyze several aspects constituting the architecture and thestructure of the platforms to make a comparative study of thehardware and software design flows of digital systems.

    System-level Co-simulation of Integrated Avionics Using Polychrony

    Get PDF
    International audienceThe design of embedded systems from multiple views and heterogeneous models is ubiquitous in avionics as, in partic- ular, different high-level modeling standards are adopted for specifying the structure, hardware and software components of a system. The system-level simulation of such composite models is necessary but difficult task, allowing to validate global design choices as early as possible in the system de- sign flow. This paper presents an approach to the issue of composing, integrating and simulating heterogeneous mod- els in a system co-design flow. First, the functional behavior of an application is modeled with synchronous data-flow and statechart diagrams using Simulink/Gene-Auto. The system architecture is modeled in the AADL standard. These high- level, synchronous and asynchronous, models are then trans- lated into a common model, based on a polychronous model of computation, allowing for a Globally Asynchronous Lo- cally Synchronous (GALS) interpretation of the composed models. This translation is implemented as an automatic model transformation within Polychrony, a toolkit for em- bedded systems design. Simulation, including profiling and value change dump demonstration, has been carried out based on the common model within Polychrony. An avionic case study, consisting of a simplified doors and slides control system, is presented to illustrate our approach

    Analog property checkers: a DDR2 case study

    Get PDF
    The formal specification component of verification can be exported to simulation through the idea of property checkers. The essence of this approach is the automatic construction of an observer from the specification in the form of a program that can be interfaced with a simulator and alert the user if the property is violated by a simulation trace. Although not complete, this lighter approach to formal verification has been effectively used in software and digital hardware to detect errors. Recently, the idea of property checkers has been extended to analog and mixed-signal systems. In this paper, we apply the property-based checking methodology to an industrial and realistic example of a DDR2 memory interface. The properties describing the DDR2 analog behavior are expressed in the formal specification language stl/psl in form of assertions. The simulation traces generated from an actual DDR2 interface design are checked with respect to the stl/psl assertions using the amt tool. The focus of this paper is on the translation of the official (informal and descriptive) specification of two non-trivial DDR2 properties into stl/psl assertions. We study both the benefits and the current limits of such approac

    DIVAS: An LLM-based End-to-End Framework for SoC Security Analysis and Policy-based Protection

    Full text link
    Securing critical assets in a bus-based System-On-Chip (SoC) is imperative to mitigate potential vulnerabilities and prevent unauthorized access, ensuring the integrity, availability, and confidentiality of the system. Ensuring security throughout the SoC design process is a formidable task owing to the inherent intricacies in SoC designs and the dispersion of assets across diverse IPs. Large Language Models (LLMs), exemplified by ChatGPT (OpenAI) and BARD (Google), have showcased remarkable proficiency across various domains, including security vulnerability detection and prevention in SoC designs. In this work, we propose DIVAS, a novel framework that leverages the knowledge base of LLMs to identify security vulnerabilities from user-defined SoC specifications, map them to the relevant Common Weakness Enumerations (CWEs), followed by the generation of equivalent assertions, and employ security measures through enforcement of security policies. The proposed framework is implemented using multiple ChatGPT and BARD models, and their performance was analyzed while generating relevant CWEs from the SoC specifications provided. The experimental results obtained from open-source SoC benchmarks demonstrate the efficacy of our proposed framework.Comment: 15 pages, 7 figures, 8 table
    corecore