
Form Methods Syst Des (2010) 36: 114–130
DOI 10.1007/s10703-009-0085-x

Analog property checkers: a DDR2 case study

Kevin D. Jones · Victor Konrad · Dejan Ničković

Published online: 2 October 2009
© Springer Science+Business Media, LLC 2009

Abstract The formal specification component of verification can be exported to simula-
tion through the idea of property checkers. The essence of this approach is the automatic
construction of an observer from the specification in the form of a program that can be in-
terfaced with a simulator and alert the user if the property is violated by a simulation trace.
Although not complete, this lighter approach to formal verification has been effectively used
in software and digital hardware to detect errors. Recently, the idea of property checkers has
been extended to analog and mixed-signal systems.

In this paper, we apply the property-based checking methodology to an industrial and
realistic example of a DDR2 memory interface. The properties describing the DDR2 analog
behavior are expressed in the formal specification language STL/PSL in form of assertions.
The simulation traces generated from an actual DDR2 interface design are checked with
respect to the STL/PSL assertions using the AMT tool. The focus of this paper is on the
translation of the official (informal and descriptive) specification of two non-trivial DDR2
properties into STL/PSL assertions. We study both the benefits and the current limits of such
approach.

Keywords Analog · Mixed-signal · Monitoring · Temporal logic · Property checkers ·
Case study

This work was done while K.D. Jones and V. Konrad were at Rambus, Inc., USA.
This work was done while D. Ničković was at Verimag, University of Grenoble, France and Rambus,
Inc., USA.
D. Ničković was supported in part by the European COMBEST project.

K.D. Jones · V. Konrad
Green Plug, San Ramon, USA

K.D. Jones
e-mail: kevin@greenplug.us

V. Konrad
e-mail: victor_konrad@gmail.com

D. Ničković (�)
EPFL, Lausanne, Switzerland
e-mail: dejan.nickovic@epfl.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159147676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kevin@greenplug.us
mailto:victor_konrad@gmail.com
mailto:dejan.nickovic@epfl.ch

Form Methods Syst Des (2010) 36: 114–130 115

1 Introduction

The formal verification of digital (and other finite state) systems has been based on the de-
cision procedures which often involve model-checking temporal logic formulae. Temporal
logic [21] is a rigorous specification formalism that is used to describe desired behaviors of
the system. The fact that logics such as LTL (linear-time temporal logic) or CTL (computa-
tion tree logic) can be efficiently translated into corresponding automata [10, 11, 26, 28] has
facilitated their integration into main verification tools. An adaptation of formalisms based
on temporal logics and regular expressions to the needs of the hardware industry has been
done through standard specification languages PSL [12] and SVA [2].

Similar verification methods have been introduced in the analog and mixed-signal do-
main with the advent of hybrid automata [19] and hybrid Petri-nets [18], which serve as
models to describe systems with continuous dynamics with switches, and the algorithms
for the exhaustive exploration of their search space. While certain progress has been made
recently in that field [3, 13], scalability remains an important issue for the exhaustive verifi-
cation of hybrid systems, due to the explosion of the underlying state space. Consequently,
this verification method can be used nowadays to reason about small critical analog and
mixed-signal blocks containing up to a dozen continuous variables. Formal specification
languages adapted to analog and mixed-signal systems were considered in the context of
model checking in [9, 27].

The preferred analog validation method remains simulation-based testing, combined with
a number of common analysis techniques (frequency-domain analysis, statistical measures,
parameter extraction, eye detection etc.) The validation tools are specific to the class of
properties checked, and include waveform analyzers and calculators, measuring commands
as well as manually written scripts. These solutions are often ad-hoc and may require con-
siderable user effort, and in the case of scripts, reusability becomes an issue.

The gap between formal verification and standard simulation analysis of analog systems
can be reduced by introducing formal specifications into the domain of simulation. This
approach relies on an automatic construction of an observer, also called a property checker,
from the formula. This checker takes the form of a program that can be interfaced with the
simulator and alerts the user if the property is violated by a simulation trace. This method
is not complete, but can be effectively used to catch “bugs” in the system. It can be more
reliable and efficient than the visual inspection of simulation traces, or manual construction
of property observers. This procedure, often related to as lightweight verification, has been
successfully integrated into the validation flow of software and hardware frameworks, and
temporal logic has been used as the specification language in a number of property checking
tools, including TemporalRover [8], FoCs [1], Java PathExplorer [14] and MaCS [17].

The extension of property-based checkers to analog and mixed-signal systems has been
proposed in [20, 22, 25], with the introduction of the formal specification language STL/PSL,
based on the dense-time temporal logic MITL [5], and it allows to relate temporal behavior of
continuous waveforms via their static abstractions. The properties expressed in STL/PSL can
be checked against analog simulation traces with the tool AMT [22, 25]. A similar approach
for checking PSL properties of discrete time analog and mixed-signal systems was proposed
in [6]. The authors of [16] describe a framework based on PSL extended with analog op-
erators, which is targeted at checking mixed-signal interface properties. In [7], the authors
introduce the ANACTL logic, an analog extension of CTL, used to check properties of a
finite state machine, which represents a set of discretized and bounded transient simulation
traces.

116 Form Methods Syst Des (2010) 36: 114–130

In this paper, we study the framework of property checkers in the analog domain and
its applicability to real-world industrial examples. We present a case study where we trans-
late two non-trivial properties of a DDR2 memory interface [15] in STL/PSL and use the
monitoring tool AMT to check the specification against the simulation waveforms. DDR2
memory is a natural candidate for this case study as it contains a number of timing rela-
tions between different analog signals. We are particularly interested in the expressiveness
of STL/PSL with respect to the class of properties informally described in the official DDR2
specification document.

The rest of this document is organized as follows: in Sect. 2 we present the STL/PSL

specification language. Section 3 describes some non-trivial properties of the DDR2 mem-
ory component and their formalization and translation into STL/PSL. The experimental re-
sults are reported in Sect. 4 followed by a discussion about the results and the conclusions
(Sect. 5).

2 STL/PSL specification language

The specification of properties of continuous waveforms requires an adaptation of the se-
mantic domain and the underlying logic. Let the time domain T be the set R≥0 of non-
negative real numbers. We consider finite length signals ξ over an abstract domain D, which
are partial functions ξ : T → D whose domain of definition is I = [0, r), r ∈ Q>0. The length
of the signal ξ is r , and is denoted with |ξ | = r . We restrict our attention to two particular
types of signals, Boolean signals with D = B and continuous signals with D = R. We denote
by πp(ξ) the projection of the signal ξ on the dimension with domain B that corresponds to
the proposition p (likewise, πs(ξ) denotes projection of the signal ξ on the dimension with
domain R corresponding to the continuous variable s).

The STL/PSL logic is an extension of MITL [5] and STL [20] logics, using layers in the
fashion of PSL [12]. The analog layer allows to reason about continuous signals and the
temporal layer relates the temporal behavior of input traces. The “communication” between
the two layers is done via static abstractions that partition the continuous state space accord-
ing to some (in)equality constraints on the continuous variables. The STL/PSL properties are
targeted at the lightweight verification over finite traces, so the language adopts the finitary
interpretation in the spirit of PSL, with strong and weak forms of the temporal operators.1

The analog layer of STL/PSL is defined by the following grammar:

φ :== s | shift(φ,k) | φ1 � φ2 | φ � c | abs(φ)

where s belongs to a set S = {s1, s2, . . . , sn} of continuous variables, � ∈ {+,−,∗}, c ∈ Q

and k ∈ Q
+.

The semantics of the analog layer of STL/PSL is defined as an application of the analog
operators to the input signal ξ :

s[t] = πs(ξ)[t]
shift(φ,k)[t] = φ[t + k]

1The strong form of an operator requires the terminating condition to occur before the end of the signal, while
the weak form makes no such requirements. In PSL for example, until! and until represent the strong
and the weak form of the until operator, respectively.

Form Methods Syst Des (2010) 36: 114–130 117

(φ1 � φ2)[t] = φ1[t] � φ2[t]
(φ � c)[t] = φ[t] � c

abs(φ)[t] =
{

φ[t] if φ[t] ≥ 0

−φ[t] otherwise

The temporal layer of STL/PSL contains both future and past operators and is defined as
follows:

ϕ :== p | φ ◦ c | not ϕ | ϕ1 or ϕ2 |
ϕ1 until! I ϕ2 | ϕ1 until I ϕ2 | ϕ1 since I ϕ2

rise(ϕ) | fall(ϕ)

where p belongs to a set P = {p1,p2, . . . , pn} of propositional variables, a,b,c ∈ Q,
◦ ∈ {>,>=,<,<=,==} and I is an interval of type (a, b), (a, b], [a, b), [a, b], (a,∞)

or [a,∞), where a, b are rationals with 0 ≤ a < b.
The satisfaction relation (ξ, t) |= ϕ, indicating that signal ξ satisfies ϕ at time t is defined

inductively as follows:

(ξ, t) |= p iff πp(ξ)[t] = TRUE

(ξ, t) |= φ ◦ c iff φ[t] ◦ c
(ξ, t) |= not ϕ iff (ξ, t) 	|= ϕ

(ξ, t) |= ϕ1 or ϕ2 iff (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1 until! I ϕ2 iff ∃t ′ ∈ t + I st (t ′ < |ξ | and (ξ, t ′) |= ϕ2) and

∀t ′′ ∈ (t, t ′) (ξ, t ′′) |= ϕ1

(ξ, t) |= ϕ1 until I ϕ2 iff ∃t ′ ∈ t + I st (t ′ ≥ |ξ | or (ξ, t ′) |= ϕ2) and

∀t ′′ ∈ (t, t ′) (ξ, t ′′) |= ϕ1

(ξ, t) |= ϕ1 since I ϕ2 iff ∃t ′ ∈ t − I st t ′ ≥ 0 and (ξ, t ′) |= ϕ2 and

∀t ′′ ∈ (t, t ′) (ξ, t ′′) |= ϕ1

(ξ, t) |= rise(ϕ) iff ((ξ, t) |= ϕ and ∃ t ′ ∈ [0, t) st

∀t ′′ ∈ (t ′, t) (ξ, t ′′) 	|= ϕ) or

((ξ, t) 	|= ϕ and ∃ t ′ > t st

∀t ′′ ∈ (t, t ′) (ξ, t ′′) |= ϕ)

(ξ, t) |= fall(ϕ) iff ((ξ, t) 	|= ϕ and ∃ t ′ ∈ [0, t) st

∀t ′′ ∈ (t ′, t) (ξ, t ′′) |= ϕ) or

((ξ, t) |= ϕ and ∃ t ′ > t st

∀t ′′ ∈ (t, t ′) (ξ, t ′′) 	|= ϕ)

An STL/PSL specification ϕprop is an STL/PSL temporal formula. The signal ξ satisfies
the specification ϕprop, denoted by ξ |= ϕprop, iff (ξ,0) |= ϕprop.

118 Form Methods Syst Des (2010) 36: 114–130

Other standard operators such as strong and weak versions of always and eventually, as
well as their past counterparts historically and once can be derived from the basic ones.
Note that the syntax and semantics of STL/PSL differ from [25] in several aspects. The until
operator has the strict semantics as originally proposed in [5] and the past operators as well
as events (detection of rising and falling edges of a signal) have been added to the language.2

The STL/PSL language contains some additional constructs that simplify the process of
property specification. Each top-level STL/PSL property is declared as an assertion, and
a number of assertions can be grouped into a single logical unit in order to monitor them
together at once. We also add a definition directive which allows the user to declare a formula
and give it a name, and then refer to it as a variable within the assertions. The Boolean and
analog variables are typed (prefixes b: and a:, respectively). The extended STL/PSL is
defined with the following production rules

stl_psl_prop :==
vprop NAME {
{ define_directive } { assert_directive }

}

define_directive :==
define b:NAME := stl_psl_property
| define a:NAME := analog_expression

assert_directive :==
NAME assert : stl_psl_property

where stl_psl_property and analog_expression correspond to ϕ and φ defined
above, respectively.

3 Translation of DDR2 properties to STL/PSL assertions

The subject of this case study is a DDR2 memory interface developed at Rambus. DDR2
presents a number of features that make it a good candidate for property-based monitoring
approach. The memory interface acts as a bus between the memory and other components
in the circuit and exhibits the communication of digital data implemented at the analog
level. Hence, the correct functioning of a DDR2 memory interface largely depends on the
appropriate timing of different signals within the circuit. In this section, we describe two
typical DDR2 properties, one specifying the correct alignment between analog signals, and
the other reasoning about time accumulation error in the clock signal. We focus on different
steps needed for translating these informally described properties into an STL/PSL specifi-
cation.

The simulation traces provided by Rambus are from a DDR2-1066 interface with single-
ended data strobe, but there are no written specification documents for this particular design
setting. Instead, we used the specification for DDR2-400 and DDR-800 from the official
document.

2The underlying changes that were done to support these extensions are out of scope in this paper, see [22]
for more details.

Form Methods Syst Des (2010) 36: 114–130 119

3.1 Data and data strobe alignment property

In DDR2, the data access is controlled by a single-ended or differential data strobe signal,
which acts as an asynchronous clock. The official JEDEC DDR2 specification describes,
amongst others, a number of properties that involve timing relationship between events that
happen in data and data strobe signals. In this section, we are particularly interested in a
property that defines the correct alignment between the data and data strobe signals. The
case study considers the specification parameters for the single-ended data strobe DDR2-
400 memory interface, which is part of the JEDEC standard.

The DDR2 specification defines a number of thresholds, shown in Table 1. The temporal
relationship between data signal DQ and data strobe signal DQS is defined with respect to
different crossings of these thresholds.

The general definition of the alignment of data DQ and data strobe DQS signals is il-
lustrated in Fig. 1. The proper alignment between the two signals is determined by two
values, the setup time tDS and hold time tDH. The setup and hold times of DQ and DQS are
checked on both their falling and rising edges. For the sake of simplicity, we only consider
the specification of the property for the setup time at the signals’ falling edge and the other
cases are similar and symmetric.

Table 1 Threshold values for
DQ and DQS Threshold Value (V)

VDDQ 1.8

VIH(AC)min 1.25

VIH(DC)min 1.025

VREF 0.9

VIL(DC)max 0.775

VIL(AC)max 0.65

Fig. 1 Data DQ and data strobe DQS alignment

120 Form Methods Syst Des (2010) 36: 114–130

Fig. 2 DQ/DQS falling setup time tDS and the relation between slew rate and �TF

Informally, the setup property at the falling edge requires that whenever DQS crosses the
VIH(DC)min threshold from above, the previous crossing of VIL(AC)max by the signal DQ from
above should precede it by at least a period of time of tDS. This property is formalized in
STL/PSL as follows

define b:dqs_above_vihdcmin := (a:DQS >= 1.025);
define b:dqs_above_vilacmax := (a:DQ >= 0.65);

always (fall(b:dqs_above_vihdcmin)
-> historically[0:tDS] not fall(b:dq_above_vilacmax));

The above property is, as one can see, naturally expressed in STL/PSL, but unfortunately,
it does not present the full reality. In fact, setup time tDS is not a constant value, but rather
varies during the simulation according to the slew rates (slopes) of DQ and DQS signals.
For example, when DQ and DQS fall more sharply, the required tDS increases. Setup time
tDS is defined as the sum of a (constant) base term tDS(base) and a (variable) correction
term �tDS

tDS = tDS(base) + �tDS

The setup base term tDS(base) is equal to 150 ps for the single-ended DDR2-400. The
correction term �tDS is a value that varies according to the slew rates of DQ and DQS, with
the setup slew rate of a falling signal being defined as

sr = VREF − VIL(AC)max

�TF
(1)

where �TF is the time that the signal spends between VREF(DC) and VIL(AC)max . As we can
see, the falling setup slew rate sr of a signal can be deduced from �TF.

In order to extract the setup correction term �tDS from the actual slew rates of DQ and
DQS (srDQ and srDQS), we can use a specification table from [15], partially reproduced in
Table 2. According to the JEDEC specification, �tDS corresponding to the slew rates not

Form Methods Syst Des (2010) 36: 114–130 121

Table 2 Correction terms for
setup time DQS single-ended slew rate tDS

2 V/ns 1.5 V/ns 1 V/ns 0.9 V/ns

DQ 2 V/ns 188 167 125

Single-ended 1.5 V/ns 146 125 83 81

Slew rate 1 V/ns 63 42 0 −2

tDS 0.9 V/ns 31 −11 13

listed in Table 2 should be linearly interpolated. Consequently, we can apply the following
sequence of computations in order to determine the correct value of tDS at any time

1. Measure �TF, the time that the signal remains within the setup falling slew rate region
2. Infer the setup falling slew rate value from �TF
3. Interpolate the correction term from the slew rate specification table
4. Add the correction term to the base term in order to obtain tDS

To summarize, tDS is a value that varies during the simulation as a function of slew
rates of DQ and DQS (tDS = f (srDQ, srDQS)). The problem is that STL/PSL cannot capture
parametrized time bounds and therefore we have to use approximation in order to express
a similar alignment property that still preserves some guarantees. We can subdivide the do-
main of slew rates (say S = [srmin, srmax]) into n regions R1, . . . ,Rn. For each pair (Ri,Rj)

of DQ/DQS slew rate regions, we assign a separate constant setup time tDSij . Instead of
one property, we will have n × n properties of the form:

– “whenever DQS crosses the VIH(DC)min threshold from above, DQ slew rate srDQ is in Ri

and DQS slew rate is in Rj , the previous crossing of VIL(AC)max by the signal DQ from
above should precede it by at least a period of time of tDSij .”

The proper constant value for tDSij for a pair of slew rate regions (Ri,Rj) can be chosen
in two different manners. The first solution consists in computing tDSij from the maximum
correction term for the DQ and DQS slew rates that are in the Ri and Rj regions, respec-
tively. This corresponds to an over-approximation of the original specification, and if this
property is violated, we don’t know if it is a real failure or a false alarm. On the other hand,
the satisfaction of the over-approximated property implies that the original property holds
too. Conversely, the computation of tDSij from the minimum correction term defined for the
slew rates in the pair of regions (Ri,Rj) yields to an under-approximation of the original
property. If the new property is falsified, we know that it corresponds to a real violation,
while if it passes, we cannot say whether we are indeed safe.

As an example, consider the highlighted range of Table 2, which we call the “top-left”
range, where the setup falling slew rates of DQ and DQS are between 1 and 2 V/ns. For
the conservative approximation of tDS, with slew rates falling in that range, we choose the
worst-case �tDS as the correction term, that is 188 ps. Hence, the approximated falling
setup time tDST L for all DQ and DQS with falling slew rates between 1 and 2 V/ns would
be equal to tDST L = 150 + 188 = 338 ps.

In order to determine the falling slew rates of DQ and DQS, we need to detect how
much time these signals remain in their falling slew region (between VREF(DC) and VIL(AC)max

crossing VREF(DC) from above). We can detect when the signal is within the falling slew
region with the following properties

122 Form Methods Syst Des (2010) 36: 114–130

define b:dq_in_fsr :=
((a:DQ <= 0.9) and (a:DQ >= 0.65)) since (a:DQ >= 0.9)

define b:dqs_in_fsr :=
((a:DQS <= 0.9) and (a:DQS >= 0.65)) since (a:DQS >= 0.9)

which hold if the signal is in the falling slew region, as shown in Fig. 3.
Note that according to (1), DQ and DQS have their slew rates in the range between 1 and

2 V/ns if their respective �TF is between 125 and 250 ps. Moreover, the value of tDS is
determined at the crossing of VREF(DC) by DQS from above (point ref in Fig. 4) with respect
to the previous falling setup slew rate of DQ and the next falling setup slew rate of DQS, as
shown in Fig. 4. Hence, the falling slew rates of DQ and DQS are in the range between 1
and 2 V/ns if the following formulae hold

Fig. 3 Falling slew region and
�TF

Fig. 4 Relation between the reference point and the corresponding �TF of DQ and DQS

Form Methods Syst Des (2010) 36: 114–130 123

define b:dq_slew_rate_in_1_2 := not b:dq_in_fsr since
(b:dq_in_fsr since[125:250] rise(b:dq_in_fsr));

define b:dqs_slew_rate_in_1_2 := not b:dqs_in_fsr until
(b:dqs_in_fsr until[125:250] fall(b:dqs_in_fsr));

define b:top_left_region :=
b:dq_slew_rate_in_1_2 and b:dqs_slew_rate_in_1_2;

Finally, the main property for the falling setup time, provided that DQ and DQS falling
slew rates are in the range between 1 and 2 V/ns, is expressed as

define b:dqs_above_vihdcmin := (a:DQS >= 1.025);
define b:dqs_above_vilacmax := (a:DQ >= 0.65);

always ((fall(b:dqs_above_vihdcmin) and b:top_left_region)
-> historically[0:338] not fall(b:dq_above_vilacmax));

with similar properties that have to be written for each range of DQ and DQS slew rates.

3.2 Jitter property

An important class of DDR2 properties involves the jitter of the clock signals. The differ-
ential clock is composed of two signals, CK and CKB and the clock period tCK is defined
as the time elapsed between two consecutive crossings of a rising CK and a falling CKB, as
show in Fig. 5. The average clock period tCK(avg) is computed over 200 consecutive clock
periods. Finally, the differential clock accumulation error over n periods is the difference be-
tween n actual periods and n average clock periods. The acceptable accumulation error over
n clock periods is defined in Fig. 6 taken from the DDR2 official specification document.

The purpose of this example is to express accumulation error properties using STL/PSL.
In order to be able to specify time accumulation error between n consecutive events, we need
a “counting” operator in the spirit of regular expressions. Consequently, for the purpose of
the case study we define an ad-hoc operator next_ rise[n]I(phi). Intuitively, this
operator holds at time t , if and only if the nth consecutive rising edge of phi happens
within the interval t ′ ∈ t ⊕ I (see Fig. 7). Formally, the semantics of the operator is defined
as follows

(ξ, t) |= next_rise[n]I(phi)

iff ∃t1, . . . , tn st t ≤ t1 < · · · < tn and

tn ∈ t ⊕ I and
n∧

i=1

(ξ, ti) |= rise(phi) and

n−1∧
i=1

∀t ′ ∈ (ti , ti+1) (ξ, t ′) 	|= rise(phi)

Now, we can specify the property that defines the acceptable accumulation error over n clock
periods (we set n = 3 for this example).

124 Form Methods Syst Des (2010) 36: 114–130

Fig. 5 Differential clock period

Fig. 6 Jitter accumulation error specification

Fig. 7 Next rise operator

We first need to detect clock periods and we use the property below in order to achieve
this goal. The rise operator is needed in order to consider only differential crossings of
CK and CKB when CK is rising and CKB falling, as shown in Fig. 8. We use the STL/PSL

define construct to declare a Boolean signal (as a variable with a name) that corresponds
to a temporal property. The defined signal can be reused in other properties as a variable.

define clk_period_start := rise (CK - CKB >= 0);

Form Methods Syst Des (2010) 36: 114–130 125

Fig. 8 Detection of the rising edge of the differential clock period

The property in STL/PSL that specifies the allowed accumulation error over 3 cycles is
expressed as follows

always (clk_period_start ->
next_rise[3][3*tCK(avg)-175:3*tCK(avg)+175]
clk_period_start);

The average clock period tCK(avg) varies in time and in STL/PSL we can currently de-
fine only fixed time bounds. In order to resolve this problem, we had to use the existing
measures of the minimum and maximum average differential clock periods for the given
simulation traces, obtaining the values tCK(avg)min = 1876 ps and tCK(avg)max = 1877 ps.
We used these values in order to determine fixed time bounds in a conservative way
[3 ∗ tCK(avg)max − 175 : [3 ∗ tCK(avg)min + 175] = [5456 : 5803]. Finally, we could write
the following property for the differential clock accumulation error over 3 cycles.

always (clk_period_start ->
next_rise[3][5456:5803] clk_period_start);

4 Experimental results

In this case study, we considered a single-ended DDR2-1066 memory interface, which is not
yet a JEDEC standard. Hence the exact specification parameters could not be obtained for
that particular version of the DDR2 memory, and we used instead the official specification
parameters for the single-ended DDR2-400 presented in Sect. 3, assuming that these para-
meters would be conservative enough. The simulation traces (see Fig. 9) contained about
180,000 samples for each signal.

For the case study evaluation, we used the AMT stand-alone tool. AMT takes as input an
STL/PSL specification and analog/mixed-signal traces. The tool translates the specification
into an interpreted program (see [22, 25] for a presentation of translation algorithms) that

126 Form Methods Syst Des (2010) 36: 114–130

Fig. 9 Fragment of a data DQ and data strobe DQS simulation trace

Fig. 10 Architecture of STL/PSL property checkers

checks whether the assertions are satisfied with respect to the simulation waveforms. The
architecture of AMT is shown in Fig. 10. The tool offers two evaluation modes, offline,
where the input traces are validated after the simulation, and incremental, where the property
evaluation can run in parallel with the simulation via a communication through a TCP/IP

Form Methods Syst Des (2010) 36: 114–130 127

Table 3 Evaluation time for the
jitter property—n is the number
of consecutive clock periods

n time (s)

1 1.8

2 1.8

5 1.9

10 2.1

20 2.6

50 4.8

connection and try to early determine the satisfaction of the formula.3 We used the offline
mode for this case study because the DDR2 simulation traces were already available.

4.1 Methodological evaluation

Property-based monitoring of analog and mixed-signal behaviors is a novel approach and
it is worth discussing some methodological aspects related to this case study. The process
started by investigating the validation methods that are currently used by analog designers
and understanding what are the actual difficulties that they encounter in checking the cor-
rectness of their designs. The next step required to identify the type of application whose
validation is not fully covered by existing tools and that could benefit from assertion-based
monitoring techniques, which led us to consider the DDR2 memory interface. With the help
of analog designers we were able to study in detail different properties that are defined in
the official DDR2 specification, and consequently understand how to translate them into
STL/PSL assertions. This preparation process of the case study is difficult to quantify al-
though it clearly took orders of magnitude more time than the actual writing and evaluation
of the assertions that describe DDR2 properties. Despite the length of this pre-processing,
it was a crucial step in understanding relevance, strengths and weaknesses of the property-
based analog monitoring framework.

4.2 Experimental evaluation

The translation of the alignment property into a set of STL/PSL assertions started by splitting
the main property into 4 different ranges, taking an over-approximated tDS value for each
slew rate range. The evaluation of each property took about 7 seconds. Since some of the
over-approximating properties were shown to be false, we decomposed them further through
3 iterations into a total of 7 properties before being able to show that the simulation traces
satisfy the specification. The properties were refined manually and this proved to be a tedious
task.

The jitter property was evaluated with the accumulation error specified over a varying
number of clock periods. Table 3 shows the time required for the evaluation of the property
with respect to the different numbers of clock periods considered.

5 Future work and conclusion

The DDR2 case study presents, to the best of our knowledge, a first attempt to apply
assertion-based verification framework to a realistic industrial example in a systematic way.

3Relative time and memory requirements are compared and analyzed in [25].

128 Form Methods Syst Des (2010) 36: 114–130

The importance of this case study lies in the fact that it exposes the relevance and the level
of maturity of assertion-based methodology in the context of analog validation.

The case study highlighted an important class of non-trivial properties that describe
event-based timing relationships between analog signals, and that can be in general ex-
pressed in a specification language such as STL/PSL. Since assertion checking remains a
“lightweight” simulation-based validation technique, it fits well with the current practice
of analog designers. We believe that this methodology can provide an extra set of useful
checks on simulation traces, which are already generated by the designers for their own pur-
poses. Moreover, in the analog domain it often takes orders of magnitude longer to produce
simulation traces than to check assertions. Consequently, the overhead induced by property
monitors with respect to simulation time is low, while it can provide another level of confi-
dence in the correct functioning of the underlying design. In our opinion, the general idea of
simulation-based checking of properties to find potential bugs may be successfully adapted
from digital to analog and mixed-signal domain and integrated into the analog validation
flow in a reasonably-near future.

The DDR2 case study also revealed some weaknesses in the current state of analog prop-
erty checking, providing useful guidelines for further development and optimization of this
methodology. For instance, the timing relationship between analog signals can be more com-
plex than what STL/PSL (and MITL) can express. This problem has been exposed by both the
DDR2 data vs. data strobe alignment and the jitter properties. For the former, we had to use
approximate techniques in order to show that the alignment between data and data strobe
signals was correct. Consequently, the resulting specification turned out to be quite complex
to write. The jitter property required introducing a novel temporal operator that allows to
reason about the relative timing distance between n consecutive events. Another difficulty is
related to the fact that STL/PSL is based on a temporal logic, a formalism that is esoteric to
analog designers.4 Consequently, we should consider identifying some common properties
encountered by analog designers, and use parameterized templates to “hide” the temporal
logic details.

The STL/PSL specification language remains mainly oriented towards properties of time
domain transient simulations. Hence, it does not support yet some purely “analog” properties
such as gain, real slew rate detection and validation or common mode rejection ratio. An-
other useful class of properties that is not covered by the language are those extracted from
the frequency domain of the waveforms, such as open loop gain or phase margin. Although
this class of properties is important to cover and would certainly make our framework more
appealing to analog designers, one should acknowledge that there is an existing palette of
tools that can do this kind of waveform analysis. What is really missing in the validation of
analog and mixed-signal design is a framework that allows specification and validation of
properties at the interface between its analog and digital parts. We believe that a language
like STL/PSL presents a particularly good basis for building such framework.

We present here some directions for future work based on different observations made
during the evaluation of the case study:

Parameterized time bounds: the DDR2 case study exposed that STL/PSL temporal oper-
ators with constant time bounds may not be sufficient to describe some realistic relations
between analog signals. The temporal relations between “events” in input signals require

4It might be the case that the verification task will be carried out by digital designers at the system integration
phase, which will make the “cultural” problems less severe. However, this observation opens the question of
what properties are most beneficial to integration within the property-based monitoring approach.

Form Methods Syst Des (2010) 36: 114–130 129

more flexibility, such as time bounds that are functions of parameters that vary during the
simulation.

Tighter integration with simulators: property-based analog checking approach would be
more appealing to designers if the specification and monitoring process were embedded in
the standard design languages and simulators. In the digital world, the assertions are often
integrated into Verilog or VHDL code and are inserted at the points where the property
should be checked. A tighter integration of analog and mixed-signal assertions into the
current design flow would consist of the following steps:

1. Standardization of the language, a step that could convince EDA companies to consider
integrating assertion-based AMS validation methodology into their tools, and would en-
courage designers to use such assertions in their designs. STL/PSL follows this direction
as it extends the existing standard PSL constructs. Due to the importance of the SVA

specification language in the digital domain, we would also need to consider analog and
mixed-signal extensions of SVA.

2. Integration of assertions into VERILOG-AMS and VHDL-AMS code. Designers prefer in-
serting assertions at the points in their design which they want to check, rather than hav-
ing a separate tool mainly used solely for specification and evaluation of the properties.
This tight integration would bring other benefits, such as the possibility to use exist-
ing VERILOG/VHDL-AMS constructs within the assertions (better detection of threshold
crossing using @cross, express richer properties using derivatives and integrals, etc.).
Finally, property monitors would be embedded into the simulation process, and could
stop it when an assertion is violated and hence save simulation time.

Automatic parameter extraction: the interaction with analog designers revealed that the
verification with respect to the existing specification is not the only interesting question
that can be asked about an analog design. In fact, the specification parameters such as time
relationship between different signals are often not known in advance. Such parameters are
rather extracted from the simulation traces, and the specification is completed only after
simulating a model of the design. We would like to express properties without specifying
the time bounds, for example always (rise(b:p) -> eventually![?] b:q),
asking the following question: given a set of simulation traces, what are the minimum
and maximum time bounds, if any, such that the property is satisfied. In formal methods
community, this problem is known as model measuring, and has been considered in the
context of parametric temporal logics in [4].

Integration with test generation: an interesting direction of research would be to combine
the property-based analog checkers approach with techniques for automatic generation of
simulation traces, such as those studied in [23, 24]. The combined simulation generation
and checking flow could make the analog validation more automatic.

More comprehensive examples: the case study carried out in this paper pointed out the
classes of analog properties that are natural to express in a specification language like
STL/PSL, but more importantly helped us to identify possible extensions of the language
that would increase its expressiveness and make the specification process easier to the ana-
log designer. Applying the property-based validation methodology to other industrial ana-
log and mixed-signal design examples would provide additional useful information about
the robustness of this approach and guide our future work on extending the specification
language.

Acknowledgements We would like to thank Tom Giovannini from Rambus, Inc. for his detailed explana-
tions of the DDR2 specification and for providing us with simulation traces. We would also like to thank
Oded Maler from Verimag for discussions on the STL/PSL language and its extensions.

130 Form Methods Syst Des (2010) 36: 114–130

References

1. Abarbanel Y, Beer I, Glushovsky L, Keidar S, Wolfsthal Y (2000) FoCs: automatic generation of sim-
ulation checkers from formal specifications. In: Proc CAV’00. LNCS, vol 1855. Springer, Berlin, pp
538–542

2. Accelera Standard. SystemVerilog 3.1a Language reference manual
3. Asarin E, Dang T, Frehse G, Girard A, Le Guernic C, Maler O (2006) Recent progress in continuous and

hybrid reachability analysis. In: CACSD
4. Alur R, Etessami K, La Torre S, Peled D (1999) Parametric temporal logic for “model measuring”. In:

ICALP’99, pp 159–168
5. Alur R, Feder T, Henzinger TA (1996) The benefits of relaxing punctuality. J Assoc Comput Mach

43:116–146
6. Al Sammane G, Zaki MH, Dong ZJ, Tahar S (2007) Towards assertion based verification of analog and

mixed signal designs using PSL. In: FDL’07
7. Dastidar TR, Chakrabarti PP (2005) Verification system for transient response of analog circuits using

model checking. In: VLSID’05, pp 195–200
8. Drusinsky D (2000) The temporal rover and the ATG rover. In: Proc SPIN’00. LNCS, vol 1885. Springer,

Berlin, pp 323–330
9. Fainekos G, Girard A, Pappas G (2006) Temporal logic verification using simulation. In: Proc FOR-

MATS’06. LNCS, vol 4202. Springer, Berlin, pp 171–186
10. Gerth R, Peled DA, Vardi MY, Wolper P (1995) Simple on-the-fly automatic verification of linear tem-

poral logic. In: PSTV, pp 3–18
11. Gastin P, Oddoux D (2001) Fast LTL to Büchi automata translation. In: CAV’01. LNCS, vol 2101.

Springer, Berlin, pp 53–65
12. Havlicek J, Fisman D, Eisner C (2004) Basic results on the semantics of Accelera PSL 1.1 foundation

language. In: Technical report 2004.02, Accelera
13. Hartong W, Hedrich L, Barke E (2002) Model checking algorithms for analog verification. In: DAC’02
14. Havelund K, Rosu G (2001) Java PathExplorer—a runtime verification tool. In: Proc. ISAIRAS’01
15. JEDEC Standard. JESD79-2C DDR2 SRAM specification
16. Jesser A, Lämmermann S, Pacholik A, Weiss R, Ruf J, Fengler W, Hedrich L, Kropf T, Rosenstiel W

(2007) Analog simulation meets digital verification—a formal assertion approach for mixed-signal veri-
fication. In: SASIMI’07, pp 507–514

17. Kim M, Lee I, Sammapun U, Shin J, Sokolsky O (2002) Monitoring, checking, and steering of real-time
systems. In: Proc. RV’02. ENTCS 70(4)

18. Little S, Seegmiller N, Walter D, Myers CJ, Yoneda T (2006) Verification of analog/mixed-signal circuits
using labeled hybrid petri-nets. In: ICCAD’06, pp 275–282

19. Maler O, Manna Z, Pnueli A (1992) From timed to hybrid systems. In: Real-time: theory in practice.
LNCS, vol 600. Springer, Berlin, pp 447–484

20. Maler O, Nickovic D (2004) Monitoring temporal properties of continuous signal. In: FOR-
MATS/FTRTFT’04, pp 152–166

21. Manna Z, Pnueli A (1995) Temporal verification of reactive systems: safety. Springer, Berlin
22. Nickovic D (2008) Checking timed and hybrid properties: theory and practice. PhD thesis
23. Nahhal T, Dang T (2007) Test coverage for continuous and hybrid systems. In: CAV’07, pp 449–462
24. Nahhal T, Dang T (2007) Guided randomized simulation. In: HSCC’07, pp 731–735
25. Nickovic D, Maler O (2007) AMT: a property-based monitoring tool for analog systems. In: FOR-

MATS’07, pp 304–319
26. Somenzi F, Bloem R (2000) Efficient Büchi automata from LTL formulae. In: CAV’00. LNCS, vol 1855.

Springer, Berlin, pp 248–263
27. Steinhorst S, Hedrich L (2008) Model checking of analog systems using an analog specification lan-

guage. In: DATE’08, pp 324–329
28. Vardi MY, Wolper P (1986) An automata-theoretic approach to automatic program verification. In:

LICS’86, pp 322–331

	Analog property checkers: a DDR2 case study
	Abstract
	Introduction
	stl/psl specification language
	Translation of DDR2 properties to stl/psl assertions
	Data and data strobe alignment property
	Jitter property

	Experimental results
	Methodological evaluation
	Experimental evaluation

	Future work and conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

