
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Generating Hardware Modules via
Binary Translation of RISC-V Binaries

João Miguel Curado Conceição

Mestrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Nuno Paulino

Second Supervisor: João Bispo

March 31, 2022

Resumo

Recentemente novos paradigmas como Edge Computing trouxeram a necessidade de desenvolver
processadores com maior capacidade computacional, energicamente eficientes e menos dispendiosos.
Estes requisitos estão a tornar-se mais difíceis de atingir devido a vários entraves que a indústria
de circuitos integrados tem vindo a enfrentar, tal como o fim da Lei de Moore a o fim do Dennard
Scaling. Estes problemas têm feito as novas gerações de processos de produção exibirem ganhos
de desempenho mais baixos, especialmente no caso do desempenho single-threaded, a uma menor
diminuição de consumo energético e uma menor redução no custo por transístor. Para mitigar estes
problemas várias alternativas foram desenvolvidas, como o desenvolvimento de aceleradores de
hardware que são workload specific, como por exemplo Neural Processing Units (NPUs) para
aceleração de algoritmos de redes neuronais. No entanto estas alternativas requerem o desen-
volvimento, validação e produção de hardware, que são processos extremamente demorados e
dispendiosos, e por tal a produção de aceleradores dedicados para cada aplicação a ser acelerada
não é plausível.

Os Field Programmable Gate Arrays (FPGAs) permitem o desenvolvimento de custom hard-
ware sem necessitarem do dispendioso processo de produção. Esta alternativa tem vindo a ser
unicamente utilizada como uma opção rentável quando a produção de hardware especializado não
se justifica devido ao baixo volume de produção. Estes componentes são raramente utilizados
no mercado de consumo, e nunca foram adoptados como aceleradores reconfiguráveis em fluxos
tradicionais de desenvolvimento de software, dado que estes componentes requerem um profundo
conhecimento em desenvolvimento sistemas digitais e um longo processo de validação. Recente-
mente novos processos de desenvolvimento para estes dispositivos que tentam tornar o uso destes
componentes mais semelhante ao desenvolvimento de software têm sido apresentados, embora
ainda necessitem de algum conhecimento em desenvolvimento de sistemas digitais.

Nesta dissertação foi desenvolvida uma ferramenta que efectua a geração, validação e caracter-
ização automática de aceleradores em hardware utilizando aplicações já compiladas, em particular
para a arquitectura RISC-V. Esta ferramenta tem como objetivo permitir a geração de aceleradores
sem a necessidade de qualquer conhecimento em desenvolvimento de sistemas digitais e sem re-
querer qualquer alteração do código já desenvolvido.

i

ii

Abstract

In recent years new paradigms such as Edge Computing have brought forth the need to develop
processors that are more powerful, energy efficient and cost effective. These requirements are
getting more difficult to meet due to various bottlenecks being faced by the Integrated Circuit (IC)
industry, such as the breakdown of Moore’s Law and Dennard Scaling. Due to these issues newer
process node generations have not benefited from the same rate of performance gains, specially in
single-threaded performance, power consumption decrease and reduction of cost per transistor. To
mitigate these issues various approaches have been taken, such as the development of workload
specific hardware accelerators, such as Graphical Processing Units (GPUs), but these approaches
require the development of workload specific accelerators and the validation and manufacturing
of hardware, which are lengthy and expensive processes.

Field Programmable Gate Arrays (FPGAs) allow the development of custom hardware ac-
celerators without requiring the expensive manufacturing process of traditional workload specific
hardware accelerators. These devices have been mostly used only as a cost effective alternative
in low production volume applications. These devices are rarely used in the consumer market,
and have never been adopted as re-configurable hardware accelerators in traditional software de-
velopment flows due to the fact that they require extensive expertise in digital hardware design
and require a lengthy validation process. Some alternative workflows that try to bring designing
FPGA hardware accelerators closer to software development have been tried, but current offerings
still require some digital hardware design expertise and the software’s code base to be altered to
support these workflows.

In this thesis, a tool-chain that enables the automatic generation and validation of FPGA hard-
ware accelerators from compiled binaries, targeting in particular the RISC-V Instruction Set Ar-
chitecture (ISA), was developed. This tool-chain allows the generation of custom hardware accel-
erators without requiring any digital hardware expertise and without requiring changing any of the
target software’s code base.

iii

iv

Acknowledgements

I would like to thank my supervisor Nuno Paulino and my second supervisor João Bispo for giving
me valuable advice and helping me throughout the duration of this thesis.

I would also like to thank my father, because of his unrelenting support and always trying to
comprehend my views, my sister for always being there whenever I needed and for teaching me to
take life more lightly, and my grandparents, for teaching me what hard work and dedication are.
Lastly I would like to thank my mother for never having stopped believing in me until the end.

I would also like to thank all of the authors of the open-source tools and libraries used in this
thesis, since their hard work, without any sort of compensation, has allowed me to do this thesis,
that would have not been possible if these free tools were not available.

João Miguel Curado Conceição

v

vi

“We need to build computers for the masses, not the classes”

Jack Tramiel, Founder of Commodore International

vii

viii

Contents

Resumo i

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 3
1.3 Objectives . 3

2 State of art 5
2.1 Binary translation . 5

2.1.1 QEMU . 5
2.2 Generation of custom instructions . 6

2.2.1 Instruction Set Extensions in an FPGA Soft Core 6
2.2.2 Efficient Custom Instructions Generator 7
2.2.3 RISC-V ISA Single Instruction Multiple Data instructions extension . . . 8

2.3 Automatic generation of HDL . 8
2.3.1 Xilinx Vitis HLS . 8
2.3.2 Chisel . 9
2.3.3 Calyx compiler infrastructure . 10

2.4 RISC-V . 11
2.4.1 Xuantie-910 . 11
2.4.2 Rocket Chip Generator . 12
2.4.3 Ibex RISC-V Core . 13

3 Proposed approach 15
3.1 Overview . 15
3.2 SPeCS Binary Translation Framework . 17

3.2.1 Frequent sequence extraction . 17
3.2.2 Assembly to Intermediate Language translation 17
3.2.3 Parse Tree . 19

3.3 Control and Data Flow Graph . 20
3.3.1 Structure . 20
3.3.2 Visual representation . 21
3.3.3 Generation . 22
3.3.4 Optimizations . 24

3.4 Module generation . 27

ix

x CONTENTS

3.4.1 Hardware Description Language generation 27
3.4.2 Synthesis . 29

3.5 Validation . 30
3.5.1 Functional validation . 31
3.5.2 Timing verification . 34

4 Results 37
4.1 Devices tested . 37
4.2 Benchmarks . 39
4.3 Results . 42

4.3.1 Stage 1 . 42
4.3.2 Stage 2 . 43
4.3.3 Stage 3 . 47
4.3.4 Impact of sequence characteristics on the performance gain obtained . . . 52

5 Conclusion and Future Development 57
5.1 Future Development . 58

References 59

List of Figures

2.1 Overview of the framework proposed by Biswas et al. [1]. 7
2.2 Different stages of the Vitis HLS on the example code snippet. 9
2.3 Example of the generation of HW modules using Calyx presented by Rachit Nigam,

et al. [2]. 11
2.4 Diagram of the pipeline of a Xuantie-910 core presented by the T-Head Division [3]. 12
2.5 Rocket Chip Generator processor sub-components presented by Krste Asanovic et

al. [4]. 13
2.6 Block diagram of the Ibex RISC-V core presented in the Ibex GitHub repository. 14

3.1 Flow graph of the developed tool-chain. 16
3.2 Example of extraction of a frequent sequence. 17
3.3 Simplified parse tree generated from the slt RISC-V RV32I instruction. 19
3.4 DOT representation of the generated CDFG of an example instruction. 22
3.5 DOT representation of the generated CDFG of the RISC-V RV32I slt instruction. 24
3.6 Result of the redundant register elimination pass on the CDFG of the sequence

shown in Listing 3.4. 25
3.7 Stages of the register name resolving pass on an example CDFG. 26
3.8 Simplified view of the AST of the generated module for the slt RISC-V RV32I

instruction. 28
3.9 Expanded view of the DeclarationBlock branch shown in Figure 3.8. 28
3.10 Expanded view of the AlwaysCombBlock branch shown in Figure 3.8. 29
3.11 Schematic of the synthesized module of the RISC-V RV32I slt instruction. 30

4.1 Generated CDFG of the extracted sequence in the hydro2d benchmark presented
in Listing 4.5. 44

4.2 Generated CDFG of the extracted sequence in the avg16 benchmark presented in
Listing 4.6. 45

4.3 Average speed up obtained per extracted sequence of a benchmark in the Liver-
more Loops benchmark set. 47

4.4 Average speed up obtained per extracted sequence of a benchmark in the Poly-
Bench/C benchmark set. 49

4.5 Average speed up obtained per extracted sequence of a benchmark in custom
benchmark set. 51

4.6 Speed-up per number of instructions in a frequent sequence in the avg16 custom
benchmark. 53

4.7 Speed-up per number of instructions in a frequent sequence in the add8par and
add8seq custom benchmarks. 54

xi

xii LIST OF FIGURES

4.8 Speed-up per number of instructions in a frequent sequence of the conv2x2 bench-
marks. 55

List of Tables

3.1 Summary of the vertices of the tool-chain’s CDFGs. 21
3.2 Summary of the edges of the tool-chain’s CDFGs. 21
3.3 Summary of the visual representation of the vertices of the tool-chain’s CDFGs. . 21
3.4 Summary of the visual representation of the edges of the tool-chain’s CDFGs. . . 22

4.1 FPGAs chosen. 37
4.2 CPUs chosen. 38
4.3 Clocks Per Instruction of the chosen CPU cores. 38
4.4 Benchmarks used. 40
4.5 Extracted sequences per benchmark. 42
4.6 Extracted sequences averages per benchmark. 43
4.7 Resource utilization and maximum operating frequency of each synthesized gen-

erated module from the Livermore Loops benchmark set. 48
4.8 Resource utilization and maximum operating frequency of each synthesized gen-

erated module from the PolyBench/C benchmark set. 50
4.9 Resource utilization and maximum operating frequency of each synthesized gen-

erated module from the custom benchmark set. 52
4.10 Decrease in maximum operating frequency with the inclusion of a multiplication. 56

xiii

xiv LIST OF TABLES

Abbreviations

ASIC Aplication Specific Integrated Circuit
AST Abstract Syntax Tree
BT Binary Translation
CDFG Control and Data Flow Graph
CPU Central Processing Unit
DSP Digital Signal Processing
FPGA Field Programmable Gate Array
GCC GNU C Compiler
HDL Hardware Description Language
HLS High-Level Synthesis
HW Hardware
IC Integrated Circuit
IDE Integrated Development Environment
IoT Internet of Things
IR Intermediate Representation
IL Intermediate Language
ISA Instruction Set Architecture
NPU Neural Processing Units
RISC Reduced Instruction Set Computer
SoC System on Chip
SSA Single Static Assignment

xv

Chapter 1

Introduction

1.1 Context

In recent years the rise of Internet of Things (IoT) and other distributed devices, and the ever

increasing computational needs have brought forth an alternative to the current data center based

paradigm [5]. This new paradigm is called Edge Computing, and it allows for lower latency, more

data privacy and lower use of the overall network bandwidth in comparison to the current paradigm

[6].

Edge computing is defined by the proximity of the computational node to the consumer. This

contrasts with the traditional data center based paradigm, where the computational nodes are con-

centrated in large data centers, that generally are very far from the consumer. Edge computing

is done by either using edge servers that are equivalent to typical servers used in data centers or

lower power versions of those, that are placed in small scale data centers that are much closer

to the consumer than the traditional large scale ones, or by using embedded solutions, where the

computational node is as close as possible to the consumer.

This new paradigm, specially in the embedded implementation, has the need for ever more

powerful, energy efficient and cost effective processors [7]. These requirements are getting more

difficult to meet because of various bottlenecks that the Integrated Circuit (IC) industry has been

facing.

The most relevant bottlenecks faced by the industry are the breakdown of Moore’s Law, which

states that the density of transistors in ICs should double every two years, and the breakdown of

Dennard Scaling, which states that as transistors get smaller their power density remains constant.

The breakdown of Moore’s Law has contributed to each new consecutive process node generation

to deliver fewer benefits in terms of performance gain, lower power consumption and cost per

transistors [8], and the breakdown of Dennard Scaling has lead to a stagnation of the maximum

operating frequency of processors [9] which lead to single-threaded performance in processors to

not increase significantly in new process node generations.

Various approaches have been taken to mitigate these issues such as the use of multi-core

Central Processing Units (CPUs), to improve the parallel execution of workloads, generally called

1

2 Introduction

multi-threaded workloads. This approach does not improve performance in all types of workloads,

because not all application are easily paralellizable via threading due to dependencies between data

or tasks [10, 11].

Another approach that has been taken is the use of more specialized Hardware (HW), such as

recently the integration of Neural Processing Units (NPU) in some portable device’s System on

Chip (SoC) used today, such as in smartphones, to accelerate machine learning workloads while

being more energy efficient than the CPU also present. In an ideal setting, specialized HW units

would be created to accelerate the required workloads while offering better energy efficiency.

Due to the fact that the manufacturing of HW devices is a long and expensive procedure, the

manufacturing of processors with HW units to accelerate the required workloads is not plausible.

Instead, the use of Field Programmable Gate Array (FPGA) as platforms for future embed-

ded systems on the edge is a possibility. FPGAs are devices where a grid of interconnected logic

blocks can be reconfigured (any number of times) in order to implement arbitrary functionality.

Although originally intended for prototyping, the increasing density of logic blocks in FPGAs,

their increasing operating clock frequencies, and the evolution of compilation tools has powered

the adoption of these devices in recent years [12]. The use of FPGAs to implement Aplication

Specific Integrated Circuit (ASIC) is sensible when the production volume is too low to compen-

sate the overhead costs of full ASIC solutions. These devices can come as discrete devices or they

can be integrated with CPUs and other processing units in a SoC.

Presently the embedded market is dominated by ARM architecture devices1, due to the fact

that they are available in different processor configurations that specialize in different applications,

from high-performance to low-power consumption. These devices have a proprietary Reduced

Instruction Set Computer (RISC) Instruction Set Architecture (ISA).

An open-source freely available alternative to the ARM ISA, called RISC-V, was developed

by Prof. Krste Asanović, Yunsup Lee and Andrew Waterman at UC Berkeley in 2010 [13, 14].

Recently this ISA is gaining popularity due to various reasons such as it being open source, free

to use, and it allowing the use of only the necessary ISA specification standard instruction set

extensions and the use of custom instruction set extensions if needed, that allows manufacturers

to add instructions not part of the official RISC-V ISA[3]. This allows RISC-V processors to

be extremely flexible since they can be tailored to the manufacturer’s needs, by only using the

required ISA specification standard instruction set extensions and using custom instruction set

extensions if needed, which enables them to be customized to the application’s needs.

In summary, conventional single-thread processors can no longer rely on technological benefits

of new process nodes to improve performance. This problem is compounded by the issue of

power consumption, since embedded and edge systems are constrained regarding energy supply.

Under these conditions, a possible solution to support emergent edge applications is increased

device heterogeneity via circuit specialization. ASICs benefit from higher performance, and lower

energy requirements. However, ASIC design has, so far, been very costly in terms of design,

and fabrication. In this regard, the evolution of FPGAs as deployment devices can help mitigate

1Statista ARM market share report: https://www.statista.com/statistics/1132112/arm-market-share-targets/

1.2 Motivation 3

manufacturing costs, and the increasing popularity of open architectures like the RISC-V have

revitalized the embedded ecosystem.

1.2 Motivation

Since there are major manufacturers entering the FPGA market (such as the acquisition of Xilinx

Inc. by Advanced Micro Devices, Inc. (AMD) or the acquisition of Altera Corporation by Intel

Corporation), FPGAs could become more widespread and therefore more prevalent in Edge Com-

puting, due to the fact that they allow for better energy efficiency when compared with general

purpose processors, such as CPUs [15].

This adoption is hindered by the fact that FPGAs designs are designed by relying on Hardware

Description Language (HDL). This typically requires expert knowledge on how digital HW oper-

ates and is designed, so they are not compatible with traditional software development workflows

and require HW design expertise, and they require extensive and lengthy validation that generally

takes up most of the development time.

High-Level Synthesis (HLS) workflows have emerged to address this [16], and have been an

area of active interest, inclusively by FPGA vendors such as Xilinx2 . These workflows allow for

(subsets of) higher level programming languages such as C/C++ or OpenCL to be translated into

HDL automatically which is then synthesized by the conventional underlying circuit generation

flow [17, 18]. This makes the development of these modules more akin to software development,

but knowledge of hardware design is still beneficial, or even required, for performing solutions.

They are also not easily integrated into a traditional software development workflow, and due

to their nature already compiled programs can not be accelerated with this approach, unless the

source code is available and is modified to use it.

For embedded applications SoCs that integrate a CPU+FPGA are more appropriate than using

discrete FPGAs, because of their higher energy efficiency, better performance and possibly lower

overall cost, that comes from tighter integration. Presently most of these SoCs contain one or more

ARM ISA based CPUs (including multi-cores), such as the market leader Xilinx UltraScale+ fam-

ily of devices, although there are designs that use instead a RISC-V CPU such as the Microsemi

PolarFire SoC family of devices3. Since the RISC-V ISA allows for custom instruction extensions,

in a setting in which a CPU is integrated in an SoC with a FPGA, it allows hardware modules on

the FPGA to be possibly used as custom instruction set extensions.

1.3 Objectives

The issues mentioned in 1.2 proposes the following problem:

2Xilinx Vitis HLS website: https://www.xilinx.com/products/design-tools/vitis/vitis-model-composer.html
3Microsemi PolarFire SoC website: https://www.microsemi.com/ product-directory/soc-fpgas/5498-polarfire-soc-

fpga

4 Introduction

What are the performance benefits achievable by the automated generation of
HW accelerators for the RISC-V architecture using already compiled binaries?

The goal of this thesis is to develop a solution to the previously mentioned problem. In order

to accomplish that goal, a tool-chain was developed that is able to:

• Detect hot-spots in RISC-V binaries, such as loops or frequent blocks of instructions, in

compiled code, either by statically analyzing the software’s code, or by analyzing the stream

of instructions from the execution of the software and extract the relevant sequences of

instructions;

• Automatically generate HW accelerators and applying optimizations in order to generate

better performing and synthesizable modules;

• Validate and characterize the generated accelerators, so that the tool-chain generates fully

functional accelerators with known characteristics, such as resource utilization and critical

path delay, and the user can choose which accelerators to use.

With the proposed solution, it is hoped to achieve an alternative flow to current offerings, that

is able to generate HW accelerators without the need of any manual HW design, without requir-

ing the lengthy validation process of FPGA development, and in a way that is transparent to the

software programmer, allowing it to be seamlessly integrated in traditional software development

workflows. In this work, we will consider system architectures where the custom hardware is

implemented as an embedded FPGA into a RISC-V pipeline, and therefore the performance gains

come from saved clock cycles by creating custom instructions without manual development effort.

We evaluate, as a function of custom instruction size (number of instructions in the sequence), how

the performance varies, also taking into account the influence that the new unit has on operating

frequency.

Chapter 2

State of art

2.1 Binary translation

Binary Translation (BT) is a technique in which software binaries that were compiled for a given

ISA, generally called source instruction set, are recompiled to be deployed in another one, gener-

ally called target instruction set [19]. This translation can be either static, in which the binaries are

translated by analyzing the software’s code without executing it, and dynamic, in which the soft-

ware is executed and the stream of the executed instructions is analyzed, and it can be performed

in software or in HW[20].

2.1.1 QEMU

The QEMU machine emulator1, in which the internal architecture is described by Fabrice Bellard

in [21], is a dynamic binary translator that supports the vast majority of current ISA has either

source or target instruction sets, and is able to emulate all of the subsystems of a computing

system (CPU, input and output devices, user interface, etc). This emulator is currently one of the

most popular, due to it’s modularity and open-source nature.

The CPU emulation subsystem, is based on the principle of splitting the individual source

instruction set’s instructions into simpler instructions called micro operations. These micro opera-

tions are hand written C functions that represent the individual components of an instruction, such

as the registers used and the operation performed. The registers of the source instruction set CPU

are mapped to host instruction set registers, so they are rapidly accessed.

An example of the translation of a PowerPC instruction to be run in a x86 platform is given

by the author. In Listing 2.1 the example instruction is shown, which is the addi instruction that

represents the addition of a register with an immediate value.

1QEMU website: https://www.qemu.org/

5

6 State of art

addi r1,r1,-16 // r1 = r1 - 16

Listing 2.1: Original PowerPC addi instruction.

In Listing 2.2, the micro operations generated from the example instruction by the tool’s binary

translator are shown.

movl_T0_r1 // T0 = r1

addl_T0_im -16 // T0 = T0 - 16

movl_r1_T0 // r1 = T0

Listing 2.2: Micro operations of the PowerPC addi instruction generated by QEMU’s binary

translator.

Each of the generated micro operations corresponds to a C function. As an example the first

micro operation corresponds to the C function shown in Listing 2.3.

void op_movl_T0_r1(void)

{

T0 = env->regs[1];

}

Listing 2.3: C function of the movl_T 0_r1 micro operation.

2.2 Generation of custom instructions

In this section some relevant frameworks for generating custom instructions are presented.

2.2.1 Instruction Set Extensions in an FPGA Soft Core

In the work of Partha Biswas et al [1], a unnamed framework for generating instruction set exten-

sions is presented. The framework presented is able to generate custom instruction set extensions

that allow for an average 1.41x speedup while consuming only up to 60% the energy.

The framework receives as an input a high-level application in C and it profiles the applica-

tion’s source code and detects the sequences of instructions that present the largest delay. These

sequences are then used to automatically generate custom instructions, by generating graphs that

represent the sequence’s algorithm. After the custom extensions are generated, corresponding HW

modules are generated using pre-designed component libraries, and these modules are then syn-

thesized and an interface to the soft-core is also generated. The input application is also modified

by the framework so that it can exploit the generated modules. In Figure 2.1 an overview of the

various stages of the proposed framework is shown.

2.2 Generation of custom instructions 7

The MicroBlaze soft-core architecture is used as an example, and in the experiments performed

the code size of the benchmarks used is lower due to the new instructions generated replacing

multiple instructions in the original source code. In most of the benchmarks a significant speedup

of around 1.4x is achieved with 40% energy savings when compared to an equal soft-core that does

not use the custom instructions. The soft-cores with the custom instruction set extensions utilize

on average 17% of the slices available in the FPGA used, and the soft-core without instruction set

extension utilizes 11% of the available slices.

The authors claim that this approach could possibly be used for other ISAs and FPGA archi-

tectures.

Figure 2.1: Overview of the framework proposed by Biswas et al. [1].

2.2.2 Efficient Custom Instructions Generator

In a paper published by Huynh Phung Huynh, Yun Liang and Tulika Mitra [22], an algorithm for

the automatic generation of custom instructions is presented. This algorithm advocates a top-down

approach, in which the system requirements guide the entire design flow in order to guarantee that

the requirements are always met. The main requirement is generally the deadline to perform the re-

quired task, and this algorithm evaluates if there is a possible way to generate a custom instruction

that allows the processor to meet the deadlines. If such is not possible this algorithm will output

custom instructions that will speed up the task as much as possible. One noteworthy character-

istic of this algorithm is that if required, it will successively generate more custom instructions

in order to further improve performance. In the benchmarks performed, this algorithm generated

custom instructions that showed a large speedup when compared to the same system without the

custom instructions, while generating these custom instructions under 10 seconds in most of tests

performed.

8 State of art

2.2.3 RISC-V ISA Single Instruction Multiple Data instructions extension

In the paper published by Philippos Papaphilippou, Paul H. J. Kelly and Wayne Luk [23], the

creation of custom instruction extensions for the RISC-V ISA targeting Single Instruction Multiple

Data instructions on a custom soft-core processor is presented. The instructions of this custom

instruction set extension are hand-designed, and they were developed in such a way that they

can be implemented as variations of the base type of instruction type defined in the RISC-V ISA

specification of base instruction set extensions. The proposed instruction extensions are bench-

marked and comparison of the custom soft-core with the custom instruction extensions with a

commercial ARM A53 core based CPU is also performed.

The soft-core with the developed instruction extensions showed a large performance gain from

using these instructions (from 4.1 times to 12.1 times depending on the benchmark), while offering

around 0.4 times the performance of commercial ARM A53 core. The authors claim that if appli-

cation specific custom accelerators are used, the performance gains achieved could be as large as

49 times on some workloads.

2.3 Automatic generation of HDL

In order to implement the generated custom instruction set extensions, where the system they will

be deployed in is a SoC containing a CPU and a FPGA, it is necessary to synthesise HW modules

that are able to compute the logical operations they represent. As mentioned in Section 1.2, the

manual design of these modules is extremely time consuming, so in order to make the generation

of the custom instruction set extensions truly automatic, the automatic generation of HDL for

synthesising HW modules is necessary.

In this section various frameworks that allow the automatic generation of HDL from either a

high-level language or a more abstract description of the logic to be implemented are presented.

2.3.1 Xilinx Vitis HLS

Xilinx Vitis HLS2 is a software infrastructure that aims to integrate the use of an HLS workflow

in the Xilinx ecosystem of devices and software. Xilinx does not publish papers on the inner

workings of this workflow, but recently some of it’s code base has been released as open source

software. It uses the LLVM compiler infrastructure which is a popular open-source compiler

infrastructure, that is designed to be independent of the source language and the target instruction

set used, making it an universal and portable compiler. Xilinx’s HLS implementation uses C/C++

or OpenCL as source languages and Verilog or VHDL as target languages. The main advantages

of this workflow are that, as mentioned in Section 1.2, lower expertise of HW design required, and

as described in a paper by Declan O’Loughlin et al. [24], the more efficient utilization of FPGA

resources when compared to using traditional HDL workflows.

2Vitis Model Composer website: https://www.xilinx.com/products/design-tools/vitis/vitis-model-composer.html

2.3 Automatic generation of HDL 9

This HLS workflow simplifies the generation of HDL by synthesizing loops and other repeat-

ing parts of code as finite state machines, and serial operations as a pipeline, where each stage of

the pipeline can be composed of one or more parallel operations.

In the Vitis HLS User Guide3, some examples of the different phases of Vitis are presented.

In Figure 2.2 the different stages of Vitis HLS performed on the example code snippet shown

in Listing 2.4 is shown. The Scheduling Phase representation is equivalent to the HDL generated

by Vitis HLS. In the following phases the design will be progressively optimized for the target

FPGA architecture.

int foo(char x, char a, char b, char c) {

char y;

y = x*a+b+c;

return y;

}

Listing 2.4: Example C program given in the Vitis HLS User Guide.

Figure 2.2: Different stages of the Vitis HLS on the example code snippet.

2.3.2 Chisel

In the work of Jonathan Bachrach et al. [25], a new hardware construction language called Chisel

is introduced. This language aims to abstract HW as much as possible by introducing concepts

such as object oriented design and functional programming. This language is implemented on

3Vitis High-Level Synthesis User Guide (UG1399): https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Basics-of-
High-Level-Synthesis

10 State of art

top of Scala, and the tool chain developed by the authors is able to generate C++ cycle-accurate

simulators, similar to Verilator C++ test benches, and is able to generate low-level Verilog that can

be used in standard FPGA or ASIC flows.

In the paper the authors took an already developed 3-stage 32-bit RISC processor that was

written in Verilog, and converted it to Chisel. The implementation Chisel showed about a 3 times

reduction in code size. The authors also designed a 64-bit Fused-Multiply-Add unit in Chisel and

Verilog, and after the mapping process in a 65nm process ASIC flow, the total area occupied by

both implementations was roughly equal.

In 2018 Google LLC used Chisel to develop it’s Google Edge TPU devices. In a presentation

given by the engineers that worked on the project, their experience of using Chisel instead of a

traditional HDL language was discussed4. The overall opinion was mixed, with the engineers

criticizing the learning curve of Chisel and the difficulties that they had in the verification steps,

and commending the productivity gains that Chisel provides in the design steps.

2.3.3 Calyx compiler infrastructure

In the work of Rachit Nigam, et al. [2] a new compiler infrastructure named Calyx5 is presented,

that aims to be an open-source alternative to current HLS workflows, such as the Xilinx Vitis HLS

mentioned in 2.3.1. In the benchmarks performed by the authors Calyx generated accelerators

with better performance while utilizing slightly more resources than the Xilinx’s HLS software

infrastructure.

This compiler infrastructure makes use of the Calyx IR, that aims to to combine an hardware-

like structural language with software-like control flow. This contrasts traditional HLS workflows,

that use high-level programming languages such as C/C++ that are more appropriate to software

development since they do not contemplate the inherent parallelism that FPGAs allow. This IR is

also designed to automate the generation of the control signals needed, and simplify the declaration

of HDL modules (called groups in Calyx IR), simplify their sequential and/or parallel placement

in the processing pipeline and the memory accesses that are performed.

Calyx also includes various optimization passes, that further optimize the generated circuit to

better utilize the resources available on the FPGA while offering better performance. In Figure 2.3

the optimization passes performed by Calyx are shown.

4Experiences Building Edge TPU with Chisel: https://www.youtube.com/watch?v=x85342Cny8c
5Calyx Github repository: https://github.com/cucapra/calyx/

2.4 RISC-V 11

Figure 2.3: Example of the generation of HW modules using Calyx presented by Rachit Nigam,
et al. [2].

2.4 RISC-V

As mentioned in Section 1.1 the RISC-V ISA aims to be an open source alternative to current

commercial offerings such as the ubiquitous ARM ISA. Due to RISC-V being still extremely

recent, with development starting only in 2010 as a research project at UC Berkeley, not many

RISC-V CPUs commercial offerings are available, with currently Sifive6 and T-Head7 being the

major providers of core IPs. Most of the currently available CPUs are designed and used in

academic settings.

Currently the development of the RISC-V ISA is done by the RISC-V Foundation, that was

established in 2015 by the original designers and 36 industry and academic partners, such as

IBM, NVIDIA, Microchip and Lattice. Since it’s establishment more major industry partners

have become members such as Huawei, Analog Devices, Cadence and NXP.

In this Section relevant developments in the RISC-V ecosystem will be presented.

2.4.1 Xuantie-910

The Xuantie-910 CPU was developed by the T-Head Division of Alibaba Cloud [3]. This CPU

is a multi-cluster Symmetric Multi Processing with cache coherence. Each cluster contains up to

4 cores that individually have a 12-stage deep pipeline. These cores are super-scalar, multi-issue

and support out-of-order execution. This processor implements the RV64GCV base instruction

set extensions and makes use of many custom instruction set extensions, such as arithmetic oper-

ation, bit manipulation, load and store, and cache operations. This processor showed single-core

6Sifive website: https://www.sifive.com/
7T-Head website: https://www.t-head.cn/?lang=en

12 State of art

performance equivalent to that of an ARM Cortex-A73, a micro-architecture released in 2016 that

when released was used in a wide variety of high-performance mobile device processors.

This processor was developed to be used in the server space, specially by Alibaba’s cloud

platform, so it can be considered a direct competitor to the other types of high-performance pro-

cessors used in the server space. Alibaba has publicly committed to further developments on

high-performance RISC-V processors, and recently many of Alibaba’s RISC-V CPU cores were

made open-source8.

Figure 2.4: Diagram of the pipeline of a Xuantie-910 core presented by the T-Head Division [3].

2.4.2 Rocket Chip Generator

In the work of Krste Asanovic et al. [4], the open-source Rocket Chip Generator9 is presented.

This tool generates RISC-V based general-purpose processors, and it supports the integration of

custom accelerators in the form of instructions set extensions or co-processors. Both in-order

and out-of-order processor cores can be generated, and all major RISC-V standard instruction set

extensions are supported. One noteworthy aspect of this tool is that it allows the customization of

any part of the generated processor, so that the generated processor meets the requirements of the

user.

This tool divides the generation of processors into sub-components, shown in Figure 2.5, such

as the generation of cores and caches, which also allows each of the sub-components of the gen-

erated processor to be individually validated.

8T-Head semiconductor GitHub repository: https://github.com/T-head-Semi
9Rocket Chip Generator Github repository: https://github.com/chipsalliance/rocket-chip

2.4 RISC-V 13

Due to the tool being written in Chisel, presented in Section 2.3.2, the benefits provided by

this language such as the automatic generation of C++ cycle accurate simulators and the automatic

generation of low-level Verilog are present. This tool has been used to tape out multiple non-

commercial processors that are able to boot Linux.

Figure 2.5: Rocket Chip Generator processor sub-components presented by Krste Asanovic et al.
[4].

2.4.3 Ibex RISC-V Core

Ibex is an heavily parameterizable open-source production-quality 32 bit RISC-V CPU core10.

This core is written in SystemVerilog and it is mainly suited for embedded control applications. It

has been used in CPUs that have been taped-out due to this core having been extensively verified

and validated. Depending on configuration this core can support the RV32I (Integer) or RV32E

(Embedded), RV32M (Integer Multiplication and Division), RV32C (Compressed Instructions)

and RV32B (Bit Manipulation) standard extension sets.

This core can be configured in many ways to meet the needs of the user, with four main con-

figurations proposed by the developers: micro, small, maxperf and maxperf-pmp-bmfull. The dif-

ferent possible core configurations differ by which of the previously mentioned standard extension

sets they support and the inclusion of certain features such as an HW multiplier (in configurations

that support the RV32M standard extension) and the inclusion of more stages in the pipeline.

10Ibex RISC-V core GitHub repository: https://github.com/lowRISC/ibex

14 State of art

In Figure 2.6 the block diagram of the small configuration proposed by the developers is

shown.

Figure 2.6: Block diagram of the Ibex RISC-V core presented in the Ibex GitHub repository.

Chapter 3

Proposed approach

3.1 Overview

As mentioned in Section 1.3, the goal of this thesis is to explore the performance gains that can

be obtained by the automatic generation, validation and characterization of HW accelerators for

RISC-V processors from already compiled code. In order to achieve this the developed tool chain

needs to be able to automatically generate HDL from frequent segments extracted from RISC-V

binaries, and it needs to automatically validate the generated module, in order to avoid the lengthy

process of manual validation mentioned in Section 1.2.

In order to accomplish the stated goal, a tool-chain that is integrated with the Binary Transla-

tion Framework being developed by SPeCS1 was developed. The flow graph of the stages of the

developed tool-chain is shown in Figure 3.1.

The flow graph of the developed tool-chain can be divided in three main stages:

• Stage 1: Frequent sequence extraction and ISA abstraction:

– The binary file is read and frequent sequences of instructions are detected and ex-

tracted;

– The detected sequences are translated to an ISA-independent Intermediate Language

(IL);

– A parse tree (representation of the syntax of an instruction’s Intermediate Language)

is generated for each instruction in the sequence.

• Stage 2: Optimizations and HDL generation:

– A Control and Data Flow Graph is generated by combining the generated parse trees;

– Optimization passes are performed on the generated graph;

– An HDL Abstract Syntax Tree is generated from the optimized graph, with Verilog

and SystemVerilog currently supported.
1SPeCS Binary Translation Framework Github repository: https://github.com/specs-feup/specs-hw

15

16 Proposed approach

Binary file
Executable and Link-

able Format (ELF)

Frequent se-
quence extraction

Assembly to Intermedi-
ate Language translation

Parse tree
generation

ANTLR4

Control and Data Flow
Graph generation

Optimization
passes

HDL Abstract Syn-
tax Tree generation

Verilog
SystemVerilog

HDL test-bench
generation

Verilog
SystemVerilog

Verilator Test-
bench generation

HDL module
generation

Verilog
SystemVerilog

Module val-
idation data

sets generation

Functional
simulation

Verilator

Synthesis
Xilinx Vivado

Yosys

Timing verification
Xilinx Vivado

Icetime

Stage 1

Stage 2

Stage 3

If OK

Figure 3.1: Flow graph of the developed tool-chain.

3.2 SPeCS Binary Translation Framework 17

• Stage 3: Automatic validation, synthesis and characterization:

– The test-benches and data sets required to validate the generated modules are gener-

ated;

– The generated modules are functionally validated and synthesized;

– A timing verification is performed on the synthesized modules.

The tool-chain was developed to be as modular as possible, so that each of the tool-chain’s sub-

components can be modified or new ones can be developed without requiring the modification of

the code base of the remaining sub-components.

3.2 SPeCS Binary Translation Framework

The SPeCS Binary Translation Framework is an ISA independent framework, that aims to allow

the development of tools that target already compiled binaries [26].

3.2.1 Frequent sequence extraction

One of the key features of this framework is that it is able to detected frequent sequences of in-

structions, called segments, in already compiled code. The framework is able to detected static

segments (frequent sequences of instructions present in the binary file) and trace segments (fre-

quent sequences of instructions that occur during the run-time of the program).

add t0, a1, t2
addi t3, t2, 10
mul t0, a2, a3
sll t1, t0 , 2
add t1, a1, a2
addi t4, a2, 52

add ra, rb, rc
addi rd, rc, imm

Figure 3.2: Example of extraction of a frequent sequence.

In Figure 3.2 an example of the extraction of a frequent sequence is shown. The sequence

detection pass not only takes into account the sequence of operations contained in the sequence

but also the pattern of use of registers in the sequence, since the data-flow of the extracted sequence

will be the same if the pattern of use of registers is the same. In the example shown, both of the

detected sequences perform the same sequence of instructions and have the same pattern of register

use.

3.2.2 Assembly to Intermediate Language translation

In this framework an IL is used to represent any instruction from any ISA, with ARM, MicroBlaze

and RISC-V ISAs being currently supported. The syntax of the framework’s IL is similar to

that of C, but without certain features such as variable types and loops. For each instruction of

18 Proposed approach

the supported ISAs, it is only required to define the IL representation of each instruction when

initially implementing the instruction in the framework.

The framework represents each ISA as a set of properties such as encoding, instruction names

and types, properties of each of the ISA’s registers and a definition of the logical and arithmetic

behavior of each instruction using the framework’s IL.

In this thesis the RV32I (Base Integer Instruction Set), RV32M (Standard Extension for Integer

Multiplication and Division) and RV32F (Standard Extension for Single-Precision Floating-Point)

standard extensions were added to the framework. Due to the fact that the equivalent 64 bit stan-

dard extensions (the RV64I, RV64M and RV64F standard extensions) use the same op-codes and

only introduce some 64 bit specific instructions, the IL representations of the 32 bit standard ex-

tensions added to the framework can be used for these extensions as well, with only the new

instructions added by the 64 bit alternatives not being supported.

As an example of the framework’s IL representation of a RISC-V RV32I standard extension

instruction let’s consider the slt (Set Less Than) instruction. This instruction compares the signed

values of two registers (rs1 and rs2) and 1 is written to rd if rs1 < rs2, otherwise 0 is written to

rd. In Listing 3.1 the framework’s IL representation of this instruction is shown.

if(signed(RA) < signed(RB)) {
RD = 1;

}else{
RD = 0;

};
// RA=rs1, RB=rs2, RD=rd

Listing 3.1: Example of the IL representation of the RISC-V slt instruction.

The framework’s IL supports instructions with an arbitrary number of registers, such as in

the case of the f madd.s (Float Multiply and Add)RV32F standard extension instruction. This

instruction multiplies rs1 with rs2 and adds the resulting value to rs3. This results is then stored

in rd. In Listing 3.2 the framework’s IL representation of this instruction is shown.

RD = (float(RA) * float(RB)) + float(RC);
// RA=rs1, RB=rs2, RC=rs3, RD=rd

Listing 3.2: Example of the IL representation of the RISC-V f madd.s instruction.

The framework’s IL also supports instructions that perform multiple operations such as in the

case of the jalr (Jump and Link Register) RV32I standard extension instruction. This instruction

stores the value of the address of the next instruction in rd and it jumps to the address described

by ra + imm, with imm being an immediate value passed in the instruction.In Listing 3.3 the

framework’s IL representation of this instruction is shown.

3.2 SPeCS Binary Translation Framework 19

RD = $pc + 4;
$pc = RA + sext(IMM);
//$pc=progam counter, RA=rs1, IMM=imm field, RD = rd

Listing 3.3: Example of the IL representation of the RISC-V jalr instruction.

3.2.3 Parse Tree

After the translation of the instructions of the extracted frequent sequence to the framework’s IL, a

parse tree is generated for each of these instructions. A parse tree is a representation of the syntax

of a program according to the structure of the programming language, in this case the framework’s

IL. The generation of parse trees is done using the ANTLR42 parser generator.

The parse trees generated by the framework have two types of nodes, statements and ex-

pressions. Statements represent actions that will be executed without returning a value, such as

conditional statements. Expressions are dependent on whether the node is a terminal node or a

non-terminal node. If the expression node is a terminal node then it represents either data (vari-

ables or literals) or operators, and if the expression node is a non-terminal node then it represents

operations that will be evaluated (calculated) and a value returned.

The simplified parse tree generated by the framework of the slt instruction, mentioned in

Section 3.2.2, can be seen in Figure 3.3.

PseudoInstructionContext
if(signed(RA)<signed(RB))RD=1;elseRD=0;

IfElseStatementContext
if(signed(RA)<signed(RB))RD=1;elseRD=0;

BinaryExprContext
signed(RA)<signed(RB)

OperatorContext
<

VariableExprContext
RA

VariableExprContext
RB

StatementlistContext
RD = 1;

AssignmentExprContext
RD = 1

VariableExprContext
RD

LiteralOperandContext
1

StatementlistContext
RD = 0;

AssignmentExprContext
RD = 0

VariableExprContext
RD

LiteralOperandContext
0

condition

if else

Figure 3.3: Simplified parse tree generated from the slt RISC-V RV32I instruction.

2ANTLR website: https://www.antlr.org/

20 Proposed approach

Therefore, the use of IL (internally called pseudo-instrution) allows for specifying the arith-

metic and logical behaviour of an instruction using any number of statements, as a function of

the registers encoded in the instruction, and also implicit registers such as the PC. In a way, it is

similar to approaches like QEMU, which emulate the instruction using C/C++ code. However,

the distinction is that a separate language is used for the IL, which can be easily extended and

separates the concerns between defining the instruction behaviour and evaluating its execution.

3.3 Control and Data Flow Graph

In most compiler flows, after the generation of the program’s parse tree, this tree is transformed

into a Control Flow Graph (CFG). This type of representation focuses on representing the control

flow of the program, and they enable the simplification of some common operations performed by

compilers such as the detection of loops and performing Single Static Assignment (SSA) passes,

in which variables are given an unique identifier when they are assigned in order to simplify

optimizations that the compiler might perform.

In the developed tool-chain, as in many HLS frameworks, the parse tree is transformed in-

stead into a Control and Data Flow Graph (CDFG). A CDFG is a type of graph that combines

CFGs with Data Flow Graphs (DFGs). DFGs focus on representing the data dependency of the

program, which is useful for generating HDL since this type of representation enables performing

optimizations that are relevant to better utilize the benefits that using FPGAs provide. One com-

mon optimization performed is the parallelization of operations, that is done in order to exploit the

inherent parallelism acceleration of FPGAs.

In order to generate and interact with the tool-chain’s CDFGs in a standardized manner, the

open-source JGrapht3 library was used, since it includes most of the required base methods for

generating and using graphs.

3.3.1 Structure

The structure of the generated CDFGs is similar to that of CFGs, with some additions that allow

the simplification of the HDL generation steps that follow.

The CDFG is composed of subgraphs, that describe the control flow of the extracted frequent

sequence, and these subgraphs are in turn composed of nodes, that describe the data flow of the

sequence. A summary of the vertices of the tool-chain’s CDFG is shown in Table 3.1 and a

summary of the edges is shown in Table 3.2.

3JGrapht website: https://jgrapht.org/

3.3 Control and Data Flow Graph 21

Table 3.1: Summary of the vertices of the tool-chain’s CDFGs.

Vertex type Sub-type Description

Subgraph
Control Flow Same purpose of control nodes in a CFG

Data Flow Same as a DFG

Node
Control Flow Indicates whether the control flow should be split or merged

Operation Represents an operation such as arithmetic operations and assignments
Data Represents immediate values or registers

Table 3.2: Summary of the edges of the tool-chain’s CDFGs.

Edge type Description
Control Flow Used to indicate what conditional path the target subgraph is part of

Operand Used to indicate the order of operands in operations that have two operands
Regular Used for vertices in which for the target vertex the order of the sources does not matter,

such as unary operations

3.3.2 Visual representation

During the development of the tool-chain, in order to allow for easier debugging and validation of

the generated CDFGs, a DOT graph description language exporter was developed. The exported

graphs can be viewed using a DOT viewer such as Graphviz Online4.

The visual representation of the structure of the generated CDFGs, presented in Section 3.3.1

is shown in Table 3.3 and Table 3.4.

Table 3.3: Summary of the visual representation of the vertices of the tool-chain’s CDFGs.

Vertex type Sub-type Visual representation

Subgraph
Control Flow

Data Flow

Node

Operation

Data

Control Flow
Split

Merge

4Graphviz Online viewer: https://dreampuf.github.io/GraphvizOnline/

22 Proposed approach

Table 3.4: Summary of the visual representation of the edges of the tool-chain’s CDFGs.

Edge type Visual representation

Operand
Left

Right
Regular

Control Flow
True
False

In Figure 3.4 the DOT representation of the generated CDFG of an example instruction is

shown.

RA RD

==

0

=

RD

Figure 3.4: DOT representation of the generated CDFG of an example instruction.

3.3.3 Generation

The generation of a frequent sequence’s CDFG in the developed tool chain is performed in two

consecutive steps:

1. A CDFG is generated from each of the parse trees of the instructions present in the extracted

frequent sequence;

2. The individual generated instruction CDFGs are merged into a CDFG that represents the

entire sequence.

The generation of an instruction’s CDFG from it’s parse tree is performed by visiting the tree

and generating the appropriate CDFG components depending on what parse tree node is being

visited.

3.3 Control and Data Flow Graph 23

The generation of the vertex types presented in Section 3.3.1 is related to what type of parse

tree node is currently being visited. If the node being visited is a statement node then a subgraph

is generated, and if the node being visited is an expression node that is a terminal node then a node

is generated.

The type of subgraph that is generated depends on whether the visited statement is a condi-

tional statement or not. If the statement being visited is a conditional statement (If or IfElse) then

a Control Flow Subgraph with a Control Flow Split node is generated, otherwise a Data Flow

Subgraph is generated. When visiting a conditional statement, first the statement’s condition ex-

pression is used to generate a Data Flow Subgraph that is then inserted into the generated Control

Flow Subgraph. Then the conditional paths are visited and the resulting generated subgraphs are

connected to the statement’s Control Flow Subgraph using the appropriate Control Flow edges.

Finally a Control Flow Subgraph with a Control Flow Merge node is added to indicate that the

control flow of the sequence has merged.

The generation of Data Flow Subgraphs is done by first visiting the terminal nodes of the parse

tree’s statement being visited and generating the appropriate Nodes according to the parse tree’s

nodes being visited. If the parse tree node being visited represents data (variables or literals) a

Data Node is generated, and if the parse tree node being visited represents an operator, then an

Operation Node is generated. The CDFG Nodes generated from the parse tree’s terminal nodes

are connected according to the non-terminal expression nodes of the statement being visited, since

these expression nodes describe the operation being performed.

In Figure 3.5 the DOT representation exported by the tool-chain of the generated CDFG of the

RISC-V slt instruction, mentioned in Section 3.2.2, is shown.

24 Proposed approach

RA RB

<

1

=

RD

true

0

=

RD

false

Figure 3.5: DOT representation of the generated CDFG of the RISC-V RV32I slt instruction.

3.3.4 Optimizations

In order to generate better performing and more efficient HDL, some optimization passes are done

after the generation of the frequent sequence’s CDFG. These passes aim to reduce the amount of

resources required for the HDL generation step and to ensure that the generated modules comply

with HDL design best practices.

3.3.4.1 Redundant register elimination

This pass eliminates redundant registers present in the CDFG in order to minimize the resources

that will be required during the HDL generation steps. In a sequence of instructions only the

last assignment of a register is propagated to outside the sequence, so in registers that are written

multiple times only the last write is propagated. This makes all other assignments temporary, so

the value that was written in these assignments does not need to be stored and can be directly

propagated to the next operation. The registers written in temporary assignments are considered

redundant registers because these registers can be suppressed without affecting the overall behav-

ior of the program.

In Listing 3.4 an example of a sequence that contains a redundant register is shown. In this

sequence register t0 is assigned twice. The first assignment is only used to temporarily store the

result of t1+ t2, and in the last instruction this temporary value is overwritten. If this sequence is

viewed as a black box, the first assignment of t0 is not propagated to outside the sequence, so it

3.3 Control and Data Flow Graph 25

add t0, t1, t2
addi t0, t0, 10

Listing 3.4: Example of a sequence of instructions containing a redundant register.

will not be used by other instructions and it can be supressed. In Figure 3.6 the original sequence’s

CDFG and the CDFG after this pass is applied are shown.

t1 t2

+

t0 10

+

t0

t1 t2

+

10

+

t0

Figure 3.6: Result of the redundant register elimination pass on the CDFG of the sequence shown
in Listing 3.4.

3.3.4.2 Register name resolving

In this context a typical SSA pass cannot be applied because in some cases SSA passes can lead to

variables assigning themselves. This is problematic because in combinational HW design signals

are not allowed to assign themselves, which is called a combinatorial loop. In order to solve this

issue a modified SSA pass was developed.

This pass is performed in the following stages:

1. Replaces the generic IL names given to the CDFG registers with the names of the actual

registers of the instructions in the sequence;

2. It performs a regular SSA pass on the CDFG, where all registers that are assigned are given

an unique identifier. This step facilitates the generation of HDL because all registers can be

mapped into unique signals;

3. It transforms if statements into if-else statements if a register was assigned within the if

statement and resolves any unique identifier inconsistencies that may arise from this. This

step solves the issues with typical SSA passes and ensures that all conditional statements

have proper coverage and that the unique identifier of registers after conditional is not am-

biguous.

26 Proposed approach

a)

RA RD

==

0

=

RD

b)

t0 t1

==

0

=

t1

c)

t0_0 t1_0

==

0

=

t1_1

d)

t0_0 t1_0

==

0

=

t1_1

t1_0

=

t1_1

Figure 3.7: Stages of the register name resolving pass on an example CDFG.

In Figure 3.7 the different stages in this pass on an example instruction CDFG are shown (the

example CDFG does not represent an actual RISC-V instruction). In a) the CDFG generated by

3.4 Module generation 27

the tool-chain is shown. In b) the first stage of this pass is performed. This stage replaces all of the

generic IL register names with the names of registers in the extracted sequence, in this example

RA was register t0 and RD was register t1. In c) the second stage is performed, in which unique

identifiers are given to the registers when they are assigned. The register’s unique identifier is

shown by the value after the underscore in the register name. In this example, t1 is assigned in the

true conditional path so it’s unique identifier is incremented from t1_0 to t1_1. In d) the third stage

is performed, where if statements are transformed into if-else statements if a register was assigned

within the if statement’s true path, and in this example t1 was assigned. This stage is required

due to the unique identifier of register t1 not being consistent after the second stage of this pass.

If the true path is taken then the unique identifier of t1 is t1_1 and if the false path is taken then

the unique identifier of t1 is t1_0. This poses a problem, since in the HDL generation step, if

an operation after the example CDFG uses t1 as an operand, the signal that will be used can not

be determined since it can either be the signal that represents t1_0 or t1_1. After the third stage

of this pass is performed and the if statement is transformed into an if-else statement, the unique

identifier of t1 is consistent, since if either of the paths are taken the resulting unique identifier of

t1 will always be t1_1.

3.4 Module generation

After the CDFG is generated and the optimization passes are applied, the HDL generation step can

be performed. Currently the tool-chain only generates fully combinational modules, and sequences

that contain division operations or floating point operations are not considered. This is due to the

fact that division operations and floating point operations have an extremely high resource cost

in FPGAs, and more than likely the generated module would be extremely slow in comparison

to dedicated processing units that modern CPUs generally contain, such as the ability to perform

division in a single cycle and dedicated Floating Point Units. Sequences that contain memory

accesses are also not used to generate modules, due to the fact that multiple concurrent read and

write operations can happen if the sequence contains multiple memory accesses. This would

require the development of a complex memory interface, which is outside the scope of this thesis.

3.4.1 Hardware Description Language generation

The generation of HDL is done by using the frequent sequence’s CDFG to generate either a Verilog

Abstract Syntax Tree (AST) or a SystemVerilog AST, with SystemVerilog being targeted in the

current implementation. Both of these HDLs can be targeted, without requiring the development

of two separate AST generators, due to both of these languages having a similar syntax, with

SystemVerilog only implementing some extensions to Verilog.

The first step is the generation of the module’s ports and the generation of a single always_comb

block. To generate the module’s ports the inputs and outputs of the CDFG are retrieved and the

inputs are transformed to input wire ports with the appropriate bit-widths and the outputs are

transformed to output reg ports with the appropriate bit-widths. A single always_comb block can

28 Proposed approach

be generated since the generated modules are currently fully combinational, and this block will

contain all of the module’s statements.

The AST is generated from visiting the frequent sequence’s CDFG from inputs to outputs and

generating the tree nodes according to what CDFG node was visited. A node can only be visited

if all of the nodes before it have been already visited. This is necessary in order to ensure that

when generating an operation node, the signals of the operation’s operands are already generated

and can be retrieved. After visiting an Operation Node an output signal is generated to be used in

further operations that require the output of the operation node being generated.

If a node is visited and not all of the nodes before it have been already visited then the CDFG

is visited from the next input. This is repeated until the CDFG has been visited from all inputs,

and in this manner it can be assured that all possible vertices and edges of the CDFG have been

visited.

In Figure 3.8 a simplified view of the SystemVerilog AST generated from the CDFG of the slt

RISC-V RV32I instruction, shown in Figure 3.5, is shown.

HardwareModule

ModuleBlock
slt

DeclarationBlock AlwaysCombBlock

Figure 3.8: Simplified view of the AST of the generated module for the slt RISC-V RV32I in-
struction.

The generated SystemVerilog AST contains a ModuleBlock node that represents the declara-

tion of a module. This node has two children, a DeclarationBlock that contains the module’s ports

and signals declarations and an AlwaysCombBlock that represents the always_comb block that

will contain all of the module’s logic. An expanded view of the DeclarationBlock branch is shown

in Figure 3.9 and an expanded view of the AlwaysCombBlock branch is shown in Figure 3.10.

DeclarationBlock

InputPortDeclaration
input wire [31:0] RA;

WireDeclaration
wire [31:0] RA

InputPortDeclaration
input wire [31:0] RB;

WireDeclaration
wire [31:0] RB

OutputPortDeclaration
output reg [31:0] RD;

RegisterDeclaration
reg [31:0] RD

Figure 3.9: Expanded view of the DeclarationBlock branch shown in Figure 3.8.

3.4 Module generation 29

AlwaysCombBlock

IfElseStatement

LessThanExpression
RA < RB

Wire
RA

Wire
RB

ContinuousStatement
RD1 = 1;

Register
RD

Immediate
1

ContinuousStatement
RD1 = 0;

Register
RD

Immediate
0

condition

if else

Figure 3.10: Expanded view of the AlwaysCombBlock branch shown in Figure 3.8.

After the SystemVerilog AST is generated the corresponding HDL files are emitted. In Listing

3.5 the emitted SystemVerilog file of the example AST of slt instruction is shown.

module slt(RA, RB, RD);

input wire [31 : 0] RA;
input wire [31 : 0] RB;
output reg [31 : 0] RD;

always_comb begin : comb_0
if(RA < RB)

RD = 32'd1;
else

RD = 32'd0;
end

endmodule

Listing 3.5: Generated SystemVerilog module of the RISC-V RV32I slt instruction.

3.4.2 Synthesis

The modules generated by the tool-chain are all synthesizable, and the tool-chain natively supports

two synthesis tools: Xilinx Vivado5 and Yosys6, or if required by the user the emitted HDL can

5Xilinx Vivado website: https://www.xilinx.com/products/design-tools/vivado.html
6Yosys Github repository: https://github.com/YosysHQ/yosys

30 Proposed approach

also be synthesized using an external synthesis tool. If Xilinx Vivado is used, the tool-chain can

be configured to target any of Xilinx’s FPGA offerings.

In Figure 3.11 the schematic of the synthesized module of the RISC-V slt instruction, shown

in 3.4.1, is shown. To synthesize this example the Yosys synthesis tool was used, due to this tool

having the option of emitting a visual representation of the schematic of the synthesized module.

RA

RB

<

0

1

0

1
zero extend RD

Figure 3.11: Schematic of the synthesized module of the RISC-V RV32I slt instruction.

When a module is synthesized using Vivado, the out-of-context option is used. This option

ensures that Vivado does not introduce any buffers in the input or output ports of the module.

Vivado performs this action due to the fact that it expects the top-level module to be connected

to the FPGA pins. The buffers inserted by Vivado invalidate any delay analysis that might be

performed, since the inserted buffers have a non-constant large propagation delay (about an order

of magnitude larger than the module’s maximum propagation delay).

3.5 Validation

The development of HDL modules requires extensive validation in order to ensure that the devel-

oped module meets the design requirements. The design requirements can be of functional nature,

were the developed module needs to meet exactly the expected behavior, and/or of timing nature,

were the different path delays of the module need to be within a certain range defined by the design

requirements. In embedded applications other requirements such as power consumption also need

to be considered.

In the developed tool-chain the modules are functionally validated and a timing verification is

performed in order to determine the maximum frequency of operation of the generated modules.

Due to the fact that the generated modules are fully combinational and generally contain a small

number of operations, no power consumption measurements were performed due to the fact that

this would not give an actual representation of the power consumption of the generated modules,

since the power consumption is dependent on factors such as the operating frequency of the FPGA

and how the module is implemented in the implementation step of FPGA design.

3.5 Validation 31

3.5.1 Functional validation

The functional validation of the generated modules is done using a Monte Carlo process, where a

random input data set is generated and the module’s outputs are compared to a ground truth data

set. This is required because it would not be feasible to validate all possible input combinations.

The required testing coverage can be set by defining the number of iterations to perform.

The simulator chosen is the open-source Verilator7 simulator, because of it’s speed in com-

parison to other offers and it’s widespread adoption by major manufacturers, such as Intel, AMD

and ARM. Due to the fact that Verilator is a cycle accurate simulator and not a timing accurate

simulator, this simulator is not appropriate to be used for the timing verification step.

The developed tool chain generates for each generated module a Verilog or a SystemVerilog

test-bench (with SystemVerilog currently being targeted), a wrapper Verilator C++ test-bench and

generates the required validation data sets.

This validation step is performed in the following way:

1. The tool-chain generates a SystemVerilog test-bench according the the ports of the generated

module;

2. The tool-chain generates the required validation data sets by calculating the expected mod-

ule outputs for each of the generated module inputs values;

3. The tool-chain generates the C++ Verilator test-bench and compiles it;

4. Verilator is used to execute the compiled test-bench. This step goes as follows:

(a) Verilator signals the SystemVerilog test-bench to load the next value in the validation

data sets and to feed it to the module under test;

(b) Verilator then signals the SystemVerilog test-bench to evaluate if the module’s outputs

matches the output data set value;

(c) The SystemVerilog test-bench signals if the validation was successful;

(d) These steps are repeated until all of the values in the validation data sets are evaluated.

5. Verilator returns to the tool-chain if the functional validation was successful or not.

3.5.1.1 Automatic test-bench generation

In order to functionally validate the generated modules, appropriate test-benches need to be devel-

oped. Traditionally test-benches are hand made for the modules to be validated. In the developed

tool-chain a custom SystemVerilog test-bench is automatically generated for each of the generated

modules. The generated test-benches do not comply with standard test-bench practices, but this

was required in order to perform the functional validation step without requiring the development

of a C++ emitter, because Verilator requires the use of C++ test-benches and it does not support all

7Verilator website: https://www.veripool.org/verilator/

32 Proposed approach

of the SystemVerilog tasks that are generally used for validation such as the $assert() task. This

approach also has the side effect of the generated test-benches being independent of the simula-

tion tool used, so these test-benches can be used in other simulation tools with only requiring the

development of a simple wrapper test-bench.

In Listing 3.6 the generated SystemVerilog test-bench for the module of the RISC-V RV32I

slt instruction, shown in Section 3.4.1, is shown.

module slt_tb(verify, verifyResults);

// Declarations block: Ports
input wire verify;
output reg verifyResults;

// Declarations block: Wires
wire [31 : 0] moduleOutputs;

// Declarations block: Registers
reg [31 : 0] index;
reg [63 : 0] inputs [31 : 0];
reg [31 : 0] outputs [31 : 0];

initial begin
index = 32'd0;
$readmemh("input.mem",inputs);
$readmemh("output.mem",outputs);
verifyResults = 1'd0;

end

always_ff @ (posedge verify) begin : block0
index <= index + 32'd1;

end

always_ff @ (negedge verify) begin : block1
if(moduleOutputs != outputs[index])

verifyResults <= 1'd0;
else

verifyResults <= 1'd1;
end

slt slt_2022 (
.RA(inputs[index][31:0]),
.RB(inputs[index][63:32]),
.RD(moduleOutputs[31:0])

);

endmodule

Listing 3.6: Generated SystemVerilog test-bench for the generated module of the slt instruction.

The generation of Verilator C++ test-benches is done using a template, since these test-benches

are only used as wrapper test-benches for the SystemVerilog test-benches. The developed template

is shown in Listing 3.7. During the test-bench generation the <TESTBENCHNAME> field is re-

3.5 Validation 33

placed with file name of the generated SystemVerilog test-bench, and the <NUMBEROFSAM-

PLES> is replaced with the size of the generated validation data set.

#include <stdlib.h>
#include <iostream>
#include <verilated.h>
#include <verilated_vcd_c.h>

#include "V<TESTBENCHNAME>.h"

#define VALIDATION_SAMPLES <NUMBEROFSAMPLES>
#define VERIFICATION_FAIL 0
#define VERIFICATION_OK 1

int main(int argc, char **argv) {

V<TESTBENCHNAME> *tb = new V<TESTBENCHNAME>;

for(int i = VALIDATION_SAMPLES; i > 0; i--){

tb->verify = 1;

for(int w = 0; w < 100; w++)
tb->eval();

tb->verify = 0;
tb->eval();

if(tb->verifyResults == VERIFICATION_FAIL) {
delete tb;
std::cout << "FAILED\n";
exit(EXIT_SUCCESS);

}
}

delete tb;
std::cout << "PASSED\n";

exit(EXIT_SUCCESS);
}

Listing 3.7: Verilator C++ test-bench template.

3.5.1.2 Automatic validation data generation

The automatic generation of validation data is done using a process similar to some Computer

Algebra System implementations. In these implementations, an AST that represents the equation

to be solved is generated and is visited sequentially, from inputs to outputs and the values of the

intermediate tree nodes are calculated according to the node’s inputs. In the developed approach,

since a parse tree is generated for each of the sequence’s instructions, each of the instruction’s

outputs are calculated and are used to calculate the next instruction’s outputs. The developed

34 Proposed approach

approach also differs due to the instruction’s parse tress containing conditional nodes that need to

be resolved, since the path taken in visiting the tree will change according to if the node’s condition

expression is met or not.

The first step is the generation of a random data set for each of the module’s inputs. The

generated input data set is then used to calculate the outputs of the first instruction in the sequence.

The calculated outputs are used to calculate the next instruction’s outputs, and this is repeated for

the remaining instructions in the sequence. When the last instruction’s outputs are calculated,

these values are saved as the ground-truth data set to be used for validating the generated module’s

outputs for the generated random input data set. This process is repeated until the required data

set size is generated.

The calculation of each of the instructions outputs is done in the same way as the Computer

Algebra System implementations mentioned previously. In the developed approach when a con-

ditional statement is visited, first the statement’s condition expression is evaluated, and the true or

false path will be visited according to if the condition is met or not.

After the generation of the data sets, these are then emitted as hexadecimal .mem files that will

be used by the module’s test-bench. As shown in Listing 3.6, the generated test-benches require

an input data set (input.mem) for setting the module’s inputs, and a output data set (out put.mem)

that serves as a ground truth for validating if the outputs of the module are correct.

3.5.2 Timing verification

To determine the possible performance gain obtained from using the generated module the max-

imum propagation delay of the generated module must be determined. Due to the fact that the

propagation delay is affected by multiple factors, such as the FPGA’s manufacturing process and

it’s architecture, or the way the synthesis step is performed by the FPGA flow used this verification

must be done on a per-device basis.

In order to allow a broad set of target devices and due to the fact that manufacture’s Integrated

Development Environments (IDEs) only support the manufacture’s own devices, the developed

tool-chain supports two different tools:

• Xilinx Vivado which is a commercial IDE from Xilinx, that fully encompasses all of the

steps in FPGA design. This tool is available either for free, with a limited subset of Xilinx’s

FPGA devices and with some parts of the IDE restricted, or a commercial license can be

purchased, that fully enables the IDE. In order to run Vivado without requiring the use of

it’s Graphical User Interface, this tool is run in batch mode, where a TCL script is given,

which is used to execute the required tasks, in this case importing the necessary HDL files,

synthesizing the design and outputting timing reports. The TCL scripts used are generated

using a template so that the target FPGA can be customized. The developed template is

shown in Listing 3.8. During the TCL script generation the <MODULE_NAME> field is

replaced with the name of the generated module to be tested and the <TARGET_DEVICE>

3.5 Validation 35

field is replaced with the manufacturer reference of the target FPGA device;

set outputDir ../reports

set moduleName <MODULE_NAME>

read_verilog [glob ../hdl/*.sv]

set device2test <TARGET_DEVICE>

synth_design -top $moduleName -name

$moduleName -part $device2test -mode

out_of_context

report_timing -file $outputDir/

timing_$device2test.rpt

exit

Listing 3.8: Vivado TCL script template.

• Icetime which is part of IceStorm8, an open-source tool-chain that aims to reverse engi-

neer Lattice’s iCE40 (40nm) family of devices and provide, in conjunction with the Yosys

synthesis tool and the nextpnr9 place and route tool, a similar flow to that of Lattice’s own

Diamond IDE10. The tool-chain’s implementation of this tool allows the target device from

the supported device family to be chosen as desired. The timing verification results given

by this tool are not exactly the same as what would be given by the manufacturer’s IDE, but

this tool was chosen mainly due to the fact that YosysHQ, the developer of this tool, also

provides similar tools for other device families from other manufacturers. These other tools

were not implemented because most of them are not currently finalized, but they can be

implemented in exactly the same way Icetime was implemented when they are completed,

with little to no modifications required for the interface developed for this tool.

The timing reports generated by these tools are then read and parsed by the developed tool-

chain so that the maximum propagation delay of the generated module can be determined.

8IceStorm Github repository: https://github.com/YosysHQ/icestorm
9nextpnr Github repository: https://github.com/YosysHQ/nextpnr

10Lattice Diamond IDE website: https://www.latticesemi.com/LatticeDiamond

36 Proposed approach

Chapter 4

Results

To determine the validity of the developed tool-chain for the problem stated in Section 1.3, the re-

sults produced by the different stages of the tool-chain, shown in Section 3.1, and the performance

gains of using the proposed approach will be shown in this section.

4.1 Devices tested

In order to have results that better represent the performance gain that could be obtained with

current FPGA architectures, two Xilinx devices manufactured with different feature sizes were

chosen, shown in Table 4.1. The devices chosen are the highest performing devices in each of

the feature sizes targeted that were available in the free version of Vivado. In all tests done all

optimizations available in Vivado that target improving the critical path delay were enabled.

Table 4.1: FPGAs chosen.

Device family Device Feature size DSP slices Logic Cells (K)
Xilinx Artix Ultrascale+ xcau25p-ffvb676 16nm 1200 308

Xilinx Kintex 7 xc7k70tfbv484-1 28nm 240 65.6

In both of the device families the Digital Signal Processing (DSP) slices contain: a pre-adder,

a 25×18 multiplier, an adder and an accumulator. Note that due to the fact that the multipliers in

the DSP slices do not match the size of the operands in the RISC-V RV32M standard extension,

which would require 32×32 multipliers, each multiplication in the generated module will require

the use of multiple DSP slices, which will possibly lead to lower obtained performance gains, due

to the distributed placement of multipliers in the FPGA fabric leading to longer signal paths.

In order to obtain more realistic performance gain results, two RISC-V CPUs that are manu-

factured with the same feature size of the chosen FPGAs were used for comparison. The chosen

CPUs are described in Table 4.2.

37

38 Results

Table 4.2: CPUs chosen.

CPU Cores Feature size Frequency
Colin Schmidt et al. 8 RV64GC Rocket cores 16nm 1.44GHz

StarFive JH7100 2 Sifive U74 cores + 1 Sifive E24 core 28nm 1GHz

The 16nm CPU shown in Table 4.2 was recently presented in the work of Colin Schmidt et al.

[27], and it has the particularity of having been designed using Chisel, mentioned in Section 2.3.2,

and it’s cores generated using the open-source Rocket Chip Generator, mentioned in Section 2.4.2.

This CPU will be paired with the chosen Xilinx Artix Ultrascale+ FPGA.

The StarFive JH71001 CPU is a commercial offering of StarFive Tech, and it uses commer-

cially available cores designed by Sifive. This CPU has 2 types of processing cores, the U74 core2

that is an high performance core and the E24 core3 that is a high efficiency core that mainly targets

real time and control applications. Due to it’s higher performance, for all tests performed the U74

core was chosen. This CPU will be paired with the chosen Xilinx Kintex 7 FPGA.

The performance of the cores of the CPUs shown in Table 4.2 is presented in Table 4.3.

Table 4.3: Clocks Per Instruction of the chosen CPU cores.

Instruction Clocks Per Instruction
RV64GC Rocket Sifive U74

Multiplication 1 3
Remaining arithmetic operations 1 1

In order to determine the performance gains that the generated HW accelerators provide, the

way in which the FPGA and CPU are integrated needs to be chosen. There are multiple levels

of integration such as the FPGA being a discrete device and communicating with the CPU using

a bus (such as PCIe), the FPGA and the CPU being integrated into an SoC in where the FPGA

communicates with the CPU over a bus (such as AXI), or the FPGA being integrated into the

CPU’s pipeline.

The chosen configuration was to have the FPGA integrated into the CPU’s pipeline, since

in this manner the communication overheads are minimized, which would drastically reduce the

performance gains that can be obtained, and the FPGA can be treated as a computational unit in

the CPU’s pipeline (such as the CPU’s Arithmetic Logic Unit or the Floating Point Unit).

Since the extracted sequences do not contain any branch/jump instructions or memory ac-

cesses, the expected number of clocks required to process a sequence of instructions is given by

Equation 4.1, where ClockPerInstruction[i] is the Clocks Per Instructions of the i-th instruction in

the sequence. This value can be determined, in the case of the CPU cores considered, by using

Table 4.3.

1StarFive JH7100 Github repository: https://github.com/starfive-tech/JH7100_Docs
2Sifive U74 Core Complex Manual: https://sifive.cdn.prismic.io/sifive/ad5577a0-9a00-45c9-a5d0-

424a3d586060_u74_core_complex_manual_21G3.pdf
3Sifive E24 Core Complex Manual: https://sifive.cdn.prismic.io/sifive/dc408861-94ce-4d82-a704-

caddec98609d_e24_core_complex_manual_21G3.pdf

4.2 Benchmarks 39

Nclocks =
Ninstructions

∑
i=1

ClocksPerInstruction[i] (4.1)

In CPU cores that exhibit single cycle delays in all instructions, such as in the RV64GC Rocket

core, the number of clocks required to process a sequence of instructions is given by Equation 4.2.

Nclocks = Ninstructions (4.2)

Since the clock frequencies of the CPUs are known, the amount of time necessary to process

a sequence of instructions is given by Equation 4.3.

TdelayCPU =
1

fCPU
×Nclocks (4.3)

The expected speed-up of the extracted sequence that can be obtained by the generated mod-

ule, is given by Equation 4.4, where max(Tdelaymodule) is the maximum propagation delay of the

generated module given by the synthesis tool used.

SpeedU p =
TdelayCPU

max(Tdelaymodule)
(4.4)

4.2 Benchmarks

To have a more broad set of results, multiple sets of benchmarks were chosen, that target different

applications:

• Livermore Loops: classical benchmark set that targets parallel computers. This benchmark

was presented in the work of Francis H. McMahon [28]. Originally this benchmark was

written in FORTRAN, but since it’s release it has been ported to numerous languages4.

• PolyBench/C: set of benchmarks that targets validating optimizations performed by com-

pilers. It was developed in 2010 by Louis-Noel Pochet at the Ohio State University5.

• Custom developed benchmark set: custom developed benchmark set that aims to better

demonstrate the limitations and merits of the developed tool-chain and to better show the im-

pact that factors such as the number of instructions in a frequent sequence or the sequence’s

inherent parallelism has on the performance gains of the proposed approach.

The kernels of the benchmark sets used are shown in Table 4.4.

4Livermore Loops C kernel: https://www.netlib.org/benchmark/livermorec
5PolyBench benchmark set website : https://web.cse.ohio-state.edu/ pouchet.2/software/polybench/

40 Results

Table 4.4: Benchmarks used.

Set Benchmark Description

Livermore Loops

hydro2d 2-D explicit hydrodynamics fragment
matmul Matrices multiplication
pic1d 1-D particle in a cell

cholesky Incomplete Cholesky conjugate gradient
statefrag Equation of state fragment

hydro2dimpl 2-D implicit hydrodynamics fragment

PolyBench/C

gemm Matrix-multiply C=alpha.A.B+beta.C
nussinov Nucleic acid structure prediction

syr2k Symmetric rank-2k operations
ludcmp LU decomposition

lu LU decomposition

Custom

conv2x2 Parallel convolution of two 2x2 matrices
add8par Parallel addition of 8 integers
add8seq Sequential addition of 8 integers
avg16 Average of 16 integers calculator

The custom set of benchmarks was developed in order to isolate and try to determine which

factors have an impact on the performance gains that can be obtained by using the proposed ap-

proach. The developed kernels were written in C, and the register keyword was used in all

declared variables, in order to hint the compiler to not use memory operations.

The custom benchmark set contains the following benchmarks:

• avg16 - Average of 16 integers calculator: This benchmark contains 15 additions and

a bit shift, and it aims to show the acceleration provided by the developed tool-chain on

sequences that contain a large amount of instructions, that are all simple operations. The

kernel of this benchmark is shown if Listing 4.1.

int avg16(int v0, int v1, int v2, int v3, int v4, int v5, int v6, int v7, int v8,

int v9, int v10, int v11, int v12, int v13, int v14, int v15){

register int v_quad0 = v0 + v1 + v2 + v3;

register int v_quad1 = v4 + v5 + v6 + v7;

register int v_quad2 = v8 + v9 + v10 + v11;

register int v_quad3 = v12 + v13 + v14 + v15;

register int v_final = v_quad0 + v_quad1 + v_quad2 + v_quad3;

return v_final >> 4;

}

Listing 4.1: avg16 benchmark kernel.

• conv2x2 - Parallel convolution of two 2x2 matrices: This benchmark contains 4 paral-

lel multiplications and 3 additions, and it aims to show the limitations of the developed

tool-chain, in sequences that are both inherently parallel and contain multiple complex op-

erations, in this case multiplications. The kernel of this benchmark is shown if Listing 4.2.

4.2 Benchmarks 41

int conv2x2(int a0, int a1, int a2, int a3, int b0, int b1, int b2, int b3){

register int mul0 = a0 * b0;

register int mul1 = a1 * b1;

register int mul2 = a2 * b2;

register int mul3 = a3 * b3;

register int add0 = mul0 + mul1;

register int add1 = mul2 + mul3;

register int add_final = add0 + add1;

return add_final;

}

Listing 4.2: conv2x2 benchmark kernel.

• add8par - Parallel addition of 8 integers: This benchmark contains 7 additions in a bi-

nary tree structure, and it is meant to be compared with the add8seq benchmark in order

to demonstrate the sensitivity of the developed tool-chain to the inherent parallelism of the

extracted sequence. This benchmark is not a realistic representation of actual binaries. The

kernel of this benchmark is shown if Listing 4.3.

int sum8_par(int v0, int v1, int v2, int v3, int v4, int v5, int v6, int v7){

register int add0 = v0 + v1;

register int add1 = v2 + v3;

register int add2 = v4 + v5;

register int add3 = v6 + v7;

register int add_0_1 = add0 + add1;

register int add_2_3 = add2 + add3;

return add_0_1 + add_2_3;

}

Listing 4.3: add8par benchmark kernel.

• add8seq - Sequential addition of 8 integers: This benchmark contains 7 sequential addi-

tions, and it is meant to be compared with the add8par benchmark in order to demonstrate the

sensitivity of the developed tool-chain to the inherent parallelism of the extracted sequence.

This benchmark is also meant to demonstrate the optimizations performed by compilers,

mainly the serialization of operations. This is meant to be a more realistic representation of

binaries. The kernel of this benchmark is shown if Listing 4.4.

42 Results

int sum8_seq(int v0, int v1, int v2, int v3, int v4, int v5, int v6, int v7){

return v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7;

}

Listing 4.4: add8seq benchmark kernel.

All of the benchmark sets used were compiled using the RISC-V GNU Compiler Toolchain6,

which is a RISC-V C and C++ cross-compiler. This tool-chain offers the same tools as the regular

Linux GNU tool-chain, such as GCC, G++, GDB and objdump.

4.3 Results

In this section the results obtained in each of the stages of the developed tool-chain, mentioned in

Section 3.1, are shown.

4.3.1 Stage 1

In this section the results obtained from Stage 1 of the developed tool-chain, in which frequent

sequences are extracted from a compiled binary and translated to the IL of the SPeCS Binary

Translation Framework, and parse trees are generated from this representation.

In Table 4.5 the sequences extracted by the tool-chain for each of the benchmarks presented in

Section 4.2 is shown.

Table 4.5: Extracted sequences per benchmark.

Set Benchmark Sequence size Number of sequencesAverage Max

Livermore Loops

hydro2d 2.18 3 11
matmul 2.2 3 5
pic1d 2.2 3 5

cholesky 2.25 3 5
statefrag 2.25 3 4

hydro2dimpl 2.3 3 6

PolyBench/C

gemm 2.5 3 11
nussinov 2.67 4 9

syr2k 2.86 4 10
ludcmp 2.64 4 19

lu 2.46 4 15

Custom

conv2x2 3.5 7 6
add8par 3.5 7 6
add8seq 3.5 7 6
avg16 8.5 17 16

In Table 4.6 the average number of sequences and their size per extracted per benchmark is

shown.

6RISC-V GNU Compiler Toolchain Github repository: https://github.com/riscv-collab/riscv-gnu-toolchain

4.3 Results 43

Table 4.6: Extracted sequences averages per benchmark.

Set Average sequence size Average number of sequences
Livermore Loops 3 6

PolyBench/C 3.8 12.8
Custom 9.5 8.5

In Listing 4.5 an example of a sequence extracted from the hydro2d benchmark of the Liver-

more Loops benchmark set is shown.

addi s10, a0, 0x0

addi a0, s11, 0x0

add a1, a5, a4

Listing 4.5: Extracted sequence from the hydro2d benchmark.

In Listing 4.6 the largest extracted sequence detected in the benchmark sets used is shown.

This sequence was detected in the avg16 benchmark, that is part of the custom benchmark set.

This sequence contains 17 instructions, that are mostly addition operations.

add a5, t4, t3

add a5, t1, a5

add s4, a0, a5

add a5, a1, a2

add a5, a3, a5

add s3, a4, a5

add a5, s2, s1

add a5, t2, a5

add s2, t0, a5

add a5, t6, t5

add a5, a7, a5

add s1, a6, a5

add a5, s4, s3

add a5, s2, a5

add s1, s1, a5

srai a5, s1, 0x4

addi a0, a5, 0x0

Listing 4.6: Largest extracted sequence in the avg16 benchmark.

4.3.2 Stage 2

In this stage of the tool-chain, the extracted frequent sequences parse trees are transformed into

CDFGs and HDL modules, currently SystemVerilog, are generated. In order to demonstrate the

generated CDFGs and SystemVerilog modules, the extracted sequences presented in Section 4.3.1

will be used.

44 Results

In Figure 4.1 the CDFG generated from the frequent sequence presented in Listing 4.5 is

shown. Since the extracted sequence is composed of 3 independent additions, the resulting CDFG

will contain a single Data Flow Subgraph.

a0_0 0

+

s10_1

s11_0 0

+

a0_1

a5_0 a4_0

+

a1_1

Figure 4.1: Generated CDFG of the extracted sequence in the hydro2d benchmark presented in
Listing 4.5.

In Listing 4.7 the SystemVerilog module generated from the CDFG shown in Figure 4.1 is

presented. The generated module contains two additions with a zero immediate value, that the

synthesis tool used, in this case Xilinx Vivado, will replace with assignments, as per example

s10_1 = a0_0 + 32’d0 will be transformed to s10_1 = a0_0.

module Segment_2848929098(a0_0, a4_0, a5_0, s11_0, a0_1, a1_1, s10_1);

// Declarations block: Ports

input wire [31 : 0] a0_0;

input wire [31 : 0] a4_0;

input wire [31 : 0] a5_0;

input wire [31 : 0] s11_0;

output reg [31 : 0] a0_1;

output reg [31 : 0] a1_1;

output reg [31 : 0] s10_1;

always_comb begin : comb_0

s10_1 = a0_0 + 32'd0;

a0_1 = s11_0 + 32'd0;

a1_1 = a5_0 + a4_0;

end

endmodule //Segment_2848929098

Listing 4.7: Generated SystemVerilog module of the extracted sequence in the hydro2d benchmark

presented in Listing 4.5.

In Figure 4.2 the CDFG generated from the frequent sequence presented in Listing 4.6 is

shown. Since the extracted sequence does not contain any instructions that alter the control flow

of the kernel, the generated CDFG contains a single Data Flow Subgraph with all of the operations

inside it. In this representation the serialization optimization performed by the compiler used

4.3 Results 45

can be seen, since each of the sums of 4 values in the benchmark was compiled as 3 sequential

operations. This is optimization is done by the compiler in order to reduce the number of registers

used.

t4_0 t3_0

+ t1_0

+ a0_0

+

a1_0 a2_0

+ a3_0

+ a4_0

+

s2_0 s1_0

+ t2_0

+ t0_0

+

t6_0 t5_0

+ a7_0

+ a6_0

+

s4_1 s3_1 s2_1

+
+

+

s1_2 4

»

a5_11 0

+

a0_1

Figure 4.2: Generated CDFG of the extracted sequence in the avg16 benchmark presented in
Listing 4.6.

In Listing 4.8 the generated SystemVerilog module of sequence’s CDFG shown in Figure 4.2

is shown.

46 Results

module segment_avg16_size_17(a0_0, a1_0, a2_0, a3_0, a4_0, a6_0, a7_0, s1_0, s2_0,
t0_0, t1_0, t2_0, t3_0, t4_0, t5_0, t6_0, a0_1, a5_11, s1_2, s2_1, s3_1, s4_1);

// Declarations block: Ports
input wire [31 : 0] a0_0;
input wire [31 : 0] a1_0;
input wire [31 : 0] a2_0;
input wire [31 : 0] a3_0;
input wire [31 : 0] a4_0;
input wire [31 : 0] a6_0;
input wire [31 : 0] a7_0;
input wire [31 : 0] s1_0;
input wire [31 : 0] s2_0;
input wire [31 : 0] t0_0;
input wire [31 : 0] t1_0;
input wire [31 : 0] t2_0;
input wire [31 : 0] t3_0;
input wire [31 : 0] t4_0;
input wire [31 : 0] t5_0;
input wire [31 : 0] t6_0;
output reg [31 : 0] a0_1;
output reg [31 : 0] a5_11;
output reg [31 : 0] s1_2;
output reg [31 : 0] s2_1;
output reg [31 : 0] s3_1;
output reg [31 : 0] s4_1;

// Declarations block: Wires
wire [31 : 0] add_0;
wire [31 : 0] add_1;
wire [31 : 0] add_2;
wire [31 : 0] add_3;
wire [31 : 0] add_4;
wire [31 : 0] add_5;
wire [31 : 0] add_6;
wire [31 : 0] add_7;
wire [31 : 0] add_8;
wire [31 : 0] add_9;
wire [31 : 0] add_10;

always_comb begin : comb_0
add_0 = t4_0 + t3_0;
add_1 = t1_0 + add_0;
s4_1 = a0_0 + add_1;
add_2 = a1_0 + a2_0;
add_3 = a3_0 + add_2;
s3_1 = a4_0 + add_3;
add_4 = s2_0 + s1_0;
add_5 = t2_0 + add_4;
s2_1 = t0_0 + add_5;
add_6 = t6_0 + t5_0;
add_7 = a7_0 + add_6;
add_8 = a6_0 + add_7;
add_9 = s4_1 + s3_1;
add_10 = s2_1 + add_9;
s1_2 = add_8 + add_10;
a5_11 = s1_2 >> 32'd4;
a0_1 = a5_11 + 32'd0;

end

Listing 4.8: Generated SystemVerilog module of the largest extracted sequence in the avg16
benchmark.

4.3 Results 47

4.3.3 Stage 3

In this stage the generated modules are functionally validated, and if this validation step is success-

ful, the modules are synthesized and a timing analysis is performed on the synthesized modules.

In this section the speed-up results obtained in each of the benchmark sets used and the factors

that impact the performance gain that can be obtained by the proposed approach will be analyzed.

4.3.3.1 Livermore Loops benchmark set

The performance gains obtained in each of the benchmarks in the Livermore Loops benchmark

set is shown if Figure 4.3. The error bars in the graph show the maximum and minimum speed-up

obtained in that particular benchmark.

hydro2d
matmul

pic1d
cholesky

statefrag
hydro2dimpl0

50

100

150

200

250

300

350

400

450

Benchmark

A
ve

ra
ge

sp
ee

d-
up

[%
]

StarFive JH7100 vs Xilinx Kintex 7 (28nm)
Schmidt et al. vs Xilinx Artix UltraScale+ (16nm)

Figure 4.3: Average speed up obtained per extracted sequence of a benchmark in the Livermore
Loops benchmark set.

In this benchmark set, most of the extracted frequent sequences were of either two sequential

additions or of an addition followed by a multiplication. The 28nm devices on average benefited

less from this approach than the 16nm devices. This might be due to the 16nm FPGA having a

better architecture and it’s smaller feature size decreases the maximum path delay more than the

increase in CPU frequency from the 28nm CPU to the 16nm CPU. Overall all benchmarks showed

a performance gain of more than 100%, with the 28nm devices showing an average of 175% and

the 16nm devices an average speed-up of 275%.

In Table 4.7 the resource utilization and maximum operating frequency of the synthesized gen-

erated modules of each extracted sequence of the Livermore Loops benchmark set is shown. The

48 Results

modules that have a N/A maximum operating frequency, the synthesis tool synthesized modules

that have an infinite maximum operating frequency, since the extracted sequences contained only

mv pseudo operations, that are synthesized as direct connections between the input and output

ports of the module.

Table 4.7: Resource utilization and maximum operating frequency of each synthesized generated
module from the Livermore Loops benchmark set.

Benchmark Sequence size Resources Maximum frequency(MHz)
Logic Cells DSP slices 16nm 28nm

hydro2d
2

2 0 1869 437
64 0 1786 437
0 0 N/A 1488
2 0 1869 437
0 0 N/A 1488

32 0 1786 437
0 0 N/A 1488

32 0 1786 437
32 0 1786 437

3
32 0 1786 437
32 0 1786 437

matmul
2

1 0 2110 437
6 0 1869 437
1 0 1869 437
2 0 1869 437

3 2 0 1869 437

pic1d
2

32 0 1786 437
0 0 N/A 1488
2 0 1869 437
0 0 N/A 1488

3 0 0 N/A 1488

statefrag
2

0 0 N/A 1488
1 0 1869 437
1 0 2110 437

3 2 0 1869 437

hydro2dimpl
2

64 0 1786 437
0 0 N/A 1488
0 0 N/A 1488

33 0 1786 437

3
0 0 N/A 1488
0 0 N/A 1488

cholesky
2

1 0 1869 437
0 0 N/A 1488
1 0 2110 437

3 2 0 1869 437

Legend: N/A - Not Applicable

4.3.3.2 PolyBench/C benchmark set

The performance gains obtained in each of the benchmarks in the PolyBench/C benchmark set

is shown if Figure 4.4. The error bars in the graph show the maximum and minimum speed-up

obtained in that particular benchmark.

4.3 Results 49

gemm
ludcmp lu nussinov

syr2k
0

100

200

300

400

500

600

700

800

Benchmark

A
ve

ra
ge

sp
ee

d-
up

[%
]

StarFive JH7100 vs Xilinx Kintex 7 (28nm)
Schmidt et al. vs Xilinx Artix UltraScale+ (16nm)

Figure 4.4: Average speed up obtained per extracted sequence of a benchmark in the PolyBench/C
benchmark set.

The composition of the extracted sequences in this benchmark set did not follow a particular

pattern. One noteworthy aspect that is not shown in the figure is that some of the benchmarks

showed an infinite speed-up. This is due to the fact that those particular frequent sequences were

fully composed of addi instruction with the immediate operand set to zero. This is equivalent to

sequence with only mv pseudo-instructions, so those frequent sequences are performing a register

mapping function, and in Xilinx Vivado the additions of a register with 0 are replaced with a direct

connection between the input and output signals. In a real application the speed-up would not be

infinite, but it would be limited by the clock speed of the processor, since if it wrote all values in

parallel to the register file, this would take a single clock cycle. All of the benchmarks performed

showed an average performance gain of over 150%, with the 28nm devices showing an average

speed-up of 350% and the 16nm devices an average speed-up of 250%. In the nussinov and syr2k

benchmarks the 28nm devices showed a maximum speed up of over 700%, when the extracted

sequence contained 4 instructions.

In Table 4.8 the resource utilization and maximum operating frequency of the synthesized gen-

erated modules of each extracted sequence of the Livermore Loops benchmark set is shown. The

modules that have a N/A maximum operating frequency, the synthesis tool synthesized modules

that have an infinite maximum operating frequency, since the extracted sequences contained only

mv pseudo operations, that are synthesized as direct connections between the input and output

ports of the module.

50 Results

Table 4.8: Resource utilization and maximum operating frequency of each synthesized generated
module from the PolyBench/C benchmark set.

Benchmark Sequence size Resources Maximum frequency(MHz)
Logic Cells DSP slices 16nm 28nm

gemm
2

2 0 1869 437
16 3 284 136

3
5 0 1869 437
17 3 284 136

ludcmp

2

17 3 284 136
2 0 2004 448
64 0 1786 437
0 0 N/A 1488
3 0 1869 437
0 0 N/A 1488
47 3 247 122
2 0 1869 437
1 0 1869 437

3

3 0 1869 437
0 0 N/A 1488
18 3 284 136
49 3 247 122
17 3 284 136
6 0 1869 437

4
50 3 247 122
0 0 N/A 1488
49 3 247 122

lu

2

2 0 1869 437
17 3 284 136
1 0 1869 437
0 0 N/A 1488
3 0 1869 437
47 3 247 122
1 0 1869 437
0 0 N/A 1488
2 0 2004 448

3

0 0 N/A 1488
3 0 1869 437
18 3 284 136
49 3 247 122

4
50 3 247 122
0 0 N/A 1488

nussinov

2

1 0 1869 437
5 0 1869 437
0 0 N/A 1488
2 0 1869 437

3
3 0 1869 437
3 0 1869 437

4 4 0 1869 437

syr2k

2

2 0 1869 437
0 0 N/A 1488
1 0 1869 437
4 0 2004 448

3
0 0 N/A 1488
3 0 1869 437
5 0 1869 437

4
0 0 N/A 1488
0 0 N/A 1488

5 0 0 N/A 1488

Legend: N/A - Not Applicable

4.3 Results 51

4.3.3.3 Custom benchmark set

The performance gains obtained in each of the benchmarks in the custom benchmark set is shown

in Figure 4.5. The error bars in the graph show the maximum and minimum speed-up obtained in

that particular benchmark.

conv2x2
add8par

add8seq
avg16

0

100

200

300

400

500

600

700

Benchmark

A
ve

ra
ge

sp
ee

d-
up

[%
]

StarFive JH7100 vs Xilinx Kintex 7 (28nm)
Schmidt et al. vs Xilinx Artix UltraScale+ (16nm)

Figure 4.5: Average speed up obtained per extracted sequence of a benchmark in custom bench-
mark set.

In all benchmarks except for the conv2x2 benchmark, the 16nm devices obtained a larger

performance gain than the 28nm devices. The factors that contribute to the results obtained in this

benchmark set are explained in detail in Section 4.3.4.

In Table 4.9 the resource utilization and maximum operating frequency of the synthesized

generated modules of each extracted sequence of the Livermore Loops benchmark set is shown.

52 Results

Table 4.9: Resource utilization and maximum operating frequency of each synthesized generated
module from the custom benchmark set.

Benchmark Sequence size Resources Maximum frequency(MHz)
Logic Cells DSP slices 16nm 28nm

conv2x2

2 1 0 2004 448
3 1 0 2004 448
4 1 0 2004 448
5 1 0 2004 448
6 1 0 2004 448
7 1 0 2004 448
8 1 0 2004 448
9 1 0 2004 448

10 46 9 284 136
11 61 12 284 136
12 93 12 247 118
13 125 12 247 118
14 125 12 205 102
15 125 12 205 102
16 125 12 205 102

add8par

2 64 0 1786 437
3 96 0 1786 437
4 128 0 1786 437
5 128 0 687 264
6 128 0 687 264
7 160 0 489 205

add8seq

2 32 0 1087 344
3 92 0 903 316
4 64 0 551 232
5 124 0 499 218
6 96 0 551 230
7 156 0 499 211

avg16

2 32 0 1087 344
3 64 0 663 264
4 124 0 903 316
5 124 0 903 316
6 156 0 663 264
7 216 0 903 316
8 216 0 903 316
9 250 0 680 264

10 308 0 903 316
11 308 0 903 316
12 343 0 680 264
13 400 0 590 235
14 400 0 492 212
15 372 0 266 132
16 372 0 345 166
17 372 0 345 166

4.3.4 Impact of sequence characteristics on the performance gain obtained

To determine the factors that contribute to the performance gain that can be obtained by the pro-

posed approach, the custom benchmark set will be considered.

4.3 Results 53

4.3.4.1 Sequence size

To determine if the number of instructions in a sequence has a measurable impact on the perfor-

mance gain obtained from the developed tool-chain, the speed-up obtained per number of instruc-

tions in a sequence was calculated for the avg16 benchmark, since this benchmark showed the

largest extracted segment size of all benchmarks used. In Figure 4.6 the performance gain per

number of instructions is shown.

2 5 10 15 17
0

100

200

300

400

500

600

700

Number of instructions in sequence

Sp
ee

d-
up

[%
]

StarFive JH7100 vs Xilinx Kintex 7 (28nm)
Schmidt et al. vs Xilinx Artix UltraScale+ (16nm)

Figure 4.6: Speed-up per number of instructions in a frequent sequence in the avg16 custom
benchmark.

The avg16 benchmark showed a large performance gain from using this approach until the

sequence contained 11 instructions. The 16nm devices showed a maximum performance gain of

almost 700%, and the 28nm devices a maximum performance gain of about 350%. The decrease in

the performance gain obtained in larger sequences is due to the synthesis tool used, Xilinx Vivado,

starting to utilize more complex primitives, such as CARRY8 primitives in the case of the 16nm

device, that incur a larger propagation delay. This leads to a decrease in the performance gains

obtained.

The results obtained indicate that larger extracted sequences tend to benefit from the proposed

approach.

4.3.4.2 Inherent parallelism of a sequence

In order to determine the impact that the inherent parallelism of the extracted sequences has on the

performance gains, the add8par and add8seq benchmarks were considered since these benchmarks

compute the same algorithm, in this case the addition of 8 integers. The performance gain per

number of instructions in an extracted sequence is shown in Figure 4.7.

54 Results

2 5 7
0

100

200

300

400

500

Number of instructions in sequence
Sp

ee
d-

up
[%

]

Schmidt et al. vs Xilinx Artix UltraScale+ (16nm)

add8par
add8seq

2 5 7
0

100

200

Number of instructions in sequence

Sp
ee

d-
up

[%
]

StarFive JH7100 vs Xilinx Kintex 7 (28nm)

add8par
add8seq

Figure 4.7: Speed-up per number of instructions in a frequent sequence in the add8par and add8seq
custom benchmarks.

In almost all sequence sizes the add8par benchmark showed measurably larger performance

gains than the add8seq benchmark. In the add8par benchmark, the 16nm devices showed a max-

imum speed-up of almost 500% and the 28nm devices showed a maximum speed-up of about

185%. In the add8seq benchmark, the 16nm devices showed a maximum speed-up of about 250%

and the 28nm devices showed a maximum speed-up of about 150%. The results obtained indicate

that sequences that are more inherently parallel tend to benefit more from the proposed approach,

due to the parallelism acceleration that FPGAs provide.

Both benchmarks showed about the same performance gain in the largest sequence size, due to,

as mentioned in Section 4.3.4.1, the synthesis tool used starting to utilize more complex primitives

which negatively impact the propagation delay of the module.

4.3.4.3 Complexity of operations in a sequence

To determine the impact that the complexity of operations in a frequent sequence has on the per-

formance gains that can be obtained, the conv2x2 benchmark was considered, since half of the

operations in this benchmark are multiplications, that as mentioned in Section 3.1, may have a

measurable impact on the performance gain that can be obtained. The speed-up obtained per

number of instructions in an extracted sequence in this benchmark is shown in Figure 4.8.

4.3 Results 55

2 5 7
0

50

100

150

200

Number of instructions in sequence

Sp
ee

d-
up

[%
]

StarFive JH7100 vs Xilinx Kintex 7 (28nm)
Schmidt et al. vs Xilinx Artix UltraScale+ (16nm)

Figure 4.8: Speed-up per number of instructions in a frequent sequence of the conv2x2 bench-
marks.

The conv2x2 benchmark stopped showing an improvement in the performance gain obtained

with the increase of the number of instructions in the sequence after 4 instructions due to after

this amount of instructions in a sequence multiplication operations will always be present in the

sequence. In this benchmark the 28nm devices showed a greater benefit from being accelerated

using this approach due to the fact that the U74 core performs multiplications in 3 cycles, while

the 16nm devices showed no performance gain from using this approach.

The impact of the presence of multiplications can also be seen if two sequences if similar

sequences that only differ in the presence of a multiplication are compared. In the gemm bench-

mark of the PolyBench/C benchmark set, 2 sequences of 3 intructions were detected. The detected

sequences are shown in Listing 4.9.

addi a7, a7, 0x1 addi a5, a5, 0x4

addi t4, t4, 0x64 addi a3, a3, 0x1

addi a6, a6, 0x4 mul a4, a4, t0

Listing 4.9: Extracted sequences of 3 instructions from the gemm benchmark of the PolyBench/C

benchmark set

Both the sequences contain 3 independent operations, but the second sequence contains a mul-

tiplication operation. In Table 4.10 the maximum operating frequency of the generated modules

for each of the sequences, presented in Listing 4.9, is shown.

56 Results

Table 4.10: Decrease in maximum operating frequency with the inclusion of a multiplication.

Device Maximum frequency of generated module (MHz)
Additions Additions and a multiplication Difference

Xilinx Artix Ultrascale+ (16nm) 1869 284 1585 (84.8%)
Xilinx Kintex 7 (28nm) 437 136 301 (68.9%)

The sequence that contained a single multiplication operation showed a decrease of the mod-

ule’s operating frequency of almost 85% in the Xilinx Artix Ultrascale+ device and of 69% in the

Xilinx Kintex 7 device.

The results obtained indicate that the presence of multiplication operations in an extracted

sequence as a large impact on the performance gain that can be obtained by using the proposed

approach.

4.3.4.4 Conclusion

From the obtained results the speed up that can be obtained on depend on multiple factors such as:

• Number of instructions: Sequences with more instructions tend to benefit more than

shorter sequences, until a certain number of instructions where the performance gain seems

to stagnate or even decrease. This is due to the synthesis tool used, Xilinx Vivado, starting

to use more complex primitives in larger modules. In the context of the proposed approach,

due to the simplicity of the modules and the generated modules being fully combinational,

this optimization negatively impacts the performance gains that can be obtained;

• Inherent parallelism of instructions in sequence: Sequences that are more inherently

parallel tend to benefit more, since they can exploit the acceleration provided by FPGAs in

these types of workloads. This also includes sequences that are composed of sub-sequences

that are independent, since these sub-sequences do not use the same registers, so they can

be computed separately;

• Type of operations in the sequence: Sequences that contain more complex operations

such as multiplications tend to benefit less from this approach. This is due to current FPGA

architectures, that due to being designed to be as flexible as possible, are not designed for

this specific purpose. Due to this reason, when the extracted frequent sequences benefit from

HW accelerators in the FPGA fabric, such as in the case of multiplications, these sequences

incur a large performance gain decrease because of the distributed placement of the HW

multipliers in the FPGA fabric leading to longer signal paths which leads to a larger critical

path delay of the generated module. This severely limits the performance gain that can be

obtained in these types of sequences.

Chapter 5

Conclusion and Future Development

In this thesis, the feasibility of using programmable devices such as FPGAs to accelerate frequent

sequences present in compiled binaries was explored, in particular binaries compiled for the RISC-

V ISA. This tool-chain can also be used to accelerate MicroBlaze and ARM binaries since the

tool-chain is integrated with the SPeCS Binary Translation Framework, that abstracts the ISA of

the source binaries used, and the tool-chain was developed to be as generic as possible, so it can

support any desired ISA. The tool-chain was also developed in a manner that if required other

HDLs could also be targeted, such as VHDL or other higher-level alternatives such as Chisel, with

only requiring the development of a generator for the language to be targeted.

This thesis implemented transformation and translation steps that operate in this IL layer that

is ISA-independent. Namely, the removal of redundant registers was implemented, balancing

of registers through alternative execution paths in a CDFG, and generation of these CDFGs by

conversion of a list of the target instruction sequence’s parse tree. In this thesis the automatic

generation of modules and test-benches, and the automatic validation and characterization of the

generated modules were also developed, which enable the use of custom HW accelerators without

requiring any sort of digital HW design expertise and the lengthy validation process required.

The developed tool-chain is able to generate synthesizable modules from compiled RISC-V

binaries, that according to the results obtained in Chapter 4 seem to indicate that this approach is

able to provide measurable performance gains throughout a wide range of domains, and in some

cases it provided large performance gains of up to 700%. The performance gains obtained seem

to be limited by several factors such as, as mentioned in Section 4.3, the number of instructions

in an extracted frequent sequence, the inherent parallelism of the sequence’s instructions and the

type of operations in the sequences. The current scope of the developed tool-chain is limited since

sequences that contain divisions, floating-point operations, memory accesses and branch/jump in-

structions are not accelerated, and not all of the RISC-V ISA standard extensions are supported.

With further optimizations and the inclusion of all instructions in the RISC-V ISA standard ex-

tensions, the tool-chain could be applicable in more domains. This would lead the tool-chain to

be an alternative to standard HLS flows that would not require any sort of hardware expertise or

changing any of the target software’s code base.

57

58 Conclusion and Future Development

5.1 Future Development

In order to try and solve the issues mentioned in this chapter, and to try and explore more avenues

for obtaining an higher performance gain, the following options should be studied:

• Generation of pipelined modules, that could improve the performance gained in frequent

sequences that occur in rapid succession, such as in the case of loops;

• An automatic selector of sequences that picks which sequences to accelerate according to the

expected performance gains. This may include repeated iterations of detection and synthesis

to determine the expected operating frequencies;

• Broadening the scope to not only include frequent sequences but also sequences that have a

large computational cost and could benefit from this approach;

• More optimization passes should be performed on the CDFG, such as the deserialization

of sequences in order to better exploit the parallelism acceleration that FPGAs offer. The

performance gain that could be obtained by performing such a pass can be seen in Section

4.3.4.2, since the add8par benchmark represents the deserialization of the add8seq bench-

mark;

• Instead of generating FPGA independent modules, that are not aware of the primitives

present in the FPGA fabric, if the tool-chain generated FPGA device specific modules this

could lead to overall better performance gains and better FPGA resource utilization. As an

example, multiplication operations should be transformed if possible to match the FPGA’s

multipliers operands sizes (25×18 in Xilinx devices);

• The inclusion in the generated module of pre-design modules (component library) for com-

plex operations such as divisions, square roots and floating-point operations. This can be

done by exploring the isomorphism detection capabilities of the JGrapht library used;

• Exploring how to perform memory accesses in order to allow the inclusion of frequent

sequences with memory access instructions. This might be particularly beneficial, since

generally all functions within the binary need to perform stack operations when they are

called or they return;

• The overall flow of this approach is similar to that of most compilers. If this tool-chain was

integrated into a compiler framework such as LLVM, this tool-chain could also target not

only already compiled binaries but also programs that have not yet been compiled. This

would lead to the possibility of accelerating high level languages without requiring the use

of HLS workflows;

• Generation of RISC-V custom instructions, and modifying the target binaries to utilize them.

References

[1] P. Biswas, S. Banerjee, N. Dutt, P. Ienne, and L. Pozzi. Performance and energy benefits
of instruction set extensions in an FPGA soft core. In 19th International Conference on
VLSI Design held jointly with 5th International Conference on Embedded Systems Design
(VLSID’06), pages 6 pp.–, 2006. doi:10.1109/VLSID.2006.131.

[2] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. A Compiler Infrastructure
for Accelerator Generators, 2021. arXiv:2102.09713.

[3] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu, Yimin Lu,
Ziyi Hao, Jiahui Luo, Zhijian Chen, Chunqiang Li, Yu Pu, Jianyi Meng, Xiaolang Yan, Yuan
Xie, and Xiaoning Qi. Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-
Order 64-bit High Performance RISC-V Processor with Vector Extension : Industrial Prod-
uct. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 52–64, 2020. doi:10.1109/ISCA45697.2020.00016.

[4] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,
Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar
Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin
Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian
Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The Rocket
Chip Generator. Technical Report UCB/EECS-2016-17, EECS Department, University of
California, Berkeley, Apr 2016. URL: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-17.html.

[5] Weisong Shi and Schahram Dustdar. The Promise of Edge Computing. Computer, 49(5):78–
81, 2016. doi:10.1109/MC.2016.145.

[6] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge Computing: Vision
and Challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016. doi:10.1109/
JIOT.2016.2579198.

[7] B. Moyer. Low-power design for embedded processors. Proceedings of the IEEE,
89(11):1576–1587, 2001. doi:10.1109/5.964439.

[8] Kenneth Flamm. Measuring Moore’s law: evidence from price, cost, and quality indexes.
Technical report, National Bureau of Economic Research, 2018.

[9] Nuno Paulino, João Canas Ferreira, and João M. P. Cardoso. Improving Performance and
Energy Consumption in Embedded Systems via Binary Acceleration: A Survey. ACM
Comput. Surv., 53(1), February 2020. URL: https://doi.org/10.1145/3369764,
doi:10.1145/3369764.

59

http://dx.doi.org/10.1109/VLSID.2006.131
http://arxiv.org/abs/2102.09713
http://dx.doi.org/10.1109/ISCA45697.2020.00016
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://dx.doi.org/10.1109/MC.2016.145
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/5.964439
https://doi.org/10.1145/3369764
http://dx.doi.org/10.1145/3369764

60 REFERENCES

[10] Xian-He Sun and Yong Chen. Reevaluating Amdahl’s law in the multicore era. Jour-
nal of Parallel and Distributed Computing, 70(2):183–188, 2010. URL: https://
www.sciencedirect.com/science/article/pii/S0743731509000884, doi:
https://doi.org/10.1016/j.jpdc.2009.05.002.

[11] Stijn Eyerman and Lieven Eeckhout. Modeling Critical Sections in Amdahl’s Law and
Its Implications for Multicore Design. ACM SIGARCH Computer Architecture News,
38(3):362–370, June 2010. URL: https://doi.org/10.1145/1816038.1816011,
doi:10.1145/1816038.1816011.

[12] Stephen M. Trimberger. Three Ages of FPGAs: A Retrospective on the First Thirty Years
of FPGA Technology. Proceedings of the IEEE, 103(3):318–331, 2015. doi:10.1109/
JPROC.2015.2392104.

[13] Krste Asanović and David A. Patterson. instruction sets should be free: The case for risc-v.
Technical report.

[14] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. The RISC-V
Instruction Set Manual, Volume I: Base User-Level ISA. Technical Report UCB/EECS-
2011-62, EECS Department, University of California, Berkeley, May 2011. URL: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html.

[15] Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. Are fpgas suitable for edge comput-
ing?

[16] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach. An Introduction to High-Level Syn-
thesis. IEEE Design Test of Computers, 26(4):8–17, 2009. doi:10.1109/MDT.2009.69.

[17] Nuno Paulino, João Canas Ferreira, and João M. P. Cardoso. Optimizing OpenCL Code
for Performance on FPGA: k-Means Case Study With Integer Data Sets. IEEE Access,
8:152286–152304, 2020. doi:10.1109/ACCESS.2020.3017552.

[18] Alessandro Barenghi, Michele Madaschi, Nicholas Mainardi, and Gerardo Pelosi. OpenCL
HLS Based Design of FPGA Accelerators for Cryptographic Primitives. In 2018 Interna-
tional Conference on High Performance Computing Simulation (HPCS), pages 634–641,
2018. doi:10.1109/HPCS.2018.00105.

[19] Richard L Sites, Anton Chernoff, Matthew B Kirk, Maurice P Marks, and Scott G Robinson.
Binary translation. Communications of the ACM, 36(2):69–81, 1993.

[20] E.R. Altman, D. Kaeli, and Y. Sheffer. Welcome to the opportunities of binary translation.
Computer, 33(3):40–45, 2000. doi:10.1109/2.825694.

[21] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX annual technical
conference, FREENIX Track, volume 41, page 46. Califor-nia, USA, 2005.

[22] Huynh Phung Huynh, Yun Liang, and Tulika Mitra. Efficient custom instructions generation
for system-level design. In 2010 International Conference on Field-Programmable Technol-
ogy, pages 445–448, 2010. doi:10.1109/FPT.2010.5681456.

[23] Philippos Papaphilippou, Paul H. J. Kelly, and Wayne Luk. Extending the RISC-V ISA for
exploring advanced reconfigurable SIMD instructions, 2021. arXiv:2106.07456.

https://www.sciencedirect.com/science/article/pii/S0743731509000884
https://www.sciencedirect.com/science/article/pii/S0743731509000884
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2009.05.002
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2009.05.002
https://doi.org/10.1145/1816038.1816011
http://dx.doi.org/10.1145/1816038.1816011
http://dx.doi.org/10.1109/JPROC.2015.2392104
http://dx.doi.org/10.1109/JPROC.2015.2392104
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html
http://dx.doi.org/10.1109/MDT.2009.69
http://dx.doi.org/10.1109/ACCESS.2020.3017552
http://dx.doi.org/10.1109/HPCS.2018.00105
http://dx.doi.org/10.1109/2.825694
http://dx.doi.org/10.1109/FPT.2010.5681456
http://arxiv.org/abs/2106.07456

REFERENCES 61

[24] D. Oapos Loughlin et al. Xilinx Vivado High Level Synthesis: Case studies. IET Conference
Proceedings, pages 352–356(4), January 2014. URL: https://digital-library.
theiet.org/content/conferences/10.1049/cp.2014.0713.

[25] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižie-
nis, John Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a Scala em-
bedded language. In DAC Design Automation Conference 2012, pages 1212–1221, 2012.
doi:10.1145/2228360.2228584.

[26] Nuno Paulino, João Bispo, João C. Ferreira, and João M. P. Cardoso. A Binary Translation
Framework for Automated Hardware Generation. IEEE Micro, 41(4):15–23, 2021. doi:
10.1109/MM.2021.3088670.

[27] Colin Schmidt, John Wright, Zhongkai Wang, Eric Chang, Albert Ou, Woorham Bae, Sean
Huang, Vladimir Milovanović, Anita Flynn, Brian Richards, Krste Asanović, Elad Alon,
and Borivoje Nikolić. An Eight-Core 1.44-GHz RISC-V Vector Processor in 16-nm FinFET.
IEEE Journal of Solid-State Circuits, 57(1):140–152, 2022. doi:10.1109/JSSC.2021.
3118046.

[28] F H McMahon. The Livermore Fortran Kernels: A computer test of the numerical perfor-
mance range. 12 1986. URL: https://www.osti.gov/biblio/6574702.

https://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0713
https://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0713
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1109/MM.2021.3088670
http://dx.doi.org/10.1109/MM.2021.3088670
http://dx.doi.org/10.1109/JSSC.2021.3118046
http://dx.doi.org/10.1109/JSSC.2021.3118046
https://www.osti.gov/biblio/6574702

	Front Page
	Resumo
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives

	2 State of art
	2.1 Binary translation
	2.1.1 QEMU

	2.2 Generation of custom instructions
	2.2.1 Instruction Set Extensions in an FPGA Soft Core
	2.2.2 Efficient Custom Instructions Generator
	2.2.3 RISC-V ISA Single Instruction Multiple Data instructions extension

	2.3 Automatic generation of HDL
	2.3.1 Xilinx Vitis HLS
	2.3.2 Chisel
	2.3.3 Calyx compiler infrastructure

	2.4 RISC-V
	2.4.1 Xuantie-910
	2.4.2 Rocket Chip Generator
	2.4.3 Ibex RISC-V Core

	3 Proposed approach
	3.1 Overview
	3.2 SPeCS Binary Translation Framework
	3.2.1 Frequent sequence extraction
	3.2.2 Assembly to Intermediate Language translation
	3.2.3 Parse Tree

	3.3 Control and Data Flow Graph
	3.3.1 Structure
	3.3.2 Visual representation
	3.3.3 Generation
	3.3.4 Optimizations

	3.4 Module generation
	3.4.1 Hardware Description Language generation
	3.4.2 Synthesis

	3.5 Validation
	3.5.1 Functional validation
	3.5.2 Timing verification

	4 Results
	4.1 Devices tested
	4.2 Benchmarks
	4.3 Results
	4.3.1 Stage 1
	4.3.2 Stage 2
	4.3.3 Stage 3
	4.3.4 Impact of sequence characteristics on the performance gain obtained

	5 Conclusion and Future Development
	5.1 Future Development

	References

