
UNIVERSITY OF VERONA

DEPARTMENT OF COMPUTER SCIENCE

GRADUATE SCHOOL OF NATURAL SCIENCES AND ENGINEERING

DOCTORAL PROGRAM IN COMPUTER SCIENCE

CYCLE XXXI

A Holistic Approach to Functional
Safety for Networked Cyber-Physical
Systems

S.S.D. ING-INF/05

Coordinator:
Prof. Massimo Merro

Tutor:
Prof. Franco Fummi

Doctoral Student:
Dott. Enrico Fraccaroli

c 2018
Enrico Fraccaroli

ALL RIGHTS RESERVED

Abstract
Functional safety is a significant concern in today’s networked cyber-

physical systems such as connected machines, autonomous vehicles, and
intelligent environments. Simulation is a well-known methodology for the
assessment of functional safety. Simulation models of networked cyber-
physical systems are very heterogeneous relying on digital hardware, ana-
log hardware, and network domains. Current functional safety assessment is
mainly focused on digital hardware failures while minor attention is devoted
to analog hardware and not at all to the interconnecting network.

In this work we believe that in networked cyber-physical systems, the
dependability must be verified not only for the nodes in isolation but also
by taking into account their interaction through the communication channel.
For this reason, this work proposes a holistic methodology for simulation-
based safety assessment in which safety mechanisms are tested in a simu-
lation environment reproducing the high-level behavior of digital hardware,
analog hardware, and network communication. The methodology relies on
three main automatic processes: 1) abstraction of analog models to trans-
form them into system-level descriptions, 2) synthesis of network infras-
tructures to combine multiple cyber-physical systems, and 3) multi-domain
fault injection in digital, analog, and network.

Ultimately, the flow produces a homogeneous optimized description
written in C++ for fast and reliable simulation which can have many ap-
plications. The focus of this thesis is performing extensive fault simulation
and evaluating different functional safety metrics, e.g., fault and diagnostic
coverage of all the safety mechanisms.

Abstract (Italian)
Al giorno d’oggi la sicurezza funzionale è uno degli aspetti più inter-

essanti dei sistemi cyber-fisici di rete, come macchinari interconnessi, ve-
icoli autonomi e ambienti intelligenti. La simulazione è una tecnica ben
nota per la valutazione della sicurezza funzionale. Purtroppo, i modelli uti-
lizzati per simulare sistemi cyber-fisici di rete sono molto eterogenei e si
basano su hardware digitale, hardware analogico e aspetti di rete. Il metodo
con cui attualmente si valuta la sicurezza funzionale si concentra principal-
mente sui guasti dell’hardware digitale, mentre minore attenzione è dedicata
all’hardware analogico e quasi nessun interesse per la rete che interconnette
tutte le piattaforme.

La convinzione su cui si basa questo lavoro è che nei sistemi cyber-fisici
di rete, l’affidabilità deve essere verificata non solo per i nodi in isolamento,
ma anche tenendo conto della loro interazione attraverso il canale di comuni-
cazione. Per questo motivo, questo lavoro propone una metodologia olistica
per la valutazione della sicurezza basata sulla simulazione in cui i meccan-
ismi di sicurezza sono testati in un ambiente di simulazione che riproduce
il comportamento ad alto livello dell’hardware digitale, dell’hardware ana-
logico e della comunicazione di rete. La metodologia si basa interamente
su tre processi automatizzati: 1) astrazione di modelli analogici per trasfor-
marli in descrizioni system-level, 2) sintesi di infrastrutture di rete per unire
assieme multipli sistemi cyber-fisici, e 3) iniezione di guasti multi dominio
in digitale, analogico e rete.

In definitiva, il flusso produce una descrizione ottimizzata omogenea
scritta in C++ la quale permette una simulazione veloce e affidabile con
molte applicazioni. Il focus di questa tesi è l’esecuzione di una simulazione
di guasti e la valutazione di diverse metriche di sicurezza funzionale, ad
esempio, fault e diagnostic coverage di tutti i meccanismi di sicurezza im-
plementati sulle piattaforme di rete.

Acknowledgements
In primo luogo, vorrei esprimere la mia sincera gratitudine al mio rela-

tore, il Prof. Franco Fummi per l’incrollabile sostegno durante il mio dot-
torato. I suoi consigli e la sua saggezza mi hanno guidato nella mia ricerca
e mi hanno reso il ricercatore che sono oggi. Anche quando i suoi con-
sigli parevamo portarmi a navigare senza una bussola o senza le stelle come
guida, invero mi stavano indirizzando verso lidi ignoti pieni di nuove ed in-
teressanti scoperte. Questa è l’essenza di un dottorato, esplorare senza paura
e nel frattempo migliorare noi stessi.

In secondo luogo vorrei ringraziare il Prof. Davide Quaglia che per
primo a fatto nascere in me la curiosità per i miei studi. Nel corso della
mia laurea magistrale e durante le sue lezioni, inconsapevolmente mi con-
vinse ad intraprendere il dottorato e mi trasmise la sua incredibile curiosità
che principalmente lo caratterizza. Sia il Prof. Fummi che il Prof. Quagli
sono stati un grande esempio di ricercatore per me, e cercherò sempre di far
tesoro degli innumerevoli (non scherzo) consigli che mi hanno dato durante
il dottorato.

Vorrei ringraziare il Prof. Riccardo Muradore del mio comitato di tesi,
per i suoi preziosi e costruttivi suggerimenti, commenti e incoraggiamenti.
Lo ringrazio inoltre per la sua curiosità che mi ha spinto ad ampliare la mia
ricerca ed ad osservarla sotto varie prospettive.

Vorrei esprimere la mia profonda gratitudine alla Dott. Renaud Gillon,
che mi ha dato l’opportunità di unirmi al suo team come stagista. Mi ha
ripetutamente fornito un supporto prezioso e ha pazientemente risposto alle
mie innumerevoli domande. Nell’ultimo anno e mezzo mi ha insegnato
moltissime cose, e lo ha fatto con un incredibile entusiasmo. Già prima di
incontrarlo, trasmettere le mie conoscenze era un’attività piacevole e entu-
siasmante, ora è diventata una passione.

Devo ringraziare i miei colleghi per le profonde, stimolanti, e utili dis-
cussioni che riguardavano tutto tranne che il lavoro. Li ringrazio per aver
condiviso con me innumerevoli scadenze (queste vanno per prime), eventi,
e incredibili banchetti a conferenze in terre lontane. Inoltre li ringrazio per
aver sopportato i miei numerosi colloqui con gli studenti, uno dei tanti mo-
menti esilaranti di un dottorato.

Ultimo ma non meno importante, vorrei ringraziare tutta la mia famiglia
a partire dai miei genitori e mio fratello. Loro mi hanno spinto a seguire

7

quello in cui credevo e sopratutto mi hanno insegnato a credere in me stesso.
Vorrei inoltre ringraziare la mia fidanzata per l’incrollabile pazienza e sup-
porto durante il mio dottorato. Durante un dottorato ci sono molti momenti
difficili, avere qualcuno con cui poterne parlare è incredibilmente impor-
tante.

Grazie a tutti voi,

Enrico

Contents

List of Figures . III

List of Tables . VI

List of Listings . VIII

1 Introduction . 1
1.1 Introduction . 1
1.2 Methodology flow . 2

2 Analog translation and abstraction . 5
2.1 State of the art and definitions . 7

2.1.1 AMS extensions of hardware description languages 7
2.1.2 SystemC-AMS . 8
2.1.3 High level analog modeling and simulation 9
2.1.4 Modeling styles at the base of analog translation 9
2.1.5 Formalisms and conventions . 9
2.1.6 Electrical linear network terminology 11
2.1.7 Guiding Example . 11

2.2 Methodology overview . 12
2.3 Translation methodology . 13

2.3.1 Choice of the suitable SystemC-AMS abstraction level 15
2.3.2 Circuit node management . 15
2.3.3 Division into contributions . 16
2.3.4 ELN Components instantiation . 18
2.3.5 Complexity . 22

2.4 Abstraction methodology . 23
2.4.1 Circuit equations acquisition . 24
2.4.2 Equation system enrichment . 26
2.4.3 Cone of influence exploration . 27
2.4.4 Equations system solver . 29

2.4.5 Complexity . 30
2.5 Experimental results . 31

2.5.1 Case studies . 31
2.5.2 Methodology accuracy . 32
2.5.3 Methodology performance . 32
2.5.4 Application to a smart system scenario 33

2.6 Concluding remarks . 34

3 Analog multi-discipline abstraction and mixed-signal scheduling 35
3.1 Background . 38

3.1.1 Hardware description languages for multi-discipline models 38
3.1.2 Virtual platforms for smart systems . 41
3.1.3 Automatic abstraction of digital models 41

3.2 Running example . 42
3.3 Methodology overview . 44
3.4 Manipulation and abstraction of multi-discipline analog models 45

3.4.1 Disciplines analysis . 46
3.4.2 Frequency domain . 48
3.4.3 Conservative disciplines and custom disciplines 49
3.4.4 Non-linear behavior . 50

3.5 Mixed-signal scheduling for system integration 53
3.5.1 Model temporization . 53
3.5.2 Temporal decoupling and Synchronization 55
3.5.3 Cross-domain analog functions . 55

3.6 Transistor-level to behavioral-level abstraction 59
3.7 Behavioral-level interface building . 63
3.8 Holistic platforms for Industry 4.0 . 66
3.9 Experimental results . 68

3.9.1 Multi-domain abstraction evaluation . 70
3.9.2 Industrial case study: pico-projector . 70
3.9.3 Mixed-signal scheduling for system integration 74
3.9.4 Transistor-level to behavioral-level abstraction and

interface building . 77
3.9.5 Holistic platforms for Industry 4.0 . 78

3.10 Conclusions . 80

4 Network synthesis for cyber-physical systems . 83
4.1 Related Work . 85

4.1.1 System Functional Specification . 85
4.1.2 Network Design . 87

4.2 Communication-aware Design Flow . 88
4.2.1 Network Specification . 88
4.2.2 Design Flow . 93

4.3 Network Synthesis . 95
4.3.1 Problem Formulation . 95

4.3.2 MILP Variables . 96
4.3.3 MILP Objectives . 98
4.3.4 MILP Constraints . 100

4.4 Complexity and Scalability . 104
4.5 Experimental Results . 105

4.5.1 Case Study 1 . 106
4.5.2 Case Study 2 . 109

4.6 Conclusions . 114

5 Fault modeling and injection . 115
5.1 Digital fault injection . 117
5.2 Analog fault injection . 121

5.2.1 Fault taxonomy and code manipulation 122
5.2.2 Transistor-level to Behavioral-level fault mapping 125
5.2.3 Preserving faulty behaviors during abstraction 127
5.2.4 Building the analog simulation model 127

5.3 Network fault injection . 129
5.3.1 Implementation of saboteurs . 131
5.3.2 Bit-flip saboteur . 132

6 Holistic functional safety evaluation . 135
6.1 Case study . 135
6.2 Injection techniques evaluation . 135

6.2.1 Network saboteurs . 136
6.2.2 Digital mutants . 138
6.2.3 Analog faults . 139

6.3 Holistic functional safety evaluation . 141
6.3.1 Multi-domains safety assessment . 144

7 Conclusion and suggestions for future research . 145
7.1 Summary of the proposed approach . 145
7.2 Directions for future research . 147

Summary of the proposed innovative contributions . 149
Analog mixed-signal multi-domain abstraction . 149
Synthesis for Networked Cyber-Physical Systems . 150
Fault modeling and simulation . 150

References . 153

Appendices . 161

A Verilog-AMS designs . 161

B C++ algorithms . 167

List of Figures

1.1 Overview of the unified flow of the thesis. 2

2.1 Proposed methodology for simultaneous simulation of analog
components with embedded SW and digital HW in virtual platforms. 5

2.2 SystemC-AMS ELN terminology and main primitives adopted in
this work. 11

2.3 Translation flow for analog component descriptions. 14
2.4 Topological pattern for Type (2.1) contributions. 19
2.5 Topological pattern for contributions in Form (2.2). 20
2.6 Resulting topology obtained by the translation of the guiding

example in Listing 2.1. 23
2.7 Abstraction flow for analog component descriptions. 24
2.8 Dependencies graph generated for the guiding example starting

from the equations of Table 2.4. 28
2.9 Structure of the SMAC Smart System Test Case virtual platform. . . . 33

3.1 Overview of the abstraction and mixed-signal scheduling approach.
All the upward arrows, except for the digital abstraction, identify
the contributions of this thesis. 35

3.2 Structure and classification of the components in the vibrations
motor system. 42

3.3 Overview of the abstraction procedure for multi-discipline analog
models. 46

3.4 Disciplines analysis for the vibration motor case study. 47
3.5 Electrical circuit defined inside different modules, outlined by the

discipline analysis step. 48
3.6 Example of dependency graph enrichment, starting from a

Verilog-AMS description. 54
3.7 Clock cycle execution of the example in Figure 3.6, applying the

proposed scheduling approach. 55

3.8 A transition function used to track the values of an input signal at
each clock event. 57

3.9 A cross function used to generate a digital clock signal from a
continuous time signal. 59

3.10 Transistor-level circuit of a CMOS inverter. 60
3.11 Behavioral-level description of an inverter. 60
3.12 Six different C++ CMOS inverters switching between output low

and high. 61
3.13 Behavioral-level description of a generic two port circuit. 61
3.14 Transistor-level description of a CMOS switch. 62
3.15 Behavioral-level description of a switch. 63
3.16 Two-port waveform-relaxation interface. 64
3.17 Switch circuit with multi-port waveform relaxation interfaces. The

blue side of each interface represent the discrete-time waves. The
orange side represent the continuous-time analog circuit. 65

3.18 Overview of the approach for the integration of a Cyber-Physical
System (CPS) integration in a production line simulator. 67

3.19 Abstract-based Experiment Setup . 68
3.20 Heterogeneous virtual platform where the MEMS component is

inserted into. 69
3.21 Structure and classification of the components in the Vertical mirror

system. 71
3.22 Structure and classification of the components in the Vertical mirror

system. 73
3.23 Simulation overhead contributions (expressed in seconds on

a logarithmic scale) for the different parts of the system (i.e.,
analog component, digital platform and synchronization) for the
heterogeneous virtual platform (Mixed) and the homogeneous
virtual platform (C++). 76

3.24 Interface of the clock generator. 77
3.25 Metal Bending production Line modeled with Plant Simulation 78
3.26 Simplifed and detailed physical models. 79

4.1 Overview of the network synthesis flow, used to design a networked
cyber-physical system for building automation. 83

4.2 Entities for the communication-aware specification. 89
4.3 Proposed design flow for networked cyber-physical systems: the

new steps for network design (in light green on the left) are added
symmetrically to the state-of-art design flow (in white on the right). . 93

4.4 Network topology with various network architectures connected
through routers. 106

4.5 Wide urban area test case: the tasks and data-flows colored in blue
represent a preexisting network while red elements have been added
during network synthesis. 109

II

4.6 Value of the objective function as a function of number of tasks over
all zones and the optimization objective. 111

4.7 Total CPU time for Case Study 2 as a function of number of tasks
over all zones. 111

4.8 Percentage of CPU time devoted to pre-optimization activities for
Case Study 2 as a function of number of tasks over all zones. 112

4.9 Memory usage for Case Study 2 as a function of number of tasks
over all zones. 113

4.10 CPU time for Case Study 2 as a function of the number of tasks per
zone. 113

4.11 Memory usage for Case Study 2 as a function of the number of tasks
per zone. 114

5.1 Architecture of a case study for predictive maintenance. 115
5.2 Generation of the holistic platform for fault simulation. 117
5.3 Analog fault injection flow. 122
5.4 Locations of possible analog faults of a transistor-level description

of an inverter. 123
5.5 Transistor-level inverter with locations of possible open-circuit and

short-circuit faults. 126
5.6 Behavioral-level inverter with locations of possible open-circuit and

short-circuit faults. 126
5.7 SCNSL architecture with entities for fault injection. 130

6.1 Architecture of the networked cyber-physical system. 136
6.2 Actual injection behavior for various network saboteurs. 137
6.3 Simulation overhead of the Distance-based Bit-Flip saboteur

compared to Bernoulli Bit-Flip saboteur as a function of the injected
bit error rate. 138

III

List of Tables

2.1 Taxonomy of analog hardware description levels [1]. 8
2.2 Models supported by the proposed approaches. 13
2.3 Summary of the components employed to map differential

contributions. 21
2.4 Equations gathered (A, B and Z) and generated (from C to H) by the

abstraction procedure. 27
2.5 Benchmarks characteristics and generation time. 31
2.6 NRMSE of the generated models w.r.t. Simulink. 32
2.7 Execution times for different abstractions simulated both alone and

together with the smart system. 33

3.1 Natures defined by the Verilog-AMS standard. 39
3.2 Disciplines defined by the Verilog-AMS standard. Digital Verilog

descriptions are considered as models using the logic discipline. 39
3.3 Characteristics of the selected benchmarks. The used disciplines

are: (1) Logic, (2) Electrical, (3) Rotational, (4) Magnetic, (5)
Kinematic, (6) User defined discipline. 70

3.4 Simulation times needed to simulate the selected benchmarks and
achieved speed-up. 71

3.5 Simulation times needed to simulate the pico-projector benchmark
and achieved speed-up. 74

3.6 Benchmarks characteristics and time required for the automatic
abstraction. 74

3.7 Execution times for different abstractions simulated both alone and
together with the smart system. 75

3.8 Simulation time required to perform a complete fault simulation of
the clock generator for a total of thirty faults. 78

3.9 Simulation times with different number of bending operations. 80

4.1 Number of allocated variables. 104
4.2 Number of defined constraints. 105

4.3 Catalog of available nodes for Case Study 1. 107
4.4 Catalog of available abstract channels. 107
4.5 Example of contiguity values for Case Study 1. 108
4.6 Case Study 1: performance and results of the network synthesis as a

function of the optimization objective. 108
4.7 Catalog of available nodes for Case Study 2. 110

5.1 Proposed taxonomy of analog fault models at different levels of
abstraction. 123

6.1 Simulation overhead of packet-based network saboteurs. 137
6.2 Simulation overhead evaluation of digital mutants. 139
6.3 Simulation times to perform digital fault analysis. 139
6.4 Execution times of fault-free, single injected and all faults benchmarks.140
6.5 Simulation time required to perform a complete fault simulation of

the clock generator for a total of thirty faults. 140
6.6 Diagnostic coverage metric evaluated with the component in

isolation and inside the holistic platform. 143

VI

List of Listings

2.1 Verilog-AMS code of the guiding example. 12
2.2 Abstracted C++ code generated for the guiding example in Listing 2.1. 30
3.1 Manipulation of an electrical sub-model, to remove the

Laplace-domain specification. 49
3.2 OpAmp component of the vibration motor case study. 51
3.3 Example of custom function specified in Verilog-AMS (above), and

the corresponding C++ implementation (below). 52
3.4 Transition function implementation. 56
3.5 Cross function implementation. 58
3.6 Polynomial function inside the vertical mirror deisgn, specified in

Verilog-AMS (above), and the corresponding C++ implementation
(below). 73

5.1 Mutation macros implemented through bitwise operations. 119
5.2 Mutation functions implemented through bitwise operations. 120
5.3 Sample code of an analog to digital converter. On the top the original

code, in the middle the same code injected with C++ macros, while
on the bottom the injection with inline template functions. 121

5.4 C++ interface of a simulation model. 127
5.5 The process function of the inverter written in C++ instrumented

with the switch statement for fault simulation. 128
5.6 High-level description of a circuit edge. 129
5.7 Function used to set the Delay network fault. 131
5.8 Example of network saboteur initialization through lambdas. 131
5.9 Code for the distance-based bit-flip injection. 133
A.1 Analog to Digital Converter (ADC) written in Verilog-AMS. 161
A.2 Ideal operational amplifier written in Verilog-AMS. 162
A.3 Motor description written in Verilog-AMS. 163
A.4 Digital to Analog Converter (DAC) written in Verilog-AMS. 164
A.5 TransImpedence Amplifier (TIA) written in Verilog-AMS. 165
A.6 Comparator written in Verilog-AMS . 165
A.7 Behavioral-level CMOS inverter written in Verilog-AMS. 166

B.1 Functions used to deal with equality between values of type double.
Beside the two variables to compare, the function receives the value
of tolerance, used to tune the comparison’s accuracy. 167

B.2 Functions used to generate random real values. 168

VIII

1

Introduction

1.1 Introduction

Electronics, microsystems and cyber-physical systems underpin innovation and value
creation across the economy. Especially in the areas of networked cyber-physical
systems and smart systems composed of heterogeneous components such as ana-
log sensors, MEMS, power sources, digital hardware, network interfaces, embedded
software, and so on. A more ad more critical aspect in the design of such systems
is related to the safety-critical domains. As a consequence, functional safety assess-
ment of such devices and ensuring their dependability are becoming sophisticated
and critical tasks. Current approaches analyze the different domain of a smart sys-
tem with separated methodologies. Thus, they are not able to measure the cross in-
teraction between analog, digital and network components and to correlate them to
extra-functional properties like power-consumption, thermal dissipation, and aging.

Simulation is a well-known and widely-used methodology for the assessment of
functional safety. However, simulation models of networked cyber-physical systems
are very heterogeneous relying on digital hardware, analog hardware, and network
domains. Current functional safety assessment is mainly focused on digital hardware
failures while minor attention is devoted to analog hardware and not at all to the in-
terconnecting network. This is a problem which must be solved in the nearest feature,
especially now that recent trends are pushing in the direction of Internet-of-Things
(IoT) devices, where everyday objects are being connected to the Internet. Compa-
nies could design such devices by using off-the-shelf components, however relying
on custom System-on-Chips (SoCs) instead would give them more control over the
balance between size, power, and cost. Based on these trends, the interest for Net-
worked Cyber-Physical System (NCPS) will defensively arise in the foreseeable, and
so the interest in more efficient design flows.

This work proposes a holistic methodology for simulation-based safety assess-
ment in which safety mechanisms are tested in a simulation environment reproducing
the high-level behavior of digital hardware, analog hardware, and network.

2 1 Introduction

1.2 Methodology flow

Figure 1.1 shows the overall structure of the proposed methodology, where two flows
meet in the middle.

Environment

Heterogeneous Platform

Digital Description
Register-Transfer Level

Analog Description
Circuit Level

Digital Abstraction
and Fault Injection

Analog Abstraction
and Fault Injection

Mixed-Signal Scheduling

NETWORK

Homogeneous Platform

Homogeneous
Platform

Homogeneous
Platform

Communication Channel

Network Synthesis and Fault Injection

Catalog of Nodes
and Channels

Environment
Details

Application
Details

Communication-Aware Problem Formulation

Fig. 1.1: Overview of the unified flow of the thesis.

The first flow comes from below and concerns the process of “abstraction” as a
mean to unify different simulation domains in a unique homogeneous description.

1.2 Methodology flow 3

The starting point of this flow is a heterogeneous platform and its surrounding en-
vironment. As the name suggests, this platform is a description containing different
components belonging to digital and analog domains. The environment instead, is
completely described in the continuous domain and thus considered as an analog de-
scription for the purpose of the abstraction. The first step performs the abstraction
and fault injection on both digital and analog parts. Then, a second step recombines
the abstracted descriptions by creating a mixed-signal scheduler around them. The
result is a homogeneous platform written in a high-level language, which for the
purpose of this work is C++.

From above the second flow starts from the description of a distributed applica-
tion, the details about the environment, and a list of available channels and nodes.
This information is used to perform design space exploration of the network architec-
tures and topologies to find the optimal solutions. The result is a network infrastruc-
ture which maps the applications and their flows of communication in specific nodes
and channels. Furthermore, each channel is equipped with a user-defined protocol
layer which allows injecting faults into transiting packets.
Based on the structure of Figure 1.1, the thesis is organized as follows:

• Chapter 2 presents two techniques for the manipulation of analog components,
one technique is for the translation and the other for the abstraction.

• Chapter 3 concerns the entire bottom flow, which is the process of abstraction
from the heterogeneous description to the homogeneous one. This chapter is
built on top of the abstraction methodology presented in the previous chapter and
introduces several extensions. It explains how the abstraction deals with multi-
disciplinary analog components and the interfacing between analog and digital
processes. It also provides two valuable extensions to the abstraction methodol-
ogy, to cover transistor-level descriptions, and to simplify the abstraction process
for increasing its scalability.

• Chapter 4 concerns the top flow, the process of synthesis for networked cyber-
physical systems to automatically generate optimal network infrastructures.

These first three chapters provide the basic concepts that allow us to have a holistic
approach to functional safety. The following chapters extend the approaches pro-
posed in the first three to perform a functional safety assessment in each domain of
a cyber-physical system:

• Chapter 5 describes in details how the faults are injected in each domain of a
networked cyber-physical system.

• Chapter 6 starts by evaluating the simulation efficiency of the three proposed
injection techniques. Then, it introduces a simulation scenario which brings to-
gether all the techniques in a holistic case study for the diagnostic coverage
evaluation.

• Chapter 7 concludes and describes future work.

2

Analog translation and abstraction

RAMCPU I/O

BUS

Analog Component
(C++/SystemC/SystemC-AMS)

C++/SystemC Virtual Platform

Analog Component
(Verolog-AMS/VHDL-AMS)

Translation
of complete

behavior
1

Abstraction
preserving only

behaviors of interest
2

Fig. 2.1: Proposed methodology for simultaneous simulation of analog components with em-
bedded SW and digital HW in virtual platforms.

Compared to classical embedded systems, a distinctive aspect of smart systems is
their smartness, i.e., the ability to interact and adapt to an evolving environment, by
learning from previous experience and reacting accordingly [2]. This feature makes
them a winning solution in a wide range of challenges, spanning across healthcare,
factory automation and security, and is mainly enabled by analog components, i.e.,
sensors and actuators, that allow mutual reaction and sensing between system and
environment [3].

6 2 Analog translation and abstraction

The growing importance of the analog domain w.r.t. traditional embedded sys-
tems has not been compensated by a renewal of the design flows [4]. Embedded
SW, digital HW, and analog components follow different design flows, targeting
custom technologies and techniques that cannot reconcile extremely heterogeneous
aspects [5]. As a consequence, no existing framework or language can handle all
aspects of a smart system simultaneously [6].

At design time, embedded SW and digital HW are usually integrated through the
construction of C++-based virtual platforms, that allow the validation of the HW-SW
interaction [7, 8, 9]. Unfortunately, such virtual platforms do not natively support
analog descriptions, that are still specified using custom languages, e.g., Verilog-
AMS, SystemC-AMS, and SPICE [10, 11, 12, 13]. Extending the support also to ana-
log components requires the construction of co-simulation frameworks, at the price
of an increase of simulation time, that profoundly impacts on time-to-market [14, 5].

In this scenario, this work proposes to enhance the design of smart systems
through the homogeneous simulation of analog components with digital HW and
embedded SW. The adopted strategy consists of converting the starting analog de-
scriptions to C++-based languages. The resulting code can be easily integrated into
C++ HW-SW virtual platforms, with no additional co-simulation overhead.

As shown in Figure 2.1, the proposed methodology supports different levels
of adherence w.r.t. the starting description, and consequently of simulation perfor-
mance. If all aspects of the starting description must be preserved the methodology
applies a language translation 1 . Vice versa, if only a subset of the modeled aspects
is interesting for the validation of digital HW and SW, the methodology proposes a
model abstraction flow 2 . Both flows lead to the generation of efficient C++-based
code, ready to be integrated in the virtual platform.
The contributions presented in this chapter are:

• the definition of a translation algorithm that converts the overall starting descrip-
tion to SystemC-AMS. This flow generalizes the methodology in [14]. The algo-
rithm supports only linear models, due to SystemC-AMS limitations. Non-linear
models may be supported after applying linearization techniques and exploiting
the flexibility of SystemC to compose linear models;

• an abstraction algorithm supporting both linear and non-linear models, that re-
stricts the initial description to a subset of input/output relations of interest, to
achieve faster simulation. This algorithm makes use of symbolic analysis at gen-
eration time, to further remove simulation complexity;

• the integration of the proposed flows in a unique sound methodology, that allows
to seamlessly adopt the suitable level of abstraction and to explore the effects of
alternative configurations in terms of accuracy and performance;

• the generation of C++-based code to be integrated into virtual platforms with
no co-simulation overhead;

• the application to a number of case studies, that validate the proposed approach
on single components, and show the impact on the simulation of a complete
smart system.

2.1 State of the art and definitions 7

This chapter is organized as follows: Section 2.1 provides the necessary background
and definitions. Section 2.2 presents the overall approach, that is then detailed in
Sections 2.3 and 2.4. Then, both the methodologies are applied to experimental case
studies in Section 2.5. Section 2.6 draws our conclusions.

2.1 State of the art and definitions

This section provides all the necessary background, and introduces formalisms that
is used throughout this and the following chapters.

2.1.1 AMS extensions of hardware description languages

Verilog-AMS and VHDL-AMS present the same modeling concepts, and their dif-
ferences are mostly syntactic [11]. Even if the following sections adopt the Verilog-
AMS syntax, all considerations are applicable to VHDL-AMS as well.

2.1.1.a Analog and mixed signal management

Verilog-AMS supports descriptions belonging to different physical domains, includ-
ing electrical, mechanical, and thermodynamics. For this reason, any description
must specify the domain and the properties modeled for the system under design.
To this extent, Verilog-AMS defines natures (i.e., attributes of the measured quanti-
ties, like measure units and absolute tolerance for convergence) and disciplines, used
to associate system nodes to their measured quantities, that are either potential (i.e.,
across quantities) or flow (i.e., through quantities) [10]. The most representative dis-
cipline in the context of smart systems is the electrical discipline, that uses voltage
as potential (access function V()) and current as flow (I()).

Disciplines associate each system node with both potential and flow natures for
conservative systems, while signal-flow disciplines support only either flow or po-
tential. Equations defined on nodes sharing the same conservative discipline must be
in accordance with conservation laws (e.g., a net defined over electrical nodes must
obey Kirchhoff’s laws).

2.1.1.b Analog behavior management

The behavior of any system is described as a set of relationships between flows and
potentials of nodes and branches (i.e., paths of flows between nodes). These relations
are expressed as contribution statements (denoted with <+), that relate flow and po-
tential quantities of nodes and branches through differential and algebraic equations.
The circuit topology can be inferred by analyzing the access functions used inside
contribution statements. An access function used between two nodes implicitly de-
fines a branch between them.

8 2 Analog translation and abstraction

The execution semantics of Verilog-AMS mixes the discrete-event computation
typical of HDLs with numerical techniques, necessary to solve continuous-time mod-
els. Simulation environments often rely on SPICE-derived solvers [15]. This makes
AMS simulation very accurate but slow, thus not allowing an effective simulation of
mixed-signal systems [16].

2.1.2 SystemC-AMS

SystemC-AMS extends SystemC with constructs for modeling analog and mixed-
signal systems [12]. To cover a wide variety of descriptions, SystemC-AMS provides
three abstraction levels, supporting different communication styles and representa-
tions w.r.t. the physical domain. Electrical Linear Network (ELN) models electri-
cal networks through the instantiation of predefined primitives, e.g., resistors and
capacitors, associated with electrical equations. Linear Signal Flow (LSF) adopts
signal-flow (i.e., non conservative) representations, but it still supports differential
equations. The SystemC-AMS internal linear solver analyses the ELN and LSF com-
ponents to derive the equations describing system behavior, that are solved to deter-
mine system state at any simulation time. Finally, Timed Data-Flow (TDF) mod-
els are signal-flow representations, that are scheduled statically by considering their
producer-consumer dependencies.

SystemC, both plain [17] and with its AMS extension [18], has been used to
model mixed-signal systems. However, none of the previous works provide auto-
matic generation of SystemC-AMS modules from previously designed analog mod-
els.

Table 2.1: Taxonomy of analog hardware description levels [1].

Level Modeling Primitives Implications

Functional Mathematical signal flow de-
scription per block, connected in
signal flow diagram

No internal block structure; con-
servation laws need not be satis-
fied on pins

Behavioral Mathematical description (equa-
tions, procedures) per block

No internal block structure; con-
servation laws must be satisfied
on pins

Macromodel Simplified circuit with con-
trolled sources

Spatially unrelated to actual cir-
cuit; conservation laws must be
satisfied

Circuit Connection of SPICE primitives Spatially one-to-one related to
actual circuit; conservation laws
must be satisfied

2.1 State of the art and definitions 9

2.1.3 High level analog modeling and simulation

Behavioral analog modeling is a high-level abstraction of a circuit which describes
its behavior as a set of input-output relations. Analog hardware can be described at
different levels of abstraction, as shown in Table 2.1. The behavioral level is used
both in top-down design flows, e.g., refinement of the circuit from its mathematical
behavioral description, as well as in bottom-up verification flows [1].

Even if the design of analog models is typically top-down [11], recent work pro-
posed bottom-up flows in order to address non-linearities as well as speeding up
simulation of analog circuits. In [19] a non-linear analog model is represented as
a set of previously-computed linearized versions that are picked during simulation,
thus transforming a non-linear model to a set of linear models described at circuit
and behavioral level. This approach avoids any numerical integration during sim-
ulation, but it works only with stepwise input. [20] extends the previous work by
executing an on-the-fly reachability analysis to select only a subset of the linearized
models. Simulation of non-linear analog circuits is also addressed in [21] by applying
a state-space exploration technique. Continuous-time models described as a SPICE
net-list are replaced by boolean finite state machines capturing the I/O behavior of
the system. However, it requires extensive SPICE simulation in order to extract the
behavior. Model Order Reduction (MOR) has been used to achieve faster simulation
of analog circuits [22] (both linear [23] and nonlinear circuits [24, 25]) and to re-
duce complexity of large-scale dynamical models [26] and of multi-physical analog
models [27]. However, none of these techniques allow to translate already designed
analog models into C++-based languages that may be easily integrated within virtual
platforms.

2.1.4 Modeling styles at the base of analog translation

The main classification of modeling styles considered in this work is based on the ad-
herence to a physical description. Analog contributions are defined structural if they
can be mapped onto passive electronic elements (e.g., resistors and capacitors), thus
inferring a topology. Otherwise, contributions are called behavioral. This definition
reflects the behavioral concept as formalized in the digital domain, i.e., a descrip-
tion of a functionality expressed as set of behaviors rather than as an aggregation of
sub-components.

2.1.5 Formalisms and conventions

Any analog description can be described as a tuple:

S =< Ne,R >

where:

• Ne = nG ∪ {ni : i ∈ N+}: is the set of the electrical nodes of the system.
By reflecting the Verilog-AMS semantics, this set does not distinguish between

10 2 Analog translation and abstraction

internal nodes and interface nodes. Ne always contains a special node nG, that
represents the reference node (i.e., ground).
From Ne, we derive the set of electrical branches Be = {bi,j = (ni, nj) :
(ni, nj) ∈ Ne × Ne ∧ ni 6= nj}. Electrical branches are associated with a
current flowing through and an electrical potential across (i.e., voltage). Physical
quantities on a branch can be accessed by using the following access functions:

– V(bi,j): voltage on branch bi,j , defined as the electric potential difference
between nodes ni and nj .

– I(bi,j): amount of current flowing through branch bi,j , composed by nodes
ni and nj .

Such access functions are generalized through the definition of P(bi,j), that rep-
resents an access function for a non-specified physical quantity on branch bi,j
(i.e., either V(bi,j) or I(bi,j)).
• R: is the set of relations defined by the contribution statements of the model. For

electrical linear networks, all contribution patterns can be reduced to:

Pi(bi) =

(l∑
k=1

CkPk(bk)

)
+ Cl+1 (2.1)

Pi(bi) = Ci ∗ A
(
Pj(bj)

)
(2.2)

where the terms Ci stand for real constants. Operator A() generalizes the dif-
ferential operators ddt() (i.e., the derivative operator) and idt() (i.e., the
integrative operator). A()can be applied to any access function.

In the following sections, analog descriptions will be labeled with apices to distin-
guish between Verilog-AMS (v), SystemC-AMS (s) and C++ (c). It is important to
notice that model definitions are based on the set of relations expressed by the model.
This allows to reason about models independently from the runtime solver, that may
introduce unavoidable numerical errors. As such, different solver-independent equiv-
alence relations between models may be defined. In particular, given two systems
S1 =< N1,R1 > and S2 =< N2,R2 > and a mapping function between N1 and
N2, two possible equivalence relations are defined:

• node-level equivalence: S1 and S2 are node-level equivalent if R1 = R2 once
applied the mapping function between N1 and N2;
• interface-level equivalence: Let N ′1 ⊆ N1 and N ′2 ⊆ N2 be the elements

of interest for the designer, such that all elements in N ′2 are projections of all
elements inN ′1 according to the mapping function fromN ′1 toN ′2. LetR′1 ⊆
R1 andR′2 ⊆ R2 be the relations between quantities (i.e., Voltages or Currents)
on branches defined respectively over elements of N ′1 and N ′2. S1 and S2 are
interface-level equivalent ifR′1 = R′2.

In other words, node-level equivalence preserves the relations among all the nodes
of the system, while interface-level equivalence preserves all the relations between
those quantities of the system that are of interest for the designer (usually including
all terminals on the component interface).

2.1 State of the art and definitions 11

p

n

p

n

p

n

p

n

p

n

−
+

Voltage Source
sca_vsource

Current Source
sca_isource

Capacitor
sca_c

Resistor
sca_r

Inductor
sca_l

Current Controlled Source
sca_cc*s

ncp

ncn

np

nn

+

-
Voltage Controlled Source

sca_vc*s

ncp

ncn

np

nn

Controlled Current Source
sca_*ccs

ncp

ncn

np

nn

+
-

Controlled Voltage Source
sca_*cvs

ncp

ncn

np

nn

Fig. 2.2: SystemC-AMS ELN terminology and main primitives adopted in this work.

2.1.6 Electrical linear network terminology

Figure 2.2 details the main ELN primitives adopted in this work, as defined by the
SystemC-AMS standard [12]. In general, basic ELN modules have a standard in-
terface made up of a positive terminal (p port) and a negative terminal (n port) for
each contributing circuit node. This is the case of basic passive components (e.g.,
voltage/current sources, resistors, capacitors, and inductors). When an ELN module
is controlled by any circuit node, the interface has a source side (i.e., the input of the
primitive module, with a positive terminal ncp and a negative terminal ncn) and a
controlled side (i.e., the result of the ELN module, with a positive terminal np and a
negative terminal nn).

2.1.7 Guiding Example

Listing 2.1 shows a synthetic guiding example used throughout this chapter. Its rep-
resentation in terms of a Sv =< N v

e ,Rv > tuple is as follows:

• electrical nodes are:

N v
e = {gndv, inv, in1v, in2v, in3v, outv}

12 2 Analog translation and abstraction

Listing 2.1: Verilog-AMS code of the guiding example.

1 module example(out, in1, in2, in3);
2 output out;
3 input in1, in2, in3;
4 electrical in1, in2, in3, out;
5 parameter real R1 = 1e03;
6 parameter real C1 = 100e-09;
7 analog begin
8 V(in) <+ V(in1) + idt(V(in2) + V(in3)) + 5;
9 I(in, out) <+ V(in, out) / R1;

10 I(out) <+ ddt(V(out)) * C1;
11 end
12 endmodule

• the only branch explicitly specified is (in, out) ∈ Be, other than the (implicit)
ones between the nodes and ground;

• contribution statements are represented as relations as follows:

Rv =


V(in) = V(in1) +

∫
V(in2) + V(in3)dt+ 5.0,

I(in, out) = V(in, out)/R1,

I(out) = C1 ∗ d(V(out))/dt


2.2 Methodology overview

The proposed methodology for converting analog descriptions into C++-based lan-
guages is realized through two techniques, exposing complementary characteristics
(as outlined in Figure 2.1). The main discriminating factor is the desired level of
adherence w.r.t. the starting description.

Whenever a designer wishes to preserve all behaviors, the code generation pro-
cess applies a simple language translation, by mapping the starting syntactic con-
structs to SystemC-AMS (left-hand side of Figure 2.1). This preserves all the phys-
ical quantities defined on internal nodes of the system, producing a model that is
node-level equivalent to the original. This choice is fundamental when the generated
code is the starting point of further analysis or refinements, e.g., to apply power or
noise analysis, as well as “white box” verification of internal properties. By referring
to Table 2.1, the translation transforms an analog hardware model given at the circuit
level into a model at the behavioral level.

The complementary approach is to focus only on a subset of behaviors “of inter-
est,” to speed up simulation. This is achieved through an abstraction flow, realized
by identifying a subset of values of interest of the system (right-hand side of Fig-
ure 2.1): corresponding behaviors are preserved, while any other behavior is pruned.
Note that values of interest must be specified by the designer, and they typically carry
semantic information necessary to interface the analog component within a mixed-
signal environment. They are considered as inputs/outputs for the analog device. As

2.3 Translation methodology 13

Table 2.2: Models supported by the proposed approaches.

Non-linear Models

Methodology Linear Models Piecewise-linear Algebraic

Translation () (~)

Abstraction

a result, the abstraction flow produces a model that is interface-level equivalent to
the original design and moves an analog model from circuit to functional level.

Reducing the starting description to a subset of its possible behaviors is, on one
hand, a limitation, as it restricts the scope of any analysis or “white box” verifica-
tion. However, this limitation can be overcome by specifying internal values as of
values of interest, so that they are preserved during the abstraction process. On the
other hand, reducing the starting description is a key advantage, since abstracted
models are faster to simulate w.r.t. those produced through translation. This simula-
tion speed-up is extremely useful when simulating a whole mixed-signal platform
to evaluate its global features, and it is achieved without affecting overall system
behavior.

The translation and abstraction algorithms differ in terms of supported input
models, as highlighted by Table 2.2. Only linear descriptions are supported by both
approaches. Translation is constrained to accept only linear models since the transla-
tion algorithm targets SystemC-AMS ELN, that relies on a strictly linear solver. The
support can be extended to non-linear models only by applying preliminary manip-
ulation to the model, as will be discussed in the next section. On the contrary, the
abstraction procedure targets C++ models and performs symbolic resolution through
the adoption of solver technologies [28], that nowadays support also non-linear equa-
tions. This implies that the scope of application of the abstraction methodology is
wider than the scope of translation.

Despite of the differences in the code generation process, the result of both flows
can be integrated within C++ or SystemC prototypes in virtual platforms, thus allow-
ing effective evaluation of the heterogeneous system under design.

2.3 Translation methodology

The translation implements the flow on the left-hand side of Figure 2.1, and it is
represented by a function τ(Sv) = Ss, that given a Verilog-AMS implementation
Sv =< N v

e ,Rv > returns its node-level equivalent SystemC-AMS implementation
Ss =< N s

e ,Rs >.
Figure 2.3 gives an overview of the translation procedure. An analog description

can be considered as a mean to represent a system of AMS equations composing
the circuit. As such, the idea guiding the algorithm is to reproduce the exact set of

14 2 Analog translation and abstraction

AMS Circuit
Equations

Node Management

Division into
Contributions

ELN Component
Instantiation

Derivation of ELN
Equations

Application of
Conservative Laws

Set of
Equations

Application of
Conservative Laws

Set of
Equations

Mapping to
SystemC-AMS

Standard
Verilog-AMS

Flow

1

2

3

4

5

6

TRANSLATION

VERILOG-AMS SOLVER SYSTEMC-AMS SOLVER

Fig. 2.3: Translation flow for analog component descriptions.

equations expressed by the analog description (left-hand side of Figure 2.3) through
the instantiation of SystemC-AMS ELN primitives (right-hand side of Figure 2.3).

The translation flow works as follows. Analog nodes are mapped to SystemC-
AMS nodes (step 1). Then, every contribution statement is analyzed in order to
isolate its basic contributions (step 2). Each contribution is mapped to ideal ELN
primitives, where the equations associated with the ELN primitives are the same
as the original contribution (step 3). The algorithm determines how to connect the
ELN modules so that the bindings describe the same relationships between quantities
as the original representation.

The construction of the complete system of equations is demanded to the SystemC-
AMS internal solver (step 4), that also takes care of applying conservation laws
(step 5). The resulting equations system will be node-equivalent to the one de-
scribed by the starting description, and the resulting model will preserve every detail
of the model for what concerns the relations between conservative nodes.

2.3 Translation methodology 15

Discussion on supported models

Since the translation algorithm relies on SystemC-AMS ELN primitives, only linear
descriptions are straightforwardly supported. As anticipated by Table 2.2, support
can be extended also to non-linear models with some preliminary maneuver. Both
strategies must be performed at code generation time, as such, they would not impact
simulation performance.

Piecewise-linear models may be supported by applying translation to each linear
region individually, as proposed by [19]. To ensure that only one region is considered
at any simulation instant, regions are wrapped within a control structure composed
by SystemC-AMS voltage and current sources driven by the Discrete Event SystemC
kernel.

Algebraic non-linear models (e.g., models involving polynomials) require to un-
dergo some abstraction, that can be provided either by our abstraction approach or by
state-of-the-art linearization approaches, e.g., [19]. These produced piecewise-linear
models that can be treated as above.

2.3.1 Choice of the suitable SystemC-AMS abstraction level

A representation obtained through the translation process will not match entirely any
abstraction level of SystemC-AMS. The generated code is based on the instantiation
of an ELN topology composed by ideal components. It does not represent a physi-
cally realizable circuit topology, but rather an aggregation of components reproduc-
ing the behavioral relationships between conservative nodes in the original model.
As such, the description is considered behavioral (see Section 2.1.4). At the same
time, the generated code is conservative, as ELN primitives predicate over physi-
cal quantities of conservative nodes in electrical circuits. As a consequence, they
abide by energy conservation laws (i.e., Kirchhoff’s laws). This kind of descriptions
represents a novel modeling formalism in SystemC-AMS, called Analog Behavioral
Modeling (ABM) [14].

The characteristics of ABM models do not fit in any of the SystemC-AMS mod-
eling formalisms [14]. However, they are supported by other AMS HDLs and widely
used for the design of components such as MEMS and analog circuitry [29, 30]. It
is thus necessary to extend SystemC-AMS, to improve its coverage and effective-
ness. Since the SystemC-AMS standard forbids the definition of additional library
classes [12], this work proposes an algorithm that maps ABM descriptions to a novel
use of SystemC-AMS ELN blocks. These blocks are aggregated according to a set of
rules guaranteeing to reproduce exactly the set of relations between physical quanti-
ties specified in the original model. The use of predefined ELN primitives guarantees
the correctness of the underlying synchronization and solving mechanisms, and it
preserves compatibility with standard SystemC-AMS descriptions.

2.3.2 Circuit node management

Step 1 of Figure 2.3 implements the function ν(N v
e) = N s

e , that maps elec-
trical nodes of the analog implementation into SystemC-AMS. The ground node

16 2 Analog translation and abstraction

nvG is mapped into node nsG, corresponding to an instantiation of a node of type
sca_node_ref. Any other node nvi is mapped into a node nsi , that will be declared
in SystemC-AMS according to the following rules:

• if nvi belongs to the interface of the analog model, then nsi must be declared as a
sca_terminal;
• else, nsi is declared as a sca_node.

Each node nsi inserted into the SystemC-AMS implementation (including in-
stances of both sca_terminal and sca_node) is connected to the ground nsG
through a 1 GΩ resistor, by using the ELN sca_r primitive. This is identical to
the Gmin conductance inserted by SPICE-based simulators to help convergence.

In the guiding example of Listing 2.1, the set of SystemC-AMS nodes is N s
e =

{gnds, ins, in1s, in2s, in3s, outs}, where gnd is the ground (i.e., sca_node_ref),
in1, in2, in3 and out are declared as sca_terminal, while in is an instance of
sca_node.

2.3.3 Division into contributions

Step 2 analyses all the contribution statements and reduces the set of generic rela-
tions described by the starting analog implementation into a set of relations expressed
in the patterns (2.1) and (2.2) (Section 2.1.5).

This pre-processing phase is based onto a set of rules, that divide any original
relation into sub-equations. Each couple of sub-equations is connected by an addi-
tional electrical node, connected to ground by branch bz . This new node does not
have a physical correspondence in the modeled circuit, as it is only used for arti-
ficially splitting the described relation. Also this new node is connected to ground
through a 1 GΩ resistor.

The following symbols are adopted for the sake of clarity: ε1 to indicate a relation
expressed in pattern (2.1), ε2 for a relation expressed in pattern (2.2), and ε for a
generic expression other than a constant, or an access function.

2.3.3.a Rule 1 – isolating differential contributions

Pi(bi) = ε1 + ε2 →

{
Pi(bi) = ε1 + V(bz)

V(bz) = ε2

Any differential term ε2 contained by the original statement is replaced by the voltage
of the new branch bz . This transformation reduces the original statement in the Form
(2.1). Then, a new contribution in the Form (2.2) is added, to explicit the equivalence
between V(bz) and the term ε2.

2.3.3.b Rule 2 – managing arguments of differential operators

Pi(bi) = Ci ∗ A
(
ε)→

{
Pi(bi) = Ci ∗ A

(
V(bz))

V(bz) = ε

2.3 Translation methodology 17

Algorithm 1: Normalization algorithm for the translation procedure.
Input : Initial System (from original specification).
Output: Final Normalized System.

1 S ′ = Normalization(S)
2 S′ ← S
3 foreach r inR′ do
4 if r ∈ ε+ ε2 then
5 (c1, c2)← Rule1(r)
6 R′ ←R′ r {r} ∪ {c1, c2}

7 foreach r inR′ do
8 if r ∈ C0 ∗ A

(
ε) then

9 (c1, c2)← Rule2(r)
10 R′ ←R′ r {r} ∪ {c1, c2}

11 if S ′ 6= S then
12 S ′ ← Normalization(S ′)

13 return S ′

This rule handles all the cases in which the argument of a differential operator is
more complex than a single access function. The original argument of the differential
operator ε is replaced by the voltage of the new branch bz , thus creating a contribution
of type (2.2). The voltage of bz is then used as target of a new contribution statement,
having as source the original argument of the differential operator (ε).

Rule 1 and Rule 2 preserve the relations defined over the branches specified by
the original contribution statement. The rules are applied recursively according to Al-
gorithm 1. Given any system S, intended as the set of relations defined over electrical
branches, the algorithm returns a normalized equivalent set of relations, expressed
only through expressions in patterns (2.1) and (2.2).

In detail, for each contribution in the set of relations, the algorithm tries to apply
Rule 1 (Lines 3-6). If a contribution is expressed as the trigger condition to apply
Rule 1 (Line 4), then the algorithm applies the rule and replaces the original contri-
bution with the new ones (Lines 5–6). Similarly, for each contribution in the resulting
set of relations, the algorithm tries to apply Rule 2 (Lines 7-10). Finally, if any mod-
ification of the input set occurred, the algorithm is recursively applied to the new set
of relations (Lines 11-12). This is necessary because both Rule 1 and Rule 2 may
introduce new contributions, that must be normalized. If no modifications occurred,
the set S′ of relations reached a fixed-point and it can be returned as final result of
the normalization.

It is worth noting that Algorithm 1 modifies the input model only by applying
Rules 1 and 2. As such, it preserves all the relations over branches specified in the
input system.

Guiding example. The following exemplifies the application of Algorithm 1 to
the case study in Listing 2.1. Given the system Sv =< N v

e ,Rv >, line 2 creates a

18 2 Analog translation and abstraction

new system S ′ =< N ′e,R′ > where N ′e = N v
e = {gnd, in, in1, in2, in3, out},

R′ = Rv =


V(in) = V(in1) +

∫
V(in2) + V(in3)dt+ 5,

I(in, out) = V(in, out)/R1,

I(out) = C1 ∗ d(V(out))/dt


Since the first relation inR′ is in the form ε+ ε2 (Line 4), the algorithm applies Rule
1 (Line 5), thus adding a new node n1 in N ′e and modifying the set R′ as follows
(Line 6):

R′ =


V(n1) =

∫
V(in2) + V(in3)dt,

V(in) = V(in1) + V(n1) + 5,

I(in, out) = V(in, out)/R1,

I(out) = C1 ∗ d(V(out))/dt


The newly introduced relation is in the form C0 ∗A(ε) (Line 8), hence Rule 2 can be
applied (Line 9), thus adding node n2 in N ′e and modifyingR′ as follows:

R′ =



V(n2) = V(in2) + V(in3),

V(n1) =
∫
V(n2)dt,

V(in) = V(in1) + V(n1) + 5,

I(in, out) = V(in, out)/R1,

I(out) = C1 ∗ d(V(out))/dt


Since S ′ 6= S, the function is recursively applied to S ′. However, no further trans-
formation is performed, and the normalized system S ′ is returned. 4

2.3.4 ELN Components instantiation

Step 3 recreates the normalized relations produced by Algorithm 1 by instantiat-
ing and connecting ELN components. The procedure differs for the two formats of
contributions. In the following, figures follow a chromatic convention: light blue for
current and red for voltage, while yellow portions are dependent on the type of con-
tribution to reproduce.

2.3.4.a Type (2.1) contributions

This rule applies to all contribution statements of pattern (2.1):

Pi(bi) =

(l∑
k=1

CkPk(bk)

)
+ Cl+1

Note that, since we are dealing with linear systems, it is sufficient to take care
of the addition of physical values. Figure 2.4 exemplifies the instantiation for the
relation:

2.3 Translation methodology 19

n′

n1

n2

n3

n4

n5

n6

nk−1

nk

Fig. 2.4: Topological pattern for Type (2.1) contributions.

P0(n1, n2) = P1(n3, n4) + P2(n5, n6) + ...+ P3(nk−1, nk) + C

The sum is implemented as parallel composition of controlled current sources (left-
hand side of Figure 2.4). The control side of such sources (in yellow) depends on
the operands appearing on the right-hand side of the contribution statement. For any
k, if Pk is a voltage access function (i.e., V()), then the instantiated component is
a voltage-controlled current source (i.e., sca_vccs). If else Pk is a current access
function (i.e., I()), the instantiated component is a current-controlled current source
(i.e., sca_cccs). The positive terminal of the control interface is connected to branch
bk, and the gain of the controlled source is set to Ck.

All current sources are connected in parallel to a new intermediate node n′, that
is connected to the control side of a current controlled source (right-hand side of
Figure 2.4). The control side of this block (in yellow) once again depends on the
starting contribution. If the target of the contribution Pi() is V(), the block is a
voltage source. Else if the target of the contribution Pi() is I(), the block is a current
source. The controlled interface is then connected to the target branch bi.

Finally, the constant value Cl+1 in the sum is reproduced by connecting in paral-
lel a constant current source, whose generated current is equal to the value of Cl+1.

20 2 Analog translation and abstraction

+

-

n p

Intermediate
node

n1

n2

n3

n4

n5

Component 1

Component 2

Component 3

Fig. 2.5: Topological pattern for contributions in Form (2.2).

Let us consider the topology instantiated by the described algorithm from a
contribution of type (2.1). The algorithm assures that the equations solved by the
SystemC-AMS solver are equivalent to the ones in the original contribution. The
current entering the node n′ is equal to the sum of the right-hand operands of the
original contribution statement. Simply applying the Kirchhoff Current Law (KCL),
this is also equal to the current flowing in the branch (n′, ground). Thus, it will be
the output quantity generated by the current controlled source connected to the target
branch.

2.3.4.b Type (2.2) contributions

Differential contributions are more complex, as they model a derivative (or inte-
grative) relationship between currents or voltages of two separate circuit branches.
SystemC-AMS, on the other hand, restricts differential behaviors to dependencies on
single network branches, through the adoption of capacitors or inductors, sca_c and
sca_l respectively. To overcome this limitation, it is necessary to introduce an in-
termediate node that has no physical correspondence in the circuit, but that is rather
used for describing the differential dependence. All the differential contributions are
mapped using the generic topological pattern depicted in Figure 2.5.

Component 1 is a controlled current source, as indicated by the controlled side
(in blue). The control side (in yellow) depends on the modeled contribution. If the
argument of the derivative construct is V(), Component 1 is a voltage-controlled
current source (i.e., sca_vccs). Else, if the argument is I(), Component 1 is a
current-controlled current source (i.e., sca_cccs).

Component 3 is a voltage-controlled source, as indicated by the control side (in
red). The controlled side (in yellow) reflects the target of the Verilog-AMS contri-
bution statement. If the target is V(), Component 3 is a voltage controlled volt-
age source (i.e., sca_vcvs). Else if the target is I(), Component 3 is a voltage-
controlled current source (i.e., sca_vccs).

Component 2 (in yellow in Figure 2.5) is used to create the differential relation
between the current value, controlled by Component 1, and the voltage value control-
ling Component 3. Component 2 is an inductor whenever the differential contribution

2.3 Translation methodology 21

Table 2.3: Summary of the components employed to map differential contributions.

Contribution Component 1 Component 2 Component 3

I(n1, n2)<+k*ddt(I(n3, n4))
Current Controlled Current Source

sca_cccs

Inductor

sca_l

Voltage Controlled Current Source

sca_vccs

I(n1, n2)<+k*ddt(V(n3, n4))
Voltage Controlled Current Source

sca_vccs

Inductor

sca_l

Voltage Controlled Current Source

sca_vccs

V(n1, n2)<+k*ddt(I(n3, n4))
Current Controlled Current Source

sca_cccs

Inductor

sca_l

Voltage Controlled Voltage Source

sca_vcvs

V(n1, n2)<+k*ddt(V(n3, n4))
Voltage Controlled Current Source

sca_vccs

Inductor

sca_l

Voltage Controlled Voltage Source

sca_vcvs

I(n1, n2)<+k*idt(I(n3, n4))
Current Controlled Current Source

sca_cccs

Capacitor

sca_c

Voltage Controlled Current Source

sca_vccs

I(n1, n2)<+k*idt(V(n3, n4))
Voltage Controlled Current Source

sca_vccs

Capacitor

sca_c

Voltage Controlled Current Source

sca_vccs

V(n1, n2)<+k*idt(I(n3, n4))
Current Controlled Current Source

sca_cccs

Capacitor

sca_c

Voltage Controlled Voltage Source

sca_vcvs

V(n1, n2)<+k*idt(V(n3, n4))
Voltage Controlled Current Source

sca_vccs

Capacitor

sca_c

Voltage Controlled Voltage Source

sca_vcvs

is derivative (i.e., sca_l), and it is a capacitor in case of an integrative contribution
(i.e., sca_c). Thus, given Inp,nn the current flowing through terminals np and nn

of Component 1, and Vncp,ncn the voltage on the branch between the terminals ncp
and ncn of Component 3, the relationship described by Component 2 is:

Vncp,ncn =
dInp,nn
dt

in case of a derivative contribution (i.e., Component 2 is a capacitor), and

Vncp,ncn =

∫
Inp,nndt

in case of an integrative contribution (i.e., Component 2 is an inductor).
Considering the derivative and the integrative operators of Verilog-AMS, we can

describe all possible configurations in terms of the eight cases in Table 2.3. For each
case, the table shows the corresponding SystemC-AMS primitives.

Given a contribution of Type (2.2), the set of equations defined by the topology
instantiated as described is equivalent to the original contribution. Let us consider a
contribution of Type (2.2), where A is a derivative operator ddt. Given the additional
node n′, its physical quantities are defined as:

I(n′, nG) = Pj(bj) V(n′, nG) = Pi(bi)

The algorithm adds the equation for the inductor connecting n′ and nG with induc-
tance value Ci:

V(n′, nG) = Ci ∗
dI(n′, nG)

dt

By replacing the values, we obtain:

22 2 Analog translation and abstraction

Pi(bi) = C0 ∗
dPj(bj)

dt

Let us consider now a contribution of type (2.2) where A is an integrative operator
idt. The physical quantities on the intermediate node n′ are:

I(n′, nG) = Pj(bj) V(n′, nG) = Pi(bi)

The algorithm adds a capacitor with capacity value of Ci, connecting n′ and nG:

V(n′, nG) = Ci ∗
∫
I(n′, nG)dt

Thus, replacing the values:

Pi(bi) = Ci ∗
∫
Pj(bj)dt

Finally, it is possible to conclude that the topology generated by applying the
instantiation rules is node-level equivalent to the input model of the translation algo-
rithm.

Guiding example. Figure 2.6 depicts the topology of components instantiated
by applying the algorithm to the Verilog-AMS model in Listing 2.1. For the sake
of readability, I have omitted the 1GΩ resistors between each node and the ground
node. Nodes in1, in2, in3, in and out, are the ones explicitly specified in the orig-
inal model. Nodes n1 and n2 are the ones inserted during node management (Sec-
tion 2.3.2). The other “unnamed” nodes are inserted during ELN component instan-
tiation to connect basic blocks of the topology (Section 2.3.4). 4

2.3.5 Complexity

The complexity of the proposed translation algorithm is derived from its constituting
steps:

• Step 1 : the instantiation of the SystemC-AMS nodes and 1GΩ resistors is per-
formed in constant time for every node. The complexity for this step is O(|Ne|).

• Step 2 : the application of Rules 1 and 2 is constant. The complexity of the step
is the complexity of Algorithm 1. Its worst-case happens when every contribu-
tion statement is of maximum length (i.e., O(|Ne|2)) and every branch appears
on the left-hand side of a contribution statement (i.e.,O(|Ne|2)). The complexity
of this step is O(|Ne|2) ·O(|Ne|2) = O(|Ne|4).

• Step 3 : a topological pattern is instantiated for every sum in any relation gen-
erated after the previous step. The maximum number of addends per relation is
O(|Ne|2), while the relations are at most O(|Ne|2). The complexity of this step
is O(|Ne|4).

The total complexity of the translation procedure is the sum of these three steps:

O(|Ne|) +O(|Ne|4) +O(|Ne|4) = O(|Ne|4)

2.4 Abstraction methodology 23

+

-

+

-

+

-

+

-

+
-

+

-

+

-

+

-

+
-

+

-

+
-

+

-

out

in

in1

in2in3

n1

n2

R1

5A

V(n2) = V(in2) + V(in3)

V(n1) =
∫
V(n2)dt

V(in) = V(in1) + V(n1) + 5

I(in, out) = V(in, out)/R1

I(out) = C1 ∗ d(V(out))/dt

Fig. 2.6: Resulting topology obtained by the translation of the guiding example in Listing 2.1.

2.4 Abstraction methodology

The abstraction flow can be represented by the function α(Sv,P(n)) = Sc. Given
a Verilog-AMS implementation Sv =< N v

e ,Rv > and a value of interest P(n),
α(Sv,P(n)) returns a C++ model Sc =< N c

e ,Rc >, such that any relation between
input values and the quantity P(n) is preserved. Since α deals with only one value
of interest P(n), it is applied to Sv once for each value of interest to be preserved.

Figure 2.7 gives an overview of the abstraction approach. The guiding idea is
to analyze the starting analog description to restrict the model to the sub-equations
binding the specified value of interest to the inputs of the model. Note that the starting
description can be both linear and non-linear.

24 2 Analog translation and abstraction

AMS Circuit
Equations

Acquire
Equations

Enriche set of
Equations

Evaluate I/O
Relations

Solve
Equation System

Generate set of
C++ Assignments

Set of
Assignments

Application of
Conservative Laws

Set of
Equations

Abstraction to
C++

Standard
Verilog-AMS

Flow

1

2

3

4

5

6

ABSTRACTION

VERILOG-AMS SOLVER C++ EXECUTION

Fig. 2.7: Abstraction flow for analog component descriptions.

The first step of the algorithm generates new equations by replacing the left-
hand side of each equation with the terms on its right-hand side (1). As a next step,
circuit topology is inferred to extend the system of equations with the application of
Kirchhoff’s conservation laws (2). Then, the algorithm analyses the whole set of
equations to identify the subset describing the relation between the specified value of
interest and the inputs of the model (3). The subset of equations is then solved by
means of a symbolic solver, with the goal of breaking all the algebraic loops (4).
The result is used to generate the behavioral C++ description (5).

2.4.1 Circuit equations acquisition

Step 1 parses all relations inRv and translates each of them into an abstract syntax
tree (AST). In each AST, leaves represent values and variables, while intermediate
nodes represent operators. Each element of the tree is associated with a number of
flags for storing additional information, e.g., the presence of derivative or integrative

2.4 Abstraction methodology 25

operators. The generated equations are then stored inside a Multimap, i.e., an effi-
cient data structure which requires O(1) to insert an element, and a worst-case effort
proportional to the list length O(l) to search and delete an element.

The translation to ASTs is based on five rules, divided into Left-Hand Side rules
(LHS) and Right-Hand Side rules (RHS). In the remainder of this section, for each
relation ri ∈ Rv, εi identifies the expression on its right-hand side.

2.4.1.a LHS Rule 1

Given any branch bi,j , if Rv contains one and only one relation rk containing an
access function P (bi,j) on the LHS (i.e., the LHS defines a quantity of branch bi,j),
then the access function is replaced by a variable as follows:

P (bi,j) = εk → P_i_j = εk

2.4.1.b LHS Rule 2

Given any branch bi,j , we defineRpar as the set of relations having a current access
function I(bi,j) on the LHS. For each rk ∈ Rpar, with 1 ≤ k ≤ |Rpar|, the LHS of
rk is replaced by a variable as follows:

Ik(bi,j) = εk → I_i_j_k = εk

Suffix k is necessary because multiple relations may assign a current value over the
same pair of nodes. Such relations actually make an assignment over distinct parallel
branches, and thus must be treated separately. Adding k as variable suffix allows to
preserve the distinction between different branches.

2.4.1.c LHS Rule 3

Given any branch bi,j , we defineRser as the set of relations having a voltage access
function V (bi,j) on the LHS. The management ofRser introduces a set Ns of inter-
mediate nodes, with |Ns| = (|Rser|−1). For each rk ∈ Rser, with 1 ≤ k ≤ |Rser|,
the LHS of rk is replaced by a variable as follows:

Vk(bi,j) = εk →


V _i_nk = εk if k = 1

V _n(k−1)_nk = εk if 1 < k < |Rser|
V _n(k−1)_j = εk if k = |Rser|

where nk and nk−1 are respectively the k-th intermediate node and its precedent.
Note that the intermediate nodes are introduced because relations assigning a value
to voltage over the same pair of nodes actually refer to branches in series. LHS Rule
3 preserves this by distributing the relations onto distinct pairs of nodes, included in
{ni} ∪Ns ∪ {nj}.

26 2 Analog translation and abstraction

2.4.1.d RHS Rule 1

A relation containing a differential operator over a sum of access functions on the
RHS is modified moving the operator from the entire expression to its single ele-
ments:

A

(l∑
k=1

CkPk(bk)

)
→

l∑
k=1

(
Ck ∗ A(Pk(bk))

)

2.4.1.e RHS Rule 2

Any access function is replaced with a variable as follows:

P (bi,j)→ P_i_j

Guiding example. Considering the case study in Listing 2.1 as its formalization
Sv =< N v

e ,Rv >, where:

Rv =


V(in) = V(in1) +

∫
(V(in2) + V(in3))dt+ 5,

I(in, out) = V(in, out)/R1,

I(out) = d(V(out))/dt ∗ C1


The LHS and RHS rules lead to the definition of a new set of relationsRc:

Rc =


V _in = V _in1 +

∫
(V _in2)dt+

∫
(V _in3)dt+ 5

I_in_out = V _in_out/R1
I_out = d(V _out)/dt ∗ C1


4

2.4.2 Equation system enrichment

The second step of the abstraction approach infers circuit topology to enrich the
set of relations Rc with Kirchhoff’s conservation laws. The starting point consists
of partitioning the set of relations into two subsets: Rc

bhv, containing behavioral
equations, andRc

str, devoted to structural equations:

Rc
bhv =

{
V _in = V _in1 +

∫
(V _in2)dt+

∫
(V _in3)dt+ 5

}
Rc

str =

{
I_in_out = V _in_out/R1
I_out = d(V _out)/dt ∗ C1

}
Rc = Rc

bhv

⋃
Rc

str

Table 2.4 exemplifies the enrichment step application on the guiding example,
and is used as a reference throughout the remainder of this section. Equations A, B
and Z are the ones derived from the previous step.

2.4 Abstraction methodology 27

Table 2.4: Equations gathered (A, B and Z) and generated (from C to H) by the abstraction
procedure.

Set Equations

Rc Z V _in = V _in1 +
∫
(V _in2)dt+

∫
(V _in3)dt+ 5

A I_in_out = V _in_out/R1

B I_out = d(V _out)/dt ∗ C1

Rc
d C V _in_out = I_in_out ∗R1

D V _out =
∫
(I_out)dt/C1

Rc
kvl E V _in_out = V _in− V _out

F V _out = V _in− V _in_out

Rc
kcl G I_in_out = I_out

H I_out = I_in_out

The construction of circuit topology insists only on the subset of structural equa-
tionsRc

str, due to their adherence to a physical description. Kirchhoff’s conservation
laws [31] allow to derive two new sets of equations: Rc

kcl and Rc
kvl. Rc

kcl contains
those equations derived fromRc through the application of Kirchhoff’s Current Law
(KCL), and it contains |N v

e |−1 independent equations. On the other hand,Rc
kvl con-

tains |Bve | − |N v
e | + 1 independent equations derived by using Kirchhoff’s Voltage

Law (KVL). Considering the guiding example, this process leads to the definition
of Equations E, F , G and H of Table 2.4. Note that equations describing the same
circuit mesh (i.e., E and F) are linearly dependent. The same relation applies to the
equations describing currents entering and exiting the same node (i.e., G and H).

The next step derives the dual relation of each equation in Rc
str [32], by inter-

changing the relation left-hand side term with the right-hand side terms. This intro-
duces a new set of equations Rc

d linearly dependent from the original one. The size
of the new set of equations is |Rc

d| = |Rc
str|. The application of this step is exem-

plified by Equations C and D in Table 2.4, which are duals w.r.t. Equations A and
B.

Linear dependencies between equations are stored in a linked list, i.e., each equa-
tion inside a set of linearly dependent equations points to the next equation belonging
to the same set. This allows to partition the set of equations into equivalence classes
based on the linear dependency relation.

2.4.3 Cone of influence exploration

The third step of the methodology determines the equations necessary to describe
the outputs of the model w.r.t. its inputs. To ease the application of this step, rela-
tions between equations are represented by a graph of dependencies, like the one in
Figure 2.8. The graph is built as follows:

28 2 Analog translation and abstraction

Z

E F

C D

A B

G H

1

2

3

4

5

Fig. 2.8: Dependencies graph generated for the guiding example starting from the equations
of Table 2.4.

• Node Creation Rule: Each equation introduces a node, labeled with the corre-
sponding LHS variable.

• Edge Creation Rule: An edge connects nodes ni and nj whenever the LHS vari-
able associated to the node ni appears on the RHS of the equation associated to
nj .

For the sake of readability, both equations in Table 2.4 and in Figure 2.8 are labeled
with letters. Consider nodeH in Figure 2.8, associated with equationH of Table 2.4,
i.e., I_out = I_in_out. The RHS of the equation contains the variable I_in_out,
that is also used on the LHS of the equations represented by nodes A and G. This
adds to the graph an edge from H to A, and an edge from H to G.

The graph is visited according to the following rules:

• Node visit rule: When a node ni is visited, the node is disabled and the corre-
sponding equation ei is stored inside a set calledRes. Then, all nodes represent-
ing equations linearly dependent w.r.t. ei are disabled.

• Disabled node rule: Disabled nodes cannot be visited.
• Next node rule: After completing the visit of a node ni, the visit moves to all non

disabled neighbors of ni. If all nodes of the graph are disabled the visit ends.

After the visit, Res is the smallest set of equations describing the relation between
system inputs and the values of interest.

Guiding example. Figure 2.8 depicts an example of exploration starting from
node F . Numbers represent the order in which the nodes are visited. The resulting
set of equations is:

Res =



V _out = V _in− V _in_out
V _in = V _in1 +

∫
(V _in2)dt+

∫
(V _in3)dt+ 5

V _in_out = I_in_out ∗R1
I_in_out = I_out
I_out = d(V _out)/dt ∗ C1

(2.3)

2.4 Abstraction methodology 29

4

2.4.4 Equations system solver

Algebraic loops may lead to an erroneous simulation if not properly managed. The
fourth step of the methodology aims at removing them by solving the equations
system.

The first step deals with time-dependent operators (i.e., ddt and idt), that are
not managed by symbolic solvers. Each equation is visited and occurrences of the
aforementioned operators are replaced with the corresponding discrete-time approx-
imation. Different techniques of numerical differentiation or integration can be used,
depending on the desired degree of accuracy. A simple example of approximation
technique for the derivative operator is the finite difference formula in Equation 2.4,
where h is the simulation step of the model:

dV (t)

dt
−→ V (t)− V (t− 1)

h
(2.4)

For the integrative operator, a typical example is the quadrature formula in Equa-
tion 2.5, where variable Vacc is an accumulator incremented by (V (t) ∗ h) at the end
of each simulation step: ∫

V (t)dt −→ (V (t) ∗ h) + Vacc (2.5)

Note that replacing all the time-dependent operators with the corresponding ap-
proximation formula moves the model semantics from continuous- to discrete-time,
with timestep h.

To ensure the correctness of the final code, equations must then be solved by a
symbolic solver capable of dealing with systems of linear equations. In this work,
the choice fell on GiNaC [28], a C++ library for symbolic computation. Given a
system of linear equations and its unknown variables, the symbolic engine provides
a function called lsolve, which solves the system and returns a set of equations
describing the functional behavior of the electrical model. This set can be mapped
onto C++-based descriptions, ranging from pure C++ to SystemC-AMS TDF. These
generated models can be easily integrated into C++-based virtual platforms.

Guiding example. The result of applying the proposed approximations to Equa-
tion 2.3 is:

R′eq =



V _in =V _in1
+ (V _in2 ∗ h) + V _in2_acc
+ (V _in3 ∗ h) + V _in3_acc+ 5

V _out = V _in− V _in_out
V _in_out = I_in_out ∗R1
I_in_out = I_out
I_out = ((V _out− V _out_prev)/h) ∗ C1

(2.6)

30 2 Analog translation and abstraction

Listing 2.2: Abstracted C++ code generated for the guiding example in Listing 2.1.

1 void f(double Vin1, double Vin2, double Vin3)
2 {
3 V_in = V_in1 + (V_in2 * h) + V_in2_acc
4 + (V_in3 * h) + V_in3_acc + 5;
5 V_out = (C1 * R1 * V_out_prev + V_in * h) / (C1 * R1 + h);
6 // Update variables.
7 V_out_prev = V_out;
8 V_in2_acc += V_in2 * h;
9 V_in3_acc += V_in3 * h;

10 }

where V_in2_acc and V_in3_acc are the accumulator variables introduced by
discretizing integrals, while V_out_prev is introduced by discretizing the deriva-
tive d(V _out)/dt. Listing 2.2 depicts then the corresponding C++ code, obtained
through GiNaC. 4

2.4.5 Complexity

In the worst-case scenario, the initial set of relations Rv contains only structural
equations. As consequence, the dimension ofRv is at most |Ne|2.

The complexity of the proposed abstraction approach is derived from its consti-
tuting steps:

• Step 1 : Access function renaming and the integral (derivative) decomposition
is constant for each equation in Rv. The algorithmic complexity of this step is
given by the size of the set: O(|Ne|2).

• Step 2 : Gathering KCL and KVL equations has a worst case running time re-
spectively of at most O(|Ne|2) and O(|Ne|3). Dual relation generation is linear
w.r.t. the length of each structural equation, that is constant, and it must be ap-
plied to at most O(|Ne|2) equations, resulting in a complexity of O(|Ne|2). The
overall complexity of this step isO(|Ne|2)+O(|Ne|3)+O(|Ne|2) = O(|Ne|3).

• Step 3 : Equations are partitioned into equivalence classes, whose number is
given by the dimension of initial set of relations and the number of indepen-
dent Kirchhoff’s equations. During graph exploration, these classes are disabled
whenever a node associated with one of their equations is visited. Therefore,
the graph exploration complexity is O(|Ne|2) + (O(|Ne|)− 1) + (O(|Ne|2)−
O(|Ne|) + 1) = O(|Ne|2).

• Step 4 : The number of equations selected by the exploration is at most equal to
the number of branches in the circuit. Solving an equation system of dimension
|Ne|2 has a computational complexity of O(|Ne|6) [28].

• Step 5 : Generating the set of C++ assignments requires at most O(|Ne|2).

The overall computational complexity is:

O(|Ne|2) +O(|Ne|3) +O(|Ne|6) = O(|Ne|6)

2.5 Experimental results 31

Table 2.5: Benchmarks characteristics and generation time.

Values of Interest Lines of Abstraction Translation

Benchmark Relations Input Output Code Time (s) Time (s)

RC1 2 1 1 17 0.009 0.041

IN2 3 2 2 21 0.012 0.051

PIFilter 4 1 1 21 0.008 0.075

IN3 5 3 2 31 0.015 0.058

Op-Amplifier 6 1 1 31 0.009 0.064

RC5 10 1 1 42 0.014 0.108

RC10 20 1 1 67 0.026 0.197

RC20 40 1 1 117 0.078 0.411

Accelerometer 66 10 8 123 0.020 0.402

2.5 Experimental results

This section shows the effectiveness of the proposed methodology on a number of
case studies of increasing complexity. All experiments have been executed on a 64-
bit machine running Ubuntu 14.04, equipped with 16 GB of memory and an Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz.

All proposed steps have been automated in the Analog Systems Translation and
absRAction tooL (ASTRAL) tool. ASTRAL relies on the HIFSuite framework [33]
for parsing and manipulation of Verilog-AMS models.

2.5.1 Case studies

The case studies used for the experimental analysis are:

• four low-pass filters with an increasing number of stages (i.e., RC1, RC5, RC10
and RC20);

• a capacitor-input filter (i.e., PIFilter), composed by a couple of capacitors, an
inductor and a load resistance;

• two multi-input circuits, composed by the interconnection of passive basic elec-
trical components, with two (i.e., IN2) and three (i.e., IN3) inputs respectively;

• an ideal operational amplifier (i.e., Op-Amplifier);
• an accelerometer, modeled using a set of algebraic differential equations ex-

pressing behavioral relations over electrical values.

Table 2.5 reports the characteristics of the benchmarks, in terms of number of rela-
tions, number of selected values of interest, and lines of code (LoC) of the starting
Verilog-AMS model. The adopted case studies have an increasing number of rela-
tions, to prove the scalability of the proposed methodology.

32 2 Analog translation and abstraction

Table 2.6: NRMSE of the generated models w.r.t. Simulink.

Description RC1 RC5 RC10 RC20

SPICE 2.81E-07 2.92E-07 7.28E-07 3.60E-07

Translation 1.84E-06 1.83E-07 2.13E-06 1.75E-06

Abstraction 8.14E-07 9.55E-07 1.65E-06 1.47E-06

2.5.2 Methodology accuracy

The accuracy of the proposed approach is estimated by comparing a reference
Simulink model of each benchmark w.r.t. both the original Verilog-AMS descrip-
tion (simulated by using SPICE) and the code generated through translation and
abstraction. Table 2.6 reports the accuracy estimated for the four low-pass filters, by
showing the Normalized Root-Mean-Square-Error (NRMSE) on the computed out-
puts. The low error rate of both the abstracted and translated codes highlights the
high level of accuracy of the generated models. The NRMSE rages from 10−6 to
10−7, that is comparable to the precision obtained using SPICE-based simulators.

2.5.3 Methodology performance

The performance of the generated code is evaluated by considering all benchmark
individually. The generation time (reported in columns Translation time (s) and Ab-
straction time (s) of Table 2.5) is always well below 1 second, for all benchmarks
and code versions. To estimate the simulation performance, we considered three sce-
narios for each benchmark:

• Verilog-AMS description, simulated with Questa [15];
• SystemC-AMS ELN code, generated through translation;
• C++ code, generated through the abstraction flow.

Each scenario executes 1 second of simulated time with a fixed time step of 50
nanoseconds. The adoption of a fixed time step is necessary to ensure correct in-
teraction of the analog benchmarks with the digital sub-system [34]. The fixed time
step degrades SPICE simulation speed w.r.t. adaptive step simulation, as the simula-
tor has to re-evaluate the overall analog sub-system more often.

The resulting simulation times are reported in columns Component time (s) of Ta-
ble 2.7. The speed-up achieved for the different case studies depends on their internal
structure. Nonetheless, both the translation and the abstraction models proved to im-
prove simulation time for all benchmarks. Translation achieves a maximum speed-up
of 67.0x, with an average speed-up of 37.4x. Abstraction further fastens simulation
by reaching 2 orders of magnitude speed-ups (ranging from 711.0x to 122.1x), for
an average speed-up of 335.7x.

2.5 Experimental results 33

Table 2.7: Execution times for different abstractions simulated both alone and together with
the smart system.

Heterogeneous

(Verilog-AMS)

ASTRAL automatic translation

(SystemC-AMS/ELN)

ASTRAL automatic abstraction

(C++)

Component Platform Component Platform Component Platform

Benchmark time (s) time (s) time (s) speed-up (x) time (s) speed-up (x) time (s) speed-up (x) time (s) speed-up (x)

RC1 4,898.45 8,751.36 73.16 67.0 539.38 16.2 6.89 711.0 70.79 123.6

IN2 3,706.86 7,358.91 86.88 42.7 568.31 13.0 11.69 317.1 70.95 103.7

PIFilter 5,097.50 8,905.17 99.83 51.1 569.54 15.6 9.75 522.8 71.52 124.5

IN3 3,815.47 7,465.37 114.73 33.3 623.40 12.0 16.75 227.8 71.51 104.4

Op-Amplifier 5,174.22 6,369.19 105.45 49.1 559.73 11.4 19.63 263.6 71.24 89.4

RC5 5,307.23 9,075.30 151.58 35.0 612.57 14.8 12.56 422.6 73.55 123.4

RC10 6,152.12 9,826.31 268.72 22.9 722.17 13.6 22.59 272.3 82.13 119.6

RC20 7,746.65 11,288.23 443.50 17.5 939.35 12.0 63.45 122.1 111.93 100.9

Accelerometer 7,749.64 12,388.71 576.73 13.4 1,348.39 9.2 47.83 162.0 82.84 149.6

2.5.4 Application to a smart system scenario

To prove the effectiveness of the generated code in the context of virtual platforms,
the generated models have been integrated in a mixed-signal virtual platform: the
SMAC Smart System Test Case (S3TC) [5], available as open-source demonstrator
for HIFSuite. The structure of the S3TC is depicted in Figure 2.9: it comprises a SW
application running on top of a general-purpose CPU, and a number of both digital
and analog peripherals which communicate through a bus. The Verilog-AMS models
of the analog components are integrated and simulated within a mixed VHDL, Ver-
ilog and SystemC version of the S3TC. The SystemC-AMS and C++ versions of the
analog components are integrated and simulated within a C++ implementation of the
S3TC. Each implementation of the platform is stimulated with the same testbench
carrying on a transient analysis covering 1 second of simulated time, with a time step
of 50 nanoseconds.

SMAC Smart System Test Case

RAMMLITE CPU
RF

Transceiver

BUS

Analog ComponentUART

OpAmp
Multiple
Inputs

Low-pass
Filter Pi-Filter Accelerometer

Fig. 2.9: Structure of the SMAC Smart System Test Case virtual platform.

34 2 Analog translation and abstraction

Table 2.7 reports the execution time required to simulate the platform including
the benchmarks in each code version (columns Platform time (s)). The speed-up
achieved for the simulation of the component in isolation is mitigated in this scenario
by the execution of the remainder of the platform. However, the achieved speed-up
is always one order of magnitude for the translation flow (maximum 16.2x, average
13.09x), and two orders of magnitude for the abstraction flow (ranging between 89.4x
and 124.5x, average 115.4x). The methodology shows improvements in terms of
simulation performances in every considered scenario and for all case studies. It
allows to effectively and efficiently simulate an entire virtual platform of a smart
system, still guaranteeing negligible accuracy losses.

2.6 Concluding remarks

This chapter introduces two methodologies for integrating analog descriptions in vir-
tual prototypes for smart systems. The methodology provides two alternative flows
with different characteristics in terms of adherence w.r.t. the starting description and
of simulation speed-up.

The first methodology concerns the translation of an analog circuit to SystemC-
AMS, by reproducing the same behavior through the composition of basic building
blocks. Each building block is modeled in SystemC-AMS by using ELN primitives
of passive components.

The second methodology concerns the abstraction of an analog circuit to C++, by
moving at generation-time most of the cumbersome operations required to simulated
an analog description (e.g., matrix operations, solving a system of equations). It relies
on symbolic analysis, a method which in the context of this work is used to solve the
algebraic formulas describing the input analog circuit. The result of the symbolic
analysis is used to generate the final simulation model.

The effectiveness and correctness of the two proposed techniques have been
shown on a number of case studies, as well as on a complete smart system pro-
totype, exhibiting a NRMSE in the order of 10−6. Experimental results highlight
the speed ups that can be achieved with the proposed approach, with a maximum
achieved speed-up of 711.0x.

3

Analog multi-discipline abstraction and mixed-signal
scheduling

Environment

Heterogeneous Virtual Platform

Digital Sub-System Analog Sub-System

Co-Simulation
Interfaces

Discipline analysis

Digital Abstraction Analog Abstraction

Digital Sub-System
Discrete-Event Model

Analog Sub-System
Discrete-Event Model

Mixed-Signal Scheduling,
Optimization and C++ Code Generation

Homogeneous Virtual Platform

Discrete-Event Model
(Digital Sub-System)

Discrete-Event Model
(Analog Sub-System)

Mixed-Signal
Scheduler

Fig. 3.1: Overview of the abstraction and mixed-signal scheduling approach. All the upward
arrows, except for the digital abstraction, identify the contributions of this thesis.

The previous chapter introduces the problems related to simulating Analog and
Mixed-Signal (AMS) components in the domain of smart systems. It proposes two
methodologies for the translation and the abstraction of analog components, for the
purpose of integrating them in smart virtual platforms, and achieve a remarkable
speed-up. Until now, we were interested in the analog and specifically the electri-
cal domains. However, most of today’s applications for computing systems requires

36 3 Analog multi-discipline abstraction and mixed-signal scheduling

context-aware or the possibility to manipulate the physical environment they are em-
bedded in. This means devices which are able to interact with the physical world:
sensing and actuation are usually achieved through the use of components belong-
ing to other domains other than the electrical one (e.g., mechanical, thermodynamic,
etc.). This chapter focuses on the process of abstraction and explores other aspects
as well as issues that arise when dealing with such complex multi-disciplinary smart
systems.

The concept itself of a smart system [35] has been recently introduced to identify
energy efficient or autonomous miniaturized devices performing sensing, actuation,
communication, and control through computation. This class of systems requires to
integrate many different technologies within the same device. Digital hardware and
software performing computation must co-exist with analog hardware for wireless
communication, as well as integrated sensors and actuators, usually implemented as
Micro-Electro-Mechanical Systems (MEMSs) [36].

MEMSs are micro-systems made up of components which sizes range from 1
to 100 µm. They provide all the sensing and actuation capabilities required to a
smart system while preserving miniaturization. However, their design involves many
different physical disciplines. Furthermore, physical processes of different natures
(e.g., magnetic and kinematic) may influence each other. For these reasons, such
systems are usually modeled as a set of interactions between different descriptions
belonging to different disciplines. As such, the simulation of smart devices requires
the possibility to manage multi-discipline analog models.

Simulation is crucial when developing novel features. Functionalities of smart
devices are usually implemented as software running on top of the hardware plat-
form. In order to validate these applications designers must evaluate the quality of the
software running on the device. However, only a simulation able to capture a holistic
view of the system [37] may provide enough information. Thus, it is necessary to
integrate different simulators for the many disciplines involved, and for the digital
hardware performing the computation and communication tasks. Virtual platforms
are powerful solutions to perform such a task, however, they mostly focus on digital
components. Therefore, continuous-time models need to be integrated through com-
plex and computationally expensive synchronization mechanisms. As shown in the
previous chapter, some techniques rely on co-simulation interfaces, which can prove
a burden during the simulation. This issue is further exasperated when dealing with
many different physical disciplines and natures.

Figure 3.1 shows the structure of the methodology presented in this chapter,
which represents the lower part of the big picture shown in Figure 1.1. The approach
starts with a platform composed of both digital and analog hardware descriptions and
the surrounding environment, which is a continuous-time analog description. Both
analog models and especially the environment may belong to different physical disci-
plines, e.g., magnetic, optic, electrical, kinematic. All the components are translated
and then abstracted into discrete-event models. The approach presented in this chap-
ter is based on two state-of-the-art abstraction techniques. The one for the abstraction
of hardware models presented in [38], and the one for the abstraction of analog com-
ponents presented in the previous chapter. However, the mere combination of the

3 Analog multi-discipline abstraction and mixed-signal scheduling 37

two it is not sufficient to abstract complex AMS multi-discipline descriptions. For
this reason, the thesis extends the analog abstraction to manage complex non-linear
behaviors, continuous-time behavior interacting with discrete-models, frequency do-
main descriptions, and the co-existence of multiple disciplines and natures within a
single model.

The work of this thesis aims at overcoming such issues. It proposes an auto-
matic abstraction of multi-discipline models, usually used to represent MEMS com-
ponents, paired with an automatic abstraction technique for digital hardware mod-
els [38]. The two techniques are conjoined by proposing a mixed-signal scheduler
generation approach. The models, both digital and analog, are automatically trans-
lated into a unifying language. Then, a built-in scheduler is automatically generated
by analyzing the relations existing between the models, considering both the digital
and analog processes in the system. The proposed approach extends the scheduling
and optimization techniques presented in [38] for the digital hardware abstraction.
It deals with the interfacing functions which allows the interaction between digital
and analog processes. The final result is an executable C++ model able to reproduce
with an extremely high-level of accuracy the behavior of the device. The virtual plat-
form can then be used to run, test and validate the SW being developed on top of the
multi-discipline, AMS hardware platform.

The methodology explanation is paired with its application to the model of a
vibrations motor system, implemented by using MEMS technology. This model is
integrated within a hardware platform performing computation and communication.
This aims at easing the understanding of our approach while showing its effective-
ness on a complex case study. The methodology is then applied to some open-source
case studies.

To further extend the contributions of the analog abstraction approach, this chap-
ter provides the basic principles of how to build a state-dependent small-signal
behavioral-level descriptions written in Verilog-AMS starting from transistor-level
netlists. This step allows applying the abstraction to industrial case studies described
at transistor-level written in SPICE or SPECTRE. However, such descriptions pose a
great challenge in terms of scalability due to their sensible complexity. To overcome
this problems, a technique to split behavioral description into sub-systems, which are
easier to be dealt with, is provided. This technique is based on the theory of lossless
transmission lines. With the increasing interest towards Industry 4.0 and especially
smart manufacturing, the last contribution of this chapter concerns the integration of
smart platforms inside a factory simulation tool called Plant Simulation.
This chapter is organized as follows:

• Section 3.1 gives some background about multi-discipline modeling using Hard-
ware Description Languages (HDLs), discusses the related work available in the
literature and summarizes the abstraction technique applied on digital designs;
• Section 3.2 introduces the running example which will be used to exemplify the

different issues related to the abstraction of analog components;
• Section 3.3 gives an overview of the proposed methodology;

38 3 Analog multi-discipline abstraction and mixed-signal scheduling

• Section 3.4 proposes a set of techniques to deal during automatic abstraction
with multi-disciplines, complex AMS descriptions;

• Section 3.5 presents the extended scheduling approach developed in this work;
• Section 3.6 presents the methodology use for generating behavioral-level de-

scriptions starting from transistor-level ones;
• Section 3.7 introduces a technique to enhance the scalability of the abstraction

methodology, by splitting the system of equations into sub-systems;
• Section 3.8 shows how the abstracted description can be used in the scope of

Industry 4.0 and production lines.
• Section 3.9 reports the results obtained by applying the presented methodology

to the case study and a set of open-source descriptions;
• Section 3.10 draws the conclusions about the achieved results.

3.1 Background

This section summarizes the main concepts about the system-level modeling and
simulation of multi-discipline systems, and the digital automatic abstraction ap-
proach combined with the proposed methodology.

3.1.1 Hardware description languages for multi-discipline models

The effort to extend traditional HDLs to model and simulate mixed-system led to
make Verilog-AMS and VHDL-AMS the reference languages for analog and mixed-
signal design at system-level. Both VHDL-AMS and Verilog-AMS have been used
to design components requiring a heterogeneous set of disciplines. Their similarities
and differences to accomplish multi-discipline modeling have been deeply analyzed
in [11]. They present the same modeling concepts, and the main differences among
them are mostly syntactic. This work focuses on Verilog-AMS models, but all the
considerations apply to VHDL-AMS as well.

In Verilog-AMS, the behavior of any system is described as a set of relations
between physical values on analog nodes and branches. Each system node is associ-
ated with two quantities: a potential (i.e., an across value) and a flow (i.e., a through
value). Since Verilog-AMS can describe models belonging to different physical do-
mains (including electrical, mechanical, fluid dynamics, and thermodynamics), the
characteristics of nodes and quantities are defined in terms of natures and disciplines
to model physical domains [10]. Discipline is a type associated with analog nodes,
ports, or branches (e.g., electric, magnetic, kinematic, etc.). Each nature is a collec-
tion of attributes shared by the signals using it. The attributes characterizing a nature
are the units, absolute tolerance for convergence, and the name of the function used
to access the value of a signal to which the nature is applied. A discipline is associ-
ated with one or two natures. In the first case, it is said to be a signal-flow discipline,
while in the latter it is a conservative discipline. A signal-flow discipline specifies
either its flow or potential nature, while conservative disciplines specify both.

3.1 Background 39

Table 3.1: Natures defined by the Verilog-AMS standard.

Nature Units Access Function

Voltage V V

Current A I

Charge coul Q

Flux Wb Phi

Magneto_Motive_Force A-turns MMF

Temperature K Temp

Power W Pwr

Position m Pos

Velocity m/s Vel

Acceleration m/s2 Acc

Impulse m/s3 Imp

Force N F

Angle rads Theta

Angular_Velocity rads/s Omega

Angular_Acceleration rads/s2 Alpha

Angular_Force N-m Tau

Table 3.2: Disciplines defined by the Verilog-AMS standard. Digital Verilog descriptions are
considered as models using the logic discipline.

Name Potential Flow

logic – –
electrical Voltage Current
voltage Voltage –
current – Current
magnetic Magneto_Motive_Force Flux
thermal Temperature Power
kinematic Position Force
kinematic_v Velocity Force
rotational Angle Angular_Force
rotational_omega Angular_Velocity Angular_Force

Verilog-AMS standard defines a set of standard natures and disciplines. Table 3.1
summarizes the standard natures, while Table 3.2 lists the standard disciplines and
it reports for each of them, the natures used as potential and flow. They specify the
types and attributes most used to describe physical values. However, since they are
not complete, the language allows designers to define and implement any custom
nature or discipline.

In Verilog-AMS the behavior of an analog model is defined as a list of differential
equations implemented by using the branch contribution statement. A contribution

40 3 Analog multi-discipline abstraction and mixed-signal scheduling

statement is defined by using the branch contribution operator (i.e., <+) which is
composed by a left-hand side (LHS) and a right-hand side (RHS). The former speci-
fies the physical quantity of a branch to which the value of the latter will be assigned.
There are two categories of physical quantities associable to analog nodes: potential
and flow. These can be accessed by means of an Access Function, which accepts as
arguments two analog nodes and returns the potential difference or the flow between
them (e.g., functions V and I shown in Table 3.1 for the electrical discipline). Inside
the Verilog-AMS semantics there is a rule that state that: using an access function
between two nodes implicitly defines a branch between them. The topology of the
circuit can be retrieved by applying such a rule to all the access functions contained
inside a Verilog-AMS model.

Verilog-AMS defines an execution semantic to mix the discrete-event model for
the discrete processes with numerical techniques necessary to solve continuous time
models. Simulation environments usually rely on SPICE-based [13] simulators, mak-
ing simulation very accurate but slow, and consequently poorly effective [16].

The work in [11] highlights the limitations of Verilog-AMS and VHDL-AMS for
system-level simulation. In particular, a guiding example clearly shows the exces-
sively low level of abstraction provided by these descriptions making the simulation
of hardware/software systems too slow to allow effective validation. This shows the
need for abstraction for analog components.

SystemC-AMS is also worth to be mentioned as the AMS extension of the Sys-
temC language [39]. Due to its system (rather than solely hardware) modeling em-
phasis, SystemC-AMS differentiates itself from the AMS extensions for Verilog and
VHDL described above. It is mostly focused on the system-level representation of
a system, providing different modeling formalisms and computational models, al-
lowing specifications at different levels of abstraction. Even if it defines a modeling
formalism ad-hoc for electrical descriptions (i.e., SystemC-AMS Electrical Linear
Network (ELN)) it still allows to model systems belonging to different physical dis-
ciplines. However, they must be explicitly specified by the designer.

SystemC-AMS has been used in the literature to create system-level virtual pro-
totypes of multi-discipline systems [18, 40], thus allowing efficient system-level sim-
ulation. However, these models have been re-created in a top-down fashion, manu-
ally re-modeling the original implementation of the multi-discipline devices to in-
tegrate them into the virtual platform. To enhance this process, [41] proposes an
extension to SystemC-AMS allowing to plug in the simulation kernel different mod-
els of computation, to ease the modeling of components belonging to a broader set of
design domains and disciplines. This further highlights that SystemC is fundamen-
tally a modeling language rather than a design language. It is more suited to develop
system-level models for virtual prototyping [40], rather than designing real compo-
nents. Thus, reusable components to be integrated when designing novel devices are
usually available as Verilog-AMS or VHDL-AMS.

3.1 Background 41

3.1.2 Virtual platforms for smart systems

Virtual platforms allow exploring alternative design solutions, and the early valida-
tion of the overall system and to develop applications on top of hardware compo-
nents. They are executable models, allowing to simulate the hardware architecture of
a system under development, in order to emulate on top of it the software necessary
to implement the desired functionalities.

Most of the currently available virtual platform environments combine C++ and
SystemC [7] to achieve fast simulation, while preserving the behavior of the hard-
ware models to emulate. While C++ native constructs and types allow fast execution,
SystemC eases integration and reuse of existing IPs. Note that the choice of a sin-
gle language supporting the overall simulation is crucial, as it avoids the overhead
induced by co-simulation, as a result of frequent synchronization between different
simulators [5]. However, a unique simulator dealing with the plurality of disciplines
and domains involved in the considered kind of systems is not available yet. Thus,
a multitude of different simulation technologies has to be employed and connected
in order to simulate a virtual platform for such systems. This work aims at propos-
ing a set of solutions to overcome this problem, and the abstraction methodology
presented in the previous chapter is the first step in this direction.

3.1.3 Automatic abstraction of digital models

The work presented in [38] presents a set of transformations for HDL descriptions. It
allows generating abstracted, highly efficient C++ virtual prototypes of the original
hardware descriptions. The main idea is to raise the abstraction level of the compo-
nent, by moving from Register-Transfer Level (RTL) to Transaction-Level Modeling
(TLM). Meanwhile, optimizations are performed to speed up the component simu-
lation further. The methodology relies on three steps.

The first step is the data-types abstraction, where the hardware-specific data-
types (e.g., logic, logic vectors, etc.) are mapped onto C++ native data types. This
requires to retrieve data declarations, convert the declared types into the best suited
C/C++ types, and finally to reproduce the exact semantics of the operations by using
operations over the chosen native data-types. The procedure loses the information
related to multivalued logic data-types, but it preserves the functional equivalence
w.r.t. the original hardware description.

The second step is the scheduling generation. A HDL simulation usually requires
an execution kernel (or scheduler) governing and managing the sequence of events
driving the simulation. An HDL scheduler advances the execution according to the
relations defined between processes. This step automatically resolves and generates
a scheduler that is embedded within the model to pilot its execution, i.e., to execute
the digital processes involved in the description in a correct and highly optimized
manner.

The final step is the code generation, where the processes described in the HDL
descriptions are automatically translated in C++. Then, they are paired with the

42 3 Analog multi-discipline abstraction and mixed-signal scheduling

scheduler generated in the previous step. Finally, the generated code is highly op-
timized to enhance simulation speed.

The main optimization of this procedure is the scheduling generation. It allows to
statically solve all the dependencies among processes while generating the code used
for simulation. As such, it moves part of the simulation complexity from runtime
to generation time. This process relies on a Dependencies Graph: a directed graph
specifying all the dependency relations between processes in the model. The graph
G = (V,E) is composed as follows:

• V is the set of vertexes of the graph. Each vertex of the graph corresponds to one
process of the component. The graph is enriched by a flag synch used to state
whether the process is synchronous or asynchronous.

• E ⊂ (V × V) is the set of edges between vertexes. Each edge e = (v, v′) ∈ E
exists if process v′ reads a signal written by process v and v′.sync if false.

The relations expressed by the graph are sufficient to generate the scheduling
procedure for the abstracted description automatically. The dependencies graph pre-
sented in [38] is extended in this work. What summarized above is the information
necessary to understand the contributions of this thesis. For a more detailed explana-
tion of the graph, we refer the reader to [38].

3.2 Running example

To better explain the different steps of the proposed methodology, the remainder
of the chapter will exploit the case study shown in Figure 3.2. It is an AMS model
entirely written in Verilog-AMS by assembling and customizing some of the didactic
examples used by Ken Kundert in his iconic book on Verilog-AMS design [42] and
from the examples released with the Verilog-AMS [10] standard. A simple digital

Digital
Board

Comparator

ADC

DAC Opamp1 Opamp2

Motor

Voltage Source

Legend

Digital
Electrical
Mixed-Signal

Electrical
(Time)

Electrical
(PWL)

Non-Electrical
Non-Linear

Fig. 3.2: Structure and classification of the components in the vibrations motor system.

3.2 Running example 43

hardware platform is controlling the system’s AMS components. The example model
has been “synthetically” built to exemplify all the issues that are managed in this
chapter. This guiding example uses a set of diverse disciplines, linear, piecewise
linear and non-linear dynamics, as well as digital-to-analog and analog-to-digital
both synchronous and asynchronous communication. Follows a detailed description
of each component of the case study.

Digital board

The digital board is composed of three processes: two synchronous to a periodic
clock signal, and one asynchronous. The first synchronous process generates stim-
uli and provides them to the Digital-to-Analog Converter (DAC). The second syn-
chronous process reads the values provided by the Analog-to-Digital Converter
(ADC) and promptly changes the input stimuli in order to keep the Motor in safe
operating conditions. The asynchronous process reacts to the event generated by the
comparator component whenever the angular velocity of the actuator crosses a fixed
safety threshold.

Digital to analog converter

A DAC component converts the digital signals generated by the digital board
into voltage values used as input for a series of two ideal Operational Amplifiers
(OpAmps). The developed model has a variable resolution, for this test we set it to
of 8 bits. The model is linear and based on logic and electrical disciplines. The code
used in this work is shown in Listing A.4

Ideal operational amplifier

Each ideal OpAmp is an electrical model instantiated by using different parameters
to specify the minimum and maximum power supply voltages. The amplified output
voltage is constrained by thresholds, as such, the OpAmps is described by piecewise-
linear electrical equations, implemented using the logic discipline. The code used in
this work is shown in Listing A.2

Motor

The Motor component models a mechanical arm rotating an eccentric rotating mass
to generate the vibration. The rotation is controlled by the voltage value provided by
the DAC, after being amplified by the two OpAmps. It is partially described by using
the rotational omega discipline, other than the electrical discipline. The mechanical
system provides as outputs the shaft position as well as the absorbed potential. The
code used in this work is shown in Listing A.3.

44 3 Analog multi-discipline abstraction and mixed-signal scheduling

Voltage source

The Voltage Source component generates a constant voltage used as reference value
by the comparator. This component is purely described with the electrical discipline.

Comparator

The Comparator component uses the value provided by the motor, and compares it
with the value generated by the reference source. Whenever the value provided by
the rotating mass goes higher than the reference value, the component generates an
asynchronous signal to warn the digital board. The comparator is represented by a
linear model based on electrical and logic disciplines. The code of the comparator is
gown in Listing A.6

Analog to digital converter

The ADC component converts the voltage representing the angular velocity of the
rotating mass into a digital value for the board. It is represented by a linear model
based on electrical and logic disciplines. The code used in this work is shown in
Listing A.1.

3.3 Methodology overview

We have seen the general structure of the analog abstraction and mixe-signal schedul-
ing approach at the beginning of this chapter in Figure 3.1. The methodology starts
from an heterogeneous virtual platform describing the system under design by em-
ploying a mixture of different HDLs and their AMS extensions. The model under-
goes a Mixed-Signal Analysis, which identifies the parts of the design belonging ei-
ther to the digital or the analog domain. Then, the model is split into two sub-models:

• the Analog sub-model is composed by any instance of design unit or module
whose architecture contains at least one construct strictly belonging to an analog
or AMS extension of an HDL (i.e., Verilog-A, Verilog-AMS, VHDL-AMS).

• the Digital sub-model is composed by all the instances of design unit and mod-
ules that do not belong to the analog sub-model, i.e., all the design units and
modules specified by strictly using only constructs defined by the standard HDLs
(i.e., Verilog and VHDL).

The analysis stores the timing information about the synchronization between the
two sub-models:

• the sensitivity lists of processes in the analog sub-model, originally communi-
cating with signals in the digital sub-model.

• The set of events generated by processes in the analog sub-model that influences
processes in the digital sub-model.

3.4 Manipulation and abstraction of multi-discipline analog models 45

• The set of signals used to connect analog and digital models.

The two sub-models undergoes two different flows after being identified. The
digital sub-model is abstracted by applying the techniques presented in [38] to obtain
a functionally equivalent abstract model that relies on transactions rather than register
transfer level internal communication, that can be automatically translated into a C++
virtual prototype. On the other hand, the analog sub-model need to be reconciled with
the digital part of the platform, in order to achieve fast homogeneous simulation [37].
For this reason, the analog sub-model undergoes analog model abstraction.

This chapter generalizes the analog abstraction methodology presented in Chap-
ter 2 to deal with more physical domains other than the electrical one. This gener-
alized flow starts with discipline analysis step, enabling the possibility to manage
multi-discipline AMS models, and proposes several extensions to the abstraction
methodology. In particular, Section 3.4 presents all the improvements necessary to
support AMS (rather than just analog), and multi-discipline (rather than purely elec-
trical) models. Furthermore, the analog abstraction identifies (if present) a set of
constructs that impact on the digital sub-model of the system, such as Verilog-A’s
timed statements.

After abstracting the two sub-models, they are re-composed to create a Homo-
geneous Virtual Platform: a C++ virtual prototype reproducing the behavior of the
system at a very abstract level, while preserving its input-output relations. The re-
composition is performed through a Scheduling and Synchronization step that sched-
ule and synchronize the processes of the two sub-models. This step is based on the
scheduling approach presented in [38], and it extends the previous work to exploits
the synchronization information obtained during the mixed-signal analysis and the
analog model abstraction steps. The generated scheduler is embedded within the sys-
tem model. Finally, the model is automatically optimized and synthesized into a C++
virtual prototype through automatic code generation.

3.4 Manipulation and abstraction of multi-discipline analog
models

The abstraction methodology starts from the (potentially) analog sub-model of the
system and generates its C++ executable model. The final result preserves the rela-
tions between the input and output identified for the system. Figure 3.3 depicts an
overview of the abstraction flow presented in this section.

The initial multi-discipline analog description is analyzed by the Discipline Anal-
ysis step. This step identifies which disciplines are used in the different parts of the
system. The analysis is composed of two steps:

• the Flattening step transforms a hierarchical description into a non-hierarchical
one while preserving the behavioral equivalence w.r.t. the original model.
• the Splitting step visits the flattened system, identifies the parts using different

disciplines and split the model accordingly. Therefore, it partitions the multi-
discipline flattened model into mono-discipline sub-models.

46 3 Analog multi-discipline abstraction and mixed-signal scheduling

Multi-Discipline Analog Hardware (Verilog-AMS)

Automatic model parsing

Flattening

Splitting Step 1
Discipline
Analysis

Mono-discipline sub-models

Mechanic

Electrical

Optic

Magnetic
etc.

For each sub-model

Step 2
Analog models automatic abstraction

Automatic Generation

Homogeneous Virtual Platform

Discrete-Event Model
(Digital Sub-System)

Discrete-Event Model
(Analog Sub-System)

Mixed-Signal
Scheduler

Fig. 3.3: Overview of the abstraction procedure for multi-discipline analog models.

The Discipline analysis step, further discussed in Section 3.4.1, is required be-
cause a set of nodes of the same conservative discipline, and connected to each other,
must be considered as a unique system [10].

After the discipline analysis, each of the mono-discipline models produced is
abstracted in the sub-model abstraction step. This step is built on top of the state-of-
the-art abstraction methodology for electrical analog models presented in Chapter 2.
However, in the following of this section it is extended to deal with models expressed
in the frequency or Laplace domains (Section 3.4.2), non-electrical disciplines and
natures (Section 3.4.3) and non-linear behaviors (Section 3.4.4).

3.4.1 Disciplines analysis

The discipline analysis starts by flattening the design. The guiding idea of the Flat-
tening Process is: given a hierarchical model, analyze the boundaries between its
sub-models, and merge them into a single non-hierarchical description. The process
building the flattened description is organized in four steps:

3.4 Manipulation and abstraction of multi-discipline analog models 47

1. For each instance of any sub-component of the analog sub-system, the proce-
dure creates a copy of the sub-component and it adds the copy to the flattened
description.

2. For each sub-component copied into the flattened description, each of its input
and output port (i.e., terminal) is replaced by an intermediate node. The disci-
pline of the new intermediate node will be the same of the original port.

3. For each variable imported into the flattened description must be renamed to
avoid name clashes. The variables are imported when creating the copies of the
sub-components. A side effect of the flattening copy will be the elimination of
some scopes. As such, if different variables in different sub-components have
the same name, name clashes are possible. Each variable is renamed by adding
as a postfix to its name. The postfix will be created by analyzing the instances
of components in the hierarchy where the variable is contained. For instance, if
a variable x is declared within the sub-module sub of the module top, the new
variable name will be: x_sub_top. Finally, to further eliminate the change of
having naming conflicts, a randomly generated alphanumeric sequence is added
as a postfix to the new name.

4. The internal behavior of each sub-model is modified to be compliant with the
previous manipulation. Any reference to internal ports of components is replaced
by the corresponding variable introduced by the second step. Any reference to
any variable is replaced according to the renaming performed by the third step.

Figure 3.4 depicts the non-hierarchical model resulting by applying the discipline
analysis to the vibration motor case study. Boxes with the same color identify areas
of the system described using the same discipline and the same modeling style. As
the figure shows, the internal behavior of each sub-model has been exposed and

Digital
Board

ADC

DAC

Comparator

Opamp1 Opamp2

Motor

Voltage Source

Legend
Digital
Description

Logic
Discipline

Electrical
(Time)

Electrical
(Laplace)

Rotational
Discipline

Fig. 3.4: Disciplines analysis for the vibration motor case study.

48 3 Analog multi-discipline abstraction and mixed-signal scheduling

Opamp1 Opamp2

−
+

Fig. 3.5: Electrical circuit defined inside different modules, outlined by the discipline analysis
step.

partitioned into its different disciplinary components. Dashed red lines shows the
sub-models described with the same domain connected by conservative nodes.

Once the first part of the discipline analysis is completed, the flattened description
is analyzed using the splitting process. Such step outlines and divides all the areas
of the system which, by belonging to the same discipline, need to be considered as
a single model. One-by-one, all the identified sub-models are going to be abstracted
separately. The abstraction will produce a procedure for each sub-model. Then, the
methodology recomposes all the procedures through scheduling (Section 3.5) to pro-
duce the final system prototype.

Figure 3.5 shows a portion of the case study defined using the electrical dis-
cipline, and identified by the presented analysis. The circuit in figure, contains a
voltage source and a resistor inside the OpAmp1 component, and a capacitor in par-
allel with a resistor originally defined inside OpAmp2. Consider the case of the two
OpAmps, they are two different instances of the same component. At first glance, it
may seem reasonable to abstract the definition of the component and replicate twice
the resulting abstracted model. However, this will not preserve the correct behavior
of the composed system, since once instantiated they are sharing a net composed by
conservative nodes (i.e., the intermediate node interconnecting the two OpAmps in
figure).

The voltage source and the resistor inside the OpAmp1 are influencing the pas-
sive components (i.e., resistor and capacitor) inside the OpAmp2, and vice versa. As
a consequence, it is necessary to consider the composition of electrical components
depicted in Figure 3.5 as a unique system of equations. It is worth noticing that con-
cerning the components which make use of the electrical discipline, they have been
modeled partially using the Laplace-domain. However, since the splitting process fo-
cuses only on disciplines, rather than modeling styles, the time- and Laplace-domain
parts are grouped within the same sub-model. Therefore, they must be considered as
part of the circuit spread over the two OpAmp instances. Occurrences of the issue
just discussed can be easily exposed by applying the flattening step, while they can
be solved by applying the splitting procedure.

3.4.2 Frequency domain

Linear time-invariant systems are commonly expressed using their transfer function
in the frequency domain. This kind of specification allows to represent a linear dif-

3.4 Manipulation and abstraction of multi-discipline analog models 49

Listing 3.1: Manipulation of an electrical sub-model, to remove the Laplace-domain specifi-
cation.

1 V(out_dac) <+ value_dac;
2 I(in_opamp_1) <+ (V(in_opamp_1) / rin_opamp_1) +
3 ddt(V(in_opamp_1) * cin_opamp_1);
4 A_opamp_1 = laplace_nd(V(in_opamp_1) * C1, 1, {1, C2});

1 V(out_dac) <+ value_dac;
2 I(in_opamp_1) <+ (V(in_opamp_1) / rin_opamp_1) +
3 ddt(V(in_opamp_1) * cin_opamp_1);
4 A_opamp_1 = C1 * V(in_opamp_1) - C2 * ddt(A_opamp_1);

ferential equation using an algebraic equation, easier to manage and solve. However,
it provides a frequency domain representation that must be solved (i.e., applying the
inverse Laplace transform) during time-domain simulation.

To move resolution overhead from simulation- to generation-time, whenever a
contribution statement using the Laplace notation is found while parsing the design,
its inverse Laplace transform is symbolically computed to retrieve the corresponding
time-domain representation. This is done by applying simple manipulations to the
Abstract Syntax Tree (AST) representing the transfer function. This will produce a
novel AST representing an equivalent time-domain function that is collected together
with the other time-domain equations composing the mono-discipline sub-model. As
such, all the equations composing the sub-model are expressed in the time-domain
and they can be solved altogether.

The operational amplifiers inside the vibration motor case study are partially
modeled in the Laplace domain: they undergo the inverse transformation. Listing 3.1
depicts the Verilog-AMS code of the electrical sub-model spread among the digital-
to-analog converter and the first operational amplifier (i.e., OpAmp1), obtained after
the discipline analysis step. The upper part of the listing shows the original model,
where the behavior of the variable A_opamp_1 (initially called A) is specified in the
frequency domain, by using the laplace_nd function. The laplace_nd is an op-
erator which allows implementing a Laplace transfer function in terms of numerators
and denominators of the form:

H(s) =
n0, n1 · s, n2 · s2, . . . , nm · sm

d0, d1 · s, d2 · s2, . . . , dm · sm

The lower part of Listing 3.1 shows the Verilog-AMS code describing the model
after the inverse transformation: the result is specified in the time-domain.

3.4.3 Conservative disciplines and custom disciplines

The set of equations explicitly specified by each contribution statement are stored
into a multimap data-structure. For each entry, the key in the map is given by the left-
hand side of the contribution statement, while the map’s value is the AST generated

50 3 Analog multi-discipline abstraction and mixed-signal scheduling

parsing the right-hand side. However, the set of equations lacks all those implicit
equations implied by the explicitly specified ones. The enrichment sub-step takes
care of enriching the multimap with the implicit equations of the system.

The first set of equations to be inserted is composed by all the equations ob-
tained by finding the dual relations of each equation: for each equation, the left-hand
side value is interchanged with all the terms contained on its right hand side. This
procedure is applied to any set of equations for both conservative and signal flow
descriptions.

Conservative disciplines make necessary to take into account all those equations
that are implied by the application of energy conservation laws. Previous approaches
were using the Kirchhoff’s Voltage and Current Laws, thus, they were applied only
to the electrical discipline. However, the Verilog-AMS standard relies on their gen-
eralization: Kirchhoff’s Potential Law (KPL) and Kirchhoff’s Flow Law (KFL) [10].

For each mono-discipline sub-model extracted after the discipline analysis: if
the discipline is conservative, the equations stored in the multimap are exploited to
gather information about the structure of the system. The procedure identifies the
conservative relations between physical quantities. This process is a generalization
of what already presented in the literature to manage conservation laws for electrical
circuits:

• For each node belonging to the conservative discipline: the procedure identifies
which equations are using the node’s potential access functions.
• The equations retrieved are used to apply the KFL introducing a new equation

in the system to assure that the sum of all flows out of the node is zero.
• For each branch used in the model: the equations using the flow access function

on the branch are identified and related to each other in order to identify all the
loops in the system.
• For each loop: the KPL is applied to force in the system an equation ensuring

that the sum of the branches potentials around the loop is equal to zero.
• All the equations generated by applying the conservation laws are used to enrich

the multimap used to assemble the AST of the assignments linking inputs and
outputs of the sub-model.

The vibration motor case study presents three different disciplines: logic, electrical,
and rotational_omega.

As a consequence the discipline analysis step presented above provides the means
for splitting the model of the device into four electrical sub-models, and a rota-
tional_omega sub-model. The electrical sub-models have been managed individually
to apply the Current and Voltage laws, thus retrieving the hidden electrical relations.
Analogously, the rotational_omega sub-model has been analyzed by applying the
generalized KFL and KPL.

3.4.4 Non-linear behavior

Verilog-AMS provides different ways to introduce non-linear behaviors inside an
analog description, this work considers the following three:

3.4 Manipulation and abstraction of multi-discipline analog models 51

1. the logic discipline can model piecewise-linear behavior, by using control flow
statements (e.g., if-then-else, etc.);

2. analog functions that may define any kind of dynamic behavior, usually by using
mathematical functions (e.g., polynomial);

3. and contribution statements on conservative nodes can contain non-linear func-
tions on their right-hand side.

This work addresses these three issues separately.

3.4.4.a Control flow statements

The splitting procedure carried on by the discipline analysis step isolates all the por-
tions of the models that are modeled using the Logic discipline. Furthermore, the
Verilog-AMS standard forbids to use analog nodes or branches access functions in-
side a logic block [10]. Therefore, to interface the Logic discipline with conservative
or signal-flow discipline it is necessary to introduce real variables in the Verilog-
AMS model. Then, these variables are the only one used within a partition of the
system expressed using the logic discipline. Thus, the semantics of such partitions
become purely procedural. This work exploits such a feature and it reproduces non-
linear behaviors introduced by the logic discipline by translating the procedural logic
block into an equivalent C++ function.

The code in Listing 3.2 exemplifies the application of translation for logic disci-
pline non-linear behavior. The upper part of the listing shows a portion of a simpli-
fied Verilog-AMS implementation of the operational amplifier defined in the guid-
ing example. Variables A and C are used to interface logic and electrical disci-
pline. Then, a conditional statement on A introduces a non-linear behavior. The
lower part of the listing shows the corresponding C++ implementation. The function
logic_block_1 implements the behavior specified using the logic discipline in the
Verilog-AMS code, while the opamp function implements the behavior specified by
the Verilog-AMS code.

Listing 3.2: OpAmp component of the vibration motor case study.

1 A = V(in) * gain;
2 if(A > threshold) C = threshold;
3 else C = A;
4 I(out) <+ C;

1 void logic_block_1(double & A, double & C) {
2 if (A > threshold) C = threshold;
3 else C = A;
4 }
5 void opamp() {
6 A = V_in * gain;
7 logic_block_1(A, C);
8 V_out = C;
9 }

52 3 Analog multi-discipline abstraction and mixed-signal scheduling

It is worth noticing that this kind of behavior is typically used to interface dif-
ferent disciplines. The application of the presented strategy must be applied when
aggregating the abstracted mono-disciplinary sub-models after the abstraction step.

3.4.4.b User defined analog functions

A non-linear behavior may be introduced by an analog function. This case is man-
aged by producing the equivalent C++ implementation of the analog function. This
closely recalls the strategy adopted for the case of non-linear dynamics induced by
interfacing logic and conservative disciplines. In this case, however, we must discern
two cases:

1. the non-linear is described by using a standard Verilog mathematical function
(e.g., trigonometric functions). The behavior is reproduced by using the corre-
sponding function of the standard C++ library. For instance, by mapping the
original Verilog function onto a function defined within the cmath header of the
C++. The methodology is accompanied by a support library containing the im-
plementation of any function defined in the Verilog-AMS standard [10] and does
not have a correspondence within the C++ Standard Library.

2. the non-linear behavior is described by a custom function defined by the de-
signer. The abstraction flow produces a C++ function that is the translation of
the custom Verilog function. The translation is based on the analysis of the AST
of the Verilog custom function, that is then reproduced by using C++ constructs.
If the custom function contains calls to standard Verilog functions, these are
mapped as described for the case above.

The first case is pretty straightforward, while the second case is more complicated.
Let us consider a custom analog function such as the one shown in Listing 3.3. The
code shows the application of this strategy to reproduce the behavior of Verilog-AMS
analog functions in C++. The upper part of the listing shows the original analog
function, while the lower part shows the corresponding C++ implementation. It is
also worth noticing the translation of the standard pow and sin Verilog functions,

Listing 3.3: Example of custom function specified in Verilog-AMS (above), and the corre-
sponding C++ implementation (below).

1 analog function real custom_function_1;
2 input a, b, c, x;
3 real a, b, c, x;
4 custom_function_1 = a * pow(x,b) + c * sin(x);
5 endfunction;

1 #include <cmath>
2 double custom_function_1(double a, double b, double c, double x) {
3 return a * pow(x,b) + c * sin(x);
4 }

3.5 Mixed-signal scheduling for system integration 53

that is automatically performed by using the pow and sin functions defined within
the Standard Library of the C++ language, within the cmath header.

3.4.4.c Contribution statements

If a contribution statement defines a non-linear behavior, then it has to be considered
as a signal-flow equation. Thus, it is merely parsed and its abstract syntax tree is
inserted into the multimap data structure built while parsing the input design.

3.5 Mixed-signal scheduling for system integration

We have seen in Section 3.1 and previously in Chapter 2 that the automatic abstrac-
tion of digital and analog designs produces a set of C++ functions, each of which
implements the behavior of a specific process involved in the original mixed-signal
description. Synchronization and scheduling of these C++ functions are necessary to
imitate the behavioral evolution of the initial description correctly.

This section first addresses how to generate an embedded scheduler within the
abstracted model automatically, then it presents two cross-domain functions which
are critical for handling mixed-signal simulations.

3.5.1 Model temporization

The proposed approach relies on a dependency graph, expressing dependencies
among processes. It is a direct graph, where nodes represent digital processes of
the platform. An edge connects two nodes if the process represented by the target
is reading a signal written by the process represented by the source of the edge.
The analysis starts from the synchronous processes. Afterward, the graph is built by
analyzing all the dependencies of asynchronous processes.

Figure 3.6.a is a simple example of a dependency graph obtained by analyzing the
digital processes of the Verilog code in Figure 3.6.b. The only piece of information
represented there is that P2 depends on P1 through the digital signal A. However, it
is worth noting that the source code of P2 introduces an explicit delay of 7 ms, that is
no longer visible in the graph. Thus, it is necessary to introduce timing information
in the graph.

The user has to provide information about the signal to be considered as system
clock together with its period to perform the timing analysis. This allows to identify
all paths in the graph that start with the synchronous process and traverse all the
asynchronous ones: the time to execute all the processes in a path must be equal to
the clock period.

The second piece of timing information is given by the explicit delays specified in
digital processes. They give an exact timing to asynchronous processes that may need
to be synchronized with the analog ones. The dependency graph is slightly modified,
to take care of this: Processes with explicit delays are split into sub-processes, each

54 3 Analog multi-discipline abstraction and mixed-signal scheduling

P1

P2

A

P1

(t)

P2

(t)

P ′2
(t+7)

Pa

(t)

Pa

(t+2)

Pa

(t+4)

Pa

(t+6)

Pa

(t+7)

A

A

T1

(t+7)

V(n)

Digital
Depndency Graph

(a)

Verilog
Source Code

(b)

Enriched
Depndency Graph

(c)

Fig. 3.6: Example of dependency graph enrichment, starting from a Verilog-AMS description.

one representing the part of the process between two delays. The parts are connected
by an edge representing the timing relation.

Figure 3.6.c depicts how the graph is enriched with this information. A new node
P ′2 is introduced representing the piece of process executed after the delay. Then,
P2 and P ′2 are connected through an edge labeled with a new event (i.e., T1), by
representing the dependency and the relative timing with respect to the synchronous
process.

Timing information allows inserting analog processes in the graph correctly.
Their execution frequency fa is fclock ∗k, where fclock is the clock frequency, and k
is an integer constant. Thus, k executions are inserted in parallel into the graph and
annotated with their timing. Two kinds of dependencies can occur between digital
and analog processes:

• An analog process reads a value written by a digital process. An edge is inserted
from the “digital node” to the “analog node” annotated with the next time stamp
with respect to the one of the digital node.
• A digital process reads a value written by an analog process. An instance of

the analog process is inserted and labeled with the time stamp of the dependent
digital process to force analog execution at that particular time stamp.

In Figure 3.6.c the analog process Pa is dependent on the value of A available one
delta cycle after the execution of P1. The value of A is available at the second execu-
tion of Pa due to concurrency. Then, P ′2 depends on the voltage value of the electrical
node n: a new instance of Pa is introduced to execute the analog process at time t+7,
where t is the last tick of the clock signal occurred. Then, a dependency from Pa at
time t+ 7 and P ′2 is inserted in the graph.

3.5 Mixed-signal scheduling for system integration 55

Fig. 3.7: Clock cycle execution of the example in Figure 3.6, applying the proposed scheduling
approach.

3.5.2 Temporal decoupling and Synchronization

The enriched graph is used to generate the final scheduling. The set of edges in
the graph can be interpreted as a partial order relation. All the processes that are not
related by this relation can be decoupled and simulated independently. In Figure 3.6.c
the execution of P2 is independent with respect to Pa at time t+2, t+4, t+6, t+7.
Hence, the execution of P2 and Pa in the time range from t + 2 to t + 7 can be
decoupled.

Then, it is necessary to synchronize the global time of the system and execute
the processes in the order imposed by the relation, whenever the partial order rela-
tion introduced by the dependency graph exists. This happens for instance between
P1 and Pa at time t+ 1 and between Pa at time t+ 7 and P ′2. Figure 3.7 depicts the
time evolution of the simulation of one clock cycle of the system exemplified above
(Figure 3.6). Arrows indicate timing of events happening in the system. Red arrows
represent executions of the analog process Pa. A black arrow depicts the execution of
the synchronous process P1 while a blue arrow indicates the execution of the asyn-
chronous process P2. Finally, at 7 ms analog and digital processes are synchronized
as discussed above.

In this way, temporal decoupling allows to synchronize analog and digital pro-
cesses only when they influences each other rather than synchronize them at ev-
ery time step as done by mixed-signal HDLs and SystemC-AMS. Thus, it provides
lighter synchronization while preserving the AMS semantics.

3.5.3 Cross-domain analog functions

Special care is required whenever timing statements are used to perform time/event-
triggered tasks for the purpose of interfacing discrete-time and continuous-time do-
mains. We can find functions which are applied to just one statement (e.g., transi-
tion), or to an entire block (e.g., initial_step, cross, timer, above, etc.). In either case,

56 3 Analog multi-discipline abstraction and mixed-signal scheduling

these functions generate events at specific instants in time during the simulation, and
failing to deal such events can lead to a non-equivalent simulation.

3.5.3.a Transition

The transition function is commonly used to interface the digital domain to the ana-
log one. It allows to smoothly drive a continuous time signal with a discrete one
avoiding abrupt changes of values which can lead to discontinuities. The transition
happens as soon as the expression driving the function changes. Here the issues to
take care of are several. First, the simulator needs to start the transitioning process as
soon as possible, which implies that the simulation step should be small enough to
capture the changing in the driving expression accurately. Second, the driver could
change during the execution of the function, in this case the transition needs to be
re-scheduled.

Listing 3.4 shows one possible implementation of the transistor function written
in C++. A transition function is implemented through a slope from the initial value
of the expression to the new value. A designer can customize the slope behavior
by specifying an initial delay and a rising/falling time. The steepness of the slope

Listing 3.4: Transition function implementation.

1 inline void Transition::transition(
2 double expr, double tdelay, double trise, double tfall) {
3 // Re-compute slope and y-intercept if expression has changed.
4 if (!dbl_equal(expression, _y1)) {
5 _x0 = _system_abstime(); // The current time.
6 _x1 = _x0 + tdelay; // Current time plus the delay.
7 _y0 = _output; // The current y value.
8 _y1 = expression; // The final y value.
9 // Based on the direction add the rising or falling time.

10 if (dbl_lequal(_y0, _y1) && (trise > 0.0)) {
11 _status = Status::RISING;
12 _x1 += trise;
13 }
14 else if (dbl_gequal(_y0, _y1) && (tfall > 0.0)) {
15 _status = Status::FALLING;
16 _x1 += tfall;
17 }
18 // Compute slope.
19 _m = (_y1 - _y0) / fmax(1E-12, _x1 - _x0 - tdelay);
20 // Compute y-intercept.
21 _b = _y1 - _m * _x1;
22 }
23 // Check if the intial delay is elapsed.
24 if (dbl_gequal(_system_abstime(), tdelay + _x0)) {
25 // Evaluate the output signal.
26 _output = _system_abstime() * _m + _b;
27 if (((_status == Status::FALLING) && (_output < _y1)) ||
28 ((_status == Status::RISING) && (_output > _y1))) {
29 _output = _y1;
30 }
31 }
32 return _output;
33 }

3.5 Mixed-signal scheduling for system integration 57

is based on these attributes. To better reproduce the transition function, it must be
evaluated at each reasonably small time point of the slope, from the initial to the
final value of the expression.

The first part of the code re-computes the slope _m and y-intercept _b of the out-
put signal if and only if the input expression changes. Then, once the initial delay
has elapsed, the output signal is computed by using the slope and y-intercept pre-
viously evaluated. The transition function relies on three functions, i.e., dbl_equal,
dbl_lequal, and dbl_gequal, used to properly perform the comparison between float-
ing point values with a customizable threshold. The complete code of such functions
is shown in Listing B.1.

Let us now look at the following example, the result of the abstraction to C++:

if ((clock != clock_previous) && clock) {
sample = input;

}
output = transition(sample, 0, 5E-09, 5E-09);

Here the transition function is used to drive the output signal with the values of
the input signal sampled at each positive edge of a clock. In this case, there is no
delay and both rising and falling time are set to 5ns. The waves generated with this
code are shown in Figure 3.8.

Fig. 3.8: A transition function used to track the values of an input signal at each clock event.

3.5.3.b Cross

The cross function is used to generate events every time an analog signal crosses the
zero. The user can specify if the monitored crossing event should be a positive or
negative cross. In the former case, the value goes from positive to negative, while
in the latter it is the opposite. Accuracy on detecting such an event depends on the

58 3 Analog multi-discipline abstraction and mixed-signal scheduling

simulator which has to modify its simulation step in order to capture the cross event
better. The C++ implementation of the cross function is shown in Listing 3.5. The
arguments of the function are, the expression which is the current value of the signal,
the direction of the crossing and the functionality to activate whenever the crossing
happens.

Listing 3.5: Cross function implementation.

1 void Cross::operator()(
2 analog_value_t const & expression,
3 int const & direction,
4 std::function<void()> const & functionality) {
5 // Based on the direction, check for a crossing event.
6 if (direction > 0) {
7 if (positive_cross(expression))
8 functionality();
9 }

10 else if (direction < 0) {
11 if (negative_cross(expression))
12 functionality();
13 }
14 else {
15 if (positive_cross(expression) || negative_cross(expression))
16 functionality();
17 }
18 // Extrapolate the next crossing event.
19 if (detect_next_positive_cross(time_point) ||
20 detect_next_negative_cross(time_point))
21 _system_add_event(time_point);
22 // Store the current time-point, by saving both x and y values.
23 store_time_point(_system_abstime(), expression);
24 }

This function relies on two concepts, first the extrapolation of the next time-point,
and second the scaling of the time-step. At each simulation step, the crossing event is
checked by using the two functions positive_cross and negative_cross based on the
direction. If the signal crosses the zero, the functionality is executed. Then, regard-
less of the previous check, the cross function controls if the next simulation step with
the current time-step generates a crossing event. If that is the case, it notifies the sim-
ulator of the time point when the computed crossing event will happen. Finally, the
current time point and input signal value are stored to extrapolate the next crossing
event.

Let us now look at the following simple example, where the cross function is used
to generate an asynchronous clock digital signal based on the analog continuous time
input signal:

cross(input, 0, [&]() {
clock != clock;

});

The produced waves are shown in Figure 3.9. Because the second argument is set
to zero, the direction, the events are generated both during positive and negative
crossings.

3.6 Transistor-level to behavioral-level abstraction 59

Fig. 3.9: A cross function used to generate a digital clock signal from a continuous time signal.

3.6 Transistor-level to behavioral-level abstraction

This section shows how state-dependent small-signal behavioral-level descriptions
can replace non-linear transistor-level models. The main purpose of this abstraction
is indeed speeding up the simulation of transistor-level descriptions. However, it is
shown later on in Chapter 5 that an equally interesting application is the direct map-
ping of fault locations from transistor to the behavioral level.

Whether the objective is simulation efficiency or fault mapping, the behavioral-
level description should be as accurate as possible; it must be able to emulate the
correct behavior of the lower level counterpart faithfully. Once the behavioral-level
description is generated, it can be abstracted with the methodology presented in the
previous sections. It is clear that the equivalence heavily influences the accuracy of
the final functional-level description. Furthermore, to simplify the process of fault
mapping, the structure of the behavioral-level description should be as close as pos-
sible to the transistor-level one. However, this is a reasonable condition for simple
circuits, for more complex ones it is hard to reproduce the behavior of transistor-
level models with passive components and at the same time preserve an equivalent
internal structure. In those cases, other approaches used to model the effect of faults
at the behavioral-level can be adopted [43].

Let us now take the circuit of the CMOS inverter shown in Figure 3.10. The idea
behind building a state-dependent small-signal behavioral-level description is to cap-
ture all the important states of a circuit and encode them into a set of configurations,
one for each state. To build an efficient behavioral-level model which can also be
abstracted to functional-level we decided to rely on linear components like resistors
and capacitors. Figure 3.11 shows the topology we applied to capture the behavior of
the CMOS inverter, while the equivalent Verilog-AMS behavioral level description
is shown in Listing A.7. In this description, both PMOS and NMOS transistors are
replaced by linear elements which can capture their non-linear behavior. The model
switches between the ON and OFF states by modifying the values of these linear el-

60 3 Analog multi-discipline abstraction and mixed-signal scheduling

a q

vdd

vss

Fig. 3.10: Transistor-level circuit of a CMOS inverter.

Ca_vdd

Ca_vss

Cvdd_q

Cvss_q

Rvdd_q

Rvss_q

a q

vdd

vss

Fig. 3.11: Behavioral-level description of an inverter.

ements depending on the voltage on the input node a. Changing the state is done by
using the hyperbolic tangent function. In the Verilog-AMS description, this function
is called tanhsw and allows a smoother transition which can be adjusted by using
the smth variables. The input coupling of the inverter is modeled through the input
capacitances, while on the output, resistors and capacitors are used to produce the in-
verter behavior. When a high voltage is provided to the input node a of the inverter,
the value of the resistor from vdd to q is increased to model an open circuit, and the
one of the lower resistor from vss to q is decreased so that the output is pulled down
to vss. Conversely, when a low voltage is provided to the input node a of the inverter,
the output is pulled up to vdd.

The power of this parametrized model is the ability to be tuned and characterized
to fit the physical level properties of the original design (e.g., based on the transistors
width/length ratio). To clarify this feature, Figure 3.12 shows how the proposed ab-
stracted description can be used to model different types of inverters, each of which
implementing a different switching behavior.

3.6 Transistor-level to behavioral-level abstraction 61

Fig. 3.12: Six different C++ CMOS inverters switching between output low and high.

Furthermore, the model proposed in Figure 3.11 is a generalization of a two-state
circuit with one input and one output port, which can be manipulated to model the
behavior of other non-linear transistor-level descriptions. By slightly modifying the
Verilog-AMS code shown in Listing A.7 other gates can be easily generated. For
instance, if we consider the structure of a nand gate, we have two input ports a and b
instead of just a. As a consequence, to describe the nand gate in the same manner we
just need to replicate the same two-capacitors topology for both ports. The resulting
circuit for a generic two input port gate is shown in Figure 3.13.

a

b

q

vdd

vss

vdd

vss

Ca_vdd

Ca_vss

Cb_vdd

Cb_vss

Cvdd_q

Rvdd_q

Rvss_q

Cvss_q

Fig. 3.13: Behavioral-level description of a generic two port circuit.

62 3 Analog multi-discipline abstraction and mixed-signal scheduling

Then, we need to adjust the equation controlling the switching between its states
(which is at line 42 in Listing A.7):

x = min(V(a), V(b));

To model a xor gate the line must be changed into:

x = max(V(a), V(b));

An exnor gate can be modeled in the same way by using the following behavior:

x1 = max(V(a), V(b)); // a or b
x2 = min(V(a), V(b)); // a and b
x1_u = tanhsw(x1, vth_u, smth_u);
x1_d = tanhsw(x1, vth_d, smth_d);
x2_u = tanhsw(x2, vth2_u, smth2_u);
x2_d = tanhsw(x2, vth2_d, smth2_d);
// not(a or b) or (a and b)
x_u = max(0, min(1, (1 - x1_u) + x2_u));
x_d = max(0, min(1, (1 - x1_d) + x2_d));

To properly capture the exnor behavior we needed to duplicate the pair of variables
controlling the voltage threshold and smoothing factor (i.e., vth and smth), as well
as adding new support variables. Increasingly complex behaviors require of course
more complex switching functions, more linear elements and most probably need
to take into account more states. To exemplify this aspect, let us take the transistor-
level description of the CMOS analog switch shown in Figure 3.14. In this model,

Fig. 3.14: Transistor-level description of a CMOS switch.

3.7 Behavioral-level interface building 63

a z

vdd

vss

vdd

vss

phi

phib

R0 C0

R1 C1

R2 C2

R3 C3

C4 R4

C5 R5

C6 R6

C7 R7

Rnl

Cnl

Fig. 3.15: Behavioral-level description of a switch.

the switching is controlled by the two analog ports phi and phib. The signals called
PS and NS are actually vdd and vss respectively. The equivalent behavioral-level
circuit of the switch is shown in Figure 3.15. To cover all the physical aspects of the
original switch circuit we require a total of 18 linear components. Furthermore, we
need to store a total of four configurations for the linear elements, since there is a
configuration for each one of the four combinations of the two control ports.

It is worth noting that in most of the analog descriptions, components parameters
could be replaced in the corresponding equations inside the design. However, with
state-dependent small-signal behavioral descriptions, components parameters cannot
be replaced by their actual values, because they need to change during the simulation
to emulate all the states of the model. If we consider the behavioral switch model,
the symbolic analysis has to deal with a total of 18 symbols, becoming a complex
task which could take a considerable amount of time. For this reason, the analog
abstraction methodology must be extended to enable a better scaling with the number
of symbols inside the design.

3.7 Behavioral-level interface building

In the previous chapter, and in Section 3.4 we introduced the analog abstraction
methodology, which generates symbolic transfer functions of the circuit behavior at
each of its output ports. We showed that for each conservative sub-circuit, it sets
up the system of equation for symbolic analysis. Whenever possible it replaces con-
stants, and eventually even parameters, to reduce the complexity required to solve the

64 3 Analog multi-discipline abstraction and mixed-signal scheduling

p1 p2−R1 +R1 Ro

−
+

V in1,TV out1,T

−R1+R1Ro

−
+

V in2,T V out2,T

Fig. 3.16: Two-port waveform-relaxation interface.

system. Then, the resulting set of equations is used to generate the functional-level
description written in C++.

The symbolic analysis of large analog integrated circuits has an essential role
in the study of the circuit behavior. It can be a useful tool for testing analog and
mixed-signal systems during, and after, the design process of VLSI ASICs [44].
Unfortunately, this kind of analysis is a complex task because of the difficulties in
handling large symbolic formulas [45]. For example, the inverter we have shown in
Figure 3.11 is modeled with six symbols (i.e., capacitance and resistance values),
while the switch shown in Figure 3.15 requires 18 symbols. All these symbols in-
evitably increase the complexity of solving the system of equations. Furthermore,
if the inverter circuit is connected through a conservative node to other circuits, the
complexity increases even further.

To effectively overcome this scalability problem and also to allow composing
already abstracted models, the proposed methodology relies on a special type of in-
terfaces. Such interfaces rely on the Waveform Relaxation (WR) theory, a numerical
algorithm allowing to split a system of Ordinary Differential Equations (ODEs) into
subsystems which can be solved separately [46, 47, 48]. In this work, the circuit
implementing the WR principles is used as an interface between the macro-blocks.
Its structure is shown in Figure 3.16, where two interfaces are used to drive two
separated sub-circuits.

Focusing on the left-hand side circuit, connected in series with the port p1 of
the first sub-circuit there are three resistors and a Voltage Controlled Voltage Source
(VCVS). The first pair of resistors (+R1, −R1)) allows to convert the continuous
time formulation in terms of voltage/current, to a pair of voltage waves (V in1,T ,
V out1,T) in discrete-time with sampling period T; where the first is a wave coming
from the outside, and the second one is the output wave. The third resistor Ro repre-
sent the outside circuit inside the interface of the block. The right-hand side circuit is
a mirror of the left one. During simulating, at the end of each time-step, the voltage
waves are used to drive the controlled sources. The value of V out1,T is assigned to
V in2,T , and vice-versa V out2,T is assigned to V in1,T . This formulation inspired

3.7 Behavioral-level interface building 65

a z

vdd vdd

vss vss

phi

phib

wr

wr

wr

wr

wr

wr

wr

wr

wr

wr

wr wr

wr wr

wr wr

wr wr

R0 C0

R1 C1

R2 C2

R3 C3

C4 R4

C5 R5

C6 R6

C7 R7

Rnl

Cnl

Fig. 3.17: Switch circuit with multi-port waveform relaxation interfaces. The blue side of
each interface represent the discrete-time waves. The orange side represent the continuous-
time analog circuit.

from transmission-line theory, the interface correspond to a loss-less transmission
line with a characteristic impedance Ro and delay T . Provided the delays through
the interface are small enough the system will be stable if the system it models is
stable [49].

The circuit shown in Figure 3.16 can be used to connect just two nodes, an ex-
tension is required to be able to connect more nodes. For instance, the work in [50]
shows a VHDL-based interface called “MiXED”, which defines a type of controlled
source which computes not only the output voltage but also the impedance, allow-
ing the composition of multiple “MiXED” sources. Inside the delivery D3.2.2 of
the SMAC project [49], a multi-terminal waveform relaxation interface is proposed,
allowing to connect multiple interfaces together.

Now, if we consider the behavioral description of a switch shown in Figure 3.15,
we would place the interfaces on the output pins, i.e., pins a, z, phi, phib, vdd, and
vss. This solution solves the problem of composing more than one switch; however,

66 3 Analog multi-discipline abstraction and mixed-signal scheduling

we need to consider that each interface introduces a new symbol, i.e., the variable
controlling the VCVS. In that case, the equations system of the switch circuit with
the WR interfaces would have a total of 24 symbols. Solving the system produces
sensibly large symbolic equations, which can have a repercussion on the efficiency of
the generated model. When dealing with relatively large macro-blocks (i.e., in terms
of symbols), a possible solution is splitting the circuit of the block by using the WR
interfaces internally. The resulting circuit is shown in Figure 3.17.

The circuit shown in the figure also presents a peculiar configuration, where mul-
tiple WR interfaces are connected. The orange side represents the continuous-time
analog circuit, the one depicted in Figure 3.16. The blue side represents the discrete-
time waves exchanged between interfaces, while dashed lines connect the interfaces
which are exchanging values. During the simulation, all the connected waves are
used to drive the same group of interfaces and their VCVSs. Give a group of Ng
interfaces, e.g. the ones connected to port a in Figure 3.17, each VCVS is driven by
the result of this equation:

V outT =

Ng∑
n=1

V outn,T

Ng
(3.1)

which is the mean beween the values of the driving waves.

3.8 Holistic platforms for Industry 4.0

The concept of Industry 4.0 [51] represents an innovative vision of what will be the
factory of the future. The principles of this new paradigm are based on interoper-
ability and data exchange between different industrial equipments. Cyber-Physical
Systems (CPSs) cover one of the main roles in this revolution. Each machine inside
the production line can be modeled as a CPS, while the entire factory can be seen as
a system of systems also known as Cyber-Physical Production System (CPPS). This
CPPS represents the so called Digital Twin of the factory, and allows performing
analysis regarding the real factory [52]. The interoperability between the real indus-
trial equipment and the Digital Twin [53] allows making predictions concerning the
quality of the products. Moreover, an accurate Digital Twin would make possible to
estimate mechanical wear and aging of industrial equipments.

Several tools [54] allow modeling a production line, considering different aspects
of the factory, i.e., geometrical properties and information flows. However, these sim-
ulators do not provide natively any solution for the design integration of CPSs. The
resulting production line models are not accurate enough, as a result having precise
analysis concerning the real factory is almost impossible. The idea, summarized in
Figure 3.18, is to harness the power of the holistic platform generated with the work
of this thesis for integrating an entire CPS inside a production line simulator. The
approach relies on the abstraction and mixed-signal scheduling techniques presented
in this chapter and a production line simulator called Siemens Plant Simulation.

3.8 Holistic platforms for Industry 4.0 67

Production Line Simulator

Source Process Process Process Drain

Coordinator

Holistic Platform

Fig. 3.18: Overview of the approach for the integration of a CPS integration in a production
line simulator.

A production line is the composition of processes, organized into a chain, which
has the main purpose of handling information, e.g., geometric properties, process-
ing time, energy consumption, and failure rate. Simulating such production systems
allows making strategic decisions, which aims at optimizing the entire production
line under different aspects, e.g., cost, quality and productivity. In the past few
years several providers proposed different tools for modeling manufacturing pro-
cesses [54, 55]. Report like the one proposed in [55] summarizes the main character-
istics of all the newest tools periodically.
Regardless of the difference between each tool, all of them share the following prin-
ciples:

• Layout Planning: Represents the geometrical structure of the production line.
All simulators have a library of components (i.e., generic processes, assembly
stations, and buffers) which allow to model the factory, by considering physical
constraints.

• Material Flow/Fluid Simulation: Represents the carrier of information, the
movements of products from a process to the others. This is made possible with
components like line transporters or pipe, depending on the material state of
matter, i.e., solid or fluid.

• Process Simulation: Represents the physical transformation made by the equip-
ment of the factory to the products.

From the simulation perspective, most of the available simulators rely on the
discrete-event model of computation. Correlating this Model of Computation (MoC)
and production lines is reasonably straightforward. For instance, when a product
enters or exists a process, an event is triggered and the specific equipment can execute
its relative action. The study presented in this section makes use of Siemens Plant
Simulation, a simulator which over the years has become a standard de facto for
designing production lines, with an intuitive and easy to use environment. It is a
model-based tool that provides a library of customizable components that represent
the basic building blocks of a factory. Combining these blocks and most importantly

68 3 Analog multi-discipline abstraction and mixed-signal scheduling

Plant Simulation

Simtalk C-Interface

Coordinator

Mixed-Signal
Scheduler

Cyber
Sub-System

Physical
Sub-System

Integration

Fig. 3.19: Abstract-based Experiment Setup

specifying the properties associated with each one of them, allow modeling different
aspects of a production line. The products are called Mobile Unit (MU) and they
represent the entities moving among the blocks of the production line.
The fundamental blocks provided by the tool are:

• Source: generates MUs and it is the entry point of a production line;
• Drain: the final block of the line, it is the exit point for the MUs;
• SingleProcess: it represents the physical process of an equipment on an MU;
• Line: it represents the equipments that transport an MU from a block to another;

Plant Simulation offers the possibility to customize the behavior of every block
with an internal programming language called SimTalk. This proprietary language
allows defining methods which can manipulate the elements of the production line.
But most importantly, these methods can be linked as call-backs to events happening
on the line, so that they are triggered whenever such events occur. Every building
block provided by the library can be controlled through a SimTalk method with a
set of event controllers (i.e., a MU entering or exiting a block). It also provides a
functionality called C-interface to import dynamic libraries written in C/C++, for
customizing the behavior of the simulation or connect external tools.

Figure 3.19 depicts the structure used to integrate the holistic platform inside
Plant Simulation. The approach applies the two abstraction methodologies, for dig-
ital and analog models, and the mixed-signal scheduling. Once applied to the CPS
description, the Cyber and Physical abstracted models need to be integrated into
Plant Simulation. This task is performed by a coordinator which synchronizes the
CPS and Plant Simulation at each analog simulation step. The resulting CPS is then
integrated in Plant Simulation using SimTalk C-Interface APIs.

3.9 Experimental results

This section shows the effectiveness of the proposed methodology on a number of
case studies of increasing complexity. The experiments are performed on a 64-bit
linux machine, with 16 GB of memory and an Intel(R) Core(TM) i7-3770 CPU

3.9 Experimental results 69

@ 3.40GHz. A commercial SPICE-based simulator is used to simulate both the
transistor-level circuit written in SPICE and the behavioral-level description written
in Verilog-AMS. The extension to the abstraction methodology is implemented in-
side the same tool presented in the previous chapter, the Analog Systems Translation
and absRAction tooL (ASTRAL) tool.

The main purpose of the methodology shown in this chapter is the integration
of analog multi-domain components inside complex virtual platforms, to simulate
realistic scenarios. For this reason we selected a complex virtual platform that can
be used to interact with the analog components, as in the running example shown
throughout the chapter. The virtual platform used for the experiments is the SMAC
SMAC Smart System Test Case (S3TC) [40]. Its structure is depicted in Figure 3.20.
This complex design includes a MIPS CPU and a memory bank to perform control
and computation, connected to a set of digital peripherals through an Advanced Pe-
ripheral Bus (APB), designed specifically for low bandwidth control accesses based
on the Advanced Microcontroller Bus Architecture (AMBA) standard. The program
running on the CPU can communicate with the analog components through a series
of DACs and ADCs.
The remainder of the section is structured as follows:

• Section 3.9.1 shows how the methodology can be applied to different physical
disciplines and modeling styles;

• Section 3.9.2 shows the application of the methodology to a complex case study.
• Section 3.9.3 shows how the mixed-signal scheduling applied after the abstrac-

tion can sensibly reduce the synchronization overhead.
• Section 3.9.4 shows the results of the abstraction from transistor to behavioral

level.
• Finally, Section 3.9.5 presents the results for the integration of the abstracted

platform inside the plant simulator.

MIPS CPU SRAM

AMBA APB

UART Radio-Frequency
TransceiverMEMS

DACNDAC1 ADCNADC1

Fig. 3.20: Heterogeneous virtual platform where the MEMS component is inserted into.

70 3 Analog multi-discipline abstraction and mixed-signal scheduling

Table 3.3: Characteristics of the selected benchmarks. The used disciplines are: (1) Logic, (2)
Electrical, (3) Rotational, (4) Magnetic, (5) Kinematic, (6) User defined discipline.

Disciplines Lines of Number of Number of Abstraction

Benchmark (1) (2) (3) (4) (5) (6) Domain Code Variables Equations Time (s)

Low Pass Filter Laplace 26 2 1 0.009

Magnetic Winding Time 25 10 2 0.010

Motor Time 41 12 2 0.009

Bouncing Ball Time 64 5 5 0.009

Mass-Spring-Damper Time 98 8 4 0.007

Vibration Motor Time & Laplace 533 38 42 0.064

Pico-Projector Time & Laplace 546 41 46 0.084

3.9.1 Multi-domain abstraction evaluation

Table 3.3 summarizes the main characteristics of the multi-domain benchmarks used
as case study. Considered models are expressed by using the (1) Logic, (2) Electri-
cal, (3) Rotational, (4) Magnetic, (5) Kinematic, and (6) User defined disciplines. For
each model, it is reported the specification domain (i.e., Laplace- or Time-domain),
the number of lines of code (LoC) of the original description, the number of contin-
uous variables, the number of equations, and the time required to abstract the model
to C++. The first five benchmarks come from a repository of open-source models1.
They are used to show the applicability of the methodology to different physical dis-
ciplines and modeling styles. The vibration motor refers to the running example used
throughout this chapter. While the pico-projector is a realistic case study presented
in the next section, used to show the methodology effectiveness.

Table 3.4 reports the time need to simulate the benchmarks for 1 second of sim-
ulated time and a simulation step of 50 nanoseconds. The table compares the ef-
ficiency of the original Verilog-AMS and the abstracted C++ code in two configu-
rations: the benchmark alone and integrated inside the virtual platform S3TC. The
comparison between the simulations of the component without the platform high-
lights specifically the impact of the abstraction.

3.9.2 Industrial case study: pico-projector

The previous experiments showed the applicability of the methodology to some syn-
thetic examples. This section shows the application of the methodology on a more
complex case study. It is an industrial device, comprehending a multi-discipline
MEMS, integrated within a complex hardware platform able to perform computa-
tion and communication. The MEMS is the micro-mirror of a pico-projector2. The
pico-projector is based on three laser sources for the primary colors (i.e., red, green
and blue). These are modulated and their light converges into a single beam deflected
1 www.designer-guide.org
2 The design has been kindly furnished by STMicroelectronics, in the context of SMAC

(SMArt systems Codesign) European Project (grant number: FP7-ICT-2011-7-288827)

3.9 Experimental results 71

Table 3.4: Simulation times needed to simulate the selected benchmarks and achieved speed-
up.

Verilog-AMS C++

Benchmark Component Platform Component Platform

time (s) time (s) time (s) speed-up (x) time (s) speed-up (x)

Low Pass Filter 3493.49 5268.20 2.07 1687.67 153.46 34.32

Magnetic Winding 3477.08 5197.33 1.89 1839.72 154.43 33.65

Motor 2281.46 3762.47 2.66 857.69 151.68 24.80

Bouncing Ball 2173.82 3535.51 0.85 2557.43 149.77 23.60

Mass-Spring-Damper 3653.10 5345.86 1.57 2326.81 148.71 35.94

Vibration motor 6235.12 7810.64 59.96 103.98 207.13 37.70

by a micro-mirror. This mirror is moved by drivers, in accordance to the decisions
taken by a digital board.

Figure 3.21 depicts the components of the MEMS system moving the mirror of
the pico-projector, their characteristics and how they are connected to each other.
Follows a detailed description of each component:

• The digital board implements the control logic for the mirror, and generates the
clock signal synchronizing the DACs and ADC. It generates commands for the
actuators, and gather data sensed about the motion.

• Two DACs components convert the digital signals generated by the digital board
into voltage values. The model is linear and based on the logic and the electrical
disciplines.

DAC Opamp Opamp

Vertical
Mirror

TIAADC

DAC Opamp Opamp

Digital
Board

Legend
Digital Electrical

Piecewise Linear
Electrical
Mixed-Signal

Non-Electrical
Non-Linear

Fig. 3.21: Structure and classification of the components in the Vertical mirror system.

72 3 Analog multi-discipline abstraction and mixed-signal scheduling

• Each DAC generates a voltage value that is used as input for two OpAmps in
series, similar to those used in the vibration motor running example.

• The vertical mirror component models the dynamic of one of the two projector
mirrors. It uses the electrical discipline to be interfaced with the two OpAmps.
In this model two rotational discipline are used: the rotational_velocity and the
rotational_acceleration disciplines. The first discipline is standard (as shown in
Table 3.2), the latter is a user-defined discipline relating angular force and ac-
celeration. The equation system is non-linear: it employs polynomial functions,
implemented using the logic discipline.

• A current flow is generated by the mirror to feedback motion information to
the digital board. The TransImpedance Amplifier (TIA) receives the generated
current flow and convert it into a voltage value. It is modeled using the electrical
discipline and sets a threshold to the amplification, thus it is piecewise-linear.
The discontinuities are specified using the logic discipline.

• The ADC converts the voltage generated by the TIA into a digital value for
the board. It is represented by a linear model based on the electrical and logic
disciplines.

The components are designed independently and aggregated to obtain the final
system. The feedback loop between mirror and digital board is necessary to evaluate
and compensate the ripple effect caused by the steering mechanisms and affecting the
pico-projector. The ripple can be mitigated or even eliminated by using a compensa-
tion algorithm implemented as a SW running on the digital board. The components
are modeled in Verilog-AMS, except for the board that has been implemented in
Verilog. The virtual prototype can be used to develop control strategy and functional
validation. To do so, the component can be simulated by using any SPICE-based
simulator, capable to perform also HDLs simulation (e.g., Mentor’s Questa ADMS).
However, such a simulation environment needs to employ different technologies and
therefore it introduces heavy synchronization overhead [5]. Thus, abstraction tech-
niques come in handy to reach faster simulation and therefore faster validation.

Figure 3.22 depicts the result of the discipline analysis applied to the pico-
projector. Six different disciplines have been used. In particular, the design is par-
tially modeled by using a custom rotational discipline: it describes the angular accel-
eration, rather than velocity, of the rotating mirror. Six different electrical sub-models
(red dashed lines) have been isolated. The four OpAmps in the models are four in-
stances of the same model, instantiated by using different parameters to customize
gains and thresholds.

As shown in Section 3.4.1, part of the OpAmp belongs to the frequency domain
because of the Laplace function, and it also contains piecewise linear behaviors due
to the thresholds on output values modeled by if-then-else statements. All of
these aspects are dealt with by using the methodology described in the previous sec-
tions. Similarly, the TIA component has a structure similar to the one of the OpAmp,
as such, it contains both frequency domain functions and has a piecewise linear be-
havior. Its code is shown in Listing A.5. An interesting aspect of the vertical mirror
model si the presence of the polynomial analog function written in Verilog-AMS

3.9 Experimental results 73

shown at the top of the Listing 3.6. The application of the strategy shown in Sec-
tion 3.4.4 to the polynomial function yields the C++ equivalent function shown at
the bottom of Listing 3.6.

Listing 3.6: Polynomial function inside the vertical mirror deisgn, specified in Verilog-AMS
(above), and the corresponding C++ implementation (below).

1 analog function real polyfit_4;
2 input c0, c1, c2, c3, c4, t;
3 real c0, c1, c2, c3, c4, t;
4 polyfit_4 = c0 + c1 * pow(t, 1) + c2 * pow(t, 2) +
5 c3 * pow(t, 3) + c4 * pow(t, 4);
6 endfunction;

1 #include <cmath>
2 inline double polyfit_4(double c0, double c1, double c2, double c3,
3 double c4, double t) {
4 return (c0 + c1 * pow(t, 1) + c2 * pow(t, 2) +
5 c3 * pow(t, 3) + c4 * pow(t, 4));
6 }

Table 3.5 reports the time need to simulate the pico-projector for 1 second of
simulated time and a simulation step of 50 nanoseconds. The C++ component by
itself can reach a 80x of speed-up, while this improvement decreases when inte-
grate inside the S3TC. Furthermore, the speed-up achieved with the pico-projector
is lower than the one achieved with the experiments shown in the previous section.
This is primarily due to the partitioning of the circuits and their systems of equations.
The previous examples have a coarser partitioning that allows better simplifications

Digital
Board

DAC1 Opamp1 Opamp3

MirrorTIAADC

DAC2 Opamp2 Opamp4

Legend
Digital Description Logic Discipline Electrical (Time)

Electrical (Laplace) Rotational Discipline
Rotational
Custom Discipline

Fig. 3.22: Structure and classification of the components in the Vertical mirror system.

74 3 Analog multi-discipline abstraction and mixed-signal scheduling

Table 3.5: Simulation times needed to simulate the pico-projector benchmark and achieved
speed-up.

Verilog-AMS C++

Benchmark Component Platform Component Platform

time (s) time (s) time (s) speed-up (x) time (s) speed-up (x)

Pico-Projector 9067.63 10156.27 112.43 80.65 276.62 36.71

Table 3.6: Benchmarks characteristics and time required for the automatic abstraction.

Lines of Number of Number of Abstraction

Benchmark Code Variables Equations Time (s)

Voltage Limiting Operational Amplifier 33 2 2 0.007

Ideal Operational Amplifier 31 12 6 0.009

Transimpedance Amplifier 33 5 3 0.007

MEMS Mechanical Actuator 546 41 46 0.084

during the sub-modules abstraction. The pico-projector instead, has a fine grained
partitioning as depicted in Figure 3.22, leading to small portions more difficult to
be optimized. These small parts must be reconnected to each other with communi-
cation mechanisms which introduce overhead. The pico-projector also requires to
solve polynomial and complex non-linear functions (e.g., Listing 3.6) at run-time
that cannot be removed if the original behavior of the abstracted component must be
preserved.

3.9.3 Mixed-signal scheduling for system integration

Table 3.6 reports for every used benchmark: number of lines of code, number of in-
ternal variables, number of equations belonging to the analog system, and the time
required to generate the abstracted version. All of these models have been chosen
from an online repository of Verilog-AMS models3, the designs released by Ac-
cellera [10], and from industrial partners. In particular, the MEMS mechanical ac-
tuator is a MEMS design provided by two industrial partners in the context of the
SMAC European Project (FP7-ICT-2011-7-288827).

Table 3.7 reports the simulation time needed to simulate both the analog compo-
nents by themselves (i.e., Component columns) and once they have been integrated
into the smart system (i.e., Platform columns). They have been simulated by using
their original description (i.e., Verilog-AMS in the heterogeneous implementation).
Then, they have been automatically translated into SystemC-AMS by using the ap-
proach presented in Chapter 2, and simulated both alone and integrated within a
3 www.designers-guide.org

3.9 Experimental results 75

Table 3.7: Execution times for different abstractions simulated both alone and together with
the smart system.

Heterogeneous

(Verilog-AMS)

ABACUS automatic translation

(SystemC-AMS/ELN)

ASTRAL automatic abstraction

(C++)

Component Platform Component Platform Component Platform

Benchmark time (s) time (s) time (s) speed-up (x) time (s) speed-up (x) time (s) speed-up (x) time (s) speed-up (x)

Voltage Limiting

Operational Amplifier
3138.62 4712.55 Not applicable due to nonlinearities 3.62 867.29 159.73 29.50

Ideal

Operational Amplifier
3499.48 5024.72 30.21 115.83 1599.52 3.14 1.77 1982.30 156.42 32.12

Transimpedance

Amplifier
3438.67 5114.33 Not applicable due to nonlinearities 1.91 1801.78 154.92 33.01

MEMS Mechanical

Actuator
8078.35 9769.48 Not applicable due to nonlinearities 114.64 70.47 275.53 35.46

SystemC model of the S3TC platform. Finally, the models have been abstracted and
then integrated into the C++ implementation of the S3TC by using the proposed
scheduling approach.

The results reported in the table highlight the approach effectiveness both con-
cerning the stand-alone simulation of the analog components and the simulation of
the entire virtual platforms. For each component, it provides up-to three order of
magnitude speed-up w.r.t. the SPICE-based simulation. Furthermore, it always out-
performs the translation approach.

The comparison between simulations of the entire platform aims at showing the
effectiveness of the scheduling approach. While the translation approach provides
only marginal speed-up to the platform simulation, the abstraction methodology de-
veloped in this thesis allows to speed up the simulation of more than one order of
magnitude. The variability of resulting speed-up is due to the different synchroniza-
tion imposed by the application scenarios used to test the different designs. These
different scenarios lead to different synchronization patterns between the digital and
the analog part of the platform. Thus, different impact of the synchronization over-
head among different designs.

Figure 3.23 shows the different overhead contributions due to three major cat-
egories: simulation of the component, the digital part of the platform and the syn-
chronization between the two. For each component, the overhead contributions are
depicted for both the heterogeneous and the abstracted homogeneous platform im-
plementation, called Mixed and C++ respectively. The y-axis depicts in logarithmic
scale the contribution in terms of simulation time for each category. In a SPICE-
based execution, the synchronization represents a bottleneck which has a sensible
impact on the simulation time. In the abstracted models, the time taken to synchro-
nize the digital platform and the analog component is less impacting on the overall
execution, thus removing the bottleneck. The effectiveness of the proposed approach
can be more easily appreciated when complex analog components are connected to
the platform. As for the case of the MEMS Mechanical Component, where the syn-
chronization is lower than both component and platform.

76 3 Analog multi-discipline abstraction and mixed-signal scheduling

Mixed C++ Mixed C++ Mixed C++ Mixed C++

101

102

103

104

C
on

tr
ib

ut
io

n
(l
og

1
0
(s

))

Platform
Synchronization

Component

Voltage Limiting
Amplifier

Ideal
Amplifier

Transimpedance
Amplifier

MEMS
Mechanical

Fig. 3.23: Simulation overhead contributions (expressed in seconds on a logarithmic scale) for
the different parts of the system (i.e., analog component, digital platform and synchronization)
for the heterogeneous virtual platform (Mixed) and the homogeneous virtual platform (C++).

Figure 3.23 also highlights the impact of the methodology on the synchroniza-
tion overhead. The abstraction approach generates discrete event models for both the
analog and digital portions of the platform. Thus, it is possible to employ a lighter
synchronization mechanism based on function calls rather than more burdensome
inter-process communication. Furthermore, the temporal decoupling technique al-
lows to generate lighter communication schema between the analog and digital sub-
parts of the system. This further reduces the overhead introduced by synchronization.

Finally, the abstracted modules accuracy has been evaluated by considering
the normalized root-mean-square error (NRMSE) of their output compared to the
Verilog-AMS output. For all the considered components, the NRMSE is ranging
from 10−5 to 10−8 when the components are simulated alone, thus highlighting a
high level of accuracy.

3.9 Experimental results 77

V DD

V SS

V SUB

dP lus

dMin

dDelay_4

dDelay_3

dDelay_2

dDelay_1

dDelay_0

dClk

phi2b_dP lus

phi2_dP lus

phi2b_dMin

phi2_dMin

phi2b_d

phi2_d

phi2b

phi2

phi1b_d

phi1_d

phi1b

phi1

MCLK

Delay
Controller

Phase
Generation

Circuit

Fig. 3.24: Interface of the clock generator.

3.9.4 Transistor-level to behavioral-level abstraction and interface building

In this section, we show the results achieved by applying the abstraction from tran-
sistor to behavioral-level to the case study of a clock generator written in Spectre.

Its structure is shown in Figure 3.24 and contains 352 components for a total
of 626 transistors. This model generates a set of signals pairs namely phi and phib,
which are used to control the input sampling operations of a sigma-delta ADC. Each
pair of signals is used to activate several switches like the one shown in Figure 3.15
inside the ADC. The dClk port is the reference clock, with a width of 30ns, a period
of 60ns, and a rise/fall time of 1ns. The set of dDelay ports controls the delay applied
to the reference clock to produce MCLK. All the other output signals are generated
by the Phase Generation Circuit taking as input MCLK, dPlus, and dMin.

Follows the process with which the clock generator has been abstracted to the
functional level. First, each building block of the Spectre description has been re-
placed with the equivalent behavioral-level description written in Verilog-AMS.
Then, a copy of the WR circuit shown in Figure 3.16 is connected to every port
of the building blocks. The abstraction methodology presented in Section 3.4 is ap-
plied to each macro-block to produce functional-level C++ descriptions. Finally,
the clock generator is re-composed by connecting together the WR interfaces. Ta-
ble 3.8 compares the simulation time required to simulate 1us at transistor-level,
at behavioral-level with the state-dependent small-signal Verilog-AMS models, and
finally the functional-level C++ description. The speed-up gained with the C++ de-
scription is extremely promising, especially because the current C++ version relies
on a simulator or simulation model which has no history before the work of this the-
sis. Furthermore, there are more improvements that can, and will, be implemented in
the future, from a smart dynamic simulation step to code optimizations.

78 3 Analog multi-discipline abstraction and mixed-signal scheduling

Table 3.8: Simulation time required to perform a complete fault simulation of the clock gen-
erator for a total of thirty faults.

Abstraction Level Simulation Time (s) Speed-Up (x)

Transistor 106.70 reference

Behavioral 24.48 4.35

Functional 13.71 7.78

3.9.5 Holistic platforms for Industry 4.0

The integration of the holistic platform inside Plant Simulation approaches has been
tested with a real use case scenario of a simple production line. The production line
is composed of three-processes and represents a bending operation of metal sheets,
exemplified in Figure 3.25. The three steps are represented using Plant Simulation
SingleProcess blocks. The first process applies to the metal sheet a bar-code con-
taining the information of the desired bend angle. The second represents the bending
machine that reads the angle to bend from the bar-code previously applied to the
metal sheet and executes the bending operation. The real bending process of the
equipment requires around 1.25 seconds to bend a metal sheet. The last process rep-
resents the quality check stage. The process compares the desired angle read from the
bar-code and checking real bent metal sheet. This process redirects the metal sheets
in three different boxes depending on their quality.

The approach presented in this work integrates a CPS inside the bending process
of the production line, to make a more accurate estimation of the production in terms
of productivity and quality. The Physical system represents the behaviour of a bend-
ing machine, described using Verilog-AMS, that is controlled by the Cyber system.
The Cyber system of the CPS is a hardware platform composed of a CPU, a memory,
a bus, a bar-code reader and a mechanical actuator used to bend metal sheets. All the
components of the hardware platform are described by using Verilog or VHDL lan-
guages at RTL. The bending control software is cross-compiled and then stored in
the model of the memory. The firmware reads the angle to bend from the metal sheet
using the bar-code Sensor, and then redirects it to the Physical systems with a set of
commands. When the the bending operation is completed, Cyber system is notified.

Fig. 3.25: Metal Bending production Line modeled with Plant Simulation

3.9 Experimental results 79

Fig. 3.26: Simplifed and detailed physical models.

Finally, the control software releases the bent metal sheet and sets the machine for a
new bending operation.

Two version have been developed for the Physical part of the CPS: Simplified
and Detailed. Their structure is shown in Figure 3.26.

In the Simplified model, the Physical system consists of a behavioral description
of the bending equipment, with a low level of detail. The Physical system is modeled
principally with an integrator that describes the bender operation, which receives as
input a value that represents the constant bending speed to apply. This value is cal-
culated by a Speed Selector node, which adopts two different values according to
the bending rotation versus. The value provided by the integrator is then compared
with the desired angle by the Angle Controller node in order to drive the done signal.
Both the integrator and the Angle Controller receive as input the number of bendings
which alter, respectively, the bending speed and the final angle. This allows simulat-
ing the machinery wearing affects.

The Detailed model is a functional-level description of the Physical system that
includes a DC motor model. This level of detail allows making a more precise esti-
mation of the execution time and the quality of operation. A PID Controller is used
to control the DC Motor position in order to bring every sheet to the desired angle,
which is read by an encoder that translates the motor rotational position in a digital
value. The PID Controller takes also care of driving the done signal in order to notify
the end of every bending process. The DC Motor model uses the information about
the number of bendings to modify its internal parameters: this allows to simulate its
wearing since those values represent the mechanical and electrical characteristics of
the Motor.

The Coordinator is connected to the CPS simulator, while on the other side,
the Coordinator is integrated in Plant Simulation using C-Interface proprietary in-
terface. This allows to integrate it as an external dynamic library (.dll) directly
into the production line simulator. The Coordinator is then linked to the bending
SingleProcess and executed only when a new MU enters in that node of the pro-

80 3 Analog multi-discipline abstraction and mixed-signal scheduling

Table 3.9: Simulation times with different number of bending operations.

Operations
Abstracted Models

Simplified Detailed Simulated Time

1 0.016 0.031 1.22

10 0.176 0.318 8.70

20 0.384 0.549 16.70

50 0.928 1.307 39.28

duction line. The simulation resolution is MU-Accurate, meaning that the switching
actions can be performed only at the entrance of an MU in the SingleProcess.
When the execution of the bending operation is completed, the Coordinator retrieves
the executed time to bend the metal sheet and returns it to the SingleProcess of
Plant Simulation.

The simulation results for the proposed approach are reported in Table 3.9. In the
table are detailed the execution time to simulate the metal sheet bending with both
simplified and detailed model, as well as the simulated time. The approach is able to
efficiently integrate the CPSs inside the production line simulator, with a simulation
time that is sensibly lower than the simulated time. The presented approach is an “en-
abling technique” allowing the integration of complex CPS models into a production
line which allows adding more layers of information, like machine wearing, aging,
and maintenance of this machineries.

3.10 Conclusions

The methodology presented in this chapter is the first step towards the holistic sim-
ulation of an entire CPS. We have seen the process of abstraction and integration
through the mixed-signal scheduling approach.

The abstraction methodology removes all the details meaningless whenever to
simulate only the functionality of an entire platform. It preserves only the relations
among a subset of the physical quantities of the components, that represent inputs
and outputs of interest of the component within the platform. Furthermore, it can
deal with analog descriptions belonging to different physical domains like electric,
rotational, magnetic, kinematic, etc.

The mixed-signal scheduling methodology integrates analog and digital pro-
cesses and deals with cross-domain analog functions. Automatic code generation
allows generating a C++ virtual prototype of mixed-signal devices to simulate an en-
tire heterogeneous virtual platform without introducing computational overhead due
to synchronization of multiple tools as required by current mixed-signal simulators.

The abstraction from transistor-level to behavioral-level shows how the non-
linear designs can be replaced by state-dependent small-signal models. This is a key

3.10 Conclusions 81

step which allows applying the methodology of abstraction to functional-level to a
broader set of industrial designs.

The waveform relaxation interfaces allow overcoming the limitations of the ana-
log abstraction methodology. The improve the scalability of the approach by splitting
the conservative nets and reducing the number of symbols in each system of equa-
tions. Furthermore, they allow composing abstracted models, drastically reducing
the time required to perform the abstraction, which needs to be done only once for
each macro-block.

The integration of the holistic platform inside the production line of a factory
opens the way to new studies for Industry 4.0 and smart manufacturing. Especially
new techniques could be developed to improve the predictive maintenance of factory
machineries.

Finally, the flow proposed in this chapter has been implemented in the auto-
matic tool ASTRAL, and tested on a set of different configurations of a smart system
heterogeneous platform. The results explores three aspects of the proposed method-
ology: 1) the ability to deal with multi-domain components, 2) the efficiency when
dealing with realistic multi-domain devices, 3) the synchronization overhead reduc-
tion achieved with the mixed-signal scheduling, and 4) the potentials of the transitor
to behavioral-level abstraction.

4

Network synthesis for cyber-physical systems

Network

Network Synthesis

Catalog of Nodes
and Channels

Environment
Details

Application
Details

Communication-Aware Problem Formulation

Fig. 4.1: Overview of the network synthesis flow, used to design a networked cyber-physical
system for building automation.

The previous chapter introduces a methodology for the holistic simulation of
a Cyber-Physical System (CPS), comprising a series of digital and analog compo-
nents to perceive/react/manipulate the outside world. It is clear that the target scope
of the approach until now is that of the platform and at most the surrounding en-
vironment. However, recent advances in communications technologies open to en-
tirely new distributed applications in which hundreds or thousands of CPSs inter-
act together through different types of channels and protocols [56, 57, 58]. We can
define them as Networked Cyber-Physical Systems (NCPSs) since these applica-
tions present three critical features that distinguish them from traditional network-

84 4 Network synthesis for cyber-physical systems

connected applications, i.e., 1) the communication aspects affect the design flow of
the CPSs, 2) system-of-systems nature, and 3) strict relation with the surrounding
physical environment.

To clarify the discussion, let us introduce an example related to the temperature
control of a building as depicted at the bottom of Figure 4.1. Several sensors (in figure
denoted by S) detect local temperature. Collected data are sent to controllers (denoted
by C), which send commands to actuators (denoted by A), e.g., coolers. Controllers
decide the activation of actuators according to various policies both centralized and
distributed; for example, a controller may be present in each room to adjust the local
temperature, but a centralized controller is also present to ensure that room settings
comply with the total energy budget. A controller application can also be executed by
personal mobile devices so that each user can control the temperature of the currently
occupied space according to a personal profile.

In NCPSs, the communication aspects affect the design flow. Considering Fig-
ure 4.1, physical channels among nodes can be either wireless or wired according
to deployment constraints (e.g., cabling costs and feasibility in historical buildings)
and mobility requirements. Communication protocols depend on the type of these
physical channels, on required reliability and quality of service (e.g., maximum la-
tency). Assuming that highly optimized nodes are desirable, the choice of physical
channels affects the definition of hardware network interfaces while the choice of
communication protocols affects the memory and computational requirements of the
hardware platform. All these aspects are formalized in the Communication-aware
Problem Formulation, which is the starting point for the design flow for NCPSs pro-
posed in this work.

Up to now, the CPSs design flow has jointly addressed hardware and software
aspects, while communication aspects have been faced separately by a different re-
search community. This lack of coordination may lead to non-optimal solutions in the
system design; past work demonstrated that hardware/software design and network
design are correlated [59]. To further push performance, energy saving and reliabil-
ity, the network among nodes should be jointly designed with hardware and software
components [60]. In particular, Computer-Aided Design (CAD) should be fruitfully
applied not only to each node, as currently done in the context of electronic systems
design but also to the network among them. For this reason, a Communication-aware
Design Flow is required.

A NCPS can be seen as a System-of-Systems since even if the various nodes can
independently operate, they interact together to achieve the good behavior of the
global application [61]. In the mentioned example, the final objective is to achieve
a good control of the temperature, and it does not matter the set of nodes that pro-
vides such functionality, as long as the global application behavior satisfies design
objectives. Thus, NCPSs pose new questions to designers, traditionally mainly inter-
ested in the specification of each single network node as done for Internet servers
and clients. Most relevant issues are:

• finding the optimal number of nodes to achieve the common mission;

4.1 Related Work 85

• finding the best assignment (according to given metrics) between software tasks
and hosting nodes by taking into account tasks’ requirements and nodes’ capa-
bilities;

• finding the best set (according to given metrics) of network protocols by taking
into account communication requirements and the presence of a legacy network
infrastructure.

The last distinguishing feature is the strict relationship with the environment.
Networked sensors and actuators should be placed where is required by the appli-
cation. Furthermore, the environment affects communications in such systems; for
instance, walls and distance may affect wireless communications whereas area size
affects the deployment cost of wired infrastructure. Finally, the number and position
of nodes affect the communications among them and application performance.

Solving these issues leads to the so-called Network Synthesis, i.e., the alloca-
tion of functionality onto nodes and the complete definition of the communication
infrastructure among them. The contributions proposed in this chapter are:

• a communication-aware Design Flow centered on Network Synthesis for NCPSs;
• a communication-aware formal specification of the whole distributed system to

formulate Network Synthesis as an optimization problem;
• the formulation of Network Synthesis as a Mixed Integer Linear Programming

(MILP) problem.

This work can be considered as part of the research roadmap started by [62] and
continued by [63]. In [62] a preliminary version of the flow and the formal specifica-
tion was described, but many issues were present, and the optimization strategy was
missing. In [63] the focus was on model-driven design and simulation employing a
UML-based representation. However, such representation does not allow, per se, the
formulation of an optimization problem which was left in background.

The chapter is organized as follows. Related work is presented in Section 4.1. The
building blocks of a formal representation for distributed embedded applications and
the corresponding design flow are described in Section 4.2. The formulation of net-
work synthesis as a MILP problem is provided in Section 4.3.1. The analysis of its
complexity and scalability is reported in Section 4.4. Experimental results are pro-
vided in Section 4.5. Finally, conclusions and future work are reported in Section 4.6.

4.1 Related Work

The design of distributed systems relies on methodologies for their functional speci-
fication and techniques for network design.

4.1.1 System Functional Specification

The information driving network synthesis can be extracted from a platform-independent
description of an application created using popular languages as those reported in this
section.

86 4 Network synthesis for cyber-physical systems

The Modeling and Analysis of Real-Time and Embedded systems (MARTE) [64]
is a Unified Modeling Language (UML) [65] profile designed to allow an easy spec-
ification of real-time and Cyber-Physical Systems (CPSs). It provides some sub-
profiles, like Non-Functional-Properties (NFPs), which allow describing the “fitness”
of the system behavior (e.g., performance, memory usage, energy consumption, etc.).
The Software Resource Modeling (SRM) and the Hardware Resource Modeling
(HRM) profiles are derived from NFP, and they address the modeling of resources.
The System Modeling Language (SysML) [66] is an UML extension which provides
a general-purpose modeling language for systems engineering applications.

Mathworks has developed Simulink [67] and Stateflow [68] to model and sim-
ulate dynamic and cyber-physical systems. The former allows representing an ap-
plication as the inter-connection of analog or digital blocks while the latter allows
describing applications as finite-state machines. They can also be combined repre-
senting hybrid automata.

The Ptolemy Project [69] was born to model concurrent real-time and CPSs. One
of its main advantages is the support for heterogeneous mixtures of computation
models. Ptolemy supports simulation by using the actor-oriented design; actors are
software components executed concurrently and able to communicate by sending
messages through interconnected ports. Ptolemy also supports communication mod-
eling through Khan Process Networks (KPN), i.e., groups of deterministic sequential
processes which are communicating through unbounded FIFO channels [70].

They are distributed Models of Computation (MoCs) based on tokens which fo-
cus on the flow of computation; thus it seems well suited to check properties on the
communication schema.

SystemC [71], initially born as a hardware description language, has been ex-
tended with the Transaction-Level Modeling (TLM) [72], to describe hardware/soft-
ware systems. SystemC and TLM allow describing tasks as nested components with
event-driven or clock-driven processes. Communications between tasks can be de-
scribed by using standard protocols and payloads which simplify the specification
of their behavior. TLM was born to represent local communications, such as bus
interconnections or accesses to devices.

SpecC [73] is an extension of the C language to be used as a system-level design
language, like SystemC/TLM. The SpecC methodology is a top-down design flow,
with four distinct levels of abstraction. It provides different ways for describing the
target control (sequential, FSM, parallel and behavioral). One key concept of SpecC
is the clear separation of the communication and computation model which can be
useful to specify computation and communication aspects of tasks.

Metropolis [74] is a framework based on the idea of a meta-model to support var-
ious communication and computation semantics consistently. This approach imple-
ments the abstract semantics of process networks and uses the concepts advocated by
the Platform-Based Design (PBD) methodology, i.e., functionality and architecture
across models of computation and abstraction levels, and the mapping relationships
between them.

4.1 Related Work 87

4.1.2 Network Design

Network design has been addressed by many research works, in different fields, such
as Wireless Sensor Networks (WSNs). In [75] a virtual architecture has been pro-
posed in order to simplify the synthesis of WSNs algorithms. Network topology and
high-level functionality are used to configure the virtual architecture. This work is
mainly focused on the application part of the system rather than on communication
aspects.

In [76], PBD has been adopted to design WSNs for industrial control. In PBD,
the application is usually designed at a high level and then mapped onto a set of pos-
sible actual candidates for the nodes. However, no guideline is provided for selecting
an appropriate network architecture and communication protocol. Scope-based tech-
niques have been proposed in macro-programming to specify complex interactions
between heterogeneous nodes of a WSN [77]. However, the nodes number and net-
work topology are an input required by the technique and not a result, as in the
proposed approach.

A tool for the optimal design of WSNs for building automation has been pro-
posed in [78]. It suggests to integrate the network design flow with the knowledge
about the routing algorithm used after the deployment of the network. Since the
routing algorithm is known a priori, it further proposes to systematically introduce
redundancy in order to maximize the performance of the chosen algorithm. Then,
it proposes a sub-optimal polynomial-time heuristic for the synthesis problem and
compares it with a custom formalization of the MILP proposed in [79].

A communication synthesis methodology and hardware/software integration for
cyber-physical system design has been addressed in [80]. The method is based on
task graphs and used after hardware/software partitioning and task scheduling. On
one hand, this inversion has the advantage that the scheduling problem is simpli-
fied since communication components will be designed later. On the other hand, it
does not consider that scheduling could be optimized if communication aspects were
considered earlier.

The design of Network on Chips (NoCs) offers an example of computation-
communication integrated approach which is close to the purpose of work. NoCs
are CPSs which are designed with the traditional specification-refinement-synthesis
flow; nevertheless, they have also a communication infrastructure which is a simpli-
fied version of a packet-switched network [81]. The design of the internal NoC com-
munication infrastructure presents problems similar to the one of traditional packet-
based networks [82]. For example, the design of NoC to meet hard latency constraints
is addressed in [83]. The problem of the optimal mapping of tasks onto NoC’s cores
is known to be NP-hard. In some works, heuristics based on graph-decomposition
techniques have been used [84, 85]. A MILP formulation of the problem has been
proposed [86]. It assumes a regular 2D mesh topology and shortest-path static rout-
ing. This methodology allows two different optimization criteria, i.e., minimization
of the average hop distance (which is proportional to energy consumption and com-
munication delay), as well as minimization of the bandwidth (which consists in min-
imizing the most-congested link-queuing time and maximizing the throughput). Net-

88 4 Network synthesis for cyber-physical systems

work synthesis in NoCs is based on strong assumptions on network’s features (e.g.,
the topology); thus, such approaches are not general enough to be applied also to
traditional networks as proposed in this work.

The efficient routing of communication paths gives another opportunity of opti-
mization, also at different levels of the protocol stack. At the lowest level, a synthesis
process for routing of physical wires inside an automotive system is proposed in [87].
It aims at meeting requirements about delay, quality of signal, power, and tempera-
ture. First, a Steiner tree is generated using a customized Kou-Markowsky-Berman
(KMB) algorithm minimizing connections length. Then, a Linear Programming (LP)
problem is formulated, and its solution is used to modify the Steiner tree such that
the overall delay is minimized and signal quality maximized. At a higher level, Xu
et al. [88] propose a MILP formulation applied to ZigBee wireless networks. It com-
prises four specific groups of constraints: devices placement, link activation for rout-
ing, connections scheduling and communication quality of service. Their formulation
is limited to ZigBee architectures.

Synthesis of communication protocols is another research topic related to this
work. Automatic tools have been adopted to derive the actual implementation of
protocols specified through finite state machines [89, 90], Petri Nets [91], trace mod-
els [92], and languages like LOTOS [93]. All these approaches focus on the behav-
ioral aspect of communication without taking into account the design of the nodes.
A general modeling framework for a global design flow could be useful to allow
the joint exploration of hardware, software and Network design space dimensions as
addressed in the proposed approach.

4.2 Communication-aware Design Flow

The creation of a specific design flow for distributed CPSs requires the definition of
new entities to formulate a design problem that accounts for communications; then,
the traditional flow for cyber-physical systems can be extended to solve the problem.
Both aspects are described in the following text.

4.2.1 Network Specification

This section introduces the entities and relationships representing the communication
aspects to be designed in distributed CPSs. The proposed formal model is network-
centric, i.e., it describes the characteristics which are related to communications
while all the other details are omitted or highly abstracted. The objective is the de-
scription of communication requirements as an optimization problem whose solution
leads to the network synthesis. Therefore, this formalization is neither a distributed
model of computation, as Kahn Process Networks, nor a language for executable
specification as SystemC.

Figure 4.2 shows a general picture of such entities and their relationships. It
consists of tasks (Section 4.2.1.a), implementing the behavior of the distributed sys-
tem, which are hosted inside network nodes (Section 4.2.1.c). The stream of data

4.2 Communication-aware Design Flow 89

Fig. 4.2: Entities for the communication-aware specification.

between tasks is represented by data-flows (Section 4.2.1.b). Tasks and correspond-
ing nodes are deployed inside specific partitions of the environment named zones
(Section 4.2.1.e). Zones are related together by contiguity which models the influ-
ence of the environment on communications, i.e., obstacles, walls, distances (Sec-
tion 4.2.1.f).

An abstract channel (Section 4.2.1.d) is established between nodes to convey the
data-flows of the hosted tasks. The intention is to generalize the concept of physi-
cal channel with an abstraction which takes into account also the presence of higher
protocol layers (we refer to the ISO/OSI representation). The highest layer encom-
passed in the abstract channel depends on the type of protocols implemented in the
conveyed data-flows. To understand the underlying idea of this generalization, let us
consider two examples. In the first example, tasks implement a datalink protocol, e.g.,
IEEE 802.11ac, and therefore the abstract channel represents the physical channel. In
the second example, tasks implement a temperature control application through mes-
sages exchanged over a channel which is assumed to be reliable and byte-oriented.
In this case, the abstract channel encompasses all the layers from physical channel
up to TCP/IP.

In the following text, the network entities will be described in detail together
with the relationships between them. Regarding notation, R≥ is used to denote the
non-negative real numbers, R[x,y] identifies the real numbers between x and y, and
B := {true, false} for boolean values. Furthermore, the term Time Unit (TU) refers
to a timing value of one second and Space Unit (SU) to a distance of one meter.

90 4 Network synthesis for cyber-physical systems

4.2.1.a Tasks

A task represents a basic functionality of the whole application; it takes some data
as input and provides some output. For network synthesis, the focus is not on the
description of the functionality itself and its hardware/software implementation but
rather on its computational and mobility requirements to decide its assignment to a
given network node. A task t = [s,m, z] ∈ T is a triple defined as follows

s ∈ R≥ represents the task size, i.e., the computational resources required to
perform its activity;

m ∈ B specifies whether the task should be placed on a mobile node;
z ∈ Z specifies to which zone the task belongs.

Defining the appropriate task size is a designer’s responsibility. It would be easy to
generalize the description to the case where t.s ∈ Rk≥, allowing to consider an array
of k different types of resources.

4.2.1.b Data-Flows

A data-flow (DF) represents the flow of messages between two tasks; output from
the source task is delivered as input to the destination task. A data-flow d =
[st, dt, s, d, e] ∈ D is characterized by the attributes

st, dt ∈ T are the source and destination tasks;
s ∈ R≥ represents the data-flow size, i.e., bit-rate;
d ∈ R≥ indicates the maximum acceptable delay;
e ∈ R≥ specifies the maximum acceptable error rate.

Network synthesis is mainly driven by the communication requirements of the data-
flows which affect the choice of channels and protocols between the nodes hosting
the involved tasks.

4.2.1.c Nodes

A node can be seen as a container of tasks. At the end of the whole design flow, nodes
will be instances of hardware platforms with CPUs and network interfaces and tasks
will be implemented as either custom hardware components or software processes.
For network synthesis, the focus is on the resources made available by the node to
host many tasks. A node n = [s, k, e, te, ek,m] ∈ N is a tuple whose attributes are
as follows

s ∈ R≥ represents the node size, i.e., the available computational resources;
k ∈ R≥ denotes the node economic cost;
e ∈ R≥ is the intrinsic energy consumption of the node without considering

the executed tasks;
te ∈ R≥ determines the energy consumption of the tasks assigned to the node

over a TU (each task t mapped into the node n consumes an amount
of energy equal to t.s times n.te);

4.2 Communication-aware Design Flow 91

ek ∈ R≥ relates the consumed energy with a specific cost based on the energy
source (e.g., batteries, solar panels, energy service company, etc.);

m ∈ B identifies if the node is mobile or static.

The network synthesis process assigns tasks to nodes. Tasks with the mobile attribute
set to true must be placed on mobile nodes.

Regarding energy consumption, there are two contributions. The first one, de-
noted by e, is constant and independent of task operations while the second, denoted
by te, accounts for the energy consumed to execute each task operation. Regarding
economic cost, there is a constant contribution, denoted by k, to acquire the use of
the node (e.g., because of purchase or rent) and a variable contribution due to energy
consumption. To compute this contribution, we introduced ek which describes the
cost of each energy unit. This cost depends on energy source, e.g., cost of batteries
and their replacement or energy service company bill. This unit cost can be zero in
case of energy harvesting (e.g., solar panels).

4.2.1.d Abstract Channels

An Abstract Channel (AC) can be seen as a container of data-flows. It is an ideal
medium connecting two or more nodes. Referring to the ISO/OSI model, it is defined
as follows:

Definition 1 (Abstract Channel). Assuming that there is a data-flow implementing
a level-N protocol, it is hosted by an AC which represents the physical channel and
all the protocol entities up to level N − 1.

An abstract channel ac = [e, de, k, ek, w, pp, s, dl, er] ∈ A is a tuple character-
ized as follows

e ∈ R≥ is the intrinsic energy consumption of the channel without consider-
ing hosted data-flows;

de ∈ R≥ is the energy required to send a bit through the channel over a TU
(each data-flow d deployed inside the channel c consumes an amount
of energy equal to d.s times c.de);

k ∈ R≥ specifies the economic cost of this communication architecture;
ek ∈ R≥ relates the consumed energy with a specific cost based on the energy

source;
w ∈ B specifies if the channel is wireless or wired;
pp ∈ B specifies if the channel is point-to-point;
s ∈ R≥ specifies the channel size, i.e., its capacity;
dl ∈ R≥ specifies the maximum transmission delay of the channel;
er ∈ R≥ specifies the maximum error rate of the channel.

Data-flows between mobile tasks (hosted by mobile nodes) can be assigned only to
wireless abstract channels. The last three attributes of the AC represent the Quality
of Service (QoS) resulting from the presence of a given physical channel and all
encompassed protocols. Similar attributes are present in the data-flow description;

92 4 Network synthesis for cyber-physical systems

they represent the QoS required by the data-flow which should be provided by the
hosting abstract channel. This is one of the driving rules of the network synthesis.
Attribute ac.pp distinguishes between point-to-point and multi-point channels. It is
worth noting that this information is orthogonal to wireless/wired attribute. There
are multi-point wired channels (e.g., CAN bus) and point-to-point wireless channels
(e.g., Bluetooth connections and wireless bridges).

For economic cost and energy consumption, similar reasoning as for nodes ap-
plies since the proposed definition of Abstract Channel accounts for both the physi-
cal channel and possible intermediate systems (e.g., switches and routers). Regarding
energy consumption, there are two contributions. The first one, denoted by e, is con-
stant and independent of communications while the second, denoted by de, accounts
for the energy consumed to transmit data-flow bits. Regarding economic cost, there is
a constant contribution, denoted by k, to acquire the use of the channel (e.g., because
of purchase or rent of the line and intermediate systems) and a variable contribution
due to energy consumption. To compute this contribution, we introduced ek which
describes the cost of each energy unit. This cost depends on energy source, e.g., cost
of batteries and their replacement or energy service company bill. This unit cost can
be zero in case of energy harvesting (e.g., solar panels).

4.2.1.e Zones

In distributed embedded applications tasks should be active in specific positions of
the 3D space. In the mentioned example, temperature sensors and actuators are dis-
tributed in the various rooms of the building. Position of tasks is essential for their
assignment to nodes. Then nodes position is also critical to determine the effect of
obstacles and distance on communications between them. In general, we want to
address properties like “between nodes ni and nj there is an obstacle.” Information
about precise 3D positioning may be not available and even not useful for a given
application (for instance, a temperature sensor is required in each room, but its posi-
tion may be not so relevant). Therefore we propose to describe the position of tasks
and nodes in the 3D space by partitioning it according to application needs (e.g.,
rooms) and the presence of communication-relevant properties such as obstacles and
distances. We denote by Z the set of Zones generated by this partition.

4.2.1.f Contiguity Relationship

Contiguity relationship describes the relationship between zones from the communi-
cation perspective. We assume that nodes placed in the same zone are always able to
communicate with the default quality of service of the involved abstract channel (see
Section 4.2.1.d). If nodes are deployed into different zones, the quality of service
might drop because of distance or obstacles. The level of degradation also depends
on the type of abstract channel. Furthermore, in case of wired channels, the relation-
ship between zones can be also used to capture the wiring cost. A contiguity element
cnt = [z1, z2, ac, c, dc] ∈ C is a tuple whose attributes are characterized as follows

4.2 Communication-aware Design Flow 93

Application
Requirements

Functional
Specification

Nodes
HW Refinement &

SW Implementation

Catalog of
HW Platforms

Actual Distributed Embedded System

Communication-Aware
Problem Formulation

Network
Synthesis

Catalog of
Abstract Channels

and Nodes

Network
Specification

Description of the environment (e.g., zones and contiguities)
Definition of the application (e.g., tasks and data-flows)

Objective function (e.g., cost minimization)

Tasks and data-flow
attributes

Application of tasks onto nodes
data-flows onto abstract channels

and nodes onto zones

Fig. 4.3: Proposed design flow for networked cyber-physical systems: the new steps for net-
work design (in light green on the left) are added symmetrically to the state-of-art design flow
(in white on the right).

z1, z2 ∈ Z are the involved zones;
ac ∈ A is the abstract channel to which the contiguity applies;
c ∈ R[0,1] is the attenuation coefficient to compute the remaining level of QoS

of the given abstract channel ac after crossing the border between
the given zones;

dc ∈ R≥ represents the wiring cost to deploy the given channel between the
given pair of zones; this attribute is relevant only for wired channels
moreover, takes into account both medium type and length.

4.2.2 Design Flow

White boxes in the right part of Figure 4.3 represent the traditional design flow of
CPSs. The starting point is the set of Application Requirements both functional and
non-functional. A platform-independent Functional Specification is created starting
from application requirements. Interacting components are expressed through lan-
guages like UML and C/C++ or through the use of tools like Matlab/Simulink/S-
tateflow (see Section 4.1.1). Concerning the entities defined in Section 4.2.1, a func-
tional specification can be given as a set of Tasks exchanging information through
Data-Flows.

This specification, together with a description of the target platform, is the sub-
ject of a Design Space Exploration (DSE) which maps Tasks onto hardware and
software components of the target platform. The result is a platform-dependent de-
scription of the system, in which the hardware blocks correspond to actual devices

94 4 Network synthesis for cyber-physical systems

while the software is implemented and compiled for the target processors. Such flow
is well suited for isolated CPSs. However, in case of distributed applications made
of many CPSs, it lacks a specific path devoted to the design of the communication
infrastructure among them.

For this reason, this work proposes to extend the flow with new steps shown in
light green on the left side. The new design path is quite symmetric w.r.t. the tra-
ditional one since it applies the same concepts to the communication aspects of the
whole system. A Communication-aware Problem Formulation for the whole applica-
tion is created by using information taken from the Application Requirements and the
Functional Specification. Such information can be described concerning the entities
defined in Section 4.2.1.

The Application Requirements block provides:

• a description of the environment as a set of Zones and Contiguity relationships
among them;
• a definition of the application as a set of Tasks and Data-Flows with Task-Zone

assignments;
• an optimization objective function (e.g., energy minimization).

The Functional Specification allows to obtain the attributes of Tasks and Data-
Flows. Data-Flow attributes represent communication constraints of the various data-
flows of the distributed application, e.g., their bit-rate as well as maximum acceptable
delay and error rate.

The Communication-aware Problem Formulation describes a constrained opti-
mization problem which links metrics to be optimized with constraints to be satisfied.
This problem description, together with a description of available abstract channels
and nodes (defined in Section 4.2.1), is the subject of DSE aiming at searching the
optimal solutions. Similarly to how components are defined in electronic system de-
sign, this process is named Network Synthesis and is defined as follows:

Definition 2 (Network Synthesis). Network synthesis is a design process which
starts from an optimization problem and finds a feasible solution which defines its
communication infrastructure regarding mapping of application Tasks onto network
Nodes, their spatial displacement onto Zones, the type of channels and protocols
among them, and the network topology.

The final result is the Network Specification which contains critical information for
the design of each node of the network, i.e., the list of functions assigned to it and
the presence of new computation tasks to handle network protocols. For this reason,
this description is used as input in the traditional DSE of each node as reported in
the right part of Figure 4.3. The proposed flow has the following advantages which
match with the properties of NCPSs:

• Network features are decided before the design of hardware and software com-
ponents; in this way, the impact of communications can be taken into account in
the early phase of the design process.

4.3 Network Synthesis 95

• The environment is taken into account during network design, and therefore its
impact is considered in the following design of hardware and software compo-
nents.

• The proposed top-down approach for the design of the distributed CPS matches
with its nature of system-of-systems. In the context of network deployment, the
traditional approach is bottom-up by making some implementation-specific as-
sumptions based on designer’s experience. For instance, the designer starts as-
suming to build an Ethernet network, and then connects Ethernet nodes and
switches without considering if other technologies may be more suitable. To
the best of our knowledge, this is the first proposal that considers all available
network architectures at the beginning of the flow.

• The decomposition of the application functionality into tasks and their allocation
to nodes allows to distribute a single massive function over multiple nodes and
the process is driven by the optimization objective, i.e., cost, reliability, and so
on.

4.3 Network Synthesis

The network synthesis problem is the core of the previous design flow. It can be
formulated as an optimization problem by using the entities defined in Section 4.2.1.
Among several optimization techniques that can be used to solve this problem, a
mixed-integer linear problem (MILP) is presented and solved.

4.3.1 Problem Formulation

Referring to Figure 4.3 and using the entities defined in Section 4.2.1 it is now pos-
sible to formulate the network synthesis problem.

The Application Requirements allow to obtain the set of tasks (denoted by T),
data-flows (D), zones (Z) and contiguity elements (C). The Functional Specification
allows to obtain the attributes of tasks and data-flows. All these information elements
allow to build the Communication-aware Problem Formulation.

Network synthesis process is also fed by the set of nodes (denoted byN) and ab-
stract channels (A) which represent the technological libraries for this design space
exploration. For each type of node and abstract channel, its name and attributes are
specified.

Network synthesis can be formulated as an optimization problem in which the
allocation of tasks onto nodes and data-flows onto abstract channels is driven by
a set of constraints and metrics to be optimized. A possible way to formulate and
solve such problem consists in describing it as a MILP problem. Independently of the
formulation technique, the following strong constraints should be always considered:

• a non-mobile node cannot host a mobile task;
• a task with a given computational requirement cannot be hosted by a node which

does not provide at least such resources;

96 4 Network synthesis for cyber-physical systems

• a data-flow with a given QoS requirement cannot be hosted by an abstract chan-
nel which does not provide at least such QoS;

• abstract channel types cannot be used between zone pairs whose contiguity
brings to zero their QoS.

To model these general constraints, the following functions are defined and pop-
ulated during a preprocessing phase:

• αn(t), t ∈ T returns the set of allowed nodes to which the task t can be mapped;
• αt(n), n ∈ N returns the set of allowed tasks which can be mapped into a node

of type n;
• αc(d), d ∈ D returns the set of allowed channels in which the data-flow d can be

mapped. It can be further subdivided into αwc(d) and αcc(d) that only considers
respectively the allowed wireless and wired channels;

• αc(z1, z2), z1, z2 ∈ Z , z1 6= z2 returns the set of allowed channels which can
be used to connect two nodes deployed respectively in z1 and z2. Two sub-
sets αwc(z1, z2) and αcc(z1, z2) are defined, respectively identifying the allowed
wireless and wired channels;
• αd(c), c ∈ A returns the set of allowed data-flows which can be mapped into a

channel of type c;
• cont(z1, z2, ac), z1, z2 ∈ Z , ac ∈ A, is a hash function that allows to efficiently

retrieve the contiguity relationship and thus the corresponding conductivity c and
the wiring cost dc.

The tasks connected to a data-flow and the zones in which they are placed is well-
known from Application Requirements. Therefore, given an abstract channel c, the
set αd(c) does not contain data-flows whose tasks are placed in zones across which
c has zero conductivity.

4.3.2 MILP Variables

In the following, all the variables used during the MILP formalization are presented
and explained in detail. The first two sets of variables play a distinguished structural
role, in that they imply the space of all the other variables.

• Nn,z , n ∈ N , z ∈ Z for each node-type n ∈ N and zone z ∈ Z , Nn,z denotes
how many nodes of node-type n are deployed in zone z.

• Cc, c ∈ A for each channel type c ∈ A, Cc states how many channels of type c
are activated by the solution.

Since we can not write MILPs with an infinite number of variables, we need to rely
on the following two parameters which can be conveniently computed in a prepro-
cessing phase.

• Nn,z , n ∈ N , z ∈ Z for each node-type n ∈ N and zone z ∈ Z , parameter
Nn,z provides an upper bound on the value of Nn,z . Before running our model,
we need to fix parameter Nn,z to a natural value. We want this value to be as
small as possible since the number of variables allocated by our MILP grows

4.3 Network Synthesis 97

polynomially in Nn,z . However, we should make sure that there exist optimal
solutions in which Nn,z ≤ Nn,z , i.e., Nn,z should be a valid upper bound.

• Cc, c ∈ A for each channel type c ∈ A, parameter Cc provides an upper bound
on the value of Cc. This means that, as above, we should make sure that there
exist optimal solutions in which Cc ≤ Cc, or that we are ready to anyhow limit
our search for good solutions below this parameter. Again, we want Cc to be as
small as possible since the number of variables allocated by our MILP grows
polynomially in this parameter.

This work proposes to consider

Nn,z := |{t ∈ αt(n)|t.z = z}| (4.1)

Cc := |{d ∈ αd(c)}| (4.2)

Bound 4.1 indeed provides an upper bound to the number of type-node n in zone z
based on the number of allowed tasks for node n in zone z. Bound 4.2 is also a valid
upper bound since the upper-bound of a given channel c is equal to the number of
allowed data-flow inside that channel.

The purpose of our first set of boolean variable x is to activate, in a well structured
way, single instances of nodes of any given type. For each node n ∈ N , z ∈ Z and
p ≤ Nn,z , their intended value is as follows

xn,z,p =

{
1

if there are at least p nodes of type n allocated
in zone z,

0 otherwise.

∀n ∈ N , ∀z ∈ Z, ∀p ≤ Nn,z

(4.3)

Analogously, the second set of variables y determines the number of allocated chan-
nels of any given type

yc,p =

{
1 if at least p channels of type c are allocated,

0 otherwise.

∀c ∈ A, ∀p ≤ Cc

(4.4)

Another issue is represented by the presence of point-to-point channels, which can
only be deployed between two nodes. Such aspect has been formalized with the
support of two variables. First, the tasks of a data-flow and a third task are related by
a variable γ, whose formalization follows

γd,t =

{
1

if tasks d.st, d.dt, and t are mapped into 3 dif-
ferent nodes,

0 otherwise.

∀d ∈ D, ∀t ∈ T ,

(4.5)

Variable ρ instead, is formalized as

98 4 Network synthesis for cyber-physical systems

ρt1,t2 =

{
1

if tasks t1 and t2 are mapped into different
nodes,

0 otherwise.

∀t1, t2 ∈ T , t1 6= t2

(4.6)

The key aspects of the proposed formulation are the assignment of tasks to nodes
and the deployment of data-flows into channels. Concerning the positioning of tasks
inside nodes, a new boolean variable wt,n,p defined as

wt,n,p =

{
1

if task t is associated with the p-th node of type
n in zone t.z,

0 otherwise.

∀t ∈ T , ∀n ∈ αn(t), ∀p ≤ Nn,z

(4.7)

Deployment of data-flows inside channels is identified by a variable hd,c,p defined
as

hd,c,p =

{
1

if the data-flow d is placed in the p-th channel
of type c,

0 otherwise.

∀d ∈ D, ∀c ∈ αc(d), ∀p ≤ Cc

(4.8)

Variable qc,z1,z2 is statically solved before executing the optimization. It is initialized
by checking if the conductance of the channel between the two zones is greater than
zero. It is defined as follows

qc,z1,z2 =

{
1

if a channel of type c can connect nodes inside
z1 and z2,

0 otherwise.

∀z1, z2 ∈ Z,∀c ∈ A

(4.9)

Finally, variable jc,p is introduced in order to keep track of the deployment cost for
each instance of deployed channel. It is defined as

jc,p ∈ R≥

∀c ∈ A,∀p ≤ Cc
(4.10)

4.3.3 MILP Objectives

Four metrics were considered to be of significant importance within a distributed
CPS, and then subject to optimization. These metrics are: Economic cost, Energy
consumption, Transmission delay, and Error rate. For all the metrics described above
the optimization can be determined by a minimization function.

4.3.3.a Economic Cost Minimization

Its objective is to minimize the total economic cost of the distributed CPS, and it is
defined as follows

4.3 Network Synthesis 99

min



N∑
n

Z∑
z

Nn,z∑
p=1

(xn,z,p ∗ (n.k + n.e ∗ n.ek))+

A∑
c

Cc∑
p=1

(yc,p ∗ (c.k + c.e ∗ c.ek + jc,p))+

T∑
t

αn(t)∑
n

Nn,t.z∑
p=1

(wt,n,p ∗ n.te ∗ t.s ∗ n.ek)+

D∑
d

αc(d)∑
c

Cc∑
p=1

hd,c,p ∗ c.de ∗ c.ek ∗ d.s
cont(d.st.z, d.dt.z, c).c



(4.11)

The first two sums of the metric considers the base cost of deployed nodes and chan-
nels plus their energetic cost. The therm j_c, p inside the second sum consider the
supplementary cost for wired channels whenever they are placed between different
zones. The last two sums concerns the economic cost deriving from the consumed
energy. For tasks, this is done by multiplying the total energy consumed by a task
deployed inside a node for the specific energy cost for that node. Similarly, the last
sum considers the energetic cost of data-flows by multiplying the total amount of en-
ergy consumed by a deployed channel for the price of the energy for that particular
channel.

4.3.3.b Energy Consumption Minimization

The second optimization objective is to minimize the total energy consumption of
the distributed CPS, and is defined as follows

min



N∑
n

Z∑
z

Nn,z∑
p=1

(xn,z,p ∗ n.e)+

A∑
c

Cc∑
p=1

(yc,p ∗ c.e)+

T∑
t

αn(t)∑
n

Nn,t.z∑
p=1

(wt,n,p ∗ n.te ∗ t.s)+

D∑
d

αc(d)∑
c

Cc∑
p=1

hd,c,p ∗ c.de ∗ d.s
cont(d.st.z, d.dt.z, c).c



(4.12)

The first two sums of the metric consider the energy consumed by deployed nodes
and channels. The third sum takes into account the task’s resource requirements and
multiplies it for the coefficient used to calculate contribution of each task to the node
energy consumption (i.e., attribute n.te). The last sum multiplies the size of dataflows

100 4 Network synthesis for cyber-physical systems

for the contribution to the energy consumption of channels where they are deployed
(i.e., attribute c.de).

4.3.3.c Transmission Delay Minimization

Its purpose is to minimize the total transmission delay of the distributed CPS. Fol-
lows its definition

min

 D∑
d

αc(d)∑
c

Cc∑
p=1

hd,c,p ∗ c.dl
cont(d.st.z, d.dt.z, c).c

 (4.13)

The above metric sums the transmission delay of channels where dataflows are de-
ployed, enhanced by the effects of the border between the involved zones on the
communication quality. This metric considers the delay for each dataflow and not
only once for each deployed channel.

4.3.3.d Error Rate Minimization

The optimization objective is to minimize the total error rate of the distributed CPS.
The function has the same structure as for the transmission delay minimization but,
instead of summing the channel delay, its error rate value is used. Follows its defini-
tion

min

 D∑
d

αc(d)∑
c

Cc∑
p=1

hd,c,p ∗ c.er
cont(d.st.z, d.dt.z, c).c

 (4.14)

4.3.4 MILP Constraints

Constraints on the Number of Instantiated Components

The first group of constraints activates in accordance to the number of nodes and
channels as well as defining the values of the upper-bounds of such components.
More in details constraints C.1 and C.2 concerns the nodes. For all n ∈ N and
z ∈ Z

Nn,z =
Nn,z∑
p=1

xn,z,p

∀n ∈ N , ∀z ∈ Z
(C.1)

Nn,z ≥ p ∗ xn,z,p

∀n ∈ N , ∀z ∈ Z, ∀p ≤ Nn,z

(C.2)

Moreover, the second set of constraints C.3 and C.4, concerns the channels.

4.3 Network Synthesis 101

Cc =
Cc∑
p=1

yc,p

∀c ∈ A
(C.3)

Cc ≥ p ∗ yc,p

∀c ∈ A, ∀p ≤ Cc
(C.4)

Constraints on the Existence of Used Components

Constraints C.5 and C.6 ensure that nodes and channels are instantiated whenever
tasks and data-flows use them.

wt,n,p ≤ xn,t.z,p

∀t ∈ T , ∀n ∈ αn(t), ∀p ≤ Nn,t.z

(C.5)

hd,c,p ≤ yc,p

∀d ∈ D, ∀c ∈ αc(d), ∀p ≤ Cc
(C.6)

Constraints C.7 and C.8 instead ensure that only the nodes and channels which are
necessary are activated.

xn,z,p ≤
(αt(n)∧t.z=z)∑

t
wt,n,p

∀n ∈ N , ∀z ∈ Z, ∀p ≤ Nn,z

(C.7)

yc,p ≤
αd(c)∑
d

hd,c,p

∀c ∈ A, ∀p ≤ Cc
(C.8)

Constraints on Components Capacity

The assignment of tasks to nodes has to be compliant with the size (i.e., resources)
of each involved node. Constraint C.9, ensures that the total amount of resources
required by tasks inside a given node is at most the size of the node.

(αt(n)∧t.z=z)∑
t

t.s ∗ wt,n,p ≤ n.s

∀n ∈ N , ∀z ∈ Z, ∀p ≤ Nn,z

(C.9)

Constraint C.10, ensures that the total amount of bit-rate used by data-flows mapped
into a given channel is at most the size (i.e., capacity) of the channel. Furthermore,
the effect of the environment has to be taken into consideration.

αd(c)∑
d

d.s ∗ hd,c,p
cont(d.st.z, d.dt.z, c).c

≤ c.s

∀c ∈ A, ∀p ≤ Cc
(C.10)

102 4 Network synthesis for cyber-physical systems

Constraints on Tasks and Data-Flows Assignment

Tasks and data-flows are unique entities, specific of the application functionality;
thus, they must be assigned only once to nodes and channels, respectively. For what
concerns tasks, Constraint C.11, ensures that they are assigned to a node only once.

αn(t)∑
n

Nn,t.z∑
p=1

wt,n,p = 1

∀t ∈ T
(C.11)

However, for what concerns data-flows, their placement depends on whether the
tasks which they connect reside in the same node or not. In the former case, for-
malized in Constraint C.12, the data-flow is not necessarily assigned to a channel,
and its placement depends on variable ρ. For data-flows which instead have tasks
which reside in different zones their placement inside a channel is necessary and
ensured by Constraint C.13.

αc(d)∑
c

Cc∑
p=1

hd,c,p = ρd.st,d.dt

∀d ∈ D, d.st.z = d.dt.z

(C.12)

αc(d)∑
c

Cc∑
p=1

hd,c,p = 1

∀d ∈ D, d.st.z 6= d.dt.z

(C.13)

Constraints on Point-to-Point Channels

The next sets of constraints concern point-to-point channels, which have to abide a
more tightening rule. Each of them can connect no more than a pair of nodes. Con-
straint C.14 ensures that variable ρ is correctly set whenever two tasks are mapped
into different nodes. Constraint C.15 instead, sets ρ to constant 1 when the pair of
tasks resides in different zones.

ρt,t′ ≥ (wt,n,p + wt′,n′,p′ − 1)

∀t, t′ ∈ T , t.z = t′.z, t 6= t′,
∀n ∈ αn(t), ∀p ∈ Nn,t.z,
∀n′ ∈ αn(t′), ∀p′ ∈ Nn′,t′.z,
(n 6= n′) ∨ (p 6= p′)

(C.14)

ρt,t′ = 1

∀t, t′ ∈ T , t.z 6= t′.z, t 6= t′
(C.15)

Constraint C.16 has to keep track of all the data-flows which have a node in common.
This is necessary since whenever a data-flow mapped into a point-to-point channel

4.3 Network Synthesis 103

share a node with another data-flow, the source and destination task of the latter have
to be mapped into the same node w.r.t. the tasks of the former.

γd,d′.st ≤ 2− hd,c,p − hd′,c,p
with (d.st 6= d′.st) ∧ (d.dt 6= d′.st)

γd,d′.dt ≤ 2− hd,c,p − hd′,c,p
with (d.st 6= d′.dt) ∧ (d.dt 6= d′.dt)

∀c ∈ A, ∀p ≤ Cc, ∀d, d′ ∈ αd(c),
c.pp = true, d 6= d′

(C.16)

Constraint C.17 ensures that, if the tasks of a data-flow d and a third task t are placed
all in different nodes (C.14, C.15 and C.17), then data-flow d and the one connected
to task t must be mapped into different channels (C.16).

γd,t = 0
with (d.st = t) ∨ (d.dt = t)

γd,t = 1
with (d.st.z 6= t.z) ∧ (d.dt.z 6= t.z) ∧ (d.st.z 6= d.dt.z)

γd,t ≥ ρt,d.st + ρt,d.dt + ρd.st,d.dt − 2
with (d.st.z = t.z) ∨ (d.dt.z = t.z) ∨ (d.st.z = d.dt.z)

∀d ∈ D, ∀t ∈ T

(C.17)

Constraints on Wireless Channels

Constraint C.18 ensures that whenever two data-flows are placed inside the same
wireless channel, all tasks of the data-flows can communicate with each other. Thus,
the conductivity with the given channel between the four combinations of the zones
in which the tasks reside is greater than zero.

hd,c,p + hd′,c,p ≤ 1 + (qc,d.st.z,d′.st.z∗
qc,d.st.z,d′.dt.z∗
qc,d.dt.z,d′.st.z∗
qc,d.dt.z,d′.dt.z)

∀c ∈ A, c.w = true, ∀p ≤ Cc, ∀d, d′ ∈ αd(c), d 6= d′

(C.18)

Constraints on deployment cost of wired channels

Finally, Constraint C.19 poses an lower-bound on variable j ∈ R≥. Such lower-
bound is equal to the highest deployment cost for those channels which are placed
between two zones. It can be appreciated that such constraint is defined only for those
pairs of zone interested by data-flows. The upper-bound on variable j is intrinsically
ensured by the objective function, which aims at minimizing the variables.

104 4 Network synthesis for cyber-physical systems

jc,p ≥ hd,c,p ∗ cont(d.st.z, d.dt.z, c).dc

∀c ∈ A, c.w = false, ∀p ≤ Cc,
∀d ∈ αd(c), d.st.z 6= d.dt.z

(C.19)

4.4 Complexity and Scalability

One should be aware that the network synthesis model proposed and solved in this
chapter is strongly NP-hard even in the following two very extreme special cases:

• |N | = 1, |Z| = |A| = |D| = 0, |T | ∈ N. Without loss of generality, both size
and cost of each node instance are 1. Every node instance can be regarded as a
bin that we can open or not in order to accommodate a set of tasks, each one
representing an item of the same size.

• |A| = |N | = 1, |T | = 2, |Z| = 1, |D| ∈ N. Without loss of generality, both size
and cost of each channel instance are 1. Every channel instance can be regarded
as a bin that we can open or not in order to accommodate a set of data-flows,
each one representing an item of the same size.

As a consequence, unless P=NP, every general algorithm solving our model will
exhibit a running time which is exponential both in |T | and in |D|. Nonetheless, the
MILP solution here offered works remarkably well in practice. In our tests, we never
gave up the ambition of obtaining a proof of optimality. By necessity, there are surely
limits to the scalability of this approach, but these should be regarded more as limits
to the ambition of solving the general network design model to optimality rather
than limits in the tested solution. The model and solution we have designed has
successfully modeled and solved to optimality the situations form the applications
we had in mind. Its efficiency allows to solve instances whose share size was beyond
our original commitment.

To get a rough idea on the size of the instances that can be addressed, consider
first the asymptotic growth of the number of variables that get allocated by our MILP
formulation. Table 4.1 reports on the growth for each category of variables intro-
duced.

Table 4.1: Number of allocated variables.

x O(|N ||T ||Z|)
y O(|A||D|)
γ O(|D||T |)
ρ O(|T |2)
w O(|N ||T |2)
h O(|A||D|2)
q O(|A||Z|2)
j O(|A||D|)

4.5 Experimental Results 105

Table 4.2: Number of defined constraints.

C.1 O(|N ||Z|)
C.2 O(|N ||Z||T |)
C.3 O(|A|)
C.4 O(|A||D|)
C.5 O(|N ||T |2)
C.6 O(|A||D|2)
C.7 O(|N ||Z||T |)
C.8 O(|A||D|)
C.9 O(|N ||Z||T |)

C.10 O(|A||D|)
C.11 O(|T |)
C.12 O(|A||D|2)
C.13 O(|A||D|2)
C.14 O(|N |2|T |3)
C.15 O(|T |2)
C.16 O(|A||D|3)
C.17 O(|D||T |)
C.18 O(|A||D|3)
C.19 O(|A||D|2)

Those reported in the table are only worst case upper bounds as quite fewer
variables get allocated in many instances; it is, however, easy to propose natural
instance families meeting these bounds. Since allocating a variable takes O(1) time
and space, then the phase where the variables get introduced in the model one by one,
through calls to the competent functions of the Gurobi dynamic library interface,
takes

O(max{|N ||T ||Z|, |D||T |, |N ||T |2, |A||D|2, |A||Z|2})
time and space. Since inserting a constraint takesO(1) time and memory for each one
of its non-zero coefficients, the upper bound on the constraints specification phase
can be similarly drawn from Table 4.2.

The max of these bounds works as an upper bound only for the model set up
phase, whereas the true optimization phase managed by Gurobi requires further
memory and may easily take exponential time. However, based on experiments and
talking with reference to a desktop architecture, we are confident that these bounds
may offer a rather good prediction on the ultimate performance of our code when
considering to apply our implementation of the model, as it is, to other settings. More
precisely, we are confident that these bounds may offer you a rather good prediction
on the ultimate performance of our code over the limited range where the predicted
memory consumption for the only allocation phase is not prohibitive.

4.5 Experimental Results

In this section, two case studies are presented with the aim of showing the expres-
siveness of the proposed design flow and the computational demand of the optimiza-

106 4 Network synthesis for cyber-physical systems

Fig. 4.4: Network topology with various network architectures connected through routers.

tion process. Network synthesis has been performed by using Gurobi 7.5.1 tool with
Python 2.7.12 front-end on a 64-bit machine running Ubuntu 16.04 LTS; the machine
features an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz with 16 GB memory.

4.5.1 Case Study 1

The first case study concerns the implementation of a distributed building automa-
tion application spanning over two adjacent buildings. The scenario is depicted in
Figure 4.4. It consists of different kinds of tasks (i.e., controllers, routers, sensors,
and actuators), deployed inside rooms delimited by thick walls and exchanging a se-
ries of data-flows shown as red lines. Each building hosts a total of twenty-four tasks:
a central controller, two routers and twenty-one sensors/actuators for room monitor-
ing and regulation. Tasks are distributed over ten zones which comprise a control
room, two technical closets for routers and seven offices. Each office contains two
sensors and one actuator which have access to the central controller through an ad-
jacent router. For this scenario, the technological libraries of available nodes and
channels are reported in Table 4.3 and Table 4.4, respectively. The tables use the
attribute symbols defined in Section 4.2.1.

4.5 Experimental Results 107

Table 4.3: Catalog of available nodes for Case Study 1.

Label s k e te ek m

Development Board Type 1 32 5 5 1 0.10 false

Development Board Type 2 84 18 7 2 0.15 false

Development Board Type 3 64 22 8 2 0.30 true

Development Board Type 4 128 98 12 5 0.41 true

Development Board Type 5 256 128 15 6 0.33 true

Development Board Type 6 512 512 30 12 1.20 false

Table 4.4: Catalog of available abstract channels.

Label s k e de ek dl er w pp

Bluetooth 4.0 24 9 1 1 0.16 12 10 true true

IEEE 802.11ac 7000 34 3 2 0.30 8 7 true false

IEEE 802.11ad 7400 79 7 4 0.28 3 4 true false

Ethernet 200000 320 18 2 0.21 3 1 false true

Fiber 273000 367 14 1 0.12 1 3 false true

As explained in Section 4.2.1.d, an Abstract Channel encompasses the physical
layer and all the required upper layers according to application scenario: in our case,
the abstract channels in Table 4.4 include also TCP/IP. The presence of various net-
work architectures allows to select the most appropriate one for each interconnection
between nodes. Considering the environment depicted in Figure 4.4, the data-flow
between the controllers has to cross a pair of thick walls which may hinder the use of
wireless LAN. Such effect is represented as a lower value of conductance between
the corresponding zones (i.e., control rooms) for the wireless channels as reported
in boldface in Table 4.5. Therefore, the optimization process will select a wired ar-
chitecture even if it leads to higher cost for cabling which is computed by summing
up dc attribute values for the given zone pairs and the chosen wired channel type
(reported in boldface in Table 4.5).

In this example, the values in Tables 4.3, 4.4, and 4.5 have been obtained by
performing a relative comparison between different technologies with the unique
purpose of testing the optimization engine. More accurate values can be found in
hardware datasheets for nodes and actual benchmarks for network architectures [94].
Contiguity relationship should be evaluated by the designer for each specific sce-
nario, e.g., by using well-known tools for WiFi deployment [95].

Vice versa, for other zones of the same scenario wireless communications, will
be preferred for their lower cost. For instance, with energy minimization, we use
2 Bluetooth links, 7 IEEE 802.11ac links, 12 IEEE 802.11ad links, 10 Ethernet links,

108 4 Network synthesis for cyber-physical systems

Table 4.5: Example of contiguity values for Case Study 1.

z1 z2 ac c dc

Bluetooth 4.0 0.45 0

IEEE 802.11ac 0.58 0

Office 1 Technical closet 1 IEEE 802.11ad 0.97 0

Ethernet 0.00 0

Fiber 0.00 0

Bluetooth 4.0 0.12 0

IEEE 802.11ac 0.46 0

Technical closet 1 Control room 1 IEEE 802.11ad 0.84 0

Ethernet 0.69 645

Fiber 0.95 1,252

Bluetooth 4.0 0.07 0

IEEE 802.11ac 0.12 0

Control room 1 Control room 2 IEEE 802.11ad 0.21 0

Ethernet 0.78 824
Fiber 1.00 1,486

Table 4.6: Case Study 1: performance and results of the network synthesis as a function of the
optimization objective.

Minimization CPU Economic Energy Delay Error

Objective Time (s) Cost ($) Consumption (J) (s) Rate (%)

Economic Cost 11.38 38,903 56,306 543.96 47.0

Energy 5.07 41,762 48,330 514.00 45.1

Delay 3.89 68,312 86,604 283.35 19.8

Error 3.97 67,760 93,809 287.84 19.6

and 5 fiber links. To the best of our knowledge, this is the first network synthesis
approach that allows mixing different network architectures.

Table 4.6 shows the statistics of the synthesized networks with the four different
optimization objectives presented in Section 4.3.3. The table reports the CPU time
spent to find the optimal solution for a target optimization objective.

The composition of the synthesized network depends on the optimization met-
ric. For instance, for cost minimization, the optimizer chooses 12 nodes of Type 2,
17 nodes of Type 3, and 9 nodes of Type 4, whereas, for energy minimization, it
chooses 19 nodes of Type 2, 17 nodes of Type 3, and 9 nodes of Type 4. Furthermore,
application tasks can be grouped in different ways according to task-node assignment

4.5 Experimental Results 109

Fig. 4.5: Wide urban area test case: the tasks and data-flows colored in blue represent a pre-
existing network while red elements have been added during network synthesis.

which is determined by the optimization process. For instance, let us consider three
sensor/actuator tasks, denoted as T1, T2, and T3, belonging to the same zone (i.e.,
room). With economic cost minimization, all the tasks are placed inside the same
Type 4 node whereas, with delay minimization, two of them are placed inside inside
distinct nodes of Type 3 while the third is placed inside a node of Type 4.

In summary, this Case Study shows that:

• different network architectures can be mixed in the synthesis process;
• a single heavy application can be distributed over multiple nodes of a distributed

CPS;
• the optimization process can distribute tasks in different ways over the network

according to the optimization objective.

4.5.2 Case Study 2

The second case study concerns the implementation of a smart city application. For
example, energy efficiency is a well-known design problem in this context [96]. The
description of the environment for the proposed case study is given by the cartog-
raphy in Figure 4.5. The area is subdivided into zones delineated by dotted lines.
Each zone contains a task named distributor (represented by a circle) and a vari-
able number of user tasks, all connected through data-flows. In such a vast public
context, it is quite common to exploit a pre-existing network and add new pieces of
infrastructure. This fact gives us the opportunity to show how the proposed synthe-
sis flow can handle this kind of constraint. By referring to Figure 4.5, the tasks and
data-flows colored in blue represent a pre-existing network, i.e., they have already

110 4 Network synthesis for cyber-physical systems

been placed inside nodes and channels, respectively. Vice versa, the red tasks, and
data-flows are assigned to nodes and channels by the network synthesis process. The
catalogs of nodes and channels are shown in Table 4.7 and Table 4.4, respectively.
The contiguity values between zones are mainly dependent on their distance.

Table 4.7: Catalog of available nodes for Case Study 2.

Label s k e te ek m

Development Board Type 1 64 10 2 1 0.05 false

Development Board Type 2 98 24 4 2 0.15 true

Development Board Type 3 128 64 8 4 0.40 true

Development Board Type 4 256 128 14 7 0.32 true

Development Board Type 5 512 378 20 10 0.60 false

This case study aims at evaluating the scalability of the approach as a function of
scenario size, i.e., number of zones, tasks, and data-flows. For this purpose, we auto-
matically generated instances with increased size by using two different approaches.

4.5.2.a Scalability over zones

The first scalability test regards the creation of large scenarios by increasing the num-
ber of zones, while the number of tasks per zone remains quite small. The generation
of instances is based on the following rules:

• zones are arranged as a chain, and a new instance is automatically generated by
increasing the chain;

• each zone has a set of contiguity values defined only for the precedent zone and
subsequent zone unless it is the first or the last zone of the chain;

• each zone contains four user tasks and one distributor;
• in each zone four data-flows are connecting each user task with the distributor

of the zone;
• the distributor of a zone is connected to the distributor of the precedent zone and

the one of the subsequent zone unless it belongs to the first or last zone of the
chain;

• attributes of tasks and data-flows are constant, and their value depends on the role
of the task, i.e., distributor or user, and on the type of connection, i.e., between
distributors or between user and distributor.

Figure 4.6 shows the value of the objective function as a function of the size of the
input instance (number of tasks). Even if values have been normalized to fit in the
same plot, each of them is the minimum when the corresponding objective function
is used to drive the optimization. Therefore, we can conclude that the behavior of the
synthesizer is consistent over a large set of problem instances.

4.5 Experimental Results 111

Fig. 4.6: Value of the objective function as a function of number of tasks over all zones and
the optimization objective.

Figure 4.7 shows the total optimization time for the synthesizer as a function of
the size of the input instance (number of tasks over all zones) for all optimization tar-
gets. Time values have been computed by using Python time.clock() function

Fig. 4.7: Total CPU time for Case Study 2 as a function of number of tasks over all zones.

which takes into account the effort spent by the CPU in each thread of the process1

thus avoiding artifacts due to the current load of the workstation and hyper-threading
techniques. The graph trend of the objective functions in Figure 4.7 can be directly
related to the algorithmic complexity and the number of involved variables of the
1 https://www.pythoncentral.io/measure-time-in-python-time-time-vs-time-clock

112 4 Network synthesis for cyber-physical systems

objective functions reported in Section 4.3.3. Even if the economic cost and energy
consumption minimization functions have the same number of loops, the former has
a higher number of involved variables. As such, the economic cost minimization
requires more effort than the other functions as shown in the graph.

As described in Section 4.4, the synthesis process consists of some steps which
prepare the proper optimization phase, i.e., parsing of the instance description file,
generation of variables, and generation of constraints. It is worth analyzing how CPU
time is spent in this optimization flow. Figure 4.8 shows the percentage of the total
optimization time (reported in Figure 4.7) devoted to pre-optimization activities. For
economic cost minimization, the real optimization phase is mainly predominant over
preparation but for simpler objective functions and small instances, preparation time
can be higher than time spent to search the optimal solution.

Fig. 4.8: Percentage of CPU time devoted to pre-optimization activities for Case Study 2 as a
function of number of tasks over all zones.

To complete the scalability analysis, Figure 4.9 shows the corresponding memory
usage.

4.5.2.b Scalability over tasks

The second scalability test regards the creation of large scenarios by increasing the
number of tasks in the same zone. The generation of instances is based on the fol-
lowing rules:

• only one large zone is considered;
• no contiguity relationships are set;
• each zone contains an increasing number user tasks and one distributor;
• in each zone there are as many data-flows as user tasks since they connect each

user task with the distributor of the zone;

4.5 Experimental Results 113

Fig. 4.9: Memory usage for Case Study 2 as a function of number of tasks over all zones.

• attributes of tasks and data-flows are constant, and their value depends on the role
of the task, i.e., distributor or user, and on the type of connection, i.e., between
distributors or between user and distributor.

Figure 4.10 shows the total optimization time for the synthesizer as a function of the
number of tasks per zone. We only show economic cost minimization since the pre-
vious analysis proved it to be the most computationally intensive target. Figure 4.11
shows the corresponding memory usage.

Fig. 4.10: CPU time for Case Study 2 as a function of the number of tasks per zone.

114 4 Network synthesis for cyber-physical systems

Fig. 4.11: Memory usage for Case Study 2 as a function of the number of tasks per zone.

4.6 Conclusions

This work focused on the aspects of Networked Cyber-Physical Systems (NCPSs)
and proposed an extended design flow to address them. Assuming that highly op-
timized nodes are desirable, the network infrastructure should be decided before
designing hardware and implementing software thus leading to the concept of net-
work synthesis. A communication-aware formalization was proposed to specify con-
straints and optimization metrics. Network synthesis was formalized as an optimiza-
tion problem using mixed-integer linear programming. We defined the following for-
mal entities: tasks, data-flows, nodes, abstract channels, and zones. The last two en-
tities are particularly innovative. The Abstract Channel generalizes the concept of
network architecture (i.e., physical channels and protocols) so that the final solu-
tion can combine different types of network architectures. The Zone generalizes the
concept of physical location adapting location accuracy to the requirements of the
application and focusing on the impact of node placement on communications and
cost. The framework was applied to real case studies with the aim to show the ad-
vancement with respect to state of the art. The first case study shows the possibility to
create network infrastructures containing different network architectures according
to users’ needs and environmental constraints. The second one highlights the pos-
sibility to synthesize a network by adding components to an existing infrastructure
which is a common problem in real life scenarios. Future work aims at investigating
the scalability issues of the Mixed Integer Linear Programmings (MILPs) approach
and proposing communication-aware heuristics to address huge problems.

5

Fault modeling and injection

Platform

Platform

Platform

Platform

Network
Interface SRAM MIPS CPU

AMBA APB

UART Accelerometer

DACNDAC1 ADCNADC1

NETWORK

Gateway

Control Panel

Fig. 5.1: Architecture of a case study for predictive maintenance.

The previous chapters show how we propose to build a holistic Networked Cyber-
Physical Systems (NCPSs), from the abstraction of analog components, to the syn-
thesis of network architectures. Networked Cyber-Physical Systems (NCPSs) are
indeed at the base of revolutionary phenomena as Industry 4.0 which represents an
integration of Internet-of-Things (IoT) and relevant physical technologies, including
analytics, additive manufacturing, robotics, high-performance computing, artificial
intelligence and cognitive technologies, advanced materials, and augmented reality.

Figure 5.1 shows a case study concerning predictive maintenance based on vi-
bration monitoring through wireless accelerometers [97]. Vibration is a natural phe-
nomenon in every industrial facility that causes wear and tear on machine parts,
leading to equipment failure. Active vibration monitoring and control by analyzing
the vibration patterns of machinery can prevent such occurrences, which in turn im-

116 5 Fault modeling and injection

proves overall system performance, efficiency, lifetime, and safety. The figure reports
a set of machines each equipped with wireless accelerometers (denoted as “network
nodes” in the following) transmitting vibration data through a gateway to the cloud
for the estimation of the probability of short-term failure by using statistical and ar-
tificial intelligence techniques. Each wireless sensor is a networked cyber-physical
system consisting of digital components, e.g., CPU and memory, analog compo-
nents, e.g., the accelerometer, and a network interface.

Ensuring functional safety of such systems is becoming a complex and critical
task [98] which needs an effective and reliable procedure which can assess their
correctness. One solution is to move the safety verification to a higher abstraction
level and earlier in the development process [99, 100]. This would enable the use
of well-established procedures to coordinate the processes of fault injection. For
digital systems, solutions can be found at different levels of abstraction, e.g., gate-
level [101], Register-Transfer Level (RTL) [102] and also at Transaction-Level Mod-
eling (TLM) [98]. While such systems are very heterogeneous being composed of
digital hardware, analog hardware and networks, the current functional safety as-
sessment is mainly focused on digital hardware. Minor attention is devoted to analog
hardware [103] and not at all to the interconnecting network.

In networked cyber-physical systems, the dependability must be verified not only
for the nodes in isolation but also by taking into account their interaction through the
communication channel. Considering the example of Figure 5.1, a set of network
nodes interacting through the network to perform a distributed task is not so differ-
ent from a set of cores in a system-on-chip or a network-on-chip. This fact suggests
considering the whole distributed application as a single system to be verified rather
than each component node in isolation. By following this approach, inter-node in-
teractions can be considered as those among cores in a system-on-chip. Node in-
teractions can be very complex and dependent on the application; they range from
simple point-to-point communications, e.g., to collect data from sensor nodes, to
many-to-many communications as in case of fully distributed algorithms, e.g., con-
sensus protocols. This discussion leads to the need for performing safety assessment
not only on digital hardware but also on analog hardware and communications sub-
ject to electromagnetic interferences, packet collisions, and traffic congestion.

Designers often rely on different languages which may not be conceived to work
together when mixing digital, analog, and network models. This incompatibility
makes functional safety evaluation more difficult in networked cyber-physical sys-
tems and the development of reliable safety mechanisms even more difficult.

Figure 5.2 shows how this work proposes to solve these problems by combining
different domains into a single holistic platform. The keywords here are: abstraction
and injection. The former means the simplification of the initial description for better
and easier integration (i.e., C++). The latter means the instrumentation or manipu-
lation of the code for fault injection. This could take place at different stages of the
manipulation process. For instance, for the digital and network domains the injection
takes place directly in the abstracted description, while for the analog domain it takes
place at circuit-level before the abstraction. Ultimately, this thesis also aims at pre-

5.1 Digital fault injection 117

VHDL, Verilog

RTL
Digital HW

Model

Verilog-AMS

Circuit-Level
Analog HW Model

+faults
Communication
Requirements

Holistic Abstracted
Simulation Platform

C++

Abstract
Digital HW Model

+faults

Abstract Faulty
Analog HW Model

SystemC

SCNSL

Abstract
Network Model

+faults

Digital
Abstraction

Analog
Abstraction

Network
Synthesis

Fig. 5.2: Generation of the holistic platform for fault simulation.

senting an effective way of injecting faults into the different domains of a networked
cyber-physical system for functional safety evaluation.

This chapter, is organized as follows: Section 5.1 describes the methodology for
high-level fault injection in the digital domain. Section 5.2 first presents a taxon-
omy of the analog fault models considered by this thesis, and then describes how
the injection is performed in the analog domain. Finally, Section 5.3 describes the
fault models for the network communications, and how they are activated during the
simulation. The experimental results are thoroughly presented in the next chapter.

5.1 Digital fault injection

The digital fault injection methodology presented in this section instruments the code
with mutants that simulate fault models at the bit level (e.g., stuck-at, bit-flip). As
shown in Figure 5.2 the starting description for the digital fault injection process
is a design modeled at RTL. We have seen in Chapter 3, Section 3.1.3, how these
descriptions are then abstracted with the methodology presented in [38] to allow the
integration with the analog components. After applying the abstraction, the digital
fault injection produces an output description containing all the mutations that can
reproduce the faulty design behavior.

A previous work presented in [104] proposed a methodology injecting mutants
by using type-dependent mutation functions and controlling the injection through
HDL ports. There are several drawbacks with that approach, which are: 1) the sensi-
ble overhead introduced by relying on complex injection functions and HDL ports,

118 5 Fault modeling and injection

2) the lack of generality of such functions which must be implemented for each data-
type, and 3) it does not take into account hierarchical designs. This work overcomes
these limitations by proposing an alternative which relies on bitwise operations and
compile-time optimized injection functions.

With the approach proposed in [104], most of the time is spent by calling the
injection functions and the consequent operations: saving the stack, updating the
stack pointer, allocating the memory for the variables inside the function and copying
its parameters. The return phase of a function requires additional operations, such
as: restoring the stack and copying the returned value. Furthermore, the injection is
performed by writing on the fault_port, and during the simulation by reading its value
in order to determine if the fault is currently active. These writes and especially read
operations further decrease simulation efficiency. Another critical problem of that
approach concerns the injection inside hierarchical designs, especially when a model
is instantiated multiple times. Each location is identified by the fault-free value, and
the injection range identified by the pair of variables start_range and end_range. The
range controls the activation of a fault whenever the currently active fault index is
inside it. However, if a model is instantiated multiple times, the same ranges appears
on each one of its instances. As a consequence, activating a single fault could actually
enable multiple faults.

The approach proposed in this thesis controls the activation/deactivation of a fault
through the pair of variables instance_number and fault_number. The former con-
trols which instance of the design needs to be injected, while the latter instead con-
trols which fault is currently active inside that instance. During the instrumentation
of the code, each instantiated design is numbered with a unique id called _id. During
the simulation, this id is compared against instance_number to determine if an active
fault is inside the current instance. This is a simple solution which allows injecting
also into hierarchical designs. The proposed approach exploits as much as possi-
ble the capabilities and optimizations introduced by modern compilers to reduce the
instrumentation overhead, especially by avoiding the use of complex injection func-
tions. The idea is to perform bit level fault injection by using bitwise operations and
functions which are replaced/resolved at compile-time.

As a first solution we propose to instrument the code with preprocessor com-
mands called macros provided by the C++ language. The compiler, before the actual
compilation of code, performs the so-called macros “expansion”, replacing a macro
call with the processed copy of its body. This solution allows instrumenting the code
and avoids function calls. Let us now examine into details the first two macros of
Listing 5.1, is_active and inject. The former macro accepts three arguments, the in-
stance number of the component where the fault resides, the fault location, and the
dimension of the location (e.g., the number of bits). Based on this three arguments,
the macro builds the expression which returns true whenever the current active fault
resides in the given instance at the given location. The latter macro contains a ternary
operator which, calls the injection function if the current fault is active, or returns the
fault-free value if inactive. The three macros, rise_bit, clear_bit, and toggle_bit are
used as support to implement bit level fault injections.

5.1 Digital fault injection 119

Listing 5.1: Mutation macros implemented through bitwise operations.

1 // Injection control variables.
2 uint32_t instance_number = 0UL;
3 uint32_t fault_number = 6UL;
4 // Checks if the fault is active.
5 #define IS_ACTIVE(instance, location, dimension) \
6 ((instance == instance_number) && \
7 (fault_number >= location) && (fault_number < (location + dimension)))
8 // Performs the injection.
9 #define INJECT(instance, location, dimension, value, function) \

10 (IS_ACTIVE(instance, location, dimension) \
11 ? function(value, fault_number - location) : value)
12
13 // Rises the bit at the given position.
14 #define RISE_BIT(position) \
15 (1 << (position))
16 // Clears the bit at the given position.
17 #define CLEAR_BIT(value, position) \
18 (value & ~RISE_BIT(position))
19 // Toggles the bit at the given position.
20 #define TOGGLE_BIT(value, position) \
21 (value ^ RISE_BIT(position))
22
23 // Defines which type of stuck-at should be injected (0 or 1).
24 uint32_t sa_type = 1UL;
25 // Injects a stuck-at fault at the given position.
26 #define STUCK_AT(value, position) \
27 ((-sa_type & RISE_BIT(position)) | CLEAR_BIT(value, position))

For instance, the stuck_at macro is used to inject stuck-at fault and relies on the
two rise_bit and clear_bit macros, as well as the variable sa_type which determines
which type of stuck-at fault must be injected (i.e., 0 or 1). Let us see how the expres-
sion contained in the stuck_at macro is able to inject a stuck-at-1 fault on the 4-th bit
of an 8-bit variable which has an initial value of 37:

uint8_t value = 37; // 0010 0101
uint8_t exp1 = CLEAR_BIT(value, 4); // 0010 0101

uint8_t exp2a = -sa_type; // 1111 1111
uint8_t exp2b = RISE_BIT(4); // 0001 0000
uint8_t exp2 = (exp2a & exp2b); // 0001 0000

uint8_t result = (exp1 | exp2); // 0011 0101

Another example of bit level fault is the bit-flip, which can be injected by using the
toggle_bit macro shown in Listing 5.1.

This first solution for bit level fault injection sensibly reduces the instrumentation
overhead by relying on bit-wise operators, and provides a type-independent injection
infrastructure. However, it relies on macros lacking a type-checking system, which
can be a valuable support for ensuring the correctness of the simulation. The second
solution is similar to the first one in that they both exploit bit-wise operators, but in-
stead of using macros it relies on inline template functions. This new set of injection
functions is shown in Listing 5.2. Marking a function inline tells the compiler that
every call to it can be replaced with its body instead of going through the process of
“function call”. However, marking a function inline is a suggestion to the compiler

120 5 Fault modeling and injection

Listing 5.2: Mutation functions implemented through bitwise operations.

1 // Injection control variables.
2 uint32_t instance_number = 0UL;
3 uint32_t fault_number = 6UL;
4 // Checks if the fault is active.
5 inline bool is_active(uint32_t ins, uint32_t loc, uint32_t dim) {
6 return (ins == instance_number) &&
7 (fault_number >= loc) && (fault_number < (loc + dim));
8 }
9 // Performs the injection.

10 template<typename T, typename Tf>
11 inline T inject(uint32_t ins, uint32_t loc, uint32_t dim, T val, Tf fun) {
12 return is_active(ins, loc, dim) ? fun(val, fault_number - loc) : val;
13 }
14
15 // Rises the bit at the given position.
16 template<typename T>
17 inline T rise_bit(T pos) {
18 return 1 << pos;
19 }
20 // Clears the bit at the given position.
21 template<typename TVal, typename T = uint32_t>
22 inline TVal clear_bit(TVal value, T position) {
23 return value & ~rise_bit<T>(position);
24 }
25 // Toggles the bit at the given position.
26 template<typename TVal, typename T = uint32_t>
27 inline TVal toggle_bit(TVal value, T position) {
28 return value ^ rise_bit<T>(position);
29 }
30
31 // Defines which type of stuck-at should be injected (0 or 1).
32 uint32_t sa_type = 1UL;
33 // Injects a stuck-at fault at the given position.
34 template<typename TVal, typename T = uint32_t>
35 inline TVal stuck_at(TVal val, T pos) {
36 return ((-sa_type & rise_bit<T>(pos)) | clear_bit<T, TVal>(val, pos));
37 }

which can actually ignore the request based on the number of instructions inside the
function. Thanks to the simple design of the bit-wise injection function, these are
always replaced. This solution relies on template arguments which allow reducing
the number of declared functions without losing the safety of a type-checking sys-
tem [105]. Templates are a C++ feature that allows parameterizing the code (e.g.,
parameters, functions, etc.) at compile time, thus resulting in faster execution of the
code.

Let us now look at an example of high-level abstracted code where the two ap-
proaches are applied. Listing 5.3 shows the abstracted C++ code of the Analog-
to-Digital Converter (ADC) shown in Listing A.1. The upper part shows the non-
instrumented code, the middle one shows the code instrumented with macros, while
the lower part shows the same code injected with the inline template functions. In
this example the toggle_bit has been used to inject bit-flip faults on two if guards.
The two instrumented codes are almost identical, except that the code injected with
inline functions requires to specify the type of the function (i.e., bool, int32_t, etc.).

5.2 Analog fault injection 121

Listing 5.3: Sample code of an analog to digital converter. On the top the original code, in the
middle the same code injected with C++ macros, while on the bottom the injection with inline
template functions.

1 void process_adc() {
2 double sample = vin;
3 bool over = false;
4 int32_t i = (bits - 1);
5 while (i >= 0) {
6 over = (sample >= midpoint);
7 if (over) {
8 sample -= midpoint;
9 }

10 sample *= 2;
11 out[i] = over;
12 i = i - 1;
13 }
14 }

1 void process_adc() {
2 double sample = vin;
3 bool over = INJECT(_id, 0, 1, false, STUCK_AT);
4 int32_t i = INJECT(_id, 1, 8, bits - 1, STUCK_AT);
5 while (INJECT(_id, 9, 1, i >= 0, TOGGLE_BIT)) {
6 over = INJECT(_id, 10, 1, sample >= midpoint, STUCK_AT);
7 if (INJECT(_id, 11, 1, over, TOGGLE_BIT)) {
8 sample -= midpoint;
9 }

10 sample *= 2;
11 out[i] = INJECT(_id, 12, 1, over, STUCK_AT);
12 i -= INJECT(_id, 13, 8, 1, STUCK_AT);
13 }
14 }

1 void process_adc() {
2 double sample = vin;
3 bool over = inject(_id, 0, 1, false, stuck_at<bool>);
4 int32_t i = inject(_id, 1, 8, bits - 1, stuck_at<int32_t>);
5 while (inject(_id, 9, 1, i >= 0, toggle_bit<bool>)) {
6 over = inject(_id, 10, 1, sample >= midpoint, stuck_at<bool>);
7 if (inject(_id, 11, 1, over, toggle_bit<bool>)) {
8 sample -= midpoint;
9 }

10 sample *= 2;
11 out[i] = inject(_id, 12, 1, over, stuck_at<bool>);
12 i -= inject(_id, 13, 8, 1, stuck_at<int32_t>);
13 }
14 }

5.2 Analog fault injection

The idea presented in this section combines the abstraction process with an auto-
mated fault injection flow. Figure 5.3 exemplifies the structure of this fault analy-
sis flow. Based on the types of fault that we are interested in, the injection process
uses the circuit topology to to generate a list of viable locations for saboteurs au-
tomatically. Then, a new faulty description is generated for each fault location by
injecting the equations describing the desired fault model. This is applied to all the

122 5 Fault modeling and injection

Analog Description
Circuit Level

Fault Injection
Faulty Analog
Descriptions

Abstracted
Faulty Analog
Descriptions

Simulation Model
Building

Abstracted
Fault Simulation

Model

Functional

Behavioral
Macromodel

Circuit

Analog
Models

Abstraction

Fig. 5.3: Analog fault injection flow.

fault locations. Each faulty description is then manipulated using the analog abstrac-
tion methodology presented in the previous chapters. Finally, all the faulty abstracted
descriptions are recombined to build the simulation model.

This section starts with a taxonomy of the most notable analog fault models taken
from the literature and widely used by commercial tools for fault injection. It pro-
vides the code manipulations required to injected the faults in behavioral-level de-
scriptions written in Verilog-AMS. Then, it introduces the idea of fault locations
mapping from the transistor to the behavioral-level. Moreover, it shows how the final
C++ description is built for simulating all the analog faults.

5.2.1 Fault taxonomy and code manipulation

Follows a collection of analog fault models taken from the literature, and categorized
into a multi-level taxonomy to show their relations with each level of abstraction. As
such, each fault is exemplified with a piece of Verilog-AMS code. The aim of this
section is twofold: 1) clarify which faults are considered by the proposed methodol-
ogy, and 2) how they are injected at the behavioral level.

This methodology focuses on the following types of faults: short-circuit/bridge,
open-circuit, potential/flow pulses and parametric faults. The first three fault mod-
els are called saboteurs and are usually injected by employing parametrized analog
blocks. As shown in the following sections, they are injected at the behavioral level
by adding a new equation to the model. The fourth type of fault, the parametric fault,
are called mutants and produce small deviations or mutations of component param-
eters, and for this reason they are the hardest to detect.

Table 5.1 shows a taxonomy of the aforementioned fault models based on the four
analog abstraction levels proposed in [1]. In detail, a circuit description is usually de-

5.2 Analog fault injection 123

Table 5.1: Proposed taxonomy of analog fault models at different levels of abstraction.

Fault Model

Abstraction
Level

Bridge/Short

Circuit

Open

Circuit

Potential/Flow

Pulse
Parametric

Functional

Behavioral

macro-model

Circuit

a q

vdd

vss

Open

Parametric

tox

Short/Bridge

Pulse

Fig. 5.4: Locations of possible analog faults of a transistor-level description of an inverter.

fined by connecting SPICE primitives and must abide by the laws of conservation of
energy. An example of a circuit description is the inverter shown in Figure 5.4. A
macro-model description is a simplified circuit made of controlled sources which
cannot be associated with an actual circuit but which satisfy the laws of conservation
of energy. A behavioral description is a mathematical description with no internal
structure and which satisfies the laws of conservation of energy but only at its inter-
facing pins. A functional model is a mathematical signal flow description, which has
no internal structure and which is not compelled to abide by the laws of conservation.

5.2.1.a Short/Bridge

The first type of fault we are going to analyze is the short, usually caused by two
bare wires in a circuit which touch each other. Besides the different configurations
that a short can assume, it can be considered a particular case of a bridge fault with

124 5 Fault modeling and injection

a near-zero resistance value. Bridge faults usually assume values which range from
0Ω to 10kΩ [106, 107].

For the injection at the circuit and macro-model levels, a short can be modeled
as a relatively small resistor. An example of a short circuit is shown on the top-right
corner of Figure 5.4. The depicted circuit can be injected with a total of six bridge
faults, one between each node of the circuit. This is the estimated number of faults
without taking into account the different resistance values that each bridge could
assume. This type of fault is generally used at the circuit and macro-model levels
since it requires knowledge about the topology of the design. However, with a good
insight into the model, or by means of previous analysis it is possible to represent
such a fault at the behavioral level [108].

The short fault can be modeled in Verilog-AMS with the following line:

I(a, q) <+ V(a, q) / 1;

5.2.1.b Open Circuit

Open fault models are saboteurs generated by missing contacts or cracks on the in-
terconnections of a circuit. However, contrary to what one might think, opens do not
entirely block the current flowing through an edge of the circuit, rather, they dramat-
ically increase the resistance of it [109]. This fault model is generally used at the
circuit and macro-model levels, for the same reasons as short circuits. This fault can
be injected by adding a high resistance in series with an existing edge of the circuit.

An example of an open circuit is shown on the top-left corner of Figure 5.4. The
open fault can be modeled in Verilog-AMS with the following line:

V(a, m1g) <+ I(a, m1g) * 1e06;

5.2.1.c Potential/Flow Pulses

Potential and flow pulses are components commonly used to inject the class of
saboteurs modeling Single Event Transients (SETs). This kind of fault is physi-
cally generated by alpha particles or neutrons hitting a sensitive node of the circuit.
Approaches to inject this kind of fault at the behavioral level in VHDL-AMS and
Verilog-AMS can be found in [110] and [111], respectively.

An example of pulse fault is shown on the bottom-right corner of Figure 5.4. Such
a fault can be modeled by a controlled potential/flow source and can be described in
Verilog-AMS with the following equation:

I(m2d, q) <+ Pulse;

where Pulse is a value controlled by the simulation environment and updated at each
simulation step to match the waveform of the desired fault model (e.g., double expo-
nential, damped sinewave).

5.2 Analog fault injection 125

5.2.1.d Parametric

Parametric faults can have many causes, e.g., additional residues of metal during
manufacturing of an Integrated Circuit (IC) or even deterioration due to aging. We
can consider parametric faults to be all of those that make the design parameters fall
outside acceptable boundaries. It is infeasible to test all the possible variations of the
values of such parameters since they belong to the domain of real numbers and, thus,
can assume an infinite number of values. As a consequence, many works which try
to deal with this type of faults have developed techniques which aim at reducing the
number of faults that have to be tested [112, 113].

Let us take the circuit of Figure 5.4 and in particular the NMOS. Parametric faults
can be injected by modifying the components instantiation. For instance, we could
modify the parameter controlling the oxide thickness tox:

nmos #(.tox(10u), ...) N1(nD, nG, nS, nB);

Even though the previously proposed approaches reduce the number of faults to
test, the problem of simulating all the “selected” parameters deviations endures. The
analog abstraction methodology is especially important for this reason, because it
enables simulating all these combinations in less time.

5.2.2 Transistor-level to Behavioral-level fault mapping

Let us now consider the transistor-level description of the inverter circuit shown in
Figure 5.4, and inject it with a set of open-circuit and short-circuit faults typically
used for MOSFETs (i.e., gate, drain, and source opens and shorts). The locations
which are possibly subject to fault injection are shown in Figure 5.5, identified by a
numerical id.

The idea is to map the information about the identified locations to the higher
level, to obtain the same faulty behavior at different abstraction levels. To exemplify
the concept, Figure 5.6 shows the same injection locations inside the behavioral-level
description, where IDs matches the ones in Figure 5.5. For fault injection is vital that
each location identified through this mapping are preserved even in the subsequent
steps of the methodology, in particular during the abstraction presented in the next
section.

Until now the example shows how the methodology can be applied to catas-
trophic opens and shorts. However, the vast majority of faults are represented by
unexpected parameter deviations. As explained in the previous section, the problems
rising are mainly two: 1) there are a considerable number of possible deviations,
and 2) fault simulation is one of the main tools used to test them. Section 3.6 shows
how the state-dependent behavioral models can be tuned to fit the physical level
properties of the original transistor-level circuits. As such, mismatches can be cap-
tured by this high-level descriptions by manipulating its parameters, for instance,
variable C_a_vdd_h appearing in the Verilog-AMS code of the inverter shown in
Listing A.7. It is worth noting that, with the proposed abstraction methodology the
effort required to inject parametric faults is lesser than the one required for opens,

126 5 Fault modeling and injection

a q

vdd

vss

// 3

// 6
//2

//1

// 4

// 5

7

8

9

10

11

Fig. 5.5: Transistor-level inverter with locations of possible open-circuit and short-circuit
faults.

Ca_vdd

Ca_vss

Cvdd_q

Cvss_q

Rvdd_q

Rvss_q

vdd

vss

// 3

// 6

//2

//1

// 4

// 5

7

8

9

10

11
a q

Fig. 5.6: Behavioral-level inverter with locations of possible open-circuit and short-circuit
faults.

5.2 Analog fault injection 127

Listing 5.4: C++ interface of a simulation model.

1 class ISimulationComponent {
2 public:
3 virtual void process(double ts) = 0;
4 virtual void update_interfaces() = 0;
5 };

shorts, and pulses, because their injection inevitably changes the circuit structure.
The abstraction is built upon the generalized version of Kirchhoff’s laws, which is
required to build the equations for loops and nodes. As a consequence, changing the
circuit structure means re-computing these equations, and re-applying the abstraction
flow. This is the injection flow, shown in Figure 5.3, produces a set of faulty analog
descriptions.

5.2.3 Preserving faulty behaviors during abstraction

The process of abstraction to the functional-level must not remove the introduced
equations or the manipulated parameters required to model the injected fault. The
equations modeling saboteur represent new edges of the circuit, as such their pres-
ence is considered during the generation of Kirchhoff’s equations. The system of
equations describing a conservative net inevitably contains an equation describing
either the potential or the flow of the injected edge. Concerning manipulated pa-
rameters modeling mutants, the abstraction developed by this work allows mark and
preserves parameters of the original design. The abstraction does not require a pro-
hibitive amount of time to complete; thus, a designer can quickly change which pa-
rameters must be preserved during the process. We can also rely on the Waveform
Relaxation (WR) interfaces shown in Section 3.7 to reduce the complexity of solving
the system of equations if we are interested in preserving a considerable amount of
parameters.

5.2.4 Building the analog simulation model

This section explains how the analog abstracted macro-blocks are recombined to
create the C++ model ready to simulate.

Each abstracted macro-block is a C++ class containing: both fault-free and faulty
behaviors, the procedures for switching between the two, and the procedures re-
quired to update the WR interfaces. Each C++ simulation model inherits from the
interface class shown in Listing 5.4, which provides the two functions, process and
update_interfaces. The former is called at each simulation step and receives as pa-
rameter the size of the simulation step. The latter function is called when all the
processes have advanced by one simulation step, and retrieves the internal values
required to update the WR interfaces. During a single simulation step, the simula-
tor iterates through all the components and calls their process function, then it does

128 5 Fault modeling and injection

Listing 5.5: The process function of the inverter written in C++ instrumented with the switch
statement for fault simulation.

1 // Injection control variables.
2 uint32_t instance_number = 0UL;
3 uint32_t fault_number = 0UL;
4
5 void Inverter::process(double ts)
6 {
7 // Switching point evaluation.
8 x = b_a.pot;
9 x_u = tanhsw(x, vtsh_u, smth_u);

10 x_d = tanhsw(x, vtsh_d, smth_d);
11 // Perform smooth switching.
12 c0 = x_u*a_vdd_cap_low + (1-x_u)*a_vdd_cap_high;
13 c1 = x_d*a_vss_cap_low + (1-x_d)*a_vss_cap_high;
14 c2 = x_u*vdd_q_cap_low + (1-x_u)*vdd_q_cap_high;
15 c3 = x_d*vss_q_cap_low + (1-x_d)*vss_q_cap_high;
16 r0 = x_u*vdd_q_res_low + (1-x_u)*vdd_q_res_high;
17 r1 = x_d*vss_q_res_low + (1-x_d)*vss_q_res_high;
18 // Components evaluation.
19 switch(((instance_number == _id) * fault_number))
20 {
21 default:
22 case 0: // Open-Circuit 1
23 b_a_vdd.pot = (*\itshape expr1*);
24 b_a_vdd.flw = (*\itshape expr2*);
25 ...
26 case 1: // Open-Circuit 2
27 case 2: // Short-Circuit 4
28 b_a_vdd.pot = (*\itshape expr3*);
29 b_a_vdd.flw = (*\itshape expr4*);
30 ...
31 case 3: // Short-Circuit 2
32 ...
33 }
34 // WRL waves evaluation.
35 b_wrl_a.pot = ...;
36 b_wrl_q.pot = ...;
37 }

the same with update_interfaces. This operation is repeated until all the components
have achieved convergence before advancing the time.

Listing 5.5 shows the code ready for fault simulation produced by the proposed
methodology applied to the inverter shown in Listing A.7. The first set of instruc-
tions performing states switching have a direct representation in C++, thus they are
identical to the Verilog-AMS. The code after line 19 is the abstracted code of the
inverter, which is explained more in details in the following paragraphs.

In this high-level description, each edge of the circuit is represented by the struc-
ture shown in Listing 5.6, which keeps track of its potential difference and flow (i.e.,
the pair of variables pot and flw respectively). Each variable which appears in List-
ing 5.5 with the prefix b_ is an edge of the circuit. During simulation these values are
updated inside the process function by evaluating the arithmetical expression pro-
duced by the abstraction. For instance, potential difference and flow of the branch
b_a_vdd are evaluated respectively at lines 23 and 24 of Listing 5.5. The voltage
waves required by the WR interfaces are calculated inside this function in the same

5.3 Network fault injection 129

Listing 5.6: High-level description of a circuit edge.

1 struct edge_t {
2 double pot, flw;
3 };

way, as shown in Listing 5.5 at lines 35 and 36. In this particular case, the inverter
required a WR interface connected to each port (i.e., a and q). At the end of each
simulation step, the update_interfaces function updates its WR interface and all the
other interconnected WR interfaces with these waves values. The complete expres-
sions are not reported in the listing, for the sake of readability they are replaced by:
expr1, expr2, etc.

An analog fault can impact on different edges of the circuit and vice versa. Thus,
the equations evaluating the potential and flow of such edges change based on the
currently active fault. During the simulation, the model’s behavior can be switched
between fault-free and faulty through the use of a switch statement, based on the
pair of global variables instance_number and fault_number. See line 19 of List-
ing 5.5 for example. These are the same variables used for the digital fault injection
shown in Section 5.1. The first variable controls which instance of a component is
currently injected and is compared against _id, which uniquely identifies a compo-
nent instance. The second variable controls which fault is currently active. During
the generation of these switch statements, if two or more cases have the same set
of expressions they are collapsed into one. This happens when multiple faults have
equivalent behavior, and as a consequence they produce the same set of equations.
This optimization can drastically reduce the number of faults that to simulate.

As specified in Section 5.2.2 the behavior of parametric faults is modeled by a
specific parameters configuration. In this particular case, the switching between dif-
ferent parametric faults is performed during the instantiation of the model, while the
process function just implements the fault-free behavior. As a result, this configura-
tion has no simulation overhead w.r.t. the fault-free version.

5.3 Network fault injection

Network fault models represent the wrong behavior of packet-based asynchronous
data transmissions. In today’s communications, information is delivered as packets,
i.e., sequences of bytes starting with a header bearing source and destination in-
dication and other essential data used by the protocol to handle the message (e.g.,
sequence number, payload type).

Packets may be subject to the following problems:

1. Delay: a packet may reach the destination later than expected;
2. Drop Sender: the packet is lost at the transmitter;
3. Drop Receiver: the packet is lost in the way to the receiver;
4. Duplicate: the packet is sent twice by the transmitter;

130 5 Fault modeling and injection

Channel

Node0 Node1 Noden

Saboteur0 Saboteur1 Saboteurn

Task0 Task1 Taskn

Network
Synthesis

Details of Nodes
and Channels

Environment
Details

Fig. 5.7: SCNSL architecture with entities for fault injection.

5. Bit-Flip: bits of the byte sequence are flipped.

Transmission delay may be due to medium access contention, waiting time in the
queues of intermediate systems (especially in case of congestions) and retransmis-
sion of lost packets if implemented by the protocol. Both network transmitter and
receiver could fail to handle the packet. This kind of fault can be due to network
congestions, a bug in the network library inside the software, or even bad or too low
performances of the microprocessor. We decided considering both cases because in
the latter case the packet is lost on the receiver side but in the meanwhile, it has oc-
cupied the channel. For similar reasons a packet which is supposedly lost, but it is
not, could be retransmitted and thus leading to a duplicate packet. Generally, a bit-
flip may be due to physical interferences on the channel, when the received signal
is too weak because of distance or obstacles, and due to multi-path fading when the
direct-path signal partially overlaps with its reflected copies.

Figure 5.7 shows the proposed architecture for the network-oriented fault simu-
lation. The proposed injection architecture is based on an extension of the SystemC
Network Simulation Library (SCNSL) [114] which provides the primitives to build
and simulate network scenarios by using SystemC and C++ [115]. The nodes rep-
resent the embedded systems involved in the networked cyber-physical system; they
interact together through a model of the communication channel. The tasks are the
active entities which produce or consume packets; they are hosted by nodes. Network
saboteurs are introduced between each task and the corresponding node by extend-
ing the Communicator interface provided by SCNSL. This results in the saboteur
being triggered each time a packet transit between the task and the channel.

The proposed methodology is an extension of the network synthesis flow pre-
sented in Chapter 4. At the end of the synthesis flow, details of nodes, channels and
the surrounding environment are used to configure the network saboteurs, e.g., their
injection probabilities. The mechanism of activation for network saboteurs is the
same used for activating digital and analog faults. Each network saboteur is identi-
fied by an unique id, which is compared against the global variable instance_number
to determine if it is currently active. While the variable fault_number controls the
type of fault that the active saboteurs must inject.

5.3 Network fault injection 131

Listing 5.7: Function used to set the Delay network fault.

1 // Define the type of the function used to generate delay values.
2 using std::function<double()> = delay_function_t;
3 // Store the object used to inject delays on transiting packets.
4 delay_function_t _delayFunction;
5 // Function used to set the saboteur delay function.
6 inline void setDelayFunction(delay_function_t fun) {
7 _delayFunction = fun;
8 }

Listing 5.8: Example of network saboteur initialization through lambdas.

1 saboteur = new Protocols::MySaboteur("saboteur", 0);
2 saboteur->setDuplicateFunction([](){
3 return 0.75;
4 });
5 saboteur->setDropReceiverFunction([](){
6 return 0.55;
7 });
8 saboteur->setBernoulliBitFlipFunction([](){
9 return 0.35;

10 });
11 saboteur->setDistanceBasedBitFlipFunction([](){
12 return 0.25;
13 });
14 saboteur->setDropSenderFunction([](){
15 return 0.15;
16 });
17 saboteur->setDelayFunction([](){
18 return 0.15;
19 });

5.3.1 Implementation of saboteurs

Each network saboteur extends the Communicator interface of SCNSL, and contains
a set of std::function object, one for each type of fault. The class std::function
is a general-purpose polymorphic function which points to a callable target (e.g.,
functions, lambda expressions, etc.). Before starting the simulation, these objects are
used to store the functions controlling the injection of network faults.

Listing 5.7 shows the lines of code used for setting up the injection of delays. In
this example, delay_function_t is a type alias declaration, it defines a synonym for
the callable object which accepts no argument and returns a value of type double.
This type is used inside the saboteur to store a copy of the callable object, namely
_delayFunction. This object is set by using the setDelayFunction function, and it
is used during the simulation to implement the desired injection policy. The same
mechanism is used to set-up all the other types of network faults.

Listing 5.8 shows the initialization of a saboteur and its injection functions. Dur-
ing the simulation setup, the saboteur stores a function pointer for each fault model,
which returns a value of type double representing either the fault rate (in case of
packet drop, packet duplication, and bit flip) or the maximum delay. The use of this
mechanism of “function pointers” instead of traditional parameters allows changing

132 5 Fault modeling and injection

the saboteur behavior even during the simulation. For instance, the probability of a
bit-flip could be related to a communication or an environmental condition which
may change during simulation (e.g., multi-path fading).

The injection functions return a value of type double between 0 and 1. Saboteurs
related to packet loss or duplication are implemented as success/unsuccess Bernoulli
stochastic processes which uses the std::bernoulli_distribution class of the standard
library of C++ 1. The delay saboteur instead, takes as input the maximum delay that
can be applied to each packet and defers the transmission of the packet for a random
delay uniformly distributed between 0 and such maximum value.

5.3.2 Bit-flip saboteur

There are two implementations of the bit-flip saboteur. The first uses the same
Bernoulli approach as for packet loss but at bit level instead of packet level. Since
this approach could lead to an excessive simulation overhead, we implemented an
alternative bit-flip saboteur that randomly computes the distance between consecu-
tive bit-flips according to the bit error rate. This approach reduces significantly the
number of calls to the random number generator for each bit. Listing 5.9 sketches
the main details of the code implementing such distance-based approach. It is called
for each packet sent by the given node.

Let bitstream be the whole sequence of bits transmitted from the sender node
to the receiver node if we ideally remove byte and packet boundaries. Given a bit
error rate B, the average distance between two consecutive errors in the bitstream is
d = 1

B . Therefore, the random number generator is called for each error we want
to generate to compute its distance from the previous error. For this purpose, the
RealRand function generates the distance value based on a uniform real distribution
from 1 to 2d. Listing B.2 shows the implementation of the RealRand function. Once
the actual distance is computed, the algorithm has to efficiently locate the bit to be
changed either in a specific byte of the current packet or in one of the following pack-
ets. The _nextError variable stores the position of the next error in the bitstream
according to the drawn distance value; its value should be preserved from one call
to the other since the next error can be outside the current packet. The _old_BER

variable is used to check if the desired bit error rate changes from one call to the
other (in that case the _nextError variable should be recomputed).

1 http://en.cppreference.com/w/cpp/numeric/random/bernoulli_distribution

Listing 5.9: Code for the distance-based bit-flip injection.

1 void MySaboteur::perform_bit_flip(Packet_t & p)
2 {
3 // Retrieve the bit error rate.
4 double new_BER = _bitErrorRateFunction();
5 // If the error rate is lower than a given threshold
6 // or higher than 1, completely skip the injection.
7 if ((new_BER < epsilon) || (new_BER > 1)) {
8 return;
9 }

10 // Retrieve the payload.
11 byte_t * payload = nullptr;
12 p->getPayload(payload);
13 // Get the size of the payload.
14 const size_t ps = p->getPayloadSizeInBytes();
15 // Check if the bit error rate has changed.
16 bool ber_changed = !is_equal(new_BER, _old_BER);
17 // Get the maximum distance between each error.
18 double distance = (1 / new_BER) - 1;
19 // If the bit_error_rate has changed, update
20 // the stored one, and re-evaluate the next-error.
21 // This will be called also at the first execution
22 // of the saboteur.
23 if(ber_changed) {
24 _old_BER = new_BER;
25 _nextError = RealRand<double>(1, 2 * distance);
26 }
27 // While the next error is inside the payload.
28 while (static_cast<size_t>(_nextError) < (ps * 8)) {
29 // Get the byte and the bit.
30 const size_t byte = size_t(_nextError) / 8;
31 const size_t bit = size_t(_nextError) % 8;
32 // Corrupt the byte.
33 toggle_bit<size_t>(payload[byte], bit);
34 // Get the next error.
35 _nextError += RealRand<double>(1, 2 * distance);
36 }
37 // Offset the next error based on the bytes of the
38 // current payload.
39 _nextError -= (ps * 8);
40 }

6

Holistic functional safety evaluation

This chapter has the purposes of evaluating both the correctness and efficiency of
the proposed fault models and show the application of the entire methodology to a
realistic Networked Cyber-Physical System (NCPS). To assess the effectiveness of
the presented methodology for the functional safety of a networked cyber-physical
system a complex case study has been developed. To exemplify the potentialities of
the proposed approach and of the holistic platform, the diagnostic coverage metric is
evaluated for each of its safety mechanism.

6.1 Case study

The proposed case study recalls a today’s scenario for smart manufacturing in which
machines of a production line are connected to a remote system that monitors their
behavior to predict possible failures and plan maintenance without out-of-order in-
tervals. The scenario is depicted in Figure 6.1 and consists of three wireless sensor
nodes attached to production machines that send the vibration information retrieved
by an accelerometer to a computation node. Each node is equipped with a MOS Tech-
nology 6502 8-bit microprocessor, 1 MB RAM, 8 KB ROM, a 3-axis accelerometer,
and a wireless interface. Once a node is powered on, a minimal bare metal kernel is
loaded from the ROM into the RAM and executed. One of the four wireless nodes
has sensibly higher capabilities and acts as data collector. A shared wireless channel
is established between each remote node and the data collector. The whole system
can be considered a networked cyber-physical system and Figure 6.1 shows its ar-
chitecture with reference to the three modeling domains, i.e., digital, analog and
network.

6.2 Injection techniques evaluation

The entire design has been abstracted and injected with the techniques described in
the previous chapters. For the digital part, two C++ versions of the injected design

136 6 Holistic functional safety evaluation

NETWORK

Sensor Node

CPU
(m6502)

Memory Watchdog

AMBA APB BUS

Network
Interface

DAC Accelerometer ADCSensor Node

CPU
(m6502)

Memory Watchdog

AMBA APB BUS

Network
Interface

DAC Accelerometer ADCSensor Node

CPU
(m6502)

Memory Watchdog

AMBA APB BUS

Network
Interface

DAC Accelerometer ADCCollector Node

CPU
(m6502)

Memory Watchdog

AMBA APB BUS

Network
Interface

DAC Accelerometer ADC

Digital Domain Analog Domain Network Domain

Fig. 6.1: Architecture of the networked cyber-physical system.

are generated, one for the instrumentation with functions and one with bitwise oper-
ators. The total number of digital faults injected in every version is 4151, among 536
mutation locations found. For what concerns the analog component, the accelerom-
eter has been injected using controlled current sources which model a current spike
(e.g., alpha particles hitting sensible nodes). In this case, the total number of injected
analog faults is 50. The network part instead, counts a total of 36 faults. There are
6 network fault models, i.e., 12 faults for each bidirectional connection. The total
number of faults is 4237.

6.2.1 Network saboteurs

Three tests have been designed to evaluate the network saboteurs.
The first test aims at evaluating the actual behavior of the implementation of

the proposed network saboteurs. Injection data have been retrieved in a simulation
involving the transmission of 10,000 packets. The initialization parameters of List-
ing 5.8 have been used. For instance, the probability for a packet to be lost by the
sender is 0.15, the probability for a packet to be lost by the receiver is 0.55, the max-
imum applicable delay is 0.15 seconds and so forth. Results are shown in Figure 6.2.
Resulting fault rate values are reported with reference to the vertical scale on the left
while resulting delay values (i.e., pentagon marks) refer to the vertical scale on the
right. The trend lines show that the mean fault rate values match the fault probability
values used during initialization and the mean delay is about 0.075 seconds, exactly

6.2 Injection techniques evaluation 137

Fig. 6.2: Actual injection behavior for various network saboteurs.

half of the maximum delay used during initialization. Furthermore, the comparison
between Distance-based Bit-Flip saboteur with respect to the traditional Bernoulli
Bit-Flip saboteur shows that the implementation of the former is more stable than the
latter since the actual bit errors better match the desired bit error rate with smaller
deviation.

The second test aims at evaluating the efficiency of the packet-based network
saboteurs, i.e., those that alter the timed sequence of transmitted or received packets.
The impact of this kind of saboteur on simulation time has two contributions, i.e., the
overhead of saboteur computations and the effect of the fault injection on network
simulation (e.g., packet duplication increases the number of packets to be handled by
the simulator). Since we are interested in evaluating the first contribution, in the ex-
periments we set fault rate to 0% for drop and duplication saboteur and to 0 seconds
for delay saboteur. Table 6.1 shows CPU time and overhead for each saboteur with

Table 6.1: Simulation overhead of packet-based network saboteurs.

Fault Model Time (s) Overhead (%)

Fault-Free 3.16 reference
Delay 5.26 67
Drop Sender 5.38 70
Drop Receiver 5.57 76
Duplicate 5.72 81

138 6 Holistic functional safety evaluation

respect to non-instrumented model simulation. As expected, the simulation overhead
is quite the same and equal to about 75%.

The third test concerns specifically the implementation of bit-flip injection. Fig-
ure 6.3 shows the simulation time of the two implemented techniques as a function
of the bit error rate. Non-instrumented model simulation is also reported as a refer-
ence. As expected, the traditional Bernoulli bit-flip technique has a constant overhead
since it draws the chance of injection for each bit of the packet. At low bit error rate
values, the Distance-based bit-flip method outperforms the traditional approach be-
cause it processes only the bits that need to be changed to obtain the expected bit
error rate. The overhead increases with the bit error rate to reach the one of Bernoulli
approach at 100% fault rate. Considering that 50% bit error rate can be regarded as
a reasonable upper bound in most of real scenarios; we can say that Distance-based
bit-flip technique adds a maximum overhead of about 53% which is 23% less than
Bernoulli bit-flip technique.

Fig. 6.3: Simulation overhead of the Distance-based Bit-Flip saboteur compared to Bernoulli
Bit-Flip saboteur as a function of the injected bit error rate.

6.2.2 Digital mutants

Two tests have been designed to evaluate the efficiency of digital mutants.
The first test evaluates the overhead due to the presence of mutants inside the

high-level C++ code. Two versions of the M6502 have been generated, each one
instrumented with a different injection methodology taken from Section 5.1, i.e.,
functions, and bitwise operators. Since the purpose is evaluating the injection over-
head, no fault is active during the simulation. The number of digital processes in

6.2 Injection techniques evaluation 139

Table 6.2: Simulation overhead evaluation of digital mutants.

Code Version Time (s) Overhead (%)

Fault Free (C++) 3.241 reference

Functions 5.287 63

Bitwise Operators 3.761 16

Table 6.3: Simulation times to perform digital fault analysis.

Code Version Time Speedup

Verilog (RTL) 46h 26m 31.000s 1.00

Functions 2h 57m 38.887s 15.68

Bitwise operators 2h 6m 28.854s 22.03

the M6502 abstract model is 77. Table 6.2 reports the mean execution times over
100 runs compared with the simulation time of the fault-free version of the micropro-
cessor. As expected, using bitwise operators and compile-time optimized constructs
(macros and inline functions) provide higher performance than using the approach
with function calls. In that it introduces a negligible degradation with respect to the
non-instrumented model.

The second test evaluates the efficiency of the C++ digital fault injection w.r.t.
the original Verilog injection at Register-Transfer Level (RTL). In this scenario, the
execution of the fault-free platform is compared with the faulty one to determine the
presence of faults. The faulty design description executes the workload once for each
fault and enables one mutant per time. During the execution the values of output ports
are compared after each clock cycle. If a difference is found, the execution of the
workload for that mutant is stopped and the fault is considered as tested (or killed).
If the execution ends with no difference on the output ports, the fault is regarded
as untested (or alive). The execution times are reported in Table 6.3. The values
highlight that the approach with bitwise operators performs better than the approach
with functions.

6.2.3 Analog faults

Two tests have been designed to evaluate the analog fault injection technique.
The first test aims at evaluating the simulation efficiency and instrumentation

overhead of the methodology on a set of nine benchmarks taken from Chapter 2.
Table 6.4 reports the simulation time required by Questa-ADMS and the proposed
framework for simulating a fault-free description, a faulty version with no active fault
and a simulation of all the injected faults. For the faulty version with no active fault
we have reported the overhead introduced by the manipulation, both in the original
code and in the abstracted one. The results report the simulation time required to

140 6 Holistic functional safety evaluation

Table 6.4: Execution times of fault-free, single injected and all faults benchmarks.

Verilog-AMS Testing Framework – C++

Fault Free No Active Fault All Faults Fault Free No Active Fault All Faults

Benchmark time (s) time (s) over (%) time (s) time (s) time (s) over (%) speed-up (x) time (s) speed-up (x)

RC1 5,046.72 5,487.12 8.73 5,523.44 4.87 5.91 21.36 928.45 5.87 940.96
IN2 5,028.54 5,828.67 15.91 11,561.44 4.46 5.16 15.70 1,129.59 10.12 1,142.43
PIFilter 5,081.49 6,133.54 20.70 12,340.74 5.10 6.31 23.73 972.03 12.91 955.91
IN3 5,312.51 6,239.96 17.46 18,713.28 4.89 5.75 17.59 1,085.21 17.21 1,087.35
Op-Amplifier 5,741.43 6,978.23 21.54 21,159.44 4.93 5.83 18.26 1,196.95 17.81 1,188.06
RC5 5,763.95 7,408.76 28.54 37,168.75 6.56 9.28 41.46 798.36 46.78 794.54
RC10 6,704.85 9,588.87 43.01 96,220.30 13.12 23.33 77.82 411.01 236.83 406.28
RC20 8,512.29 17,453.71 105.04 330,286.14 54.31 101.78 87.41 171.48 1,879.30 175.75
Accelerometer 11,917.28 18,517.34 55.38 462,407.91 47.72 67.95 42.39 272.51 1,584.71 291.79

execute 1 second of simulated time. The executions were not halted if a fault was
detected during the simulation with all the faults.

The notable results obtained with the testing framework over the different bench-
marks emphasize the effectiveness of the proposed flow. The generated framework
is able to achieve from two to three orders of magnitude of speed-up, thus proving to
be a valuable solution for the dependability evaluation of an analog device.

The second test evaluates the efficiency of the analog fault injection technique on
the clock generator test case presented in Section 3.9.4. Also in this case we applied
the abstraction and injection methodology to the behavioral-level macro-blocks of
the clock generator. Table 6.5 reports the time required to simulate 1us in different
scenarios at all the abstraction levels. The first three scenarios refer to the fault-free
non-instrumented version of the circuit at transistor, behavioral, and functional level.
The fourth scenario shows the simulation time for the C++ instrumented version with
no active fault, while the last scenario reports the time required to iteratively simulate
all the injected faults.

Table 6.5: Simulation time required to perform a complete fault simulation of the clock gen-
erator for a total of thirty faults.

Abstraction Level Scenario Simulation Time (s)

Transistor Fault free 106.70

Behavioral Fault free 24.48

Functional Fault free 13.71

Functional Instrumented 13.96

Functional All faults 28485.16

The number of mutated components is 352, with a total of 2122 faults injected
with the proposed methodology. The simulation overhead introduced by the injection
infrastructure is around 2% for the presented case study. This value is the result of

6.3 Holistic functional safety evaluation 141

the comparison between the simulation time for the fault-free and the instrumented
C++ version shown in Table 6.5. Thanks to this negligible overhead the gain with
respect to both the behavioral and the transistor-level version is preserved. This work
does not directly address the problem of simulating parametric faults, however, the
remarkable simulation performances can be used to test a great number of deviations
of designs parameters.

6.3 Holistic functional safety evaluation

The purpose of this section is to show an example scenario where the proposed in-
jection methodology could be used effectively. It is a typical example of diagnostic
coverage metric evaluation, where a designer is interested in evaluating the effective-
ness of safety mechanisms.
The safety mechanisms implemented for this architecture are the following:

• Watchdog – It checks if the CPU executes the workload in a fixed number of
clock cycles. It consists of a counter with two input signals: en that enables the
counter and reset that sets the counter to 0. An expired signal is raised by the
watchdog when the counter reaches the fixed number of clock cycles.

• Software (Power On Self Tests (POST)) – It checks if the CPU, ALU and registers
are functioning correctly by executing a series of operations (e.g., function calls,
arithmetical operations, control statements). The outcome of each operation is
compared with a reference value known a priori. If the POST sequence succeeds,
then the variable test_cpu is set to 1, otherwise it is set to 0. The last instruction
of the software, before the return statement, is an assignment of the value 1 to
the variable end_test.

• Software (Network) – It checks if the connection between the central and remote
nodes has been established and works correctly. It is executed after the POST.
The central node sends a predefined sequence of values to the remote ones. A
remote node receives the sequence, sums the values and sends the result to the
central node. The central node checks if the received sums are correct. As such,
the central node is able to determine malfunctioning connections. All the nodes
set the variable test_network to 1 if the test is successful.

• Software (Analog) – Through an A/D interface, the software checks whether the
accelerometer is behaving correctly or not. This test is designed as a Mixed-
Signal Built-In Self-Test (MS-BIST). First, the accelerometer is isolated from
the external physical environment. Then, a series of predefined stimuli (stored
inside the ROM) are provided to it. The response of the accelerometer is checked
for the presence of faults (e.g., overshooting, ringing, noise) by means of an
analog-to-digital conversion and a specific software code. If the test succeeds,
then the variable test_analog is set to 1.

The watchdog is written in RTL Verilog and it has been abstracted along with the rest
of the platform to the functional-level. The hardware failure mode is detected if and
only if the watchdog raises the signal expired. In order to detect faults activated

142 6 Holistic functional safety evaluation

by using POST testbench checks the values written on the RAM. In details, if the
end_test value is written and the test_cpu variable has value 0, then the software
failure mode is detected. Otherwise if the test_cpu variable has value 1 at the end
of the execution, then the injected fault did not affect that failure mode.

To detect network faults, the testbench checks the value of test_network. Sim-
ilarly to the digital failure mode, if end_test value is written and the test_network
variable has value 0, then the network fault is considered as detected.

Analog faults are detected whenever the values of the accelerometer differ from
the pre-calculated ones. If end_test value is written and the test_analog variable
has value 0, then the analog fault is considered as detected.

Before analyzing the diagnostic coverage evaluation, and the simulation results,
let us clarify the meaning and purpose of a safety mechanism in the context of a
holistic platform. Let us consider the POST, which is a safety mechanisms targeting
specifically faults inside the CPU. By construction the POST is executed by using
values stored inside the ROM and relies only on components belonging to the CPU.
As a consequence, the faults that are considered potentially detectable by this mech-
anism are only those inside the CPU. Instead, if the POST executes operations with
the support of an external Floating-Point Unit (FPU) (e.g., for efficiency reasons), the
faults that are considered potentially detectable by this mechanism are those inside
the CPU plus those in the FPU. The same reasoning can be applied to the scenario
with the MS-BIST, where the CPU interacts with the accelerometer to test its cor-
rectness. Also in this case the mechanism could potentially detect faults inside both
the CPU and the accelerometer, not only those inside the latter. So the nature of a
safety mechanisms is related to the components which influence its evaluation, i.e.,
functional safety metrics.

Let us now introduce the set of variables we require for the diagnostic coverage
evaluation as formalized in the standard IEC 61508 [116]. For the purpose of this
experiment we focus on the total number of:

λdd = “dangerous” detectable failures

λdu = “dangerous” undetectable failures

λd = “dangerous” failures

where λd is the sum of the first two:

λd = λdd + λdu

The original IEC 61508 document also defines the number of “safe” failures repre-
sented by the variable λs, which are not in the scope of this work. The formula used
to evaluate the diagnostic coverage is defined as a percentage as follows:

DC% =
λdd
λd
× 100

In the proposed case study there are a total of four safety mechanisms making up
our entire safety system. The following set of variables identify the number of faults
flagged by each safety mechanism (i.e., the detectable ones λdd):

6.3 Holistic functional safety evaluation 143

λWD = flagged by Watchdog = 1641

λPOST = flagged by POST = 22

λMSBIST = flagged by MSBIST = 46

λNET = flagged by NET = 14

Each one of these safety mechanisms covers one or more components or aspects
of the holistic platforms. Let us now define a set of variables identifying the total
number of “dangerous” failures:

λdcpu = in the CPU = 4151

λdacc = in the accelrometer = 50

λdnet
= in the network = 36

We can evaluate the diagnostic coverage metrics for each safety mechanism as fol-
lows:

DCWD =
λWD

λdcpu
× 100 =

1641

4151
× 100 = 39.53%

DCPOST =
λPOST
λdcpu

× 100 =
22

4151
× 100 = 0.53%

DCMSBIST =
λMSBIST

λdcpu + λdacc

× 100 =
46

4151 + 50
× 100 = 1.09%

DCNET =
λNET

λdcpu + λdnet

× 100 =
14

4151 + 36
× 100 = 0.33%

Thanks to the holistic nature of the simulation scenario, we can use as common de-
nominator the number of faults with which the safety mechanism comes into contact.
Table 6.6 reports the comparison between the diagnostic coverage metrics evaluated
with the components in isolation and inside the holistic platform.

Table 6.6: Diagnostic coverage metric evaluated with the component in isolation and inside
the holistic platform.

Safety Mechanism Isolation Holistic Platform

DCWD 39.53% 39.53%

DCPOST 0.53% 0.53%

DCMSBIST 92.00% 1.09%

DCNET 38.88% 0.33%

The diagnostic coverage assessed using the holistic platform takes into account
all the faults that influence its evaluation, as a consequence, it is lower than the one

144 6 Holistic functional safety evaluation

evaluated with the component in isolation. This aspect will be further highlighted in
the following section, where a safety mechanism is shown that can cover multiple
components belonging to different domains.

The time required to perform the entire diagnostic coverage evaluation is 5 hours,
15 minutes and 74 seconds. The execution time is higher than the ones reported in
Table 6.3 because the simulation is not dropped when a failure mode is detected and
the workload is executed entirely for each fault.

6.3.1 Multi-domains safety assessment

The last experiment wants to highlight the effectiveness of the proposed methodol-
ogy in improving functional safety evaluation by considering multiple domains. This
scenario uses a modified version of the case study presented in Section 6.3. A new
safety mechanism is introduced which merges analog and network tests. The remote
nodes do not store the stimuli for the accelerometer inside the ROM, but instead, they
receive them through the network connection from the central node. After POST the
remote nodes receive the stimuli and apply them to the accelerometer. Then, they
read the values from the accelerometer and return the samples to the central node
which checks the correct behavior of the analog component. Centralized checking of
all the analog components could be an interesting solution for decreasing the soft-
ware and hardware complexity of remote nodes and thus their cost.

With this scenario, a network fault could lead not only to a faulty or missing
network connection but also to wrong analog test sequences which can compromise
the functional safety evaluation. Simulating this scenario with the holistic platform
showed that a series of bit-flip faults which were not detected by the network tests
led to a wrong set of stimuli for the accelerometer. Consequently, the analog safety
mechanism detected anomalies in the accelerometer’s behavior and raised the error
flag. The number of faults flagged by this multi-domain safety mechanism is identi-
fied by the variable:

λMD = flagged by multi-domain mechanism = 81

which is used to evaluate the diagnostic coverage metric as follows:

DCMD =
λMD

λdcpu + λdnet
+ λdacc

× 100 =
81

4151 + 50 + 36
× 100 = 1.91%

The purpose of this multi-domain safety mechanism is detecting both network
and analog faults, with a greater chance w.r.t. mechanisms targeting only one of the
two domains. However, even this multi-domain approach has some drawbacks. An
anomaly could be caused by a failure either in the network or analog domain, and
consequently, it could be hard to distinguish between these two cases. Furthermore,
failures in both domains can mask each other and may not be detected at all. The
proposed holistic platform allows exploring and in some cases addressing these kind
of issues, which otherwise would require using more inefficient approaches.

7

Conclusion and suggestions for future research

To conclude this thesis, we summarize the methodologies which lead to the holis-
tic approach to functional safety for networked cyber-physical systems, and suggest
directions of future research that builds on the proposed approach.

7.1 Summary of the proposed approach

The study was set out to explore the problems related to the functional safety evalu-
ation for Networked Cyber-Physical System (NCPS). A NCPS is a system of systems
which cooperate and interact together to implement a global application or achieve
a common goal. Each separate system is a sophisticated device with computation,
communication, sensing, and actuation aspects. So we can summarize that a NCPS
is a highly heterogeneous device comprising analog and digital hardware, and net-
work capabilities. It is clear that ensuring the functional safety of such systems is
becoming an increasingly complex task.

The thesis starts from the root of all problems, i.e., the efficient simulation of
analog components. To deal with this problem, it introduces the analog abstraction
methodology, which aims at moving the complexity of simulating analog compo-
nents from simulation-time to generation-time. It proposes a mixed-signal schedul-
ing approach which aims at reducing the overhead due to the synchronization be-
tween analog and digital processes. It shows that the proposed technique can sen-
sibly reduce this overhead compared to commercial tools. Then, it introduces an
approach to transform transistor-level descriptions into state-dependent small-signal
behavioral models. This transformation allows applying the abstraction also to these
elaborate descriptions, which are commonly found in the industry. The experimental
results show that this manipulation can speed up the simulation of transistor-level
description. However, the approach is still in its infancy and there is still work that
has to be done to improve the speed up of this models. In the conclusion of this first
part, the thesis introduces a set of interfaces, which rely on lossless transmission-line
theory. These interfaces allow splitting conservative circuits which as a consequence

146 7 Conclusion and suggestions for future research

reduces the complexity of solving equations systems. Furthermore, this interfaces al-
lows the composition of already abstracted circuits, which until now was not feasible.
To conclude, this first part of the this allows generating homogeneous Cyber-Physical
System (CPS), efficiently combining analog and digital components inside the same
description, written in C++. The purpose of this set of techniques is to improve the
simulation efficiency and ease the steps that compose the design of a complex smart
device.

The second part of the thesis faces another problem, expanding the standard de-
sign flow for embedded systems to cover the communication aspects that so char-
acterize every modern smart device. This newly extended flow takes the name
of Communication-aware Design Flow and relies on a formal description of the
environment, distributed application, the tasks implementing the application, and
the data flowing between the tasks. This formal description takes the name of
Communication-aware Problem Formulation. The thesis builds upon this new for-
malism an automatic flow described as a Mixed Integer Linear Programming (MILP)
problem, which generates optimal infrastructures for networked cyber-physical sys-
tems. A study of complexity and scalability shown that the current approach belongs
to the family of NP-hard problems. Nevertheless, the main objective of this flow and
the proposed formalism is to pose the first cornerstone upon which we start building
future synthesis techniques. Experimental results shown the applicability of the flow
in two real case studies, an in-building network and a wide urban area.

The final part of the thesis exploits the previous methodologies for improving
the fault modeling and simulation in all the domains of a NCPS, i.e., analog, digital,
and network. It first extends the abstraction methodology to inject faults in analog
descriptions automatically. It provides a taxonomy of analog fault models considered
by this methodology, and for each one, it describes how they are injected and at which
level of abstraction they can be used. Then, it proposes an efficient digital fault injec-
tion methodology with a sensibly low overhead introduced by the faulty code. This
second injection method takes advantage of the compile-time optimizations enabled
by C++ language and compilers. The third methodology is built upon the network
synthesis flow and proposes an approach for the injection of network faults through
saboteurs acting as protocol layers. In this case, saboteurs configurations are auto-
matically generated based on the information provided in the communication-aware
problem formulation.
This last methodology allows building a holistic simulation platform addressing the
functional safety analysis for networked cyber-physical systems. The experimental
results shows that the three injection techniques combined with abstraction method-
ologies can sensibly improve fault simulation efficiency. Thanks to the holistic nature
of this platform, designers can analyze the correlation between safety mechanisms
and faults spanning across all the domains of networked cyber-phyisical systems.

7.2 Directions for future research 147

7.2 Directions for future research

New opportunities arise from the work of this thesis, some born thanks to limitations
of the proposed techniques, some others because of the curiosity and eagerness to
improve and explore. Follows a list of future research linked to this work, some of
which we are already under study:

• The process used to generate the behavioral models starting from transistor-level
descriptions, presented in Section 3.6, is not currently automated. We have for-
malized the steps required to achieve this goal, and automatized some of this
steps. Our preliminary study shows that we can extend this process to more
complex blocks comprising hundreds of transistors, and reduce them to these
state-dependent small-signal models.

• The waveform relaxation interface presented in Chapter 3 are a stable approach.
However, more studies are required to improve the convergence of this inter-
faces, and therefore the ability to achieve accurate behaviors with less iterations.

• The network synthesis and the formalisms presented in Chapter 4, has men-
tioned, are just the beginning. New activities are already studying how to com-
bine the MILP formulation with heuristic approaches to sensibly reduce the com-
plexity. Furthermore, the flexibility of the formulation inspired new extensions
that better capture the aspects of devices for Industry 4.0.

• The experimental results and the ability to build holistic platforms opens new op-
portunities in fields that are not directly dealt in this thesis. One of the other uses
that we are exploring is the efficient development of embedded software inside
of smart platforms (i.e., from the energy consumption point of view, the execu-
tion efficiency, ability to debug, etc.). Furthermore, there are several questions
regarding the holistic platform that we want to answer in the near future:
1. Determine if the safety mechanisms designed with the aid of the holistic

platform are more effective than those designed in isolation.
2. Opens to new speculations, i.e., to determine if there are cases in which the

correct behavior of many different components, then generates an incorrect
behavior when they are combined.

3. If it is true that correct behaviors in isolation, if put together generate some-
thing incorrect, we want to understand if it is possible to design safety mech-
anisms that can protect us from such worst cases.

Summary of the proposed innovative contributions

This chapter reports the innovative contributions to the State of the Art by the work
proposed in this thesis. The articles are grouped in three main subjects as follows:

• the first group is the analog mixed-signal multi-domain abstraction, which com-
prises both Chapter 2 and Chapter 3;

• the second group contains articles related to the synthesis for Networked Cyber-
Physical Systems, which refers to the methodology shown in Chapter 4;

• and the final group contains the articles related to the fault modeling and simu-
lation which are linked to the content of Chapter 5.

The contributions inside each group are in chronological ordered.

Analog mixed-signal multi-domain abstraction

1. E. Fraccaroli, M. Lora, S. Vinco, D. Quaglia, and F. Fummi. “Integration of
mixed-signal components into virtual platforms for holistic simulation of smart
systems.” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1586–1591, 2016, doi: 10.3850/9783981537079_0376.

2. E. Fraccaroli, M. Lora, F. Fummi, and P. Montuschi. “A fast simulation envi-
ronment for smart systems validation in presence of electromagnetic interfer-
ences.” in International Conference on Electromagnetics in Advanced Applica-
tions (ICEAA), pp. 740–743, 2016, doi: 10.1109/ICEAA.2016.7731505.

3. M. Lora, E. Fraccaroli, and F. Fummi. “Virtual prototyping of smart systems
through automatic abstraction and mixed-signal scheduling”. in Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 232–237, 2017, doi:
10.1109/ASPDAC.2017.7858325.

4. E. Fraccaroli, M. Lora, and F. Fummi. “Automatic abstraction of multi-discipline
analog models for efficient functional simulation.” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 662–665, 2017, doi:
10.23919/DATE.2017.7927072.

150 7 Conclusion and suggestions for future research

5. M. Lora, S. Vinco, E. Fraccaroli, D. Quaglia, and F. Fummi “Analog Models
Manipulation for Effective Integration in Smart System Virtual Platforms.” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 37, no. 2, pp. 378–391, 2017, doi: 10.1109/TCAD.2017.2705129.

6. S. Centomo, M. Panato, E. Fraccaroli, and F. Fummi. “From Multi-Level to
Abstract-Based Simulation of a Production Line.” accepted to be published in
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
1–6, 2019.

7. E. Fraccaroli, M. Lora, and F. Fummi “Automatic Generation of Analog-Mixed
Signal Multi-Discipline Virtual Platforms.” under submission to IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems.

Synthesis for Networked Cyber-Physical Systems

8. C. Barnes, J. Cottin, D. Quaglia, E. Fraccaroli, A. Pegatoquet, F. Verdier, and S.
Angeleri. “Network-aware virtual platform for the verification of embedded soft-
ware for communications.” in Euromicro Conference on Digital System Design
(DSD), pp. 518–525, 2015, doi: 10.1109/DSD.2015.110.

9. Enrico Fraccaroli, Francesco Stefanni, Romeo Rizzi, Davide Quaglia, and
Franco Fummi. “Network Synthesis for Distributed Embedded Systems.” in
IEEE Transactions on Computers, vol. 67, no. 9, pp. 1315–1330, 2018, doi:
10.1109/TC.2018.2812797.

Fault modeling and simulation

10. E. Fraccaroli and F. Fummi. “Analog fault testing through abstraction.” in De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp.
270–273, doi: 10.23919/DATE.2017.7926996.

11. E. Fraccaroli, L. Piccolboni, and F. Fummi. “A homogeneous framework for
AMS languages instrumentation, abstraction and simulation.” in IEEE European
Test Symposium (ETS), 2017, pp. 1–2, doi: 10.1109/ETS.2017.7968212.

12. E. Fraccaroli, F. Stefanni, F. Fummi, and M. Zwolinski. “Fault Analysis in
Analog Circuits through Language Manipulation and Abstraction.” in Forum
on specification & Design Languages (FDL), 2017, pp. 1–7,
doi: 10.1109/FDL.2017.8303890.

13. E. Fraccaroli, D. Quaglia, and F. Fummi. “Simulation-based holistic functional
safety assessment for networked cyber-physical systems.” in Forum on specifi-
cation & Design Languages (FDL), 2018, pp. 5–16,
doi: 10.1109/FDL.2018.8524050.

14. E. Fraccaroli and D. Quaglia. “Efficient simulation of faults in networked cyber-
physical systems.” in Design of Circuits and Integrated Systems (DCIS), 2018,
pp. 1–6.

7.2 Directions for future research 151

15. R. Gillon, E. Fraccaroli, and F. Fummi. “An Efficient Analog Fault-injection
Flow Harnessing the Power of Abstraction.” accepted to be published in De-
sign and Verification Conference (DVCon) and Exhibition United States (US),
pp. 1–6, 2019.

16. E. Fraccaroli, G. Renaud, and F. Fummi “Physical-Aware Functional-Level
Fault Simulation for Safety Analysis.” under submission to IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems.

References

1. L. Scheffer, L. Lavagno, and G. Martin, EDA for IC Implementation, Circuit Design,
and Process Technology. CRC Taylor & Francis, 2006.

2. S. Vinco and C. Pilato, “Editorial: Special Issue on Innovative Design Methods for Smart
Embedded Systems,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 15, no. 2, 2016.

3. S. G. Vijay K. Varadan, K. J. Vinoy, Smart material systems and MEMS: design and
development strategies. John Wiley and Sons, 2006.

4. M. Grosso, F. Cenni, G. Gangemi, S. Rinaudo, M. Crepaldi, A. Sanginario, and D. De-
marchi, “Enabling Smart System design with the SMAC Platform,” in Proc. of IEEE
DTIP 2015, 2015, pp. 1–6.

5. F. Fummi, M. Lora, F. Stefanni, D. Trachanis, J. Vanhese, and S. Vinco, “Moving
from Co-Simulation to Simulation for Effective Smart Systems Design,” in Proc. of
the IEEE/ACM Design, Automation & Test in Europe Conference & Exhibition (DATE),
2014, pp. 1–4.

6. S. Vinco, M. Lora, V. Guarnieri, J. Vanhese, D. Trachanis, and F. Fummi, “Design Do-
mains and Abstraction Levels for Effective Smart System Simulation,” in Smart Systems
Integration and Simulation. Springer, 2016, ch. 3, pp. 23–54.

7. Imperas Software, “Ovp - open virtual platforms,” . [Online]. Available:
http://www.ovpworld.org

8. Cadence, “Virtual System Platform.” [Online]. Available: https://www.cadence.
com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/
software-driven-verification/virtual-system-platform.html

9. Synopsys, “Platform Architect.” [Online]. Available: https://www.synopsys.com/
verification/virtual-prototyping/platform-architect.html

10. Accellera, “Verilog-AMS Language Reference Manual,” . [Online]. Available:
https://www.accellera.org/downloads/standards/v-ams

11. F. Pêcheux, C. Lallement, and A. Vachoux, “VHDL-AMS and Verilog-AMS as
alternative hardware description languages for efficient modeling of multidiscipline
systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 24, no. 2, pp. 204–225, feb 2005. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1386377

12. Accellera, “SystemC-AMS Language Reference Manual.” [Online]. Avail-
able: https://www.accellera.org/images/downloads/standards/systemc/SystemC_AMS_
2_0_LRM.pdf

http://www.ovpworld.org
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/software-driven-verification/virtual-system-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/software-driven-verification/virtual-system-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/software-driven-verification/virtual-system-platform.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.accellera.org/downloads/standards/v-ams
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1386377
https://www.accellera.org/images/downloads/standards/systemc/SystemC_AMS_2_0_LRM.pdf
https://www.accellera.org/images/downloads/standards/systemc/SystemC_AMS_2_0_LRM.pdf

154 References

13. L. W. Nagel and D. O. Pederson, SPICE: Simulation program with integrated circuit
emphasis. Electronics Research Laboratory, College of Engineering, University of
California, 1973.

14. S. Vinco, M. Lora, and M. Zwolinski, “Conservative Behavioural Modelling in
SystemC-AMS,” in Proc. of ECSI/IEEE Forum on Specification & Design Languages
2015 (FDL 15), 2015, pp. 1–8.

15. Mentor Graphics, “Questa Advanced Simulator.” [Online]. Available: https://www.
mentor.com/products/fv/questa/

16. M. Alassir, J. Denoulet, O. Romain, and P. Garda, “Modeling I2C Communication Be-
tween SoCs with SystemC-AMS,” in Proc. of IEEE ISIE 2007, 2007, pp. 1412–1417.

17. Z. Chen, Y. Wang, L. Liao, Y. Zhang, A. Aytac, J. H. Muller, R. Wunderlich, and
S. Heinen, “A SystemC Virtual Prototyping based methodology for multi-standard SoC
functional verification,” in Proc. of IEEE/ACM DAC 2014. IEEE, 2014, pp. 1–6.

18. F. Cenni, S. Scotti, and E. Simeu, “Behavioral modeling of a CMOS video sensor plat-
form using SystemC AMS/TLM,” in Proc. of IEEE Forum on Specification and Design
Languages (FDL), 2011, 2011, pp. 1–6.

19. S. Hoelldampf, H. Lee, D. Zaum, M. Olbrich, and E. Barke, “Efficient generation of
analog circuit models for accelerated mixed-signal simulation,” in Proc. of IEEE SOCC
2012, 2012, pp. 104–109.

20. H. S. L. Lee, M. Althoff, S. Hoelldampf, M. Olbrich, and E. Barke, “Automated gener-
ation of hybrid system models for reachability analysis of nonlinear analog circuits,” in
Proc. of the Asia and South Pacific Design Automation Conference (ASP-DAC), 2015,
pp. 725–730.

21. A. V. Karthik, S. Ray, P. Nuzzo, A. Mishchenko, R. Brayton, and J. Roychowdhury,
“ABCD-NL: Approximating continuous non-linear dynamical systems using purely
boolean models for analog/mixed-signal verification,” in Proc. of the Asia and South
Pacific Design Automation Conference (ASP-DAC), 2014, pp. 250–255.

22. H. Aridhi, M. H. Zaki, and S. Tahar, “Towards improving simulation of analog circuits
using model order reduction,” in Proc. of the IEEE/ACM Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2012, pp. 1337–1342.

23. A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: Passive reduced-order intercon-
nect macromodeling algorithm,” in Proc. of IEEE/ACM DAC 1997, 1997, pp. 58–65.

24. H. Liu, L. Daniel, and N. Wong, “Model reduction and simulation of nonlinear circuits
via tensor decomposition,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 34, no. 7, pp. 1059–1069, 2015.

25. P. Li and L. T. Pileggi, “Compact reduced-order modeling of weakly nonlinear analog
and RF circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 24, no. 2, pp. 184–203, 2005.

26. P. Benner, “Solving large-scale control problems,” IEEE Control Systems, vol. 24, no. 1,
pp. 44–59, 2004.

27. R. Sommer, T. Halfmann, and J. Broz, “Automated behavioral modeling and analyti-
cal model-order reduction by application of symbolic circuit analysis for multi-physical
systems,” Elsevier Simulation Modelling Practice and Theory, vol. 16, no. 8, pp. 1024–
1039, 2008.

28. C. Bauer, A. Frink, and R. Kreckel, “Introduction to the GiNaC Framework for Symbolic
Computation within the C++ Programming Language,” Elsevier JSC, vol. 33, no. 1, pp.
1 – 12, 2002.

29. Coventor, Inc., “MEMS+: MEMS Simulation Software.” [Online]. Available:
https://www.coventor.com/mems-solutions/products/mems-plus-overview/

https://www.mentor.com/products/fv/questa/
https://www.mentor.com/products/fv/questa/
https://www.coventor.com/mems-solutions/products/mems-plus-overview/

References 155

30. P. Schneider, C. Bayer, K. Einwich, and A. Kohler, “System level simulation - A core
method for efficient design of MEMS and mechatronic systems,” in Proc. of IEEE SSD
2012, 2012, pp. 1–6.

31. P. Feldmann and R. Rohrer, “Proof of the number of independent Kirchhoff equations in
an electrical circuit,” IEEE Transactions on Circuits and Systems (TCAS), vol. 38, no. 7,
pp. 681–684, 1991.

32. V. Belevitch, “Summary of the History of Circuit Theory,” Proc. of the IRE, vol. 50,
no. 5, pp. 848–855, 1962.

33. N. Bombieri, M. Ferrari, F. Fummi et al., “HIFSuite: tools for HDL code conversion and
manipulation,” EURASIP Journal on Embedded Systems, pp. 1–20, 2010.

34. G. G. Gielen and R. A. Rutenbar, “Computer-aided design of analog and mixed-signal
integrated circuits,” Proc. of the IEEE, vol. 88, no. 12, pp. 1825–1854, 2000.

35. G. Akhras, “Smart materials and smart systems for the future,” Canadian Military Jour-
nal, vol. 1, no. 3, pp. 25–31, 2000.

36. M. Gad-el Hak, The MEMS handbook. CRC press, 2001.
37. M. Lora, S. Vinco, and F. Fummi, “A unifying flow to ease smart systems integration,”

in High Level Design Validation and Test Workshop (HLDVT), 2016 IEEE International.
IEEE, 2016, pp. 113–120.

38. S. Vinco, V. Guarnieri, and F. Fummi, “Code Manipulation for Virtual Platform Integra-
tion,” IEEE Transactions on Computers, 2015.

39. M. Barnasconi et al., “SystemC AMS extensions user’s guide,” Accellera Systems Ini-
tiative, vol. 8, pp. 14–72, 2010.

40. I. Blanco et al., “Smart system case studies,” in Smart Systems Integration and Simula-
tion. Springer, 2016, pp. 195–227.

41. C. B. Aoun et al., “Pre-simulation elaboration of heterogeneous systems: The SystemC
multi-disciplinary virtual prototyping approach,” in 2015 International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS).
IEEE, jul 2015, pp. 278–285. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7363686

42. K. Kundert, The designer’s guide to Verilog-AMS. Springer Science & Business Media,
2004.

43. N. J. Godambe and C. J. Shi, “Behavioral Level Noise Modeling and Jitter Simulation
of Phase-Locked Loops with Faults Using VHDL-AMS,” Journal of Electronic Testing:
Theory and Applications (JETTA), vol. 13, no. 1, pp. 7–17, 1998.

44. F. M and B. Z, “Fault Diagnosis in Analog Circuits via Symbolic Analysis Techniques,”
in Analog Circuits. InTech, jan 2013, pp. 237–261.

45. M. Shokouhifar and A. Jalali, “An evolutionary-based methodology for symbolic sim-
plification of analog circuits using genetic algorithm and simulated annealing,” Expert
Systems with Applications, vol. 42, no. 3, pp. 1189–1201, feb 2015.

46. M. L. Crow and M. D. Ilić, “The Waveform Relaxation method for systems of differ-
ential/algebraic equations,” Mathematical and Computer Modelling, vol. 19, no. 12, pp.
67–84, jun 1994.

47. P. Saviz and O. Wing, “Circuit Simulation by Hierarchical Waveform Relaxation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 12, no. 6, pp. 845–860, jun 1993.

48. W. Beyene, “Applications of Multilinear and Waveform Relaxation Methods for Effi-
cient Simulation of Interconnect-Dominated Nonlinear Networks,” IEEE Transactions
on Advanced Packaging, vol. 31, no. 3, pp. 637–648, aug 2008.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7363686
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7363686

156 References

49. R. Gillon and N. Bombieri, “D3.2.2 Final Multi-Level Models for Digital Components
and Subsystems Public Summary,” Smart Components & Smart Systems Integration
Consortium, Tech. Rep., 2015.

50. M. J. Schubert, “An analog-node model for VHDL-Based simulation of RF integrated
circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 12,
pp. 2717–2727, dec 2009.

51. R. Drath and A. Horch, “Industrie 4.0: Hit or hype? [industry forum],” IEEE Industrial
Electronics Magazine, vol. 8, no. 2, pp. 56–58, jun 2014.

52. S. Centomo, M. Panato, and F. Fummi, “Cyber-physical systems integration in a produc-
tion line simulator,” in 2018 IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC). IEEE, oct 2018.

53. J. Vachalek, L. Bartalsky, O. Rovny, D. Sismisova, M. Morhac, and M. Loksik, “The
digital twin of an industrial production line within the industry 4.0 concept,” in 2017
21st International Conference on Process Control (PC). IEEE, jun 2017.

54. D. Mourtzis, M. Doukas, and D. Bernidaki, “Simulation in manufacturing: Review and
challenges,” Procedia CIRP, vol. 25, pp. 213–229, 2014.

55. “Simulation software survey,” 2017. [Online]. Available: https://www.informs.org/
ORMS-Today/OR-MS-Today-Software-Surveys/Simulation-Software-Survey

56. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the Inter-
net of Things,” in Proc. of the Workshop on Mobile Cloud Computing, 2012, pp. 13–16.

57. T. Savolainen, J. Soininen, and B. Silverajan, “IPv6 addressing strategies for IoT,” IEEE
Sensors Journal, vol. 13, no. 10, pp. 3511–3519, 2013.

58. M. Li, Z. Yang, and Y. Liu, “Sea depth measurement with restricted floating sensors,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 13, no. 1, pp. 1–21,
aug 2013.

59. N. Bombieri, F. Fummi, and D. Quaglia, “System/network design-space exploration
based on TLM for networked embedded systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 9, no. 4, pp. 1–32, mar 2010.

60. P. Sayyah, M. T. Lazarescu, S. Bocchio, E. Ebeid, G. Palermo, D. Quaglia, A. Rosti, and
L. Lavagno, “Virtual platform-based design space exploration of power-efficient dis-
tributed embedded applications,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 14, no. 3, pp. 49:1–49:25, Apr. 2015.

61. K. Tsilipanos, I. Neokosmidis, and D. Varoutas, “A system of systems framework for the
reliability assessment of telecommunications networks,” IEEE Systems Journal, vol. 7,
no. 1, pp. 114–124, 2013.

62. F. Fummi, G. Lovato, D. Quaglia, and F. Stefanni, “Modeling of communication in-
frastructure for design-space exploration,” in Proc. of Forum on Specification & Design
Languages, Sep. 2010, pp. 1–6.

63. E. Ebeid, F. Fummi, and D. Quaglia, “Model-driven design of network aspects of dis-
tributed embedded systems,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), vol. 34, no. 4, pp. 603–614, Apr. 2015.

64. Object Management Group, “MARTE,” . [Online]. Available: http://www.omgmarte.
org

65. ——, “Unified Modeling Language,” . [Online]. Available: http://www.uml.org
66. ——, “SysML,” . [Online]. Available: http://www.sysml.org
67. The MathWorks, Inc., “Simulink,” . [Online]. Available: http://www.mathworks.com/

products/simulink/
68. ——, “Stateflow,” . [Online]. Available: http://www.mathworks.com/products/

stateflow/

https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Simulation-Software-Survey
https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Simulation-Software-Survey
http://www.omgmarte.org
http://www.omgmarte.org
http://www.uml.org
http://www.sysml.org
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/stateflow/

References 157

69. Center for Hybrid and Embedded Software System, “Ptolemy,” . [Online]. Available:
http://ptolemy.eecs.berkeley.edu/index.htm

70. G. Kahn, “The semantics of a simple language for parallel programming,” Information
Processing, pp. 471–475, 1974.

71. “IEEE standard for standard SystemC language reference manual,” IEEE Std 1666-2011
(Revision of IEEE Std 1666-2005), pp. 1–638, Jan 2012.

72. Transaction Level Modeling Working Group, “OSCI TLM 2.0,” . [Online]. Available:
http://www.systemc.org

73. Center for Embedded and Computer Systems, “SpecC,” . [Online]. Available:
http://cecs.uci.edu/~{}specc/

74. A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-Vincentelli,
A. Simalatsar, and Q. Zhu, “metroii: A design environment for cyber-physical systems,”
ACM Trans. Embed. Comput. Syst., vol. 12, no. 1s, pp. 49:1–49:31, Mar. 2013. [Online].
Available: http://doi.acm.org/10.1145/2435227.2435245

75. A. Bakshi and V. Prasanna, “Algorithm design and synthesis for wireless sensor net-
works,” in Proc. of Int. Conf. on Parallel Processing, 2004, pp. 423–430 vol.1.

76. A. Bonivento, L. P. Carloni, and A. Sangiovanni-Vincentelli, “Platform-based design of
wireless sensor networks for industrial applications,” in Proc. of the Design Automation
& Test in Europe Conference, 2006, pp. 1103–1107.

77. L. Mottola, A. Pathak, A. Bakshi, V. K. Prasanna, and G. P. Picco, “Enabling scope-
based interactions in sensor network macroprogramming,” in Proc. of IEEE Int. Conf.
on Mobile Adhoc and Sensor Systems, 2007, pp. 1–9.

78. A. Puggelli, M. M. R. Mozumdar, L. Lavagno, and A. L. Sangiovanni-Vincentelli,
“Routing-aware design of indoor wireless sensor networks using an interactive tool,”
IEEE Systems Journal, vol. 9, no. 3, pp. 717–727, Sep. 2015.

79. A. Pinto, M. D’Angelo, C. Fischione, E. Scholte, and A. Sangiovanni-Vincentelli, “Syn-
thesis of embedded networks for building automation and control,” in Proc. of the Amer-
ican Control Conference, Jun. 2008, pp. 920–925.

80. G. Gogniat, M. Auguin, L. Bianco, and A. Pegatoquet, “Communication synthesis and
HW/SW integration for embedded system design,” in Proc. of the 6th Int. Workshop on
Hardware/Software Codesign, 1998, pp. 49–53.

81. L. Benini and G. De Micheli, Networks on Chips: Technology and Tools. Elsevier,
2006.

82. E. Zahavi, I. Cidon, and A. Kolodny, “Gana: A novel low-cost conflict-free NoC archi-
tecture,” ACM Transactions on Embedded Computing Systems (TECS), vol. 12, no. 4,
pp. 109:1–109:20, Jun. 2013.

83. C. Seiculescu, D. Rahmati, S. Murali, H. Sarbazi-Azad, L. Benini, and G. De Micheli,
“Designing best effort networks-on-chip to meet hard latency constraints,” ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 12, no. 4, p. 1, Jun. 2013.

84. A. Agarwal, B. Raton, C. Iskander, H.-t. Multisystems, and R. Shankar, “Survey of net-
work on chip (NoC) architectures & contributions,” in Networks, vol. 3, no. 1, 2009.

85. U. Y. Ogras and R. Marculescu, “Energy- and performance-driven NoC communication
architecture synthesis using a decomposition approach,” in Proc. of the Design Automa-
tion & Test in Europe Conference, 2005, pp. 352–357.

86. C. E. Rhee, H. Y. Jeong, and S. Ha, “Many-to-many core-switch mapping in 2-D mesh
NoC architectures,” in Proc. of IEEE Int. Conf. on Computer Design: VLSI in Computers
and Processors, 2004, pp. 438–443.

87. C. W. Lin, L. Rao, P. Giusto, J. D’Ambrosio, and A. L. Sangiovanni-Vincentelli, “Effi-
cient wire routing and wire sizing for weight minimization of automotive systems,” IEEE

http://ptolemy.eecs.berkeley.edu/index.htm
http://www.systemc.org
http://cecs.uci.edu/~{}specc/
http://doi.acm.org/10.1145/2435227.2435245

158 References

Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 34, no. 11, pp. 1730–1741, Nov. 2015.

88. S. Xu, R. Kumar, and A. Pinto, “Correct-by-construction and optimal synthesis of
beacon-enabled ZigBee network,” IEEE Trans. on Automation Science and Engineer-
ing, vol. 10, no. 1, pp. 137–144, Jan. 2013.

89. Y.-X. Zhang, K. Takahashi, N. Shiratori, and S. Noguchi, “An interactive protocol syn-
thesis algorithm using a global state transition graph,” IEEE Transactions on Software
Engineering (TSE), vol. 14, no. 3, pp. 394–404, Mar. 1988.

90. A. Khoumsi, R. Dssouli, and G. V. Bochmann, “Protocol synthesis for real-time appli-
cations,” in Proc. of Joint Int. Conf. on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE XII) and Protocol Specification, Testing
and Verification (PSTV XIX), 1999, pp. 417–433.

91. H. Yamaguchi, K. Okano, T. Higashino, and K. Taniguchi, “Protocol synthesis from time
Petri net based service specifications,” in Proc. Int. Conf. on Parallel and Distributed
Systems, Dec. 1997, pp. 236–243.

92. R. L. Probert and K. Saleh, “Synthesis of communication protocols: Survey and assess-
ment,” IEEE Transactions on Computers (TC), vol. 40, no. 4, pp. 468–476, Apr. 1991.

93. P. V. Eijk and J. Schot, “An exercise in protocol synthesis,” in Formal Description Tech-
niques IV. North-Holland, 1991, pp. 117–131.

94. T. A. Gonsalves and F. A. Tobagi, “Comparative performance of voice/data local area
networks,” IEEE Journal on Selected Areas in Communications, vol. 7, no. 5, pp. 657–
669, Jun. 1989.

95. A. Luntovskyy and A. Schill, “Functionality of wireless network design tools,” in Proc.
of 19th Int. Crimean Conference Microwave Telecommunication Technology, Sep. 2009,
pp. 343–345.

96. Z. Kaleem, T. M. Yoon, and C. Lee, “Energy efficient outdoor light monitoring and
control architecture using embedded system,” IEEE Embedded Systems Letters, vol. 8,
no. 1, pp. 18–21, Mar. 2016.

97. K. Das, P. Zand, and P. Havinga, “Industrial wireless monitoring with energy-harvesting
devices,” IEEE Internet Computing, vol. 21, no. 1, pp. 12–20, Jan 2017.

98. Y. Y. Chen, C. H. Hsu, and K. L. Leu, “SoC-level risk assessment using FMEA approach
in system design with systemC,” in Proc. of IEEE SIES 2009, 2009, pp. 82–89.

99. A. Sherer, J. Rose, and R. Oddone, “Ensuring functional safety compliance for ISO
26262,” in Proc. of IEEE/ACM DAC 2015, 2015, pp. 1–3.

100. R. Weissnegger, C. Kreiner, M. Pistauer, K. Römer, and C. Steger, “Sharc - simulation
and verification of hierarchical embedded microelectronic systems,” Procedia Computer
Science, vol. 109, pp. 392–399, 2017, 8th International Conference on Ambient Sys-
tems, Networks and Technologies, ANT-2017 and the 7th International Conference on
Sustainable Energy Information Technology, SEIT 2017, 16-19 May 2017, Madeira,
Portugal.

101. A. Fin and F. Fummi, “A VHDL error simulator for functional test generation,” in
Proc. of the IEEE/ACM Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), 2000, pp. 390–395.

102. R. Mariani, G. Boschi, and F. Colucci, “Using an innovative SoC-level FMEA method-
ology to design in compliance with IEC61508,” in Proc. of the IEEE/ACM Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), apr 2007, pp. 492–497.

103. M. Soma, “Challenges in analog and mixed-signal fault models,” IEEE Circuits and
Devices Magazine, vol. 12, no. 1, pp. 16–19, 1996.

References 159

104. N. Bombieri, F. Fummi, and V. Guarnieri, “FAST: An RTL fault simulation framework
based on RTL-To-TLM abstraction,” Journal of Electronic Testing: Theory and Appli-
cations (JETTA), vol. 28, no. 4, pp. 495–510, 2012.

105. B. Stroustrup, The C++ Programming, 1986.
106. H. T. Vierhaus, W. Meyer, and U. Glaser, “CMOS bridges and resistive transistor faults:

IDDQ versus delay effects,” in Proc. of IEEE International Test Conference - (ITC), Oct
1993, pp. 83–91.

107. J. M. Acken, “Special Applications of the Voting Model for Bridging Faults,” IEEE
Journal of Solid-State Circuits, vol. 29, no. 3, pp. 263–270, 1994.

108. Y. J. Chang, C. L. Lee, J. E. Chen, and C. Su, “Behavior-level fault model for the closed-
loop operational amplifier,” Journal of Information Science and Engineering, vol. 16,
no. 5, pp. 751–766, 2000.

109. C. Henderson, J. Soden, and C. Hawkins, “The Behavior and Testing Implications of
Cmos Ic Logic Gate Open Circuits,” Proc. International Test Conference, no. 1, pp.
302–310, 1991.

110. R. Leveugle and A. Ammari, “Early SEU Fault Injection in Digital, Analog and Mixed
Signal Circuits: A Global Flow,” in Proc. of the IEEE/ACM Design, Automation & Test
in Europe Conference & Exhibition (DATE), vol. 1. IEEE Comput. Soc, 2004, pp.
590–595.

111. S. N. Ahmadian and S. G. Miremadi, “Fault injection in mixed-signal environment
using behavioral fault modeling in Verilog-A,” in Proc. of the IEEE International
Workshop on Behavioral Modeling and Simulation, BMAS. IEEE, sep 2010, pp.
69–74. [Online]. Available: http://ieeexplore.ieee.org/document/6156601/

112. M. J. Barragan, H. G. Stratigopoulos, S. Mir, H. Le-Gall, N. Bhargava, and A. Bal, “Prac-
tical simulation flow for evaluating analog/mixed-signal test techniques,” IEEE Design
& Test, vol. 33, no. 6, pp. 46–54, Dec 2016.

113. A. Singhee and R. A. Rutenbar, “Statistical blockade: Very fast statistical simulation and
modeling of rare circuit events and its application to memory design,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 28, no. 8,
pp. 1176–1189, 2009.

114. D. Quaglia and F. Stefanni, “SystemC Network Simulation Library – version 2,” 2013,
URL: http://sourceforge.net/projects/scnsl.

115. W. Du, F. Mieyeville, and D. Navarro, “Idea1: A systemc-based system-level simula-
tor for wireless sensor networks,” in 2010 IEEE International Conference on Wireless
Communications, Networking and Information Security, June 2010, pp. 618–622.

116. International Electrotechnical Commission, “IEC 61508 : Functional safety of electri-
cal/electronic/ programmable electronic safety-related systems,” pp. 7–13, 2010.

http://ieeexplore.ieee.org/document/6156601/

A

Verilog-AMS designs

Listing A.1: Analog to Digital Converter (ADC) written in Verilog-AMS.

1 module adc(out, in, gnd, clk);
2 // PARAMTERS -----------------------
3 // Resolution (bits)
4 parameter integer bits = 8 from [1:24];
5 // Minimum input voltage (V)
6 parameter real vmin = 0.0;
7 // Maximum input voltage (V)
8 parameter real vmax = 3.3 from (vmin:inf);
9 // PORTS ---------------------------

10 output [bits-1:0] out;
11 input in, gnd, clk;
12 // NODES ---------------------------
13 reg [bits-1:0] out;
14 electrical in, gnd;
15 // LOCAL ---------------------------
16 localparam midpoint = ((vmax-vmin) / 2);
17 reg over;
18 real sample;
19 integer i;
20 // BEHAVIOR ------------------------
21 always @(posedge clk) begin
22 sample = V(in, gnd);
23 for (i=bits-1; i>= 0; i = i - 1) begin
24 over = (sample >= midpoint);
25 if (over) begin
26 sample = sample - midpoint;
27 end
28 sample = 2.0*sample;
29 out[i] <= over;
30 end
31 end
32 endmodule

162 A Verilog-AMS designs

Listing A.2: Ideal operational amplifier written in Verilog-AMS.

1 ‘define dB2dec(x) pow(10, x/20)
2 module opamp(out, in, gnd);
3 // PARAMTERS -----------------------
4 parameter real gain = 10 from [0:inf);
5 parameter real three_db_freq = 50k from (0:inf);
6 parameter real rin = 1M from (0:inf);
7 parameter real cin = 1n from [0:inf);
8 parameter real iout_max = 10u from (0:inf);
9 parameter real rout = 100 from (0:inf);

10 parameter real volc = 5 from (0:inf);
11 parameter real vdd = 3.3;
12 parameter real rgnd = 1e09 from (0:inf);
13 // PORTS ---------------------------
14 inout out, in, gnd;
15 // NODES ---------------------------
16 electrical out, in, gnd, mid, B;
17 // LOCAL ---------------------------
18 real vb, iout, A;
19 // BEHAVIOR ------------------------
20 analog begin
21 // Input Stage
22 I(in, mid) <+ V(in, mid) / rin;
23 I(in, mid) <+ ddt(V(in, mid)) * cin;
24 I(mid, gnd) <+ V(mid, gnd) / rgnd;
25 // Dominant Pole
26 A = laplace_nd(V(in) * ‘dB2dec(gain),
27 {1},
28 {1, 1 / (three_db_freq*‘M_TWO_PI)});
29 if (A > +vdd) A = +vdd;
30 else if (A < -vdd) A = -vdd;
31 V(B, gnd) <+ A;
32 // Output current evaluation and clipping
33 I(B, out) <+ V(B, out) / rout;
34 iout = V(B, out) / rout;
35 if (iout > +iout_max) iout = -iout_max;
36 else if (iout < -iout_max) iout = +iout_max;
37 else iout = -iout;
38 I(B, out) <+ iout;
39 end
40 endmodule

A Verilog-AMS designs 163

Listing A.3: Motor description written in Verilog-AMS.

1 module motor(shaft_position, absorb, p, n);
2 // PARAMTERS -----------------------
3 parameter real km = 4.5; // motor constant (V-s/rad)
4 parameter real kf = 6.2; // flux constant (N-m/A)
5 parameter real j = 0.004; // inertia of shaft (N-m-s2/rad)
6 parameter real d = 0.1; // drag (friction) (N-m-s/rad)
7 parameter real r = 5.0; // motor winding resistance (Ohms)
8 parameter real l = 0.02; // motor winding inductance (H)
9 // PORTS ---------------------------

10 output shaft_position, absorb;
11 input p, n;
12 // NODES ---------------------------
13 rotational shaft_position;
14 electrical absorb, p, n;
15 // Internal nodes.
16 electrical n1, n2;
17 rotational_omega shaft, rgnd;
18 // Reference nodes.
19 ground rgnd;
20 // BRANCHES ------------------------
21 branch (p, n1) Vm;
22 branch (n1, n2) R1;
23 branch (n2, n) L1;
24 branch (shaft, rgnd) bshaft;
25 branch (shaft_position, rgnd) bshaftp;
26 // BEHAVIOR ------------------------
27 analog begin
28 // Electrical model of the motor winding.
29 V(Vm) <+ km * Omega(bshaft);
30 V(R1) <+ r * I(R1);
31 V(L1) <+ l * ddt(I(L1));
32 // Physical model of the shaft (keep like this).
33 Tau(bshaft) <+ + kf * I(Vm);
34 Tau(bshaft) <+ - d * Omega(bshaft) - j * ddt(Omega(bshaft));
35 // Equation for conversion to degrees.
36 Theta(bshaftp) <+ (180 * idt(Omega(bshaft), 0)) / ‘M_PI;
37 // deg : rad = 180 : 3.14
38 // deg = 180 * rad / 3.14
39 // Provide a measure of the motor response.
40 V(absorb) <+ V(Vm);
41 end
42 endmodule

164 A Verilog-AMS designs

Listing A.4: Digital to Analog Converter (DAC) written in Verilog-AMS.

1 module dac(out, gnd, in, clk);
2 // PARAMTERS -----------------------
3 /// Resolution. (bits)
4 parameter integer bits = 8 from [1:24];
5 /// Minimum input voltage. (V)
6 parameter real vmin = 0.0;
7 /// Maximum input voltage. (V)
8 parameter real vmax = 3.3 from (vmin:inf);
9 /// Delay from clock edge to output. (s)

10 parameter real td = 0;
11 /// Transition time of output. (s)
12 parameter real tt = 0;
13 // PORTS ---------------------------
14 output out;
15 input gnd, [bits-1:0] in, clk;
16 // NODES ---------------------------
17 voltage out;
18 electrical gnd;
19 logic [bits-1:0] in;
20 logic clk;
21 // LOCAL ---------------------------
22 localparam real fullscale = vmax - vmin;
23 real aout;
24 integer weight, i;
25 // BEHAVIOR ------------------------
26 always @(posedge clk) begin
27 aout = 0.0;
28 weight = 2;
29 for (i = bits - 1; i >= 0; i = i - 1) begin
30 if (in[i]) begin
31 aout = aout + (fullscale / weight);
32 end
33 weight = weight * 2;
34 end
35 end
36 /// Smoothly moves the output between the values.
37 analog V(out, gnd) <+ transition(aout + vmin, td, tt);
38 endmodule

A Verilog-AMS designs 165

Listing A.5: TransImpedence Amplifier (TIA) written in Verilog-AMS.

1 module tia(out, in, gnd);
2 // PARAMTERS -----------------------
3 parameter real rin = 1e4;
4 parameter real gain = 10;
5 parameter real f_cut = 1e3;
6 parameter real threshold = 3.3;
7 // PORTS ---------------------------
8 inout in, out, gnd;
9 // NODES ---------------------------

10 electrical in, out, gnd;
11 // LOCAL ---------------------------
12 real vint;
13 // BEHAVIOR ------------------------
14 analog begin
15 I(in, gnd) <+ V(in, gnd) / rin;
16 vint = 1.5 + gain * V(in, gnd);
17 if (vint > +threshold) begin
18 vint = +threshold;
19 end
20 if (vint < -threshold) begin
21 vint = -threshold;
22 end
23 V(out, gnd) <+ laplace_nd(V(int),
24 {1}, {1 ,1/(‘M_TWO_PI * f_cut)});
25 end
26 endmodule

Listing A.6: Comparator written in Verilog-AMS

1 module comparator(alarm_sig, in, pref, nref);
2 // PARAMTERS -----------------------
3 /// Delay from clock edge to output (s).
4 parameter real td = 0 from [0:inf);
5 /// Transition time of output (s).
6 parameter real tt = 0 from [0:inf);
7 // PORTS ---------------------------
8 inout alarm_sig, in, pref, nref;
9 // NODES ---------------------------

10 voltage in, pref, nref;
11 reg alarm_sig = 0;
12 // BEHAVIOR ------------------------
13 analog begin
14 @(cross(V(in) - V(pref), +1)) begin
15 alarm_sig = 1;
16 end
17 @(cross(V(in) - V(nref), -1)) begin
18 alarm_sig = 1;
19 end
20 end
21 /// If the output alarm signal is high, lower it after 20 nanoseconds.
22 always @(alarm_sig) begin
23 if (alarm_sig) begin
24 alarm_sig = #(20) 0;
25 end
26 end
27 endmodule

166 A Verilog-AMS designs

Listing A.7: Behavioral-level CMOS inverter written in Verilog-AMS.

1 ‘include "constants.vams"
2 ‘include "disciplines.vams"
3 module inverter(q, a, vdd, vss, sub);
4 // Input, output ports and supplies.
5 electrical output q;
6 electrical input a, vdd, vss, sub;
7 // Voltage thresholds.
8 parameter real vth_u = 1.65 from [0:inf);
9 parameter real vth_d = 1.65 from [0:inf);

10 // Smoothing factors.
11 parameter real smth_u = 0.1 from [0:inf);
12 parameter real smth_d = 0.1 from [0:inf);
13 // Inverter parameters.
14 parameter real C_a_vdd_h = 1.0 from [0:inf);
15 parameter real C_a_vdd_l = 1.0 from [0:inf);
16 parameter real C_a_vss_h = 1.0 from [0:inf);
17 parameter real C_a_vss_l = 1.0 from [0:inf);
18 parameter real C_vdd_q_h = 1.0 from [0:inf);
19 parameter real C_vdd_q_l = 1.0 from [0:inf);
20 parameter real C_vss_q_h = 1.0 from [0:inf);
21 parameter real C_vss_q_l = 1.0 from [0:inf);
22 parameter real R_vdd_q_h = 1.0 from [0:inf);
23 parameter real R_vdd_q_l = 1.0 from [0:inf);
24 parameter real R_vss_q_h = 1.0 from [0:inf);
25 parameter real R_vss_q_l = 1.0 from [0:inf);
26 /// @brief Smooth switching function with tanh.
27 analog function real tanhsw;
28 input x, swpt, smth;
29 real x, swpt, smth;
30 begin
31 tanhsw = 0.5 + 0.5 * tanh((x-swpt)/smth);
32 end
33 endfunction
34 // Variable capacitances and resistances.
35 real C_a_vdd, C_a_vss;
36 real C_vdd_q, C_vss_q;
37 real R_vdd_q, R_vss_q;
38 // Support variables used to perform the switching.
39 real x, x_u, x_d;
40 analog begin
41 // Switching point evaluation.
42 x = V(a);
43 x_u = tanhsw(x, vth_u, smth_u);
44 x_d = tanhsw(x, vth_d, smth_d);
45 // Perform smooth switching.
46 C_a_vdd = (x_u*C_a_vdd_h) + ((1-x_u)*C_a_vdd_l);
47 C_a_vss = (x_d*C_a_vss_h) + ((1-x_d)*C_a_vss_l);
48 R_vdd_q = (x_u*R_vdd_q_h) + ((1-x_u)*R_vdd_q_l);
49 C_vdd_q = (x_u*C_vdd_q_h) + ((1-x_u)*C_vdd_q_l);
50 R_vss_q = (x_d*R_vss_q_h) + ((1-x_d)*R_vss_q_l);
51 C_vss_q = (x_d*C_vss_q_h) + ((1-x_d)*C_vss_q_l);
52 // Components instantiation.
53 I(a, vdd) <+ ddt(V(a, vdd)) * C_a_vdd;
54 I(a, vss) <+ ddt(V(a, vss)) * C_a_vss;
55 I(vdd, q) <+ V(vdd, q) / R_vdd_q;
56 I(vss, q) <+ V(vss, q) / R_vss_q;
57 I(vdd, q) <+ ddt(V(vdd, q)) * C_vdd_q;
58 I(vss, q) <+ ddt(V(vss, q)) * C_vss_q;
59 end
60 endmodule

B

C++ algorithms

Listing B.1: Functions used to deal with equality between values of type double. Beside the
two variables to compare, the function receives the value of tolerance, used to tune the com-
parison’s accuracy.

1 template<typename T1, typename T2>
2 inline bool dbl_equal(T1 const & a, T2 const & b, double tolerance = 1E-09)
3 {
4 return (static_cast<int>(fmax(fabs(a), fabs(b)) / tolerance))
5 ? (fabs(a - b) < tolerance) : true;
6 }
7
8 template<typename T1, typename T2>
9 inline bool dbl_lequal(T1 const & a, T2 const & b, double tolerance = 1E-09)

10 {
11 return dbl_equal(a, b, tolerance) || (a < b);
12 }
13
14 template<typename T1, typename T2>
15 inline bool dbl_gequal(T1 const & a, T2 const & b, double tolerance =1E-09)
16 {
17 return dbl_equal(a, b, tolerance) || (a > b);
18 }

168 B C++ algorithms

Listing B.2: Functions used to generate random real values.

1 /// @brief Generates a random real value between min and max.
2 /// @tparam DataType The type of the boundaries.
3 /// @param min Lower bound.
4 /// @param max Upper bound.
5 /// @return The random value between lower and upper bounds.
6 template<typename DataType>
7 inline DataType RealRand(DataType min, DataType max)
8 {
9 assert(min <= max && "Trying to randomize in non-valid range.");

10 using UniformDist = std::uniform_real_distribution<>;
11 thread_local static std::mt19937 mt(std::random_device{}());
12 thread_local static UniformDist urd;
13 return urd(mt, typename UniformDist::param_type(min, max));
14 }

	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Introduction
	1.2 Methodology flow

	2 Analog translation and abstraction
	2.1 State of the art and definitions
	2.1.1 AMS extensions of hardware description languages
	2.1.2 SystemC-AMS
	2.1.3 High level analog modeling and simulation
	2.1.4 Modeling styles at the base of analog translation
	2.1.5 Formalisms and conventions
	2.1.6 Electrical linear network terminology
	2.1.7 Guiding Example

	2.2 Methodology overview
	2.3 Translation methodology
	2.3.1 Choice of the suitable SystemC-AMS abstraction level
	2.3.2 Circuit node management
	2.3.3 Division into contributions
	2.3.4 ELN Components instantiation
	2.3.5 Complexity

	2.4 Abstraction methodology
	2.4.1 Circuit equations acquisition
	2.4.2 Equation system enrichment
	2.4.3 Cone of influence exploration
	2.4.4 Equations system solver
	2.4.5 Complexity

	2.5 Experimental results
	2.5.1 Case studies
	2.5.2 Methodology accuracy
	2.5.3 Methodology performance
	2.5.4 Application to a smart system scenario

	2.6 Concluding remarks

	3 Analog multi-discipline abstraction and mixed-signal scheduling
	3.1 Background
	3.1.1 Hardware description languages for multi-discipline models
	3.1.2 Virtual platforms for smart systems
	3.1.3 Automatic abstraction of digital models

	3.2 Running example
	3.3 Methodology overview
	3.4 Manipulation and abstraction of multi-discipline analog models
	3.4.1 Disciplines analysis
	3.4.2 Frequency domain
	3.4.3 Conservative disciplines and custom disciplines
	3.4.4 Non-linear behavior

	3.5 Mixed-signal scheduling for system integration
	3.5.1 Model temporization
	3.5.2 Temporal decoupling and Synchronization
	3.5.3 Cross-domain analog functions

	3.6 Transistor-level to behavioral-level abstraction
	3.7 Behavioral-level interface building
	3.8 Holistic platforms for Industry 4.0
	3.9 Experimental results
	3.9.1 Multi-domain abstraction evaluation
	3.9.2 Industrial case study: pico-projector
	3.9.3 Mixed-signal scheduling for system integration
	3.9.4 Transistor-level to behavioral-level abstraction and interface building
	3.9.5 Holistic platforms for Industry 4.0

	3.10 Conclusions

	4 Network synthesis for cyber-physical systems
	4.1 Related Work
	4.1.1 System Functional Specification
	4.1.2 Network Design

	4.2 Communication-aware Design Flow
	4.2.1 Network Specification
	4.2.2 Design Flow

	4.3 Network Synthesis
	4.3.1 Problem Formulation
	4.3.2 MILP Variables
	4.3.3 MILP Objectives
	4.3.4 MILP Constraints

	4.4 Complexity and Scalability
	4.5 Experimental Results
	4.5.1 Case Study 1
	4.5.2 Case Study 2

	4.6 Conclusions

	5 Fault modeling and injection
	5.1 Digital fault injection
	5.2 Analog fault injection
	5.2.1 Fault taxonomy and code manipulation
	5.2.2 Transistor-level to Behavioral-level fault mapping
	5.2.3 Preserving faulty behaviors during abstraction
	5.2.4 Building the analog simulation model

	5.3 Network fault injection
	5.3.1 Implementation of saboteurs
	5.3.2 Bit-flip saboteur

	6 Holistic functional safety evaluation
	6.1 Case study
	6.2 Injection techniques evaluation
	6.2.1 Network saboteurs
	6.2.2 Digital mutants
	6.2.3 Analog faults

	6.3 Holistic functional safety evaluation
	6.3.1 Multi-domains safety assessment

	7 Conclusion and suggestions for future research
	7.1 Summary of the proposed approach
	7.2 Directions for future research

	Summary of the proposed innovative contributions
	Analog mixed-signal multi-domain abstraction
	Synthesis for Networked Cyber-Physical Systems
	Fault modeling and simulation

	References
	Appendices
	A Verilog-AMS designs
	B C++ algorithms

