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 Systems-on-a-chip integrates specialized modules to provide well-defined 

functionality. To guarantee its efficiency, designers are careful to choose high-

level electronic components. In particular, FPGAs (field-programmable gate 

array) have demonstrated their ability to meet the requirements of emerging 

technology. However, traditional design methods cannot keep up with the 

speed and efficiency imposed by the embedded systems industry, so several 

frameworks have been developed to simplify the design process of an 

electronic system, from its modeling to its physical implementation. This 

paper illustrates some of them and presents a comparative study between them. 

Indeed, we have selected design methods of SoC (ESP4ML and HLS4ML, 

OpenESP, LiteX, RubyRTL, PyMTL, SysPy, PyRTL, DSSoC) and NoC 

networks on OCN chip (PyOCN) and in general on FPGA (PRGA, 

OpenFPGA, AnyHLS, PYNQ, and PyLog). 

The objective of this article is to analyze each tool at several levels and to 

discuss the benefit of each in the scientific community. We will analyze 

several aspects constituting the architecture and the structure of the platforms 

to make a comparative study of the hardware and software design flows of 

digital systems. 

 

Keywords: 

Open source 

SoC 

FPGA 

Python 

HW/SW codesign 

 

Copyright © 2021 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Hasna Elmaaradi,  
National High School for Electricity and Mechanics, 

Hassan II University of Casablanca, Casablanca, Morocco; 
Hasna.elmaaradi.doc20@ensem.ac.ma 
 

 

 

1. INTRODUCTION  

The automation of the design flow of electronic systems began in the eighties with the appearance 

of coding in VHDL and Verilog. EDA (electronic design automation) takes advantage of the different levels 

of abstraction offered by these two languages to make the engineers' work easier and more flexible. Over 

the years and the evolution of technology, new challenges and challenges provoke the birth of new HDLs, 

like SystemC and DSL (Domain Specific Languages). These new generations of co-design tools exploit so-

called high-level languages like Scala, C, and Python. By exploiting their resources in terms of libraries 

and the characteristic of simplified handling, the design flow of electronic components has seen a great leap 

forward that has marked state-of-the-art technology and contributed to the realization of intelligent systems. 

These tools not only improve the design methodology but also contributed to the evolution of the 

applications and algorithms to be implemented. Indeed, thanks to the exploitation of the parallelism of 

FPGAs, circuits can make huge calculations and process mega data. The design flow of quite complex 

systems such as ASICs, and even the reconfiguration and reprogramming of FPGAs, also benefits from the 

evolution of computer science, especially development and programming. Certainly, many tools are based 

on high-level computer languages such as Python. The DSLs that we present in this, paper illustrate this 
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combination, which provides them with the required reliability, flexibility, and performance efficiency. To 

meet these needs and to make hardware design easy at a high level of abstraction, open-source hardware 

platforms and frameworks are being developed. We will highlight the common and distinct points of each, 

by analyzing their architectures and structure. In addition, we present the achievements and experiments 

demonstrating their effectiveness.  

The present work is the first one that reveals such a study. Indeed, there are no similar reviews, 

hence the constraints of finding references in scientific articles and bibliographic literature. However, there 

is scientific research, such as an article [63] (published on August 25, 2021) that discusses only SoCs 

dedicated to medical applications that use the Internet of Things. It discusses current achievements in 

patient identification and analysis, particularly methods based on the so-called ECG, or 

electroencephalogram (EEG). The author highlights the combination of the optical aspects in the design of 

SoCs (HNoCs hybrid network-on-chip and ONoCs optical network on chip) in order to increase the 

different optimization parameters of throughput, latency, and power/energy. 

In the following section, we will present the SLR (Systematic Literature Review) approach as a 

working method. Then, we will briefly describe each platform, LiteX, RubyRTL, PyMTL, PyOCN, PyRTL, 

SysPy, OpenESP, PYNQ, PRGA, HSL4ML, ESP4ML, PyLog, OpenFPGA, AnyHLS, and DS3. In the 

fourth section, a comparative study of these tools is detailed. Section 5 is a discussion and finally, we 

conclude this work. 

 

 

2. WORKING METHOD: THE SLR APPROACH 

The literature review presented in this paper is structured according to the systematic review 

method. The figure below illustrates the approach followed in preparing this article.  

 

 
 

Figure 1. Working method description 

 

 

3. AN OVERVIEW OF OPEN-SOURCE INTEGRATED CIRCUITS CO-DESIGN 

The study concerns many heterogeneous codesign processes of digital systems, which we 

classified into two categories:  

✓ Systems on Chip and their derivatives such as MPSOC (Multiprocessor SoCs), DSSoC (Domain 

Specific SoC), SoC centric and, NOC (Network on Chip).  

✓ Field programmable gate arrays FPGAs Below is a definition of the main lines of the design flow of 

each. 

 

3.1 Computing platforms for Building SoCs 

 

3.1.1 LiteX  

LiteX [1] [2] is a design tool for SoCs and FPGAs, using libraries developed by Migen/MiSoC. It 

provides blocks (IP) ready to be used in a circuit. It integrates different infrastructures that the user needs, to 

define his project. All the elements necessary to create a SoC are taken care of by LiteX, from modeling by a 
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simple script written in Python, to simulation and synthesis. As a result, the design process becomes easier and 

does not require another compiler or HDL generator. 

 

3.1.2 RubyRTL 

RubyRTL [3], as its name indicates, through the Ruby language (web development language), 

generates the Register Transfer Language RTL. It is based on the MigenPython toolkit as well as MyHDL, to 

establish the internal embedded DSL that will lead to the construction of the electronic components. 

 

3.1.3 PyMTL 

PyMTL [4] [5]presents a modular methodology for the design of integrated circuits. In fact, by 

exploiting the Multi-Level Modeling MTL, different phases of abstractions are established independently. 

PyMTL is a result of the work done in 2014 [6], which proved the importance of HGSF (hardware Generation 

and Simulation Framework) based on Python, to increase the performance of such a tool. 

 

3.1.4 PYOCN 

PYOCN (or PyMTL3-net) [7] [8] is a more complete version of PyMTL and aims at modeling, 

evaluating, and testing OCNs. It integrates the libraries necessary for the realization of this type of system, 

which involves the combination of several tools and processes. This Framework provides a synthesizable RTL 

while ensuring performance in terms of energy, time, and space. 

Its principle is to build interconnection networks vertically to optimize the design space. The modular 

architecture adopted in this platform allows modeling, testing, and simulation in different levels of abstraction. 

 

3.1.5 PyRTL 

PyRTL [9] is a tool for describing embedded digital hardware. It exploits the advantages of Python, 

the high-level language. It does not contain non-synthesizable hardware primitives. In addition, it allows the 

inclusion of instrumentations tools in the structure to be designed. PyRTL provides a very important feature 

that was not possible with traditional design methods. 

The intermediate representation of PyRTL provides the various tools necessary for simplification, 

implementation, and efficiency in the modelling of complex digital systems. Indeed, the intermediate 

representation allows for the creation of an instrumentation platform and to transform better handling. To create 

these tools, several easy-to-use APIs allow modifying the hardware blocks and providing the necessary 

information. Binary instrumentation for embedded hardware design is a method developed by PyRTL. 

 

3.1.6 System Python: SysPy  

SysPy [10] (released in 2012) is one of the high-level co-design approaches. It provides a platform 

that allows the synthesis of hardware behaviors, and design SoC centric: 

✓ Incorporate scripts developed in Python, with existing hardware blocks. 

✓ Incorporate IP cores into a circuit and ensure the connection between them. 

In addition, it performs the main tasks in the design of SoCs and MPSOCs. 

✓ The hardware description of all components is attached to the processor. 

✓ Incorporation of the modules into a synthesized design. 

✓ Establishment of software development scripts for the core processor. 

SysPy combines two essential processes for SoC design. Abstract hardware description and FPGA 

prototyping to synthesize the circuit. It supports the following processor cores:  OpenRisc 32bit, AVR 

ATmega128 8bit, and Leon 3. 

 

3.1.7 OpenESP 

OpenESP [11] is an open-source, tile-based platform for implementing SoCs. It is intended for 

applications that develop and enhance accelerators. It also comes for the deployment of Network of Chips 

(NOC) and interconnecting their processors and accelerators. Its high-level modular architecture allows for a 

high degree of abstraction in the heterogeneous chip design flow. It allows automated agile system synthesis, 

expansion, and flexibility when compared to other SoC co-design tools.   

OpenESP integrates RISC-V core and NVIDIA Deep-Learning Accelerator. It encompasses several 

hardware design methodologies such as Vivado HLS, Catapult HLS, Stratus HLS, HLS4ML, and RTL.  

The ESP SoC architecture is a matrix of tiles of different types (processor tile, accelerator tile, memory 

tile, auxiliary tile). The connection between these different elements is ensured by a multi-plan NOC (Network 

on Chip). 
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3.1.8  PYNQ 

PYNQ [12] (Python Productivity for Zynq) is an application made by Xilinx to make it easier for 

programmers and designers to handle the Zynq and Zynq Ultrascale + MPSoC (Multiprocessor SoC) + RFSoC 

[13] (Radiofrequency SoC). It is the first project that used Python as a high-level description language. In 

addition, it provides a resource-rich library that the design engineer needs. This library hardware and joint 

JUPYTER application and web architecture strengthen the structure of the PYNQ Framework. Indeed, it has 

been exploited to realize different projects in different fields. 

 

3.1.9  DS3 

DS3 [14] (system-level domain-specific SoC simulation) is a system-level domain-specific SoC 

simulation platform. It leverages Dynamic Power and Thermal Management (DTPM) methodologies to 

provide users with a tool for resource optimization including the SoC design space.  

DS3 has implemented wireless and radar communication benchmark processes. It also allows the 

implementation of heuristic and tabular planning algorithms. A solution aims at improving the energy 

performance of DSSoCs. 

 

3.1.10 HLS4ML 

It is an electronic system-building platform for implementing machine learning algorithms on FPGAs 

and ASICs. HLS4ML [15] allows the design of low-power components and accelerates decision-making by 

ensuring the translation and processing of algorithms in real-time. 

 

3.1.11 ESP4ML 

ESP4ML [16], is a whole design process for SoCs used in the field of machine learning ML and signal 

processing. It aims at the hardware acceleration of ML, taking advantage of the work done and the results 

obtained in HLS4ML and ESP (Embedded Scalable Platforms).  

However, it has been necessary to adapt these two systems with the goals underlined for the ESP4ML 

framework. Indeed, an HW/SW layer is developed to adapt the architecture of the accelerators, in addition, the 

interface libraries to successfully implement the algorithms realized with HLS4ML in the SoCs. 

 

3.2 Prototyping FPGA’s frameworks 

 

3.2.1 Princeton Reconfigurable Gate Array (PRGA) 

PRGA [17] is a manufacturer of custom FPGAs and manipulates them in other systems as ASIC. 

Through Computer-Aided Design tools, it allows the synthesis of the generated RTL. It converted first in a 

Bitstream series by the PRGA Tool Chain part. The separation between the manufacturer and the toolchain 

gives the characteristic of modularity and flexibility. Indeed, the user can intervene to modify his system at any 

phase of the design. 

 

3.2.2 PyLog 

PyLog [18] is a focused algorithm that aims to simplify and optimize FPGA configuration. This 

scalable tool converts the script written in Python, into a synthesizable code via compilers and different passes, 

which completes the role of intermediate presentations PyLog IR generation and optimization. 

 

3.2.3 AnyHLS 

AnyHLS [19] has come to solve the problem that programmers have with hardware description 

whether it be by VHDL, Verilog, or System Verilog. It requires knowledge of FPGAs. This approach allows 

the design, by generating HLS synthesizable code.  

It takes advantage of the already proven work in AnyDSL [20], as a high design compiler, using the 

Impala language and partial evaluation.  AnyHLS has developed its library in the field of image processing. 

 

3.2.4 OpenFPGA 

OpenFPGA [21] is an approach for the design of custom FPGAs. This new methodology for building 

these components. It reduces the time needed to build their architectures, and even reconfigure them for a 

specific application. 

OpenFPGA provides not only the ready-to-use Verilog coding and manufacturing (production flow) 

but also the Bitstream structure (end-user flow), which describes the designed FPGA in XML language, for 

digital use. 
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4. Comparison study 

This section aims to develop a study and analysis of the Frameworks/platforms presented previously. 

We will dig into their architectures, and their design flows to identify the common and distinct points and the 

advantages of one over the others. Furthermore, we evaluate each platform, via enumerating hardware 

achievements, and completed projects. Table 1 below, samurize the highlighted lines of the comparative study. 

 
Table 1. table summarizing the comparative study 

Platform/ 

Criteria 

HDL Synthesis Language ToolBox Simulation/ 

Compilation 

RubyRTL Ruby+ 

Python 

VHDL Migen+Sexpir Tools GHDL 

AnyHLS Impala Altera SDK for OpenCL 
(AOCL) + Vivado HLS 

Created ones Libraries AnyDSL 

ESP4ML Generic 

Kernel 

Vivado HLS Runtime system Vivado Simulator 

OpenFPG

A 

XML Bitstream+ YOSYS FPGA-Verilog, FPGA-SPICE and 

FPGA-Bistream[64] 

HDL Simulator 

LiteX Python Verilog Migen+MiSoC LiteXSim 

PyMTL SystemVerilog Python/C tools SimJit 

PYOCN Verilog Python/C tools PYOCN 

Simulator 

PyRTL YOSYS Computer-Aided Design (CAD) PyRTL Simulator 

SysPy VHDL Python/C tools GCC Compiler 

OpenESP VHDL+ SystemVerilog CAD tools Vivado Simulator 

PYNQ Python HLS Python/C tools PYNQ Emulator 

DS3 ------- Job/task generator + 

Scheduling&DTPM 

Kernel Simulator 

HLS4MTL Vivado HLS + C++ Keras+Pytorch Vivado Simulator 

PyLog Python HLS Created ones Librairies Merlin Compiler 

PRGA  Bitstream+ YOSYS CAD SynoPsys VCS 

 

 

4.1 HDL describes the structure of the design flow 

Most of the design processes presented are based on Python as illustrated in Figure 2, a high-level 

programming language. 

 

 
 

Figure 2. Python as an HDL for description behaviours of digitals circuits 

 

OpenESP indirectly uses Python. It supports PyTorch as a language for designing SoCs. Furthermore, 

ESP can also be programmed with C/C++, SystemC, Keras Tensor Flow, ONNX, Chisel, SystemVerilog, and 

VHDL. 

Also, HLS4ML [15] is programming with (Ǫ) KERAS, PyTorch and, ONNX. KERAS [22] is an 

application-programming interface API, based on Python and uses the TensorFlow ML platform as a software 

interface. Open Neural Network Exchange ONNX [23] provides the developers with a graphical presentation 

of the modeling of the Machine Learning elements 

Python allows both, the description of the behaviour of the system to be designed with a high level of 

abstraction and to model its hardware architecture using the tools offered by the components to be configured 
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i.e., FPGAs. Hence, the unification characteristic of the digital platforms of the design flow of embedded 

systems is endowed. 

On the other hand, the programming structure in Python facilitates the work of designers. It provides 

them with the different tools (functions and commands) they need, and with a syntax that is easy to learn and 

exploit. 

While RubyRTL [3] (Ruby language), AnyHLS [19] (Impala), ESP4ML [16] (Generic Kernel), and 

OpenFPGA [21] (XML) make use of the features offered by other languages for hardware description. 

Ruby as Python is a high-level language, contrary VHDL, Verilog, and SystemVerilog there allow an 

abstraction low level. Ruby is known as a web environment development language especially with the 

emergence of Ruby on rails (creation of web applications). It also offers many advantages for programmers 

from structuring to compilation. 

Impala [24] is a programming language that provides as a result the intermediate representation of 

Thorin. It is based on the continuation-passing style (CPS), and the syntax of Rust. It allows the specific 

description of such a domain [25]; hence, it does not support standard resources. The advantage of this language 

is that it can be interfaced with other programming languages like C and C++ [25]. 

Kernel [26] shared with C many features. Indeed, it is developed with it. The main advantage of the 

programming language Kernel is the orthogonality of the constructor.  

 

 

4.2 Synthesis language 

As shown in Figure 3 below, apart from the traditional HLS that dominated the automation of the synthesis of 

electronic components, VHDL, Verilog, and SystemVerilog, there appeared another python-based coding for the 

physical implementation of an architecture, and digital presentation of description hardware.  

 

 
Figure 3. Software or HLS generated by platforms 

 

 

DS3 is a DSSoC simulation/emulation tool without hardware verification, so it does not include an HLS. 

 

✓ Verilog, VHDL and, SystemVerilog 

Even if they are classified as traditional tools, and long years have passed since their appearance, 

Verilog, VHDL, and SystemVerilog are still competitive with new languages developed with more 

sophisticated methodologies of advanced technology. They are still present in the toolchain of many platforms, 

such as LiteX, PYOCN, SysPy, RubyRTL, OpenESP and, PyMTL [1] [3] [4] [7] [10] [11]. Hence, contributing 

to the evolution of the automation of the HW/SW design of electronic systems. 
 

✓ Synthetized C++ 

The integration of an ML system in an ASIC chip is more complex than in FPGA. HLS4ML uses C++ 

to compile the designed model and generates the RTL code that will be physically implemented. This process 

respects the triple to optimize Power, Performance, and Area PPA. 



IJEEI  ISSN: 2089-3272  

 

The review of heterogeneous design frameworks/Platforms for digital systems (Abdelhakim Alali et al) 

817 

HLS4ML proceeds to a combination of C++ and RTL to guarantee the synthesis of the modeled 

architecture [15]. 

 

✓ Vivado HLS 

Vivado HLS [15] [16] [19] is used by: 

- HLS4ML for hardware implementation on Xilinx FPGA. 

- ESP4ML relies on it to synthesis ML algorithms on programable systems on Chip. 

- AnyHLS for Intel and Xilinx FPGAs. 

- PyLog as HLS tools for compilation 

Vivado HLS [27] [28] is the platform realized by Xilinx for adapting preliminary code (developed in 

a familiar C, C++, or SystemC language), and translating it into synthesizable code (VHDL, Verilog, or 

SystemC RTL).  Two necessary steps are performed to properly carry out this task: 

- Firstly, model the architecture according to a clock cycle count. 

- Secondly, convert the program elements into logic ports. 

Vivado HLS also provides tools for the verification and simulation of the generated RTL model, in 

order to have a first validation of the elaborated system. 

 

✓ AOCL 

AOCL (Altera SDK for OpenCL) [19] is leveraged by AnyHLS to ensure the portability of Intel 

FPGAs. OpenCL [29] is a platform developed in C and C++ that aims at the high-level synthesis of models 

with more speed while decreasing the Time to Market. AOCL completes the work of OpenCL by ensuring the 

verification and prototyping of circuits for a good imitation of the real system. 

 

✓ Python HLS 

the intermediate representation of Pylog [18] (Pylog IR) allows for the generation of the HLS C code 

that can be synthesized by the compiler. The latter uses the HLS pragmas to transform the source code written 

in Python, into an HLS exploitable in the RTL-based design flow. 

PYNQ does not generate an HLS [30]. It is necessary to use an FPGA fabric. However, it provides a 

PNQ Overlays platform which ensures the interfacing of the application developed in Python with the physical 

inputs and outputs.  

These hardware libraries [31] allow the overlay and customization of physical circuits. In addition to 

API, PYNQ Python provides a tool for the control and configuration of overlays. So, designers are not required 

to create these libraries, but just write lines in Python to operate the management interface. 

 

✓ Bitstream 

OpenFPGA [21] offers hardware engineers the choice of FPGA binary configuration, via FPGA-

Bitstream. This feature is only applicable for FPGA architectures supported by Versatile Place and Route VPR 

[32] (an open-source builder of CAD algorithms and structures for FPGA) whose role is to be a packaging 

engine [33]. 

Similarly, PRGA [17] uses the tool named PRGA Builder to generate the .xml extension files that will 

be processed by VPR to provide at the end of the bitstream. 

 

✓ Yosys 

PyRTL [9], PRGA [17], OpenFPGA [21] use an external tool to accomplish the task of establishing 

the synthesizable RTL model. Yosys [34] is an open source (ISC license) intended for generating synthesizable 

code via Verilog and implementing it on FPGAs or ASICs. It can be used for Xilinx 7 series, Intel, Lattice 

iCE40, Lattice ECP5, Silego GreenPAK4, Gowin, and Analogic. Yosys provides a code converter [35] 

generated in BLIF / EDIF / BTOR / SMT-LIB / simple RTL Verilog / etc. Its use in different projects is due to 

the synthesis methodologies offered for various applications. 

 

4.3 Tools and libraries 

The platforms that are the subject of this study differ in the methodologies and procedures employed 

in their process of building or simulating/emulating digital systems as shown in Figure 4 below. 
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Figure 4. platform’s Tools 

 

✓ Migen toolbox 

LiteX [1] and RubyRTL [3] use the libraries available in the Migen toolbox. Taking advantage of the 

benefits and features of the Python programming language, it provides a reliable procedure for designing 

complex electronic/computer systems [36]. Migen comes to fill the gaps left by software design based on 

traditional languages (VHDL and Verilog). Migen also uses the FHDL (Fragmented Hardware Description 

Language) module [37]. It provides a behavioral description with code written in Python so that it differentiates 

between combinatorial instructions, synchronous instructions, and reset values. 

In 2018, an enhanced version of Migen was launched, nMigen [38].  It takes care of all the modeling 

that Migen supports. In addition, new libraries are integrated. Now it provides communication via I2C and SPI 

protocol, interconnection with configuration and state register (CSR), and compilation of Rust code on Minerva 

RISC-V. 

 

✓ MiSoC toolbox: 

To be able to synthesize systems on Chip, LiteX uses the MiSoC tool [36]. It is a 

complementary/extended solution to Migen, to provide the designer with an efficient and easy methodology 

for building SoCs. it integrates different processors, memory modules, additional peripherals. In addition, it 

allows resource optimization with high performance. 

 

✓ Sexpir tools: 

Sexpir [3] is an intermediate representation developed by the team that designed RubyRTL, but work 

is in progress for final validation. It is a bidirectional transformation of RTL code from Python (via Migen) to 

Ruby (via RubyRTL) [39]. It also allows the generation of VHDL code for physical implementation on FPGAs 

and ASICs. 

 

✓ KERAS  

The HLS4ML library [40] relies on two main tools [15], Keras and Pytorch which are developed in 

the following part. [22] This specific API for deep learning offers speed in obtaining results. It is executable 

on the end-to-end interface named TensorFlow. It allows to development of solutions for deep learning via 

different abstractions and the export of graphs to other tools. As a result, [41] the deployment of ML 

applications becomes easier. TensorFlow aims at accelerating the implementation of neural networks. 

 

✓ PyTorch 

Pytorch [XMR like NumPy, SciPy, and Cython. It is portable by Linux, macOS, and Windows 

operating systems. Pytorch exploits the robustness of GPUs and CPUs for its six main components (torch, 

torch. autograd, torch.jit, torch.nn, torch.multiprocessing, torch.utils). 

 

✓ Toolbox based on Python / C 

The process of PyMTL [6] consists of manipulating the instance model elaborated according to the 

specifications and configuration described by the programmer, by simulation, translation, and user tools to 

provide in the end a model that is consistent and faithful to the behavior of the physical circuit.  

•Migen

•MiSoC
LiteX

•Migen

•Sexpir Tools
RubyRTL

•Python / C toolsPyMTL+PyOCN+PYNQ+SysPy

•Keras

•Pytorch
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•CAD toolsPyRTL+PRGA+OpenESP
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•Runtime systemESP4ML

•Job/tasks generator
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The translation tools provide the Verilog code after processing PyRTL, analyzing its structure, and its 

connections. The PYOCN EDA script [7] for use in the EDA flow exploits this result. Then, the simulation 

tools, analyze the ports and logical blocks, to provide the operator with a powerful python simulator. Finally, 

the user tools are the custom methodologies created by the operator himself to ensure the scalability and 

flexibility of the Framework. 

In 2020, researchers from Cornell University have released a recent version of PyMTL. Indeed, 

PyMTL3 [4] comes with new passes that improve the quality and performance of the models developed in the 

early design phases. The following table 2 illustrates these new features: 

 

Table 2. the different passes integrated into the PyMTL3 toolchain 
Analysis Passes Instrumentation Passes Transform Passes 

Linting: for code verification. Simulation: Simulation of the whole 

model per cycle. 

Import: integration of external IP or 

creation of new components. 

Statistics: present the main lines of 

the design. 

Tracing: offers the different possible 

tracings for execution and debugging. 

Prototype Proxy: provides the wrapped 

prototype for evaluation testing.  

Pre-synthesis: finalize the 
generated RTL by detecting and 

correcting errors 

Translation: traduction of RTL to 
HDL for the FPGA and ASIC 

Ad-Hoc Transform: Optimization and 
simplification of the updates to be made 

on the code.   

 

As already mentioned, PYOCN [7] is based on PyMTL, being its modular architecture (modeling, 

testing, and evaluation). The same tools are used in the OCN construction process. Additional tools were 

needed for modeling the networks. Certainly, libraries specific to this type of chip have been integrated 

(InputUnit, SwitchUnit, RouteUnit, OutputUnit, Router, Channel, and Network). 

The SysPy platform also includes methods written in Python for hardware description. [44] In its 

structure, we find a synthesizable Python to VHDL converter. Besides a GCC (GNU Compiler Collection) 

compiler that takes care of the management and control of the processors, there is also an XST synthesizer of 

the generated code.   

Furthermore, SysPy allows synthesizing the CoreLib components describing the SoCs via netlist files, 

which will be input for the converter. 

SysPy provides a communication interface between the SoCs, and the hot computer [10], through a HAL 

hardware abstraction layer. This gives access to the FPGA communication channels (GPIO, Ethernet), and the 

RAM. 

An interface [10] has been realized, to communicate either with other SoCs or with a host computer. 

This window allows the controlling and exchange of data via communication protocols. Indeed, there is a 

channel for intra-chip communication and another for external systems. Then a designer can launch operations 

and treatments, as a command to be executed by the SoC processor or its peripherals. These features are due 

to the creation of a hardware abstraction layer HAL and software API. Python is always present in this design. 

The API is developed with Python classes and functions, which will allow the control of the designed SoC, via 

transmission and reception frames and data storage in memory. 

PYNQ takes advantage of the package structure of Python. The PYNQ Python package [XMR, 

pynq.bitstream, pynq.devicetree) or those for data manipulation (pynq.mmio, pynq.gpio, pynq.xlnk, 

pynq.buffer). There are also additional modules and sub-packages to complete the toolbox necessary for the 

design of the ZyNQ range (pynq.interrupt, pynq.pmbus, pynq.uio, pynq.registers, pynq.utils, pynq.lib, 

pynq.pl_server). 

 

✓ CAD tools 

PyRTL [9] provides a very important feature that was not possible with traditional design methods. 

This is introspection, which allows the hardware behaviour or design pattern to be copied, using pipelines and 

the next_stage () function. The intermediate representation of PyRTL provides the various tools necessary for 

simplification, implementation, and efficiency in the modelling of complex digital systems. The logical 

operations create WireVectors with a bit number as input. 

Binary instrumentation for embedded hardware design is a method developed by PyRTL. Indeed, the 

intermediate representation allows for the creation of an instrumentation platform and to transform better 

handling. To create these tools, several easy-to-use APIs allow to modify the hardware blocks and provide the 

necessary information. 

The wires used in the circuit do not store the information of the network they belong to. So, to remedy 

this problem, net connections have been developed. This function establishes a dictionary that gathers all the 
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information about the wires. That is the source network and the user network. Hence the flexibility in the 

transformation of the circuits for the instruments. 

Circuit changes are handled by two functions: wire_transform() and net_transform(). They support 

modification of the hardware design, either by adding additional instrumentation or just replacing a logic block. 

For the transformation to be effective it needs a well-ordered data flow that respects the iterator. This 

functionality is presented as a default iterator for a block. There are two types of transformation: 

i)  Operation transformations: The function has an argument, a logical block, and a procedure that will 

be called on each LogicNet (the tool that stores the information related to a logical block: network and 

file) of the system. The result it provides is in the form of a Boolean, which will allow the operation 

transformer to know if the original LogicNet should be kept in the block. 

ii) Connection transformations: This time things are more complicated. The connection transformation 

function uses as input a WireVector which is itself a network, and returns two WireVectors, source, 

and destination, which correspond to a "slot" connection. So, this transformation is just another 

function that defines the wire information. 

 

On the other hand, the operation of the PRGA platform requires the application of certain CAD tools [17] : 

- an RTL code synthesizer 

- port packer 

- configurable logic blocks (CLB) locator 

- bitstream generator 

 

The production flow includes the different methodical elements that the OpenFPGA framework 

exploits for the prototyping of custom FPGAs [33]. First, we have the SDC (Synopsys design constraint) which 

provides us with STA Tools necessary for time management and validation [33]. In addition, with the 

contribution of Fabric Verilog, SDC allows us to establish GDSII layout via Backend Tool. The HDL Simulator 

and Format Tool check the format and the functional aspect of the Verilog Testbench model. 

 

✓ Tile’s structure 

The ESP SoC [11] architecture is a matrix of tiles of different types: 

- processor tile: Each tile includes a selected processor that is system independent, and it communicates 

on a local bus. 

- accelerator tile: This tile follows a well-defined architecture. The sockets available on the platform 

make it easy to create accelerators by exploiting registers, addressing, and protocol. 

- memory tile: The memory tile includes an LLC (last-level cache) partition that implements the MESI 

protocol. 

- auxiliary tile: It gathers all the peripherals that complement the work of the processor. Its socket is the 

most complex, as it manages several services. The tile ensures the communication between its masters 

(Ethernet), and the slave devices. 

  The connection between these different elements is ensured by a multi-plan NOC (Network on Chip). 

The transparent communication layer uses multiple ports to exchange data. They include standard bus ports, 

bridges, interface adapters, and proxy components. The bus masters are the accelerators and processors, while 

the slave devices are any other system components such as memories, UART, and Ethernet. 

The Application Programming Interface (API) of the ESP platform is a method of managing and 

executing accelerators from a user application using three programming functions. ESP_run for execution, 

ESP_alloc, and ESP_free for memory allocation. 

For existing accelerators, ESP provides a third-party design flow (TPF) to integrate directly into the 

SoC. Simply fill in an XML file and provide the source file either coded in Verilog, VHDL, or SystemVerilog.  

 

✓ Libraries 

AnyHLS [19] uses AnyDSL as a library that the user uses in his configuration of the system 

architecture to be designed. It is a compiler based on the THORIN intermediate representation based on 

continuation-passing style (CPS IR Thorin) and partial online evaluation [20]. 

AnyHLS [19] also integrates a specific library for image processing. Indeed, the exploitation of the 

impala language and the architecture of this high programming tool allows generating all the abstractions (in 

the form of libraries) that the user needs to build his circuit. AnyHLS provides a whole set of tools like: 

 

- The make_local_op generator that ensures decoupling of the algorithm from the scheduling and memory 

operators 
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- Optimization functions like REDUCTION 

- FACTORIZATION methodology for parallel processing of input pixels. 

PYNQ includes libraries that ensure the flexibility of this platform [46]: 

- An API that handles IP hardware addresses (Audio, AxiGPIO, AxiIIC, DMA, Logictools, Video).  

- Libraries for communication with external devices (Arduino, Grove, Pmod, RPi). 

- Libraries for loading or creating applications via Jupyter (MicroBlaze Subsystem, Microblaze RPC, 

Microblaze Library). 

- Libraries for the management of Processing System PS/ Programmable logic PL interfaces (Allocate, 

Interrupt, MMIO, PS GPIO). 

- Libraries for the control of PS/PL interfaces (PMBus, Overlay Device and Bitstream classes, Microblaze 

Library). 

- Hardware libraries [31] that aim to accelerate and/or personalize a digital application. it is simply the 

construction of programmable logic or a new configuration using a python interface [47]. 

PyLog [18] incorporates the existing HLS C library as well as additional features. Indeed, the functions 

offered by NumPy are available on the PyLog platform. 

 

✓ Runtime System: 

ESP4ML [16] integrates a software tool for gas pedals. This API allows the configuration of data traffic 

on NOCs, as well as pipeline elements 

 

✓ Job/Tasks generator: 

the task generator [15] used by DS3 allows the establishment of DAG (Directed acyclic graph) specific to 

a given application. 

 

✓ Scheduling and DTPM Algorithms: 

DS3 [14] includes Dynamic Power and Thermal Management policies and scheduling algorithms, which 

will allow designers to model and implement new algorithmic procedures. It is thanks to the Scheduler class 

and the constructor functions that the user creates his algorithm. 

 

 

4.4 Compilation and simulation 

 

Figure 5. Simulators of each framework 

 

The platforms that are the object of this study have the same intentions of improving the performance 

of FPGA design whatever the field of application. Hence, the functionality of the simulator used in the design 

chain determines and evaluates the approach in the first place. Figure 5 above summarizes the different 

simulators used for each framework. 

 

✓ GHDL 

RubyRTL does not include its simulator; however, the results generated by RubyRTL can be 

simulated on GHDL [3]. It [48] is a VHDL code simulation tool that uses code generators such as LLVM and 

GCC to ensure a fast simulation cycle. 

 

✓ LiteXSim 

The Verilator simulator (released in 1994) inspires LiteXSim SoC Simulator [1]. [49] [50] this one 

allows converting a synthesizable RTL code developed in Verilog or SystemVerilog, into a script written in 

C++ or SystemC (.cpp and .h files). The Verilator compiler is characterized by its high performance. The speed, 
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optimization, and partitioning of the RTL model allow them to outperform traditional compilers (for example, 

it is 100 times faster than Icarus Verilog). 

 

✓ Python simulator 

PyMTL [6] [5] unifies the advantages of python via PyPy System and those of HGSF (Hardwar 

Generation and Simulation Framework) to provide SimJIT (Just in time), a simulation approach that aims at 

optimizing RTL and CL (cycle level) modeling. The software architecture of SimJIT consists of converting the 

input code (either RTL or CL) into a wrapped C++ model, using the intermediate representation and the toolbox 

involved. The simulation passes for the improvement of the established PyMTL model [4] to enhance the 

performance of this tool. 

In the same sense, the PyRTL simulator [9] synchronously interprets the initial C program, so that the 

states and calculations are returned to the user simultaneously. The simulator has approved its performance not 

only in terms of emulation cycle time but also in terms of the size of the code to be written.  

PYNQ [51] also integrated a Python library for emulation of Xilinx Zynq systems generated by the 

PYNQ environment. Furthermore, the simulation is available on Vitis [52] (see next paragraph). 

 

✓ Kernel simulation 

DS3 is a compiler/simulator based on the Kernel language as mentioned above. This simulator [15] 

allows the implementation of scheduling algorithms and machine synchronization. Thanks to the Kernel 

simulator [53] structure, it allows visualizing the progress and the future state of the simulated model. 

 

✓ Merlin compiler  

PyLog compiler [18] is the combination of two compilers Vivado HLS (see the previous section) and 

Merlin compiler. [54] It is a solution dedicated to hardware acceleration especially for software developers 

who do not master traditional HLS (VHDL and Verilog). It facilitates computation and processing for cognitive 

applications such as machine learning and big data. The Merlin compiler from Flacon computing [55] (acquired 

by Xilinx) provides an executable model on FPGAs from a script written in C with all the design abstractions 

 

✓ GCC Compiler 

SysPy generates the synthesizable code from the script established by the GCC compiler [44]. The 

GNU Compiler Collection GCC [56] is an optimized approach developed with multiple programming 

languages and integrates several hardware architectures. 

 

✓ PyOCN Simulator 

In addition to PyMTL's optimized approach to model evaluation, PyOCN [7] integrates a simulation 

process suitable for the OCN target. PyOCN Simulator is used at the cyclic level of network design. It does not 

apply to synthesizable RTL. 

 

✓ Vivado Simulator 

HLS4ML is a main component in the structure of OpenESP and ESP4ML [16] [11] [16] . These three 

platforms provide a code whose simulation is ensured by Vivado Simulator, also we can add in this category 

OpenFPGA [33] that uses HDL simulator as a tool for verification and evaluation. [57] This general 

environment reduces the execution time by detecting errors on the object code of behavioral, functional, and 

temporal simulation.  The simulation can be run at any level of abstraction to verify the generated model. [58] 

The two interfaces DPI (direct programming interface) and XSI (Xilinx proprietary interface) for interaction 

between the simulation kernel and C scripts or HLS enrich the simulation tools and the co-simulation for better 

performance. 

 

✓ AnyDSL compiler 

AnyHLS use AnyDSL for the compilation of image processing via partial evaluation [19]. The partial 

evaluator [20] works with CPS style intermediate representation-based structures to generate CPU and GPU 

specific vectorization and parallelization code. This compiler is dedicated to the fields of image processing, 

ray tracing, and genomics. 

 

✓ Synopsys VCS 

The experiments carried out on PRGA uses Synopsys VCS as a simulator [17]. It [59] is a simulation 

engine based on the Fine-Grained Parallelism FGP methodology. This has allowed it to raise the performance 

in terms of time and bug checking to provide a high-quality design. VCS [60] integrates different technologies 



IJEEI  ISSN: 2089-3272  

 

The review of heterogeneous design frameworks/Platforms for digital systems (Abdelhakim Alali et al) 

823 

and tools (VCS Xprop for X propagation, VCS native low power NLP, PowerReplay, Certitude, Z01X fault 

simulation) to cope with the constraints imposed by the complexity of building embedded systems.   

 
4.5 Evaluation, and experimentations 

In the field of electronics and especially embedded systems, the physical implementation of the 

programmed models is an essential step to evaluate the reliability and efficiency of the approach followed for 

the design of a circuit. Hence the importance of this section, which represents the achievements of each 

application, either as an experimental verification or even as a contribution to a project with industrial or 

academic stakeholders. Table 3 below provides more details. 

 

Table 3. The Achievements of each framework 
Frameworks/

Platforms 

Experimentations Projects 

LiteX 

Platform [1] 

[23] 

-SoC synthesis using Migen + VivadoSoC             

-synthesis using Migen+ Trellis +Yosys + Nextpnr 

10 open-source IPHDMI2USB 

Fupy  

NetV2 
Axiom SDI module 

PCIe Screamer 

Fomu 
Betrusted 

USB3.0 PIPE 

Chubby75 
4 softcores supported (LM32, 

VesRISCV, PicoRV32, Mor1kx) 

RubyRTL 

[3] 

Experimental toolchain for Sexpir using UART IP ---------------- 

PyMTL [5] -LTAaccelerator,  
-DAE, ParallelXL and XLOOPS  

-TSMC 16  

-BRGTC1 and 2 Batten Research Group Test Chip 1, and 2 

To be a teacher in two 
universities: Cornell University 
and Boston University. 

PyRTL [9] -Verification of simulation time 

-SoC integration using Xilinx PYNQ 

---------------- 

PYNQ [24] Xilinx xc7z020clg400-1 ---------------- 

DS3 [15] -Benchmarking with 6 reference applications 
-Reference design for each application 

---------------- 

PyLog [18] -Accelerator performance evaluation 

-Supported FPGA platforms: ZedBoard, PYNQ, Ultra96, Amazon EC2 F1 
instance, Alveo series 

---------------- 

SysPy [10] 
[25] 

-Processor-centric SoC system to apply Sobel edge detection to a grayscale 

image. 
-SoC-centric for the implementation of Gillespie's FRM SSA algorithm. 

---------------- 

PyOCN [7] Verified for different network topologies with 64-terminals ---------------- 

OpenESP 

[11] 

-DFS SoC: dynamic frequency scaling 

-MC SoC: Multi-core SoC 

-RISC-V based SoCs for deep learning 
-RISC-V based SoCs (NVDLA) 

---------------- 

HLS4ML[16

] 

Deploying Neural Networks in Xilinx Virtex UltraScale + VU9P FPGA ---------------- 

ESP4ML[16] Verified for SVHN Street View House Numbers ---------------- 

AnyHLS [19] Verified for Gaussian, Harris corner detector, Jacobi, Filter chain, bilateral filter, 
mean filter, and sobelLuma 

---------------- 

PRGA [17] -BCD2BIN Converter  ---------------- 

OpenFPGA 

[22] 

-20x20 homogeneous FPGA 

-32x32 heterogeneous FPGA 

---------------- 

 

Most (except RubyRTL) of the studied frameworks are experimentally verified. Indeed, each of them 

proceeded to applications even at a small size to evaluate the developed tool and measure its performances to 

see the level of its competitiveness compared to the current tools in the field. Thus, highlighting the prospects 

and future work to be developed or the weak points to be improved, to build a solid approach at the level of 

architecture, handling, evaluation, and synthesis. 

LiteX and PyMTL succeeded in this step and collaborated with other participants interested in the 

evolution of hardware and software design of systems. LiteX together with Enjoy-Digital [62] [61] realized 

various projects and provided the industry with high-tech components. Moreover, PyMTL has entered the 
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academic cursus of two universities as an approach to be taught to students of different cycles. It constitutes a 

whole module with tutorials and practical works to validate for better learning of the tool. 

 

5. DISCUSSION 

In this article, we have tried to present a review of some methodologies for the heterogeneous design 

of electronic systems, namely FPGAs and SoCs. The different solutions are analyzed in several aspects. 

First, the choice of the development language is linked to the objectives to be reached and also to the 

applications targeted by the manufacturer. The general-purpose platforms exploit the functionalities offered by 

Python, and Ruby as high-level languages, and yet the others dedicated to the domains of machine learning, 

image processing, and computer vision go to more specific and specialized languages in an activity like impala 

and Kernel.  

Second, the generated synthesizable code. Each Framework incorporates a tool for generating or 

converting script initially written in a synthesizable RTL model. Some use traditional languages (VHDL, 

Verilog, and SystemVerilog) that have proven their reliability over the decades. Others have chosen more 

recent processes developed with techniques that are more advanced and procedures like Vivado and Yosys. In 

addition, some of them exploit object-oriented programming languages (Python and C++) to build their 

converters with additional options such as the digital synthesizer (BitStream). 

Afterward, we dissected the toolbox of each approach. Again, the purpose of the work plays a role in 

the guideline to adopt. However, the libraries integrated into the packages used after LiteX, RubyRTL, 

AnyHLS, PYNQ, and PyLog are written in Python, and in addition, Pytorch and most of the computer-aided 

design tools are developed in Python. As a result, most platforms rely on Python to create a toolchain that is 

appropriate for their architectures. Obviously, due to the nature of the applications they were built for, it was 

necessary for HLS4ML, ESP4ML, and DS3 to add other additional mechanisms to complete their needs. 

Subsequently, we have delved further into the structure of the studied Frameworks, discussing the 

methods of verification and evaluation of the functional or behavioral modeling. Except for LiteX, PYOCN, 

and PyMTL, all the procedures have integrated an existing simulator into their processes. Indeed, instead of 

building a new kernel, they benefited from the performance demonstrated by high-level simulation engines, 

for example, Synopsys VCS, Kernel simulator, GCC compiler, Merlin compiler, and Vivado simulator. 

As far as PyMTL and PYOCN are concerned, we can say that the simulation between them is similar 

since the PYOCN simulator neither combines the passes of PyMTL and some libraries to make them suitable 

for running on-chip networks. However, LiteX takes advantage of Verilator to design and reconfigure a fast 

simulator of SoCs and IPs. 

Finally, the most critical and definitive step in building a digital circuit is synthesis. It identifies the 

rational and pragmatic potential of such a platform. As we mentioned in the previous section, LiteX marks its 

strong presence in the industrial market. Not only one or two, but also several projects of highly sophisticated 

electronic components and boards have been established using this method. This shows the engineers' 

satisfaction with the features and benefits offered. 

 

6. CONCLUSION 

In this article we have illustrated the advancement of integrated circuits design flows, by presenting 

some platforms, most of which are recent (released in 2020, 2021). Each one has its methodology for the 

realization of a target component, but they share the concern of performance optimization. According to their 

application domains, each tool is privileged by one or several characteristics that distinguish it from the others. 

  The projects carried out and the experiments did show the maturity and the physical and even 

commercial handling of the platforms. Indeed, some of them are still underdeveloped (RubyRTL, PRGA), and 

others have already marked their presence in the market via the contribution to the realization of 

commercialized systems, or they are integrated and approved in an academic cursor (LiteX, PYNQ, PyMTL, 

SysPy). While OpenESP, ESP4ML, HLS4ML, AnyHLS, PyOCN, PyRTL, DS3, and PyLog have completed 

evaluation and verification experiments. 

SoCs in general are now proposed as emerging and scalable solutions for intelligent applications. 

Hence, design methodologies must incorporate new functionalities satisfying the performance/power 

consumption/space/size challenges and dilemmas imposed by the evolution of advanced technology. 
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