530,187 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

    Get PDF
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G

    Characterising the agriculture 4.0 landscape - Emerging trends, challenges and opportunities

    Get PDF
    ReviewInvestment in technological research is imperative to stimulate the development of sustainable solutions for the agricultural sector. Advances in Internet of Things, sensors and sensor networks, robotics, artificial intelligence, big data, cloud computing, etc. foster the transition towards the Agriculture 4.0 era. This fourth revolution is currently seen as a possible solution for improving agricultural growth, ensuring the future needs of the global population in a fair, resilient and sustainable way. In this context, this article aims at characterising the current Agriculture 4.0 landscape. Emerging trends were compiled using a semi-automated process by analysing relevant scientific publications published in the past ten years. Subsequently, a literature review focusing these trends was conducted, with a particular emphasis on their applications in real environments. From the results of the study, some challenges are discussed, as well as opportunities for future research. Finally, a high-level cloud-based IoT architecture is presented, serving as foundation for designing future smart agricultural systems. It is expected that this work will positively impact the research around Agriculture 4.0 systems, providing a clear characterisation of the concept along with guidelines to assist the actors in a successful transition towards the digitalisation of the sectorinfo:eu-repo/semantics/publishedVersio

    A Survey on Semantic Communications for Intelligent Wireless Networks

    Get PDF
    With deployment of 6G technology, it is envisioned that competitive edge of wireless networks will be sustained and next decade's communication requirements will be stratified. Also 6G will aim to aid development of a human society which is ubiquitous and mobile, simultaneously providing solutions to key challenges such as, coverage, capacity, etc. In addition, 6G will focus on providing intelligent use-cases and applications using higher data-rates over mill-meter waves and Tera-Hertz frequency. However, at higher frequencies multiple non-desired phenomena such as atmospheric absorption, blocking, etc., occur which create a bottleneck owing to resource (spectrum and energy) scarcity. Hence, following same trend of making efforts towards reproducing at receiver, exact information which was sent by transmitter, will result in a never ending need for higher bandwidth. A possible solution to such a challenge lies in semantic communications which focuses on meaning (context) of received data as opposed to only reproducing correct transmitted data. This in turn will require less bandwidth, and will reduce bottleneck due to various undesired phenomenon. In this respect, current article presents a detailed survey on recent technological trends in regard to semantic communications for intelligent wireless networks. We focus on semantic communications architecture including model, and source and channel coding. Next, we detail cross-layer interaction, and various goal-oriented communication applications. We also present overall semantic communications trends in detail, and identify challenges which need timely solutions before practical implementation of semantic communications within 6G wireless technology. Our survey article is an attempt to significantly contribute towards initiating future research directions in area of semantic communications for intelligent 6G wireless networks

    Performance measurement : challenges for tomorrow

    Get PDF
    This paper demonstrates that the context within which performance measurement is used is changing. The key questions posed are: Is performance measurement ready for the emerging context? What are the gaps in our knowledge? and Which lines of enquiry do we need to pursue? A literature synthesis conducted by a team of multidisciplinary researchers charts the evolution of the performance-measurement literature and identifies that the literature largely follows the emerging business and global trends. The ensuing discussion introduces the currently emerging and predicted future trends and explores how current knowledge on performance measurement may deal with the emerging context. This results in identification of specific challenges for performance measurement within a holistic systems-based framework. The principle limitation of the paper is that it covers a broad literature base without in-depth analysis of a particular aspect of performance measurement. However, this weakness is also the strength of the paper. What is perhaps most significant is that there is a need for rethinking how we research the field of performance measurement by taking a holistic systems-based approach, recognizing the integrated and concurrent nature of challenges that the practitioners, and consequently the field, face

    The roles and contributions of Biodiversity Observation Networks (BONs) in better tracking progress to 2020 biodiversity targets: a European case study

    Get PDF
    The Aichi Biodiversity Targets of the United Nations’ Strategic Plan for Biodiversity set ambitious goals for protecting biodiversity from further decline. Increased efforts are urgently needed to achieve these targets by 2020. The availability of comprehensive, sound and up-to-date biodiversity data is a key requirement to implement policies, strategies and actions to address biodiversity loss, monitor progress towards biodiversity targets, as well as to assess the current status and future trends of biodiversity. Key gaps, however, remain in our knowledge of biodiversity and associated ecosystem services. These are mostly a result of barriers preventing existing data from being discoverable, accessible and digestible. In this paper, we describe what regional Biodiversity Observation Networks (BONs) can do to address these barriers using the European Biodiversity Observation Network (EU BON) as an example. We conclude that there is an urgent need for a paradigm shift in how biodiversity data are collected, stored, shared and streamlined in order to tackle the many sustainable development challenges ahead. We need a shift towards an integrative biodiversity information framework, starting from collection to the final interpretation and packaging of data. This is a major objective of the EU BON project, towards which progress is being made

    Performance measurement: questions for tomorrow

    Get PDF
    Ever since Johnson and Kaplan (1987) published their seminal article performance measurement gained increasing popularity both in practice and research with over 3600 articles between 1994 and 1996. A précis of the literature on global and business trends predicts that the world is heading towards a networking era dominated by global autopoietic networks. A systematic review of the performance measurement literature concludes that although historically the performance measurement literature had tracked the global business trends our current state of knowledge on performance measurement is not complete and a number of fundamental questions remain unanswered, particularly in the context of future trends

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    corecore