4,437 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Healthcare service evolution towards the Internet of Things: an end-user perspective

    Get PDF
    For the last two decades the Internet of Things (IoT) has been a subject of growing global interest. Particularly dynamic industries such as the healthcare service sector have just begun to understand the benefits of the IoT for the provision of a new, more advanced type of services. However, whilst the healthcare service industry is yet to fully grasp the benefits of information systems for its practitioners and managers, and for patients and families, there is a need for a better understanding of the challenges and opportunities associated to IoT-based healthcare systems as another disruptive wave of technologies. In particular, research on the relevance of users’ skills for adoption of IoT-based healthcare services has been limited. Using the current Internet-based healthcare service landscape as a platform for the formulation and testing of its hypotheses, this paper explores the relationship between patients’ capabilities for effective use of information and communication technologies and the success of IoT-based healthcare services. The resulting theoretical model for effective use of information and communication technologies and the success of IoT-based healthcare services was then validated. The validation was based on data collected from a randomly selected sample of 256 users of Internet-based healthcare services provided by the public healthcare system of the Region of Murcia in Spain. The findings of this research inform future strategies for the implementation of new generations of health and well-being services based on IoT technologies

    Design of a Healthcare Monitoring and Communication System for Locked-In Patients Using Machine Learning, IOTs, and Brain-Computer Interface Technologies

    Get PDF
    Machine learning (ML) models have shown great promise in advancing brain-computer interface (BCI) signal processing and in enhancing the capabilities of Internet of Things (IoT) mobile devices. By combining these advancements into a comprehensive healthcare monitoring and communication system, we may significantly improve the quality of life for patients living with locked-in syndrome. To that effect, we present a three-tiered approach to systems design using known ML models: data collection, local integrated system deployed on IoT hardware, and administrative management. The first tier focuses on IoT sensors and non-invasive recording of brain signals, their calibration and data collection, and data processing. The second tier focuses on aggregating and directing the data, an alert system for caregivers, and a BCI for personalized communication. The last tier focuses on accountability and essential management tools. This research-in-progress demonstrates the feasibility of integrating current technologies to improve care for locked-in patients

    On the Convergence of Blockchain and Internet of Things (IoT) Technologies

    Full text link
    The Internet of Things (IoT) technology will soon become an integral part of our daily lives to facilitate the control and monitoring of processes and objects and revolutionize the ways that human interacts with the physical world. For all features of IoT to become fully functional in practice, there are several obstacles on the way to be surmounted and critical challenges to be addressed. These include, but are not limited to cybersecurity, data privacy, energy consumption, and scalability. The Blockchain decentralized nature and its multi-faceted procedures offer a useful mechanism to tackle several of these IoT challenges. However, applying the Blockchain protocols to IoT without considering their tremendous computational loads, delays, and bandwidth overhead can let to a new set of problems. This review evaluates some of the main challenges we face in the integration of Blockchain and IoT technologies and provides insights and high-level solutions that can potentially handle the shortcomings and constraints of both IoT and Blockchain technologies.Comment: Includes 11 Pages, 3 Figures, To publish in Journal of Strategic Innovation and Sustainability for issue JSIS 14(1

    A Semantic Web approach to ontology-based system: integrating, sharing and analysing IoT health and fitness data

    Get PDF
    With the rapid development of fitness industry, Internet of Things (IoT) technology is becoming one of the most popular trends for the health and fitness areas. IoT technologies have revolutionised the fitness and the sport industry by giving users the ability to monitor their health status and keep track of their training sessions. More and more sophisticated wearable devices, fitness trackers, smart watches and health mobile applications will appear in the near future. These systems do collect data non-stop from sensors and upload them to the Cloud. However, from a data-centric perspective the landscape of IoT fitness devices and wellness appliances is characterised by a plethora of representation and serialisation formats. The high heterogeneity of IoT data representations and the lack of common accepted standards, keep data isolated within each single system, preventing users and health professionals from having an integrated view of the various information collected. Moreover, in order to fully exploit the potential of the large amounts of data, it is also necessary to enable advanced analytics over it, thus achieving actionable knowledge. Therefore, due the above situation, the aim of this thesis project is to design and implement an ontology based system to (1) allow data interoperability among heterogeneous IoT fitness and wellness devices, (2) facilitate the integration and the sharing of information and (3) enable advanced analytics over the collected data (Cognitive Computing). The novelty of the proposed solution lies in exploiting Semantic Web technologies to formally describe the meaning of the data collected by the IoT devices and define a common communication strategy for information representation and exchange

    From Formal to Textual

    Get PDF
    UIDB/03213/2020 UIDP/03213/2020This paper aims to show how Terminology can help foster interoperability and more effective knowledge representation, organisation and sharing in the biomedical field, and on the other hand, support specialised communication among various stakeholders. SNOMED CT will be used to illustrate this, with the focus being on formal and textual (or natural language) definitions – the latter currently underrepresented in this resource - and on how a doubledimensional terminological approach can benefit textual definition drafting, thereby assisting the work carried out by SNOMED CT national translation teams.publishersversionpublishe

    Advancements and Challenges in IoT Simulators: A Comprehensive Review

    Get PDF
    The Internet of Things (IoT) has emerged as an important concept, bridging the physical and digital worlds through interconnected devices. Although the idea of interconnected devices predates the term “Internet of Things”, which was coined in 1999 by Kevin Ashton, the vision of a seamlessly integrated world of devices has been accelerated by advancements in wireless technologies, cost-effective computing, and the ubiquity of mobile devices. This study aims to provide an in-depth review of existing and emerging IoT simulators focusing on their capabilities and real-world applications, and discuss the current challenges and future trends in the IoT simulation area. Despite substantial research in the IoT simulation domain, many studies have a narrow focus, leaving a gap in comprehensive reviews that consider broader IoT development metrics, such as device mobility, energy models, Software-Defined Networking (SDN), and scalability. Notably, there is a lack of literature examining IoT simulators’ capabilities in supporting renewable energy sources and their integration with Vehicular Ad-hoc Network (VANET) simulations. Our review seeks to address this gap, evaluating the ability of IoT simulators to simulate complex, large-scale IoT scenarios and meet specific developmental requirements, as well as examining the current challenges and future trends in the field of IoT simulation. Our systematic analysis has identified several significant gaps in the current literature. A primary concern is the lack of a generic simulator capable of effectively simulating various scenarios across different domains within the IoT environment. As a result, a comprehensive and versatile simulator is required to simulate the diverse scenarios occurring in IoT applications. Additionally, there is a notable gap in simulators that address specific security concerns, particularly battery depletion attacks, which are increasingly relevant in IoT systems. Furthermore, there is a need for further investigation and study regarding the integration of IoT simulators with traffic simulation for VANET environments. In addition, it is noteworthy that renewable energy sources are underrepresented in IoT simulations, despite an increasing global emphasis on environmental sustainability. As a result of these identified gaps, it is imperative to develop more advanced and adaptable IoT simulation tools that are designed to meet the multifaceted challenges and opportunities of the IoT domain

    5g and Iot digital era: the transformation of mobile network operators into end-to-end solution providers

    Get PDF
    The forthcoming 5G and IoT large-scale implementation reveals new business opportunities in completely new sectors that mobile network operators should seize. This survey paper wants to identify the necessary transformations such operators must undergo to build a sustainable competitive advantage in the future industry. A qualitative research composed of semi-structured interviews incumbents’stronger intent of diversification and creates the base for strategic recommendations.A sample of recent actions carried out by mobile network operators to improve their position in the 5G and IoT environments is shown at the end of the work
    • …
    corecore