600 research outputs found

    Toward supervised reinforcement learning with partial states for social HRI

    Get PDF
    Social interacting is a complex task for which machine learning holds particular promise. However, as no sufficiently accurate simulator of human interactions exists today, the learning of social interaction strategies has to happen online in the real world. Actions executed by the robot impact on humans, and as such have to be carefully selected, making it impossible to rely on random exploration. Additionally, no clear reward function exists for social interactions. This implies that traditional approaches used for Reinforcement Learning cannot be directly applied for learning how to interact with the social world. As such we argue that robots will profit from human expertise and guidance to learn social interactions. However, as the quantity of input a human can provide is limited, new methods have to be designed to use human input more efficiently. In this paper we describe a setup in which we combine a framework called Supervised Progressively Autonomous Robot Competencies (SPARC), which allows safer online learning with Reinforcement Learning, with the use of partial states rather than full states to accelerate generalisation and obtain a usable action policy more quickly

    Learning and Reasoning for Robot Sequential Decision Making under Uncertainty

    Full text link
    Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.Comment: In proceedings of 34th AAAI conference on Artificial Intelligence, 202

    Designing Human-Centered Collective Intelligence

    Get PDF
    Human-Centered Collective Intelligence (HCCI) is an emergent research area that seeks to bring together major research areas like machine learning, statistical modeling, information retrieval, market research, and software engineering to address challenges pertaining to deriving intelligent insights and solutions through the collaboration of several intelligent sensors, devices and data sources. An archetypal contextual CI scenario might be concerned with deriving affect-driven intelligence through multimodal emotion detection sources in a bid to determine the likability of one movie trailer over another. On the other hand, the key tenets to designing robust and evolutionary software and infrastructure architecture models to address cross-cutting quality concerns is of keen interest in the “Cloud” age of today. Some of the key quality concerns of interest in CI scenarios span the gamut of security and privacy, scalability, performance, fault-tolerance, and reliability. I present recent advances in CI system design with a focus on highlighting optimal solutions for the aforementioned cross-cutting concerns. I also describe a number of design challenges and a framework that I have determined to be critical to designing CI systems. With inspiration from machine learning, computational advertising, ubiquitous computing, and sociable robotics, this literature incorporates theories and concepts from various viewpoints to empower the collective intelligence engine, ZOEI, to discover affective state and emotional intent across multiple mediums. The discerned affective state is used in recommender systems among others to support content personalization. I dive into the design of optimal architectures that allow humans and intelligent systems to work collectively to solve complex problems. I present an evaluation of various studies that leverage the ZOEI framework to design collective intelligence

    Confirmation Report: Modelling Interlocutor Confusion in Situated Human Robot Interaction

    Get PDF
    Human-Robot Interaction (HRI) is an important but challenging field focused on improving the interaction between humans and robots such to make the interaction more intelligent and effective. However, building a natural conversational HRI is an interdisciplinary challenge for scholars, engineers, and designers. It is generally assumed that the pinnacle of human- robot interaction will be having fluid naturalistic conversational interaction that in important ways mimics that of how humans interact with each other. This of course is challenging at a number of levels, and in particular there are considerable difficulties when it comes to naturally monitoring and responding to the user’s mental state. On the topic of mental states, one field that has received little attention to date is moni- toring the user for possible confusion states. Confusion is a non-trivial mental state which can be seen as having at least two substates. There two confusion states can be thought of as being associated with either negative or positive emotions. In the former, when people are productively confused, they have a passion to solve any current difficulties. Meanwhile, people who are in unproductive confusion may lose their engagement and motivation to overcome those difficulties, which in turn may even lead them to drop the current conversation. While there has been some research on confusion monitoring and detection, it has been limited with the most focused on evaluating confusion states in online learning tasks. The central hypothesis of this research is that the monitoring and detection of confusion states in users is essential to fluid task-centric HRI and that it should be possible to detect such confusion and adjust policies to mitigate the confusion in users. In this report, I expand on this hypothesis and set out several research questions. I also provide a comprehensive literature review before outlining work done to date towards my research hypothesis, I also set out plans for future experimental work

    Discussion on Different Controllers Used for the Navigation of Mobile Robot

    Get PDF
    Robots that can comprehend and navigate their surroundings independently on their own are considered intelligent mobile robots (MR). Using a sophisticated set of controllers, artificial intelligence (AI), deep learning (DL), machine learning (ML), sensors, and computation for navigation, MR\u27s can understand and navigate around their environments without even being connected to a cabled source of power. Mobility and intelligence are fundamental drivers of autonomous robots that are intended for their planned operations. They are becoming popular in a variety of fields, including business, industry, healthcare, education, government, agriculture, military operations, and even domestic settings, to optimize everyday activities. We describe different controllers, including proportional integral derivative (PID) controllers, model predictive controllers (MPCs), fuzzy logic controllers (FLCs), and reinforcement learning controllers used in robotics science. The main objective of this article is to demonstrate a comprehensive idea and basic working principle of controllers utilized by mobile robots (MR) for navigation. This work thoroughly investigates several available books and literature to provide a better understanding of the navigation strategies taken by MR. Future research trends and possible challenges to optimizing the MR navigation system are also discussed

    How to build a supervised autonomous system for robot-enhanced therapy for children with autism spectrum disorder

    Get PDF
    Robot-Assisted Therapy (RAT) has successfully been used to improve social skills in children with autism spectrum disorders (ASD) through remote control of the robot in so-called Wizard of Oz (WoZ) paradigms.However, there is a need to increase the autonomy of the robot both to lighten the burden on human therapists (who have to remain in control and, importantly, supervise the robot) and to provide a consistent therapeutic experience. This paper seeks to provide insight into increasing the autonomy level of social robots in therapy to move beyond WoZ. With the final aim of improved human-human social interaction for the children, this multidisciplinary research seeks to facilitate the use of social robots as tools in clinical situations by addressing the challenge of increasing robot autonomy.We introduce the clinical framework in which the developments are tested, alongside initial data obtained from patients in a first phase of the project using a WoZ set-up mimicking the targeted supervised-autonomy behaviour. We further describe the implemented system architecture capable of providing the robot with supervised autonomy

    Comparing Robot and Human guided Personalization: Adaptive Exercise Robots are Perceived as more Competent and Trustworthy

    Get PDF
    Schneider S, Kummert F. Comparing Robot and Human guided Personalization: Adaptive Exercise Robots are Perceived as more Competent and Trustworthy. INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS. 2020.Learning and matching a user's preference is an essential aspect of achieving a productive collaboration in long-term Human-Robot Interaction (HRI). However, there are different techniques on how to match the behavior of a robot to a user's preference. The robot can be adaptable so that a user can change the robot's behavior to one's need, or the robot can be adaptive and autonomously tries to match its behavior to the user's preference. Both types might decrease the gap between a user's preference and the actual system behavior. However, the Level of Automation (LoA) of the robot is different between both methods. Either the user controls the interaction, or the robot is in control. We present a study on the effects of different LoAs of a Socially Assistive Robot (SAR) on a user's evaluation of the system in an exercising scenario. We implemented an online preference learning system and a user-adaptable system. We conducted a between-subject design study (adaptable robot vs. adaptive robot) with 40 subjects and report our quantitative and qualitative results. The results show that users evaluate the adaptive robots as more competent, warm, and report a higher alliance. Moreover, this increased alliance is significantly mediated by the perceived competence of the system. This result provides empirical evidence for the relation between the LoA of a system, the user's perceived competence of the system, and the perceived alliance with it. Additionally, we provide evidence for a proof-of-concept that the chosen preference learning method (i.e., Double Thompson Sampling (DTS)) is suitable for online HRI

    Real-time generation and adaptation of social companion robot behaviors

    Get PDF
    Social robots will be part of our future homes. They will assist us in everyday tasks, entertain us, and provide helpful advice. However, the technology still faces challenges that must be overcome to equip the machine with social competencies and make it a socially intelligent and accepted housemate. An essential skill of every social robot is verbal and non-verbal communication. In contrast to voice assistants, smartphones, and smart home technology, which are already part of many people's lives today, social robots have an embodiment that raises expectations towards the machine. Their anthropomorphic or zoomorphic appearance suggests they can communicate naturally with speech, gestures, or facial expressions and understand corresponding human behaviors. In addition, robots also need to consider individual users' preferences: everybody is shaped by their culture, social norms, and life experiences, resulting in different expectations towards communication with a robot. However, robots do not have human intuition - they must be equipped with the corresponding algorithmic solutions to these problems. This thesis investigates the use of reinforcement learning to adapt the robot's verbal and non-verbal communication to the user's needs and preferences. Such non-functional adaptation of the robot's behaviors primarily aims to improve the user experience and the robot's perceived social intelligence. The literature has not yet provided a holistic view of the overall challenge: real-time adaptation requires control over the robot's multimodal behavior generation, an understanding of human feedback, and an algorithmic basis for machine learning. Thus, this thesis develops a conceptual framework for designing real-time non-functional social robot behavior adaptation with reinforcement learning. It provides a higher-level view from the system designer's perspective and guidance from the start to the end. It illustrates the process of modeling, simulating, and evaluating such adaptation processes. Specifically, it guides the integration of human feedback and social signals to equip the machine with social awareness. The conceptual framework is put into practice for several use cases, resulting in technical proofs of concept and research prototypes. They are evaluated in the lab and in in-situ studies. These approaches address typical activities in domestic environments, focussing on the robot's expression of personality, persona, politeness, and humor. Within this scope, the robot adapts its spoken utterances, prosody, and animations based on human explicit or implicit feedback.Soziale Roboter werden Teil unseres zukünftigen Zuhauses sein. Sie werden uns bei alltäglichen Aufgaben unterstützen, uns unterhalten und uns mit hilfreichen Ratschlägen versorgen. Noch gibt es allerdings technische Herausforderungen, die zunächst überwunden werden müssen, um die Maschine mit sozialen Kompetenzen auszustatten und zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen. Eine wesentliche Fähigkeit eines jeden sozialen Roboters ist die verbale und nonverbale Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomorphes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natürliche Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende menschliche Kommunikation zu verstehen. Darüber hinaus müssen Roboter auch die individuellen Vorlieben der Benutzer berücksichtigen. So ist jeder Mensch von seiner Kultur, sozialen Normen und eigenen Lebenserfahrungen geprägt, was zu unterschiedlichen Erwartungen an die Kommunikation mit einem Roboter führt. Roboter haben jedoch keine menschliche Intuition - sie müssen mit entsprechenden Algorithmen für diese Probleme ausgestattet werden. In dieser Arbeit wird der Einsatz von bestärkendem Lernen untersucht, um die verbale und nonverbale Kommunikation des Roboters an die Bedürfnisse und Vorlieben des Benutzers anzupassen. Eine solche nicht-funktionale Anpassung des Roboterverhaltens zielt in erster Linie darauf ab, das Benutzererlebnis und die wahrgenommene soziale Intelligenz des Roboters zu verbessern. Die Literatur bietet bisher keine ganzheitliche Sicht auf diese Herausforderung: Echtzeitanpassung erfordert die Kontrolle über die multimodale Verhaltenserzeugung des Roboters, ein Verständnis des menschlichen Feedbacks und eine algorithmische Basis für maschinelles Lernen. Daher wird in dieser Arbeit ein konzeptioneller Rahmen für die Gestaltung von nicht-funktionaler Anpassung der Kommunikation sozialer Roboter mit bestärkendem Lernen entwickelt. Er bietet eine übergeordnete Sichtweise aus der Perspektive des Systemdesigners und eine Anleitung vom Anfang bis zum Ende. Er veranschaulicht den Prozess der Modellierung, Simulation und Evaluierung solcher Anpassungsprozesse. Insbesondere wird auf die Integration von menschlichem Feedback und sozialen Signalen eingegangen, um die Maschine mit sozialem Bewusstsein auszustatten. Der konzeptionelle Rahmen wird für mehrere Anwendungsfälle in die Praxis umgesetzt, was zu technischen Konzeptnachweisen und Forschungsprototypen führt, die in Labor- und In-situ-Studien evaluiert werden. Diese Ansätze befassen sich mit typischen Aktivitäten in häuslichen Umgebungen, wobei der Schwerpunkt auf dem Ausdruck der Persönlichkeit, dem Persona, der Höflichkeit und dem Humor des Roboters liegt. In diesem Rahmen passt der Roboter seine Sprache, Prosodie, und Animationen auf Basis expliziten oder impliziten menschlichen Feedbacks an
    • …
    corecore