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Abstract
Social robots will be part of our future homes. They will assist us in everyday tasks,
entertain us, and provide helpful advice. However, the technology still faces challenges
that must be overcome to equip the machine with social competencies and make it a
socially intelligent and accepted housemate.

An essential skill of every social robot is verbal and non-verbal communication. In
contrast to voice assistants, smartphones, and smart home technology, which are al-
ready part of many people’s lives today, social robots have an embodiment that raises
expectations towards the machine. Their anthropomorphic or zoomorphic appearance
suggests they can communicate naturally with speech, gestures, or facial expressions
and understand corresponding human behaviors. In addition, robots also need to con-
sider individual users’ preferences: everybody is shaped by their culture, social norms,
and life experiences, resulting in different expectations towards communication with a
robot. However, robots do not have human intuition – they must be equipped with the
corresponding algorithmic solutions to these problems.

This thesis investigates the use of reinforcement learning to adapt the robot’s verbal
and non-verbal communication to the user’s needs and preferences. Such non-functional
adaptation of the robot’s behaviors primarily aims to improve the user experience and the
robot’s perceived social intelligence. The literature has not yet provided a holistic view of
the overall challenge: real-time adaptation requires control over the robot’s multimodal
behavior generation, an understanding of human feedback, and an algorithmic basis
for machine learning. Thus, this thesis develops a conceptual framework for designing
real-time non-functional social robot behavior adaptation with reinforcement learning.
It provides a higher-level view from the system designer’s perspective and guidance from
the start to the end. It illustrates the process of modeling, simulating, and evaluating
such adaptation processes. Specifically, it guides the integration of human feedback and
social signals to equip the machine with social awareness.

The conceptual framework is put into practice for several use cases, resulting in
technical proofs of concept and research prototypes. They are evaluated in the lab and
in in-situ studies. These approaches address typical activities in domestic environments,
focussing on the robot’s expression of personality, persona, politeness, and humor. Within
this scope, the robot adapts its spoken utterances, prosody, and animations based on
human explicit or implicit feedback.
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Zusammenfassung
Soziale Roboter werden Teil unseres zukünftigen Zuhauses sein. Sie werden uns bei
alltäglichen Aufgaben unterstützen, uns unterhalten und uns mit hilfreichen Ratschlägen
versorgen. Noch gibt es allerdings technische Herausforderungen, die zunächst über-
wunden werden müssen, um die Maschine mit sozialen Kompetenzen auszustatten und
zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen.

Eine wesentliche Fähigkeit eines jeden sozialen Roboters ist die verbale und nonverbale
Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-
Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale
Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomor-
phes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natürliche
Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende
menschliche Kommunikation zu verstehen. Darüber hinaus müssen Roboter auch die
individuellen Vorlieben der Benutzer berücksichtigen. So ist jeder Mensch von seiner
Kultur, sozialen Normen und eigenen Lebenserfahrungen geprägt, was zu unterschied-
lichen Erwartungen an die Kommunikation mit einem Roboter führt. Roboter haben
jedoch keine menschliche Intuition – sie müssen mit entsprechenden Algorithmen für
diese Probleme ausgestattet werden.

In dieser Arbeit wird der Einsatz von bestärkendem Lernen untersucht, um die verbale
und nonverbale Kommunikation des Roboters an die Bedürfnisse und Vorlieben des
Benutzers anzupassen. Eine solche nicht-funktionale Anpassung des Roboterverhaltens
zielt in erster Linie darauf ab, das Benutzererlebnis und die wahrgenommene soziale
Intelligenz des Roboters zu verbessern. Die Literatur bietet bisher keine ganzheitliche
Sicht auf diese Herausforderung: Echtzeitanpassung erfordert die Kontrolle über die
multimodale Verhaltenserzeugung des Roboters, ein Verständnis des menschlichen
Feedbacks und eine algorithmische Basis für maschinelles Lernen. Daher wird in dieser
Arbeit ein konzeptioneller Rahmen für die Gestaltung von nicht-funktionaler Anpassung
der Kommunikation sozialer Roboter mit bestärkendem Lernen entwickelt. Er bietet eine
übergeordnete Sichtweise aus der Perspektive des Systemdesigners und eine Anleitung
vom Anfang bis zum Ende. Er veranschaulicht den Prozess der Modellierung, Simulation
und Evaluierung solcher Anpassungsprozesse. Insbesondere wird auf die Integration
von menschlichem Feedback und sozialen Signalen eingegangen, um die Maschine mit
sozialem Bewusstsein auszustatten.

Der konzeptionelle Rahmen wird für mehrere Anwendungsfälle in die Praxis umge-
setzt, was zu technischen Konzeptnachweisen und Forschungsprototypen führt, die in
Labor- und In-situ-Studien evaluiert werden. Diese Ansätze befassen sich mit typischen
Aktivitäten in häuslichen Umgebungen, wobei der Schwerpunkt auf dem Ausdruck der
Persönlichkeit, dem Persona, der Höflichkeit und dem Humor des Roboters liegt. In
diesem Rahmen passt der Roboter seine Sprache, Prosodie, und Animationen auf Basis
expliziten oder impliziten menschlichen Feedbacks an.
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1. Introduction
Over the past decades, robots have evolved from big, bulky, and expensive machines
to more compact, affordable, versatile, and mobile devices. Even though they have not
yet entered our daily lives everywhere, the underlying technology has made massive
progress. One of the key challenges in human-robot interaction (HRI) has always been
to equip these machines with an intuitive, understanding, and pleasing interface for
humans, intending to make them social robots. Early on, science found that people like
to interact with robots that exhibit familiar, humanoid behaviors. No wonder, then, that
many social robots are not only designed to have an anthropomorphic or zoomorphic
appearance with eyes, ears, a mouth, arms, hands, legs, and feet, but also to communicate
with us via associated communication channels.

In general, communication is an essential and multifaceted social competence. Humans
use verbal and non-verbal communication channels, such as speech, gestures, facial
expressions, and gaze. These behaviors allow for very flexible and complex communica-
tion in almost any environment, be it auditory, visual or haptic, or a combination of two
or more. For humans, generating, perceiving, and interpreting all these cues may be a
matter of course, as we learn and develop from an early age. However, it is by no means
so for the machine. Social robots need to master various skills that humans often take
for granted to be accepted and perceived as a “social” entity.

Apart from the ability to express oneself with speech, gestures, and the like, every-
body has their individual personality and communication style, which results, i.a., from
learned social norms, social background, culture, and more. For example, in plays of the
time of Shakespeare, there existed two addresses: the familiar address “thou” and the
formal address “you”. The German counterpart is the use of the formal address “Sie” in
contrast to the informal “Du”, both of which are still in use today as an expression of
politeness depending on whether communication happens with a stranger or a friend.
Communication also differs between generations in terms of constantly changing vocab-
ulary and neologisms, social status, in-group markers to express group membership, and
much more. Beyond language, communication also differs between cultures in terms of
directness and expressiveness of gestures, showing or hiding emotions, and much more.
These experiences result in individual expectations towards our dialog partners – and
social robots! – on what we expect how a human or robot should communicate with us.

As a consequence, social robots do not only need tools for verbal and non-verbal com-
munication, but they also need to adapt their behaviors to the individual user’s needs
and preferences. Humans use their intuition to evaluate whether their communication
attempts are expedient or not. For this purpose, we perceive verbal and non-verbal
behaviors of our dialog partner, including subliminal social signals: the way how one
reacts in terms of prosody, gaze behavior, facial expression, gestures, and posture com-
municates much more than the spoken words in isolation. Thus, social robots should
also be able to sense, process, and interpret such signals as feedback for adaptation.
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1. Introduction

With human intelligence being a result of experience collected during a lifelong learn-
ing process, it seems logical to look at social robot adaptation from the perspective of
machine learning, and “artificial intelligence”. Do algorithms allow the machine to
adapt to the individual user, to learn about their preferences, and are they able to gener-
ate personalized behaviors? Learning and adaptation have been crucial to success in
human evolution, and thus it is also one opportunity for social robots to master their
communication with humans.

1.1. Motivation

Social robots will be part of our future domestic environments – similar to digital voice
assistants, smartphones, and smart home technology, which are already part of many
people’s everyday lives. Social robots at home will need to provide us with many features,
including entertainment, assistance, information retrieval, and communication, but
also an attractive embodiment and personality. de Graaf and Allouch (2013) identify
usefulness, enjoyment, companionship, behavioral control, sociability, and adaptability
as essential variables for robot acceptance. Generating robot behaviors that mimic
human-like behaviors and suggest social intelligence, such as humor and politeness, and
their adaptation to the individual user’s needs and preferences, are up-to-date challenges
for HRI in our own four walls.

The literature addresses various forms of user-adaptive interaction. There is functional
adaptation, focussing on what the robot does. In a goal-oriented interaction, such as a
sorting task, the robot can adapt its actions to the user’s desired sorting criteria. Should it
sort according to object color, size, or shape? In which order? On the other side, there is
non-functional adaptation, focussing on how the robot executes its actions – independently
of the interaction goal. Should it move fast or slow? Should it give comments on the
procedure, or should it ask more or less politely for help in case of problems?

In addition, there are also different approaches for implementing adaptation. For
example, the robot’s behaviors can be initially configured based on a user questionnaire
before starting the interaction. Many studies, which address the adaptation of verbal and
non-verbal robot behaviors, use this approach. On the other side, the more complicated
approach is to adapt the robot’s behaviors during the interaction. Then, the robot must
ask the user for feedback or infer the user’s preferences or needs automatically.

Most of the literature and studies focus on functional adaptation; there are fewer
works and insights about non-functional adaptation (see Figure 1.1). Those works, which
realize non-functional adaptation, often configure the robot once in the beginning but
do not implement learning during the interaction. However, a real-time adaptation
approach is desirable for the robot’s autonomy and for disburdening the user from
continuously providing feedback. It becomes even more challenging when the context is
not a goal-oriented interaction. Without measurable data from the task, the robot needs
other sources of feedback to adapt to the user.

This thesis addresses this research gap: how to realize non-functional adaptation of
verbal and non-verbal social robot behaviors in real-time to the individual user when
feedback cannot be inferred directly from the task? Apart from demanding feedback
from the user during the interaction explicitly with a prompt, a key technology for
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1.1. Motivation

Figure 1.1.: Overview of the amount of literature addressing non-functional adaptation,
implicit user feedback, and used feedback modalities. See also chapter 6.

autonomous adaptation is social signal processing (SSP). Human social signals cover
different modalities and are a continuous source of information about the user’s affective
state, engagement, attention, and more (see Figure 1.1). They occur in any interaction be-
cause human communication is multimodal and happens to a large extent subconsciously.
The inclusion of human social signals as implicit feedback and their combination with a
suitable machine learning approach are key challenges to solve.

However, the path of real-time adaptation is a rocky one. Several questions arise
concerning acquiring feedback based on human social signals and the algorithmic basis
needed to drive the adaptation process. Besides SSP, there are more difficulties to solve
for adaptation: which signals are most related to the adaptation goal, how, and when
should the robot measure them? How can the sensed data be integrated into a real-time
adaptation process? At the same time, HRI has specific requirements on the algorithmic
basis: the robot should learn in real-time and be autonomous without expert input. It
needs to operate in an uncertain environment where external influences might bias the
user’s feedback. Adaptation should happen over an extended period to react to changing
user needs and preferences, and – ideally – adaptation should happen in the background
to not interrupt the interaction.

First attempts have been made in the literature, addressing single aspects without a
holistic view of the overall problem. A general overview and guidance on the whole
procedure are still needed. This thesis will fill this gap with conceptual, technical, and
empirical contributions and insights. It will provide a higher-level view on non-functional
social robot behavior adaptation from the system designer’s perspective. It will guide
the reader from the start to the end by breaking down the complete process of designing
a real-time non-functional adaptation process for social robots. The overall structure
splits up the problem in

1. generating robot behaviors that allow for adaptation (what to adapt?), and

2. designing the algorithmic approach for implementing adaptation (how to adapt?).

Figure 1.2 illustrates the interrelation: the robot communicates generated behaviors
to the user with the help of the output modalities provided by the hardware. The user
provides explicit or implicit feedback – including social signals – to the adaptation process,
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Figure 1.2.: The motivation and the high-level overview of the contributions and context
of this thesis.

which then controls and manipulates the generation of the following robot behaviors.
This loop repeats over and over again.

The overall idea is a generalized structure with three building blocks for designing
such an adaptation process. During problem modeling, the system designer lays out the
theoretical and general structure of the adaptation approach in consideration of the
adaptation goal and problem-specific properties. Specifically, this step also defines the
inclusion of human social signals in the adaptation process. Afterward, simulations allow
for a technical evaluation of the model, its convergence, tweaking parameters, and more.
In particular, a simulation can train the robot without human interaction and, as a result,
provide the base knowledge for the robot’s subsequent interaction with the user. The
final human evaluation gives insights into the performance of the adaptation approach
and resulting impacts on user experience in real HRI. In contrast to simulations, the
knowledge gained from human evaluations allows the robot to learn the unexpected:
the robot can learn actual user preferences only in real interactions.

This thesis will provide details on critical key considerations and connections between
problem modeling, simulations, and human evaluations. It proposes to use the reinforce-
ment learning (RL) framework (Sutton and Barto, 2018) as the algorithmic basis, which
has gained increased attention in recent years for adaptation and personalization (den
Hengst et al., 2020). RL relies on trial and error: the robot gives several actions a try and
evaluates which of them is the most effective in a given state based on the user’s feedback
– the reward. RL fulfills the requirements mentioned above for non-functional adaptation
in HRI: it allows for continuous, autonomous, and real-time adaptation during interaction
in uncertain environments. Details will include human feedback and social signals in
the state space and the reward signal of a RL agent. They aim to provide the research
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Figure 1.3.: The workflow of this thesis.

community with a conceptual framework for equipping robots with “social awareness”
of their human counterparts and creating socially intelligent robot behaviors.

Apart from these conceptual contributions, this thesis will develop and implement
such adaptation models and present resulting research prototypes. Given the domestic
environment as an application area, the work will focus on generating robot behaviors
that portray essential behavior variables. Different types of personality, politeness, per-
sona, and even humor (see Figure 1.2) will be explored, motivated by their interrelation
and importance for equipping the robot with socially intelligent behaviors. Several ex-
periments will simulate and evaluate the proposed models in the lab and in-situ studies
based on the implemented prototypes.

All in all, this thesis aims to fill the research gap of real-time and non-functional social
robot behavior adaptation and enrich the state-of-the-art research with

1. a conceptual framework for modeling real-time non-functional social robot behav-
ior adaptation from start to finish,

2. instantiations of the framework as reusable and robot-independent models of
user-adaptive robot communication in domestic environments,

3. proofs of concept and research prototypes as a technical basis for evaluating the
implemented models, and

4. insights into their performance and impacts on user experience in simulations,
lab, and in-situ studies.

1.2. Research Objectives

The research objectives listed below will be addressed with a top-down approach (see
Figure 1.3). The psychological background and the literature about social robot behav-
iors will serve as a baseline and inspiration for implementing the robot’s multimodal
communication. The RL theory, background about social signals, and the literature
about adaptive social robots will serve as input to a conceptual framework for modeling
real-time non-functional social robot adaptation with RL and explicit or implicit human
feedback. New RL models will be implemented, simulated, and evaluated based on the
conceptual framework and behavior generation approaches.
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1. Introduction

1.2.1. Generation of Multimodal Socially Intelligent Robot Behaviors
In domestic environments, social robots are integrated into the users’ everyday lives. The
robot needs expressive behaviors to communicate its intentions and internal state to the
user. Moreover, how the robot communicates will also shape its perceived personality,
persona, and social intelligence, such as when being polite or using humor. However,
how can a social robot generate and use such behaviors?

A particular challenge for embodied agents, such as social robots and virtual agents, is
consistency (Gratch et al., 2002). Humans quickly recognize when an embodied agent’s
verbal and non-verbal behaviors do not match. Studies demonstrate that such inconsis-
tencies impact user experience negatively (Isbister and Nass, 2000). Another challenge is
believability. For example, generating robot humor requires a finely tuned synchroniza-
tion of several modalities to produce a believable and funny performance.

The literature has not yet extensively explored the expression of different robot per-
sonas, and most of the literature about robot politeness and humor relies on scripted
robot behaviors. Thus, this thesis will investigate the real-time generation of multimodal
and socially intelligent robot behaviors. It will

1. review the literature and related works to identify human behaviors that allow for
consistent and believable replication. Based on these insights, the thesis will

2. develop models for expressing personality, persona, politeness, irony, and telling
jokes with social robots. The models will

3. transfer the identified verbal and non-verbal human behaviors to the machine by
augmenting and synchronizing speech with prosody, facial expression, and gaze.

The feasibility of the models will be demonstrated with the Reeti robot. Since many
social robots can talk, use facial expressions, and gaze, the implementation of the models
will also be transferrable to other robotic hardware. The models will provide the basis
for investigating non-functional social robot behavior adaptation (see below).

1.2.2. A Conceptual Framework for Modeling Non-Functional
Adaptation

When modeling user-adaptive interaction, several questions must be answered: what
aspect of the interaction is adapted based on which information about the task or user, and
much more. Unfortunately, there is no generalized overview or guideline for modeling
real-time non-functional social robot behavior adaptation in the literature. Thus, a central
contribution of this thesis will be a conceptual framework that provides the system
designer with a holistic view of the overall problem. After providing the foundations of
RL and user-adaptive interaction, the thesis will

1. review the literature about adaptive social robots with RL and human feedback,

2. develop a conceptual framework that covers every step in the process of designing,
implementing, simulating, and evaluating models for socially-aware and real-time
non-functional social robot behavior adaptation with RL, and
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3. analyze the overall structure and general approach for social robot adaptation and
identify connections between the theory and practice.

The framework will help system designers make design decisions based on step-by-step
instructions and answers to common questions. The conceptual framework will

• describe the roles and responsibilities of the user, robot, and system designer in a
user-adaptive interaction process,

• identify requirements and desirable properties of such an adaptation process,

• break down the procedure from start to finish, including problem modeling, simu-
lation, and evaluation,

• provide tips and tricks on the design of the RL action space for maintaining consis-
tency in the robot’s behaviors,

• integrate the user in the RL framework, including their state and reactions,

• explain human explicit and implicit feedback (in specific, human social signals) in
the RL loop, and

• point out algorithmic considerations and implications.

1.2.3. Models for Real-Time Behavior Adaptation with Human
Feedback

The conceptual framework and models for multimodal behavior generation will cul-
minate in several case studies of non-functional social robot behavior adaptation. The
thesis will work out several models for user-adaptive robot communication. They allow
for getting insights into their performance and impacts on user experience. The models
will put the conceptual framework into practice and provide concrete examples for
non-functional adaptation of the robot’s expressed personality, persona, politeness, and
humor. They will

• implement real-time non-functional social robot adaptation with

• increasing complexity, from explicit feedback to implicit feedback based on human
social signals by

• optimizing single or multiple generation parameters and

• combining multiple communication modalities to a larger whole.

The models will be designed as generic as possible to implement independently of
specific hardware and software. The benefit of the conceptual framework will be its
guidance during the development of each model, covering the details of every aspect of
the RL problem. Human feedback will be an essential distinguishing feature: explicit
and implicit human feedback will be used in different ways to illustrate the range of use
cases and applications of the conceptual framework.

9



1. Introduction

The developed adaptation models will be implemented based on the Reeti robot hard-
ware as proofs of concept and research prototypes, illustrating the technical implementa-
tion of non-functional social robot behavior adaptation to future developers. Afterward,
the models will be simulated and evaluated (see below).

1.2.4. Simulation of User Reactions and Different Types of Noise

The conceptual framework will regard simulations as integral to developing user-adaptive
interaction processes based on RL. Simulations will serve as a first, time-, effort-, and
cost-saving step in evaluating non-functional adaptation models. Before evaluating the
models with humans, this thesis will simulate the adaptation approaches, primarily for
technical evaluation. Simulations will, i.a.,

• inspect whether the model converges,

• optimize learning parameters, and

• investigate the model’s sensitivity to different types of noise, including biased
human feedback and noise introduced by SSP.

While humans are part of user-adaptive interaction processes, simulations must work
without real human interaction. Several questions arise regarding the implementation of
simulations. How to replace the human with a simulated user, how to equip simulations
with artificial preferences, and how to simulate human reactions during the adaptation
process? The conceptual framework will answer these questions, while the developed
simulations will illustrate the technical implementation.

In a subsequent human evaluation (see below) in the lab or domestic environment,
different types of noise will bias human feedback – specifically but not exclusively when
relying on human social signals as feedback. Thus, the impact of different types of noise
on the learning agent’s performance will be explored based on the simulations.

1.2.5. Identification of User Preferences and Impacts on User
Experience

Finally, the developed and simulated models will be evaluated in the lab and in in-situ
studies to verify the proposed non-functional adaptation approaches. The resulting
in-situ and lab prototypes will include the implemented mechanisms for adaptation
and behavior generation, SSP, automated adaptation measurements, and more. An
autonomous evaluation platform will be developed and deployed in participants’ homes.
It will implement several applications for a companion robot, including health-related
recommendations, entertainment, information retrieval, and communication.

During the human evaluation, the robot will adapt its behaviors to the individual
users and identify their preferences. The thesis will report the resulting impacts of
non-functional adaptation on the participants’ user experience.
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1. Introduction

1.3. Overview
Figure 1.4 gives an overview of this thesis. The rest of Part I deals with the theoretical
background. Chapter 2 gives an introduction to RL. It covers an overview of defini-
tions, problem modeling, properties, typical parameters, and algorithms. In addition,
it presents common approaches for measuring and plotting performance. Chapter 3
is about human social signals, which serve as the basis for implementing multimodal
robot behaviors and for incorporating human feedback for adaptation. An overview of
non-verbal communication is given, including gestures, posture, body movement, facial
expression, gaze, and paralinguistic behaviors. Chapter 4 deals with the psychological
background. It covers personality, politeness theory, and different types of humor and
their expression by humans.

Part II gives an overview of the literature. Chapter 5 introduces social robots, their
abilities for sensing and producing verbal and non-verbal behaviors, and experiments
in domestic environments. Related works cover the expression of personality, persona,
politeness, and humor with different modalities. Chapter 6 covers the adaptation of
social robots. It introduces user-adaptive interaction, outlining different types, criteria,
and metrics. An overview of RL for social robot adaptation is given. The focus is on
experiment designs, algorithms, feedback modalities, and the use of human social signals.
The chapter terminates with limitations and research gaps in the presented literature.

Part III (what to adapt) presents novel concepts and techniques for expressing and
generating multimodal robot behaviors in the context of a domestic companion robot.
Chapter 7 focuses on expressing personality in the context of storytelling. Chapter 8
presents a domestic companion robot with assistive and entertainment applications.
Afterward, it focuses on the expression of politeness and different personas in the context
of health-related recommendations, board games, and information retrieval. Chapter 9
presents approaches for multimodal robot joke-telling. Chapter 10 presents an approach
for generating robot irony in the context of small talk. Chapter 11 gives an overview of
the developed technical basis for generating multimodal robot behaviors.

Part IV (how to adapt) presents different non-functional adaptation approaches. Chap-
ter 12 details on algorithmic considerations, and several challenges resulting from the
requirements of real-time HRI. It presents the conceptual framework for modeling, sim-
ulating, and evaluating the adaptation of multimodal social robot behaviors based on
RL and human feedback. Socially-aware RL describes the concept of embedding human
social signals in such adaptation processes. Chapter 13 focuses on explicit human feed-
back. It covers an experiment, simulation, and in-situ study results for adapting the
robot’s persona and politeness. Chapter 14 is about implicit human feedback. It presents
experiments, simulations, and study results for the storytelling and joke-telling scenario.

Finally, Part V summarizes the contributions of this thesis in chapter 15 and open
questions in chapter 16, which are subject for future work and research.
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2. Reinforcement Learning
There are three categories of machine learning: supervised, unsupervised, and rein-
forcement learning. Figure 2.1 illustrates the first two approaches: Supervised learning
provides instructive feedback from an expert; in contrast, unsupervised learning requires
the system to extract structure or features from observed data on its own. In the context
of robots and HRI, many tasks are so-called control problems, which require real-time
decision-making. The robot must decide which action to take at a specific time in a
particular situation. Moreover, robots typically are not constantly supervised by human
experts, need to act autonomously, and thus need to decide how to behave on their own
in real-time. For these types of problems, reinforcement learning (Sutton and Barto, 2018)
has become increasingly popular. In RL, no expert is involved, and the learner neither
receives labeled data nor is its goal to extract hidden structure.

This section gives an overview of the theoretical RL basics and algorithms used in
this thesis. It focuses on model-free, value-based methods, which encode the agent’s
knowledge as floating point values. See chapter 12 for special requirements on applying
RL in the context of HRI and corresponding experiments and studies in chapters 13 and
14 for adaptation of social robot behaviors with RL. The book by Sutton and Barto, 2018
serves as the basis for the content and formal notation.

2.1. Overview
RL is a class of machine learning algorithms for solving control problems. It is based
on trial and error: the learning system, a so-called agent, iteratively investigates dif-
ferent actions in different situations, called states. The agent learns which action is
best in which state based on the only scalar feedback it receives: the reward signal (see
Figure 2.2). These properties make an RL agent completely autonomous. It does not

(a) Supervised learning. (b) Unsupervised learning.

Figure 2.1.: Supervised learning and unsupervised learning.
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2. Reinforcement Learning

state n...state 2

actions

reward

state 1

Figure 2.2.: An RL agent autonomously determines which action to take in different states
based on a scalar reward signal.

need instructive feedback from (human) experts but figures out a solution based on its
collected experience during the learning process. The experience includes information
about observed state-action pairs linked to rewards. The system designer must specify
the following information in order to make use of RL:

• the action space defines the tools for solving the problem,

• the state space defines relevant features and their manifestations for distinguishing
different situations and

• the reward function encodes for each situation whether the agent does something
expedient or not.

The agent does not know how to behave in which situation upfront, but this knowledge
is the result of the learning process. It determines a solution based on trial and error
and observing received rewards. The learning agent determines an optimal policy over
time, which maps each state to an optimal action. Since RL works iteratively, the learning
progress is split up into consecutive time steps 𝑡 = 0, 1, 2, . . . , which occur one after the
other.

The learning process consists of an (in)finite loop. Each iteration/time step involves
two basic tasks, as illustrated in Figure 2.3(a):

1. Select an action in the current state. After execution, observe the reward signal
and next state.

2. Update the knowledge based on the last state, selected action, next state, and
received reward.

With each learning step, the agent makes more observations about cause and effect
in terms of executed actions in different states and received rewards. Its experience
increases gradually, the policy gets refined, and the agent’s behavior becomes more and
more efficient.
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2.2. Problem Modeling
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(a) Learning loop.

environment

action

agent

state reward
(b) Agent and environment.

Figure 2.3.: Tasks and boundaries of an RL agent.

Agent and Environment

The running system, which executes the learning loop, is called the agent. Its compe-
tence is the selection and execution of actions and the calculation and update of the
internal knowledge (see Figure 2.3(b)). This process works differently depending on the
implemented RL algorithm, but the overall idea is always the same as described above.

The learning agent does not calculate the current state, next state, and reward signal
by itself. This data comes from the environment beyond the agent’s system boundary.
The agent does not influence the received reward or state transitions. However, the
agent needs some internal representation of states, actions, and rewards. It associates
observed data from the environment with actions to learn an optimal policy. The agent’s
system boundary is blurry when implementing simulations that also need to simulate
the environmental response. The general idea of splitting agent and environment is to
swap the learning part with another implementation (e.g., another algorithm) while the
environment’s logic remains unchanged.

2.2. Problem Modeling

RL is all about solving control problems. Given the problem, the designer of the RL
agent needs to think about (1) which skills are necessary to reach the goal, (2) which
factors or parameters of the environment will change over time, and (3) how to measure
whether the agent reaches the goal. These preliminary considerations are some of the
most important ones in the whole process of RL. The agent will be unable to find a
solution if the system designer makes errors. For example, including irrelevant data
makes the agent potentially less efficient, and the agent will find a solution more slowly.
Thus, analyzing the problem in detail before running experiments is essential.
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2. Reinforcement Learning
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Figure 2.4.: States can be represented discretely or continuously.

2.2.1. Action Space

Interaction with and manipulation of the environment is only possible with the help of
the agent’s actions. Actions can vary in different states. For example, it might be helpful
to reduce the set of actions for states where the execution of specific actions does not
make sense a priori. In this thesis, discrete actions are used, which results in a finite set
of actions:

A(𝑠) = {𝑎1, 𝑎2, 𝑎3, . . . }
In each time step 𝑡, an action 𝐴𝑡 ∈ A(𝑆𝑡) is selected and executed. The agent cannot

directly influence the outcome of the action, but the environment determines the logic
of what happens when the agent executes the action in a specific situation. The outcome
can be deterministic or nondeterministic (see section 2.4.2).

2.2.2. State Space

The state space allows the agent to distinguish different situations. States are collections
of features, which serve (1) as an abstracted representation of the environment, as well
as (2) the only opportunity to encode knowledge about the task progress. The latter is the
result of the Markov property: the current state must encode all past data (i.e., the history
of past observations relevant to the agent). The set of states S is defined as follows:

S = {𝑠1, 𝑠2, 𝑠3, . . . }

In each time step 𝑡, the state 𝑆𝑡 ∈ S is active, followed by the next state 𝑆𝑡+1 after action
execution. It is important to note that states are interdependent: the execution of an
action 𝑎1 in 𝑠1 may lead to the next state 𝑠2; however, the execution of another action 𝑎2
in 𝑠1 could lead to another state 𝑠3. The agent’s subsequent observations highly depend
on its previous actions while traversing the state space. Metaphorically speaking, the
agent walks along different paths through the state space during learning, where each
learning step starts in the current state 𝑆𝑡 and leads to the next state 𝑆𝑡+1. Future learning
steps always depend on past states and actions. The power of a RL agent lies in optimizing
these paths and selecting actions that lead towards the goal by the shortest route.

Figure 2.4 illustrates two options for encoding states. The set of states can either
be discrete or continuous: a discrete state space is defined by a finite set of 𝑛 states
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2.2. Problem Modeling

S = 𝑠1, 𝑠2, . . . , 𝑠𝑛 (𝑛 = 3 in Figure 2.4). In contrast, continuous state spaces are infinite
and the current state 𝑠𝑡 must be described by functions, which take the raw data (e.g.,
floating point features) of state 𝑠 as input (𝑥 (𝑠) in Figure 2.4). This approach is called
function approximation. One can also use function approximation for describing finite
sets of states, which has the benefit of better generalization (see also section 2.8).

In the case of a discrete set of states, the agent must make abstractions when dealing
with complex values. For example, a continuous floating point feature in the range [0; 1]
must be discretized. It is necessary to split up the infinite number of possible values
in a finite number of intervals, for example, [0; 0.5] and [0.5; 1.0], which reduces its
precision significantly. Figure 2.4 presents another example, where the human’s smile
intensity is the single feature of the state space. Discretization would split this feature
into three different manifestations, resulting in a state space with three states 𝑠1, 𝑠2 and
𝑠3. A loss of accuracy is the result since the learning agent can only distinguish a limited
amount of manifestations for each feature.

Determining the relevant environment’s and task’s features for inclusion in the state
space is the system designer’s task – as is the identification of necessary actions. States
are the only option for the agent to distinguish different situations and recognize simi-
lar situations. Like the set of actions, irrelevant data may decrease performance, and
forgetting relevant data might cause a complete learning failure. The so-called curse of
dimensionality is a problem, especially for discrete state spaces. The state space expo-
nentially grows when adding new features, which is undesirable due to limited memory
and computing time.

2.2.3. Reward, Values, and Policies

After selecting an action 𝐴𝑡 in the current state 𝑆𝑡, the agent receives the reward. This
numeric value 𝑅𝑡+1 ∈ R serves as an indication of how good or bad this action performs
in 𝑆𝑡. Due to the lack of expert feedback, this is the only input available for calculating
an optimal policy over time (see below). However, rewards do not always serve as an
immediate indication of success or failure because rewards may be delayed. The agent’s
current action selection can influence future events. For example, it might receive a high
positive or negative reward only later, caused by the sequence of preceding actions.

For value-based RL approaches, the observed rewards are summed up over time
intelligently for calculating weighted averages. These averages estimate how good actions
perform while taking into consideration what will happen in the time steps after the
current action execution. The average value is called 𝑄(𝑠, 𝑎) and is estimated for each
state-action pair (𝑠, 𝑎) with 𝑠 ∈ S and 𝑎 ∈ A. 𝑄 can be implemented as a 2D lookup table
or hash map, which associates one floating point value with each pair (𝑠, 𝑎) if there is a
finite number of states. The calculation differs from algorithm to algorithm.

At the end of the iterative calculation process, the 𝑄 values converge towards the real
values 𝑞∗. The real values are unknown to the agent; solving the control problem is exactly
the calculation of these values. In simulations, the simulation environment/program
logic may know all 𝑞∗(𝑠, 𝑎) (e.g., it might assign random numbers). Some performance
measurements presented in section 2.7 rely on them.

In general, the term reward does not necessarily mean a positive signal for the agent. 𝑅
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2. Reinforcement Learning

can be of any value, positive or negative, large or small. It is also possible to give negative
rewards exclusively. What matters is the difference between rewards and values for
different actions, not necessarily the actual value itself.

A policy can be inferred from the 𝑄 values at each time step 𝑡. It maps each state to
its greedy action and thus tells the agent which action is the best to take based on the
agent’s past observations. This data is not stored separately since it automatically results
from the current 𝑄 values by calculating argmax𝑎𝑄𝑡 (𝑠, 𝑎). With each learning step and
increasing experience, the policy becomes better when the 𝑄 values converge to the real
values 𝑞∗. There is at least one optimal policy, which is the best policy. Multiple optimal
policies might assign more than one optimal action to each state. In this case, it does not
matter which one of the optimal actions to take. The optimal policy changes over time if
the problem is nonstationary (see section 2.4.1): as soon as the actions’ real values 𝑞∗
change, the optimal policy changes, too.

2.3. Exploitation vs. Exploration
An RL agent solves a control problem, meaning it needs to make decisions during runtime.
In each learning/time step 𝑡, the agent selects an action and executes it. The decision
of which action to take is of central importance since it directly impacts the agent’s
performance. Action selection requires the agent to balance exploitation and exploration.
Both aspects are crucial for optimal performance, but in detail, it entirely depends on
the problem (see section 2.4.1).

Exploitation means that the agent maximizes the expected reward by picking the
action with the maximum estimated value. Exploitation is always based on the agent’s
observations up to time 𝑡 since the estimated values 𝑄 are calculated iteratively. In the
case of exploitation, an agent’s action selection is greedy, and those actions with the
maximum value are called greedy actions.

Exploration is the counterpart to exploitation. It aims to explore nongreedy actions,
which appear to be suboptimal or might not have been used so far. Selecting suboptimal
actions every once in a while is done by intention and is essential for optimal performance.
First, the real values 𝑞∗ might change over time in nonstationary tasks (see section 2.4.1),
which means that optimal actions change over time. In addition, rewards can be noisy,
so the current estimated values 𝑄 might be biased. Thus, the next best solution based
on the current experience does not need to be the overall best solution. In most cases,
exploration is the only opportunity to become aware of and react to such changes.

2.3.1. greedy
A greedy agent completely ignores exploration. It focuses on maximizing collected
rewards exclusively and thus always picks the action with the maximum estimated value
𝑄𝑡 (𝑠, 𝑎) in state 𝑠 at time step 𝑡 according to the current policy:

𝐴𝑡 = argmax
𝑎

𝑄𝑡 (𝑠, 𝑎)

There are a few exceptions for which a greedy approach is sufficient (see section 2.4.1),
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2.3. Exploitation vs. Exploration

but generally, it is not suitable for learning. Typically, greedy action selection results in
overall suboptimal behavior because the agent does not care about alternatives due to
the lack of exploration and experience.

2.3.2. 𝜖-greedy

In order to integrate and balance both exploitation and exploration, 𝜖-greedy is a hybrid
approach based on the probability 0 ≤ 𝜖 ≤ 1. In each time step 𝑡, the agent draws a
random number 𝑥. A random action gets selected if the number is smaller than the
probability 𝜖. Otherwise, the agent uses the greedy approach:

𝐴𝑡 =

{
a random action, for 𝑥 < 𝜖

argmax𝑎𝑄𝑡 (𝑠, 𝑎), for 𝑥 ≥ 𝜖

One can control the amount of exploration by setting 𝜖 to a lower or higher value.
Typically, 𝜖 is small. One can also adjust epsilon during runtime, starting with a higher
value and decreasing it throughout an episode (see section 2.4.1). Often, random actions
are selected according to a uniform distribution in the case of exploration. Thus, the
agent does not take its experience or uncertainty about specific actions into account.

For 𝜖 = 0, the action selection is identical to greedy, and the agent performs exploitation
all the time. For 𝜖 = 1, the agent performs exploration exclusively due to random action
selection in each learning step.

2.3.3. UCB

Upper-confidence bound (UCB) action selection is a more intelligent approach than 𝜖-
greedy for stationary problems (see section 2.4.1).1 It considers the uncertainty of all
actions by encouraging exploration of those actions, which have been used less often.
The agent stores a counter 𝑁 for each state-action pair (𝑠, 𝑎) and increments the counter
each time action 𝑎 is selected in state 𝑠. This counter measures uncertainty about the
action’s estimated value: the rarer it is executed compared to other actions, the higher
the uncertainty. While the general idea is a greedy approach, which again works by
finding the maximum action, the counter 𝑁 is part of the calculation. For each action, the
square root of the natural logarithm of the current time step 𝑡, divided by the number of
action executions 𝑁𝑡 (𝑠, 𝑎), is added to the current estimated value 𝑄𝑡 (𝑠, 𝑎). By doing so,
each action gets a benefit in proportion to its uncertainty:

𝐴𝑡 = argmax
𝑎

[
𝑄𝑡 (𝑠, 𝑎) + 𝑐

√︄
ln 𝑡

𝑁𝑡 (𝑠, 𝑎)

]
The constant 𝑐 controls the influence of uncertainty. Figure 2.5 plots the amount of

action selections using UCB for an agent with three actions after 20 time steps. The

1Garivier and Moulines (2008) present discounted and sliding-window UCB for nonstationary environ-
ments.
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Figure 2.5.: UCB’s parameter 𝑐: smaller values result in more exploitation (selection of
the greedy action A2), greater values encourage exploration (action selection
is more balanced/evenly distributed).

smaller the value 𝑐, the more often the greedy action is selected; the greater the value,
the more uniform the resulting action distribution.

An example: for 𝑐 = 0.1 (see Figure 2.5(a)), the greedy action A2 is used almost all the
time. With increasing 𝑐 (see Figures 2.5(b) and 2.5(c)), nongreedy actions are used more
frequently. Thus, 𝑐 controls the balance between exploitation and exploration: a greater
𝑐 encourages exploration and reduces uncertainty, but it also reduces performance at the
same time since the greedy action is selected rarer. For 𝑐 = 0, this results in exclusively
greedy behavior, just like when using 𝜖 = 0 with 𝜖-greedy.

One must be aware that 𝑐 must be chosen depending on the magnitude of the real
values 𝑞∗. A small 𝑐 is sufficient if the real values are in range [−1; 1], as is the case in
Figure 2.5. However, if the real values are in the range [−1000; 1000], the effect of UCB
will not occur until 𝑐 is big enough. Otherwise, the value of the added root is too small
and thus negligible compared to the estimated 𝑄 values.

2.4. Problem Properties

Several properties classify different RL problems. Analyzing the problem and identifying
its characteristics is essential for selecting and configuring suitable learning algorithms.
Similar to problem modeling, this decides on the agent’s learning success.

2.4.1. Stationary vs. Nonstationary

One problem property is stationarity, which relates directly to the real values 𝑞∗, which
are unknown to the agent. In the case of a stationary problem, the 𝑞∗ are fixed and never
change during the experiment. The contrary is true for nonstationary problems, where
the 𝑞∗ can change at any time during the learning process. It means that estimated 𝑄
values become invalid as soon as the corresponding 𝑞∗ change since the new 𝑞∗ values
can be entirely off the previous ones.

Figure 2.6 illustrates an example. The dashed lines represent the real values 𝑞∗, and
the solid lines represent the estimated values 𝑄 over time. In the upper plot (stationary
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Figure 2.6.: Top: real values do not change (stationary problem). Bottom: real values
change at step 75 (nonstationary problem), and the agent cannot adapt ac-
cordingly. Both use noisy rewards.

problem), the 𝑞∗ values are constant from the beginning until the end of the experiment.
Due to the stationarity, the agent can approximate the real values by observing rewards,
thus calculating increasingly more accurate estimates over time. The reduced distance
between the dashed and solid lines demonstrates the convergence towards the real
values 𝑞∗. Due to noisy rewards, temporary divergence is possible, of course. With action
A2 being the nongreedy action, its estimates are worse since it is selected less often. In
general, fewer data typically results in less accurate estimates in a nondeterministic
environment (see section 2.4.2).

In contrast, the lower plot results from a nonstationary problem. The 𝑞∗ values change
in the middle of the experiment at time step 75. Action A1, the greedy action up to this
time, becomes the nongreedy action since A2 has the maximum value from that moment.
For the implementation, a simple bandit algorithm (see section 2.6.1) calculates 𝑄 values
based on the average of all collected rewards for each action. As illustrated by the plot,
this is a severe problem since the agent cannot learn the new greedy action until the end
of the experiment. The learned values are entirely off the 𝑞∗ values. Moreover, for the
example at hand, the identified greedy action is wrong as soon as the 𝑞∗ change. The
learning process is not able to correct the estimates accordingly. Thus, (non)stationarity
is of central importance for selecting an appropriate learning algorithm and balancing
exploration and exploitation. See section section 2.5 for more detailed implications.

2.4.2. Deterministic vs. Nondeterministic

An essential property concerning the environment is determinism or the lack of it. The
environmental response in state 𝑠 to the agent’s selected action 𝑎 consists of a state-
reward pair (𝑠′, 𝑟) with 𝑠′ ∈ S and 𝑟 ∈ R. A deterministic environment always responds
with the same pair (𝑠′, 𝑟) to a given state-action tuple (𝑠, 𝑎). Both the reward and next
state are deterministic then.
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In the case of a nondeterministic environment, the environmental response can vary.
Both the reward and next state may differ; thus, given the current state-action tuple
(𝑠, 𝑎), different responses (𝑠′, 𝑟) can occur throughout an experiment. This property is
essential to consider during the design of the RL agent since the chosen RL algorithm
must be able to cope with nondeterministic environments.

2.4.3. Episodic vs. Continuing
RL problems are categorized in two distinct types: episodic and continuing tasks. In
episodic tasks, the state space includes so-called terminal states, which stop the exper-
iment immediately as soon as the agent enters them. Terminal states occur when the
task comes to a natural end because the agent has reached its goal and solved the prob-
lem. One example of these problems is a navigation task to a specific destination point.
Once the agent reaches the goal, there are no actions for continuing the task after that.
Conversely, the agent may also fail halfway through the experiment (e.g., by falling into
a trap), and, as a result, finishing the task might be impossible. Thus, when reaching a
terminal state, the task terminates immediately and starts over. One pass from the initial
until a terminal state is called an episode. Episodic tasks thus always come to a natural
end sooner or later and then start from one of the initial states again – but the agent
keeps the experience and knowledge it has acquired so far so that it can perform better
and better in the next episodes.

Continuing tasks do not come to a natural end and do not have terminal states. The
agent keeps acting forever while improving its behavior. In practice, continuing tasks
can be stopped after some time to extract an optimal/greedy policy.

2.5. Common Parameters
RL algorithms typically share a set of common parameters that control the agent’s
behavior and learning progress. They include the learning rate 𝛼, exploration rate 𝜖, and
discount factor 𝛾. This section gives an overview of these parameters and how different
values influence the learning process.

2.5.1. Learning Rate
The learning rate 𝛼 ∈ [0; 1] controls how fast an agent learns. As described in section 2.6,
each value-based RL algorithm iteratively calculates new value estimates based on the
received reward. In the case of an RL event, the current value estimates are updated
based on the new experience. The learning rate 𝛼 determines the fraction of change, i.e.,
how much of the new experience is applied to the current estimates.

Figure 2.7 illustrates different configurations for a deterministic and nondeterministic
environment for a nonstationary problem (real values change at time step 25). In a
deterministic environment with perfect rewards and no noise, the difference between a
lower value 𝛼 = 0.1 (Figure 2.7(a)) and a higher value 𝛼 = 0.5 (Figure 2.7(b)) is obvious:
a higher value increases learning speed and the estimated values (solid lines) converge
more quickly towards the real values (dashed lines). However, problems occur when

22



2.5. Common Parameters

0 10 20 30 40 50

−
1.

0
0.

0
1.

0

A1 (est.) A1 (real) A2 (est.) A2 (real)

(a) 𝛼 = 0.1 (perfect rewards)
0 10 20 30 40 50

−
1.

0
0.

0
1.

0

A1 (est.) A1 (real) A2 (est.) A2 (real)

(b) 𝛼 = 0.5 (perfect rewards)

0 10 20 30 40 50

−
1.

0
0.

0
1.

0

A1 (est.) A1 (real) A2 (est.) A2 (real)

(c) 𝛼 = 0.1 (noisy rewards)
0 10 20 30 40 50

−
1.

0
0.

0
1.

0

A1 (est.) A1 (real) A2 (est.) A2 (real)

(d) 𝛼 = 0.5 (noisy rewards)

Figure 2.7.: Top: a greater learning rate makes learning faster. Bottom: However, a
greater learning rate is also more prone to noisy rewards.

introducing noise to the system. As an example, Figures 2.7(c) and 2.7(d) compare the
same learning rates in a nondeterministic environment. The rewards are not perfect but
randomized according to a normal distribution. Thus, the learning rate has a significant
impact on the estimated values. The external noise also affects the estimated values
when increasing the learning rate: the more noise in the reward, the more noise in the
estimated values.

It is not desirable to set 𝛼 to a large number because many RL environments are
nondeterministic or nonstationary. Otherwise, divergence and very unstable learning
might be the result. Typically, a small learning rate is used for more stable learning. One
can decrease the learning rate over time for stationary tasks. However, this is impossible
for nonstationary tasks. The learning rate must be constant and greater than zero for
nonstationary tasks. Otherwise, changes to the 𝑞∗ values cannot be correctly estimated
by the learning agent when 𝛼 is too small.

2.5.2. Exploration Rate

As described in section 2.3, exploration is typically randomized to a certain degree to
address the exploration-exploitation dilemma. In the case of 𝜖-greedy and related action
selection approaches, the parameter 𝜖 ∈ [0; 1] controls the amount of exploration. One
can decrease the exploration rate over time for deterministic and stationary problems.
However, minimal exploration is crucial for nonstationary or nondeterministic problems.

In the case of nondeterministic problems, the agent might find a suboptimal solution
when exploration stops too early because there might be better actions that the agent
has not yet identified. A similar problem occurs with nonstationary problems: when
exploration stops completely, the learned policy might be suboptimal as soon as the real
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values 𝑞∗ change because the agent will never try alternative actions. Thus, a common
practice is either to keep a constant, small exploration rate or to start with a greater 𝜖 to
encourage more exploration at the beginning and to reduce it over time.

2.5.3. Discount Factor

The new value of the current state-action pair (𝑠, 𝑎) is calculated based on the estimated
value of the following state 𝑠′. This approach is called bootstrapping. The discount factor
𝛾 ∈ [0; 1] controls how much the estimated value of the next state 𝑠′ contributes to
the whole calculation. Typically, 𝛾 is set to a value near 1, e.g., 0.9. Smaller discount
factors focus the agent primarily on immediate rewards, resulting in a more short-sighted
behavior. The theory of RL requires 𝛾 < 1 to guarantee convergence.

2.6. Basic Algorithms

2.6.1. 𝑘-armed Bandit Problems

In stateless environments, where the agent does not need to distinguish different situa-
tions, multi-armed bandit problems (Sutton and Barto, 2018) are a reduced form of RL.
Since there is no notion of state the agent explores 𝑘 different actions from the set of
actionsA with |A| = 𝑘. Its goal is to estimate each of the actions’ real, unknown values
𝑞∗. In each time step 𝑡, the agent selects an action 𝐴𝑡 ∈ A (see section 2.3) from the set
of actions A, executes it and observes the received scalar reward 𝑅𝑡+1 to update the
estimated action value 𝑄𝑡 (𝐴𝑡).

The 𝑄 value is updated based on the received reward after executing an action ac-
cording to one of the strategies presented in section 2.3. In a stationary task, the agent
calculates the average of the received rewards over time. For each action, a counter 𝑁 is
incremented each time the action is selected. In each time step 𝑡, the following algorithm
computes the average incrementally:

𝑄(𝐴𝑡) ← 𝑄(𝐴𝑡) +
1

𝑁 (𝐴𝑡)
[𝑅𝑡+1 − 𝑄(𝐴𝑡)]

While averaging works for stationary tasks, nonstationary tasks require constant
adaptation. The following algorithm uses a fixed learning rate 𝛼 to update the 𝑄 value:

𝑄(𝐴𝑡) ← 𝑄(𝐴𝑡) + 𝛼 [𝑅𝑡+1 − 𝑄(𝐴𝑡)]

2.6.2. Associative Search

Multi-armed bandits do not distinguish between different states. However, when there
are different but independent problems, one can use a set of different multi-armed ban-
dits (one for each problem) to solve each problem on its own. However, this requires
that the problem be identifiable because the agent must choose the appropriate bandit
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for the current problem. In combination, all agents form an associative search: the corre-
sponding agent is chosen and used for action selection and value estimation depending
on the problem.

The difference to regular RL problems is that, usually, states are interdependent. They
describe and belong to the same problem. Associative search only explores different sets
of actions in different contexts, which do not influence each other: all bandits describe
and solve different – stateless – problems. This approach is used in chapter 13.

2.6.3. Q-learning

A well-known, tabular approach for state-based RL is the Q-learning algorithm used in
chapter 14. As with 𝑘-armed bandit problems, the agent selects an action 𝐴𝑡 ∈ A(𝑠) in
each time step 𝑡 according to section 2.3. Each state can have different actions, depending
on the task. Thus, the set of actions A depends on the current state 𝑠. In contrast to
multi-armed bandit problems, 𝑄 values need to be saved for all state-action pairs (𝑠, 𝑎)
with 𝑠 ∈ S and 𝑎 ∈ A(𝑠). After selecting and executing the action 𝐴𝑡 the agent observes
the environmental response (𝑆𝑡+1, 𝑅𝑡+1), consisting of the next state 𝑆𝑡+1 and the scalar
reward 𝑅𝑡+1. The estimated value 𝑄(𝑆𝑡, 𝐴𝑡) updates according to the following algorithm:

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼
[
𝑅𝑡+1 + 𝛾max

𝑎
𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)

]
The update formula includes the current value 𝑄(𝑆𝑡, 𝐴𝑡), the received reward 𝑅𝑡+1,

the discount factor 𝛾 (see section 2.5.3) and the maximum 𝑄 value max𝑎𝑄(𝑆𝑡+1, 𝑎) of the
next state 𝑆𝑡+1. The maximum value is identified by iterating over all actions 𝑎 ∈ A(𝑆𝑡+1).
It is important to note that the action 𝑎, which maximizes this term, does not need
to be the same action executed in the next time step 𝑡 + 1. The agent assumes that it
acts optimally in each time step. While this is not necessarily the case, e.g., because of
exploration (random action selection), this is a fundamental property of the Q-learning
algorithm. Such behavior is known as off-policy learning because the executed action is
not necessarily identical to the one used for learning.

As already observed in the update formula in section 2.6.1, the learning rate 𝛼 con-
trols to which degree the observed TD-error 𝑅𝑡+1 + 𝛾max𝑎𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡) is taken
into account. The TD-error measures the difference between the observed reward, dis-
counted future return 𝛾max𝑎𝑄(𝑆𝑡+1, 𝑎) and the current estimate 𝑄(𝑆𝑡, 𝐴𝑡). By iteratively
accumulating TD-errors, the estimated value 𝑄(𝑆𝑡, 𝐴𝑡) moves a fraction toward the new
observations.

The programmer can use a two-dimensional array or a hash map to represent the 𝑄
values. The former typically reserves memory for every possible state-action combination
upfront; the latter saves memory temporarily by adding elements to the hash map only
when they occur during an interaction at the expense of additional processing power for
the hash map lookup. Dependent on the problem, some state-action pairs potentially
never occur.
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2.7. Measuring Performance
There are several approaches for measuring an agent’s learning performance. Some
of these measurements only apply in simulated environments because they require
knowledge of the actual values 𝑞∗, which are typically unknown in real environments.
However, there are also ways to measure performance, which work in simulated and
real interactions, e.g., when relying on rewards.

It is important to note that the problem at hand restricts the set of measurable data.
Some measurements require episodic tasks (see section 2.4.3), e.g., when accumulating or
averaging data of a whole episode. Such measurements cannot be applied to continuing
tasks because they never come to an end. Thus, a common approach for continuing
tasks is to stop the experiment after several steps and then re-run it several times. Then,
measurements are done by averaging multiple runs of potentially distinct agents. In
addition, some measures work for both episodic and continuing tasks.

The learning progress often becomes visible only when averaging over multiple
episodes or runs of an experiment. Exploration (see section 2.3) causes suboptimal
action selection (and thus, suboptimal performance) when looking at one single episode
– in particular, but not exclusively, at the beginning of episodes. Thus, plots typically
average over multiple episodes or multiple runs of an experiment.

However, visualizing a single episode can be of interest, too. As an example, Figure 2.7
plots the estimated values of a two-armed bandit problem for one simulation run, de-
pending on the learning rate 𝛼. It illustrates a continuing task that stops after 50 steps.
Figures 2.7(c) and 2.7(d) visualize the impact of noisy rewards in combination with a
lower or higher 𝛼 value, which results in the choppy lines. When averaging over mul-
tiple runs, the line plot would be much smoother and less descriptive concerning the
agent’s actual behavior in one run. In contrast, plots of single episodes typically have no
informative value concerning the agent’s overall performance. In general, the agent’s
overall or averaged performance is typically more of interest than individual episodes
or time steps since exploration and the resulting random behavior is an inherent part of
RL. However, especially when the human is involved in the learning process, such as in
the context of HRI, this single episode performance is relevant, too (see chapter 12).

The following measures examine various aspects of performance by focusing on
different data. Based on this information, it is possible as a next step to optimize the
learning algorithm or its parameters concerning one or more of the measures in order
to achieve a problem-specific performance compromise.

2.7.1. Reward
The reward is a standard measure for getting insights into the agent’s performance.
In general, the received rewards should become greater over time since the central
idea of RL is to maximize the expected reward in terms of exploitation (see section 2.3).
During the runtime of the experiment, the agent logs received rewards for each time step.
Afterward, this data is typically visualized as a line plot, including, but not exclusively,
the following approaches:

Actual reward Each point represents the actual reward value 𝑅𝑡+1 for time step 𝑡 of one
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(b) Cumulative reward.

Figure 2.8.: Reward and cumulative reward for the nonstationary problem from Fig-
ure 2.6.

single episode. See Figure 2.8(a) for an example.

Cumulative reward Each point represents the sum of all rewards
∑𝑡+1

𝑖=0 𝑅𝑖 up to the
current time step 𝑡 of one single episode. In contrast to the actual reward, this has
the benefit of visualizing a general tendency whether rewards increase or decrease
over time (i.e., whether/how fast the agent’s performance increases or decreases
during the episode). See Figure 2.8(b) for an example.

Average reward Each point represents an averaged reward
∑𝐸

𝑒=0 𝑅𝑒,𝑡+1 for time step 𝑡
over multiple episodes 𝐸 of equal duration. Alternatively, this can also be used for
multiple runs 𝐸 of a continuing problem, which stops after the same number of
time steps. See Figure 13.4 for an example.

(Average) Reward per episode Each point represents one episode 𝑒. This requires to
aggregate all rewards of the specific episode, for example by calculating the sum∑𝑇−1

𝑡=0 𝑅𝑒,𝑡+1 or average
∑𝑇−1

𝑡=0 𝑅𝑒,𝑡+1. Plotting the aggregated values gives insights into
the agent’s learning progress in the long run (over multiple episodes).

Figures 2.8(a) and 2.8(b) illustrate the actual and cumulative reward for the nonsta-
tionary problem from Figure 2.6. Due to the nonstationarity, the actual values 𝑞∗ change
at step 75. In the first half, the agent primarily receives positive rewards. The plot
illustrates the actual reward and the steady increase of the cumulative reward. After
step 75, positive rewards are rare due to the learning agent’s suboptimal action selection.
The plot illustrates the flattening of the cumulative reward curve. While this example
only uses positive and neutral rewards, negative rewards could also cause a decrease in
the cumulative reward. The cumulative reward illustrates the agent’s performance loss
at time step 75 clearly.

2.7.2. Percentage of Optimal Actions
Another measure of performance is the percentage of optimal actions. It reports how of-
ten the agent selects the optimal action (regarding 𝑞∗, not regarding the agent’s estimated
values 𝑄). This approach works only in simulated environments because the real values
𝑞∗ must be known to determine the optimal action. A counter is incremented each time
the optimal action is selected. It does not matter whether the reason for selecting the
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(a) Stationary problem.
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(b) Nonstationary problem.

Figure 2.9.: Percentage of optimal actions for the stationary and nonstationary problem
from Figure 2.6.

action is exploration or exploitation (see section 2.3). The percentage is calculated for
each time step 𝑡 based on the number of optimal actions selected up to time step 𝑡 and
the total number of actions executed up to time step 𝑡.

Similar to plotting rewards, one can plot the percentage of optimal actions for a single
episode (per time step, see Figure 2.9), as an average over multiple episodes (per time step,
see Figure 13.4), or per episode. Typically, the averaged percentage increases over time
as the agent learns and performs better and acts more and more greedy (see Figure 13.4).
However, it typically never reaches 100 percent due to the necessity of exploration.

Figure 2.9 illustrates the percentage of optimal actions for the stationary and non-
stationary problem from Figure 2.6. In both cases, the agent selects the optimal action
less than 80 percent of the time since exploration forces the agent to select suboptimal
actions. In comparison, the percentage of optimal actions is higher for the stationary
problem. Due to the nonstationary problem in Figure 2.9(b), the agent does not identify
the new optimal action from time step 75 up to the end of the simulation. As a result, it
uses the optimal action only in the case of exploration in the second half (which happens
relatively often in this experiment since there are only two actions). Consequently, the
percentage of optimal actions decreases in the second half of the experiment.

2.7.3. Root Mean-Squared Error

The root mean-squared error (RMSE) measures the error between all the actions’ real
values and their current estimations to a specific time 𝑡. In simulations, this measure
focuses on the agent’s actual knowledge and to which degree it differs from the real
world. While other measures focus on the agent’s behavior, such as the percentage of
selected optimal actions or data from beyond the agent’s boundaries (average reward),
the RMSE is directly connected to the agent’s internal representation of actions. While
𝑞∗ is typically unknown in real-world experiments, the RMSE gives insights into the
estimated values’ accuracy in simulated environments. Since the RMSE calculates an
error, its value should become as small as possible over time. It is calculated for a single
episode (per time step), as an average over multiple episodes (per time step), or per
episode. One can also create cumulative plots.

First, the sum of the squared errors of all actions 𝑎 ∈ A is calculated. Then, the mean
of the squared errors is calculated by dividing by the number of actions. Finally, the root
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(b) 𝛼 = 0.1 (noisy rewards)

Figure 2.10.: RMSE for the agents in Figures 2.7(a) and 2.7(c).

is calculated in order to make it return the original units of the comparison:

RMSE𝑡 =

√︄
1
|A|

∑︁
𝑎∈A
[𝑞∗(𝑎) − 𝑄𝑡 (𝑎)]2

Figures 2.10(a) and 2.10(b) plot the RMSE for the two agents illustrated in Figures 2.7(a)
and 2.7(c). The RMSE demonstrates the learning progress and effect of noisy rewards.
In Figure 2.10(a), the error decreases until step 24 as the two actions’ estimated values
become more accurate and approach the real values. In step 25, the real values change.
Therefore, the RMSE increases abruptly and decreases afterward. Since the agent gets
perfect rewards, which are not noisy at all, the curve is very smooth. The effect of
noisy rewards is visible in Figure 2.10(b). Since a Gaussian distribution randomizes the
rewards, the shape of the line is not smooth but distorted. Each time the reward deviates
from the action’s real value, this causes an increase in the overall RMSE.

2.7.4. Other Metrics
There are more metrics for measuring performance in RL experiments. These include
the (average) cumulative steps per episode, plotting the number of actions to reach a
terminal state. For each episode, the number of executed actions is added to the number
from the last episode. Since one expects the learning agent to become more efficient over
time, i.e., the agent solves the problem with less (or, in the end, the minimal) amount of
actions, the curve should flatten over time. However, this metric is only applicable to
episodic tasks. The work at hand focuses on continuing tasks that do not have terminal
states.

2.8. Linear Function Approximation
Table-based learning algorithms, such as Q-learning, are suitable for smaller problems
with a discrete, finite set of states and actions. However, two problems occur for more
complex problems:

1. Curse of dimensionality: the required memory increases exponentially with each
new feature in the state space. The computing time increases, too, since the agent
needs to explore more state-action pairs.
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2. Missing generalization: table-based approaches typically cannot benefit from expe-
rience when they face new states. 𝑄 values are distinct tuples, and every state-action
value stands for itself. There is no notion of similarity between states. Thus, the RL
agent needs to learn for every state-action pair from scratch.

Linear and non-linear function approximation solve this problem2. This thesis uses
linear function approximation in chapter 14. It represents the state space more compactly
and uses generalization to apply existing experience to similar new states. Generalization
means that the agent can transfer knowledge between observed states. For example, a
state with one feature having the value of 0.4999 and a state with the same feature having
the value of 0.5 most probably are very similar concerning this feature. RL algorithms
with function approximation have the potential to utilize this similarity by generalizing
and thus applying knowledge from previous observations made in similar states to new
ones. While most of the RL framework is the same, there are conceptual and notation
differences, summarized in the following.

2.8.1. State Space

When using function approximation, one substantial improvement is that the set of states
S can be infinite. There is no need to discretize each feature – the agent can learn based
on floating point values. The state is described based on a typically small number 𝑑 of
features 𝑥1(𝑠), 𝑥2(𝑠), . . . , 𝑥𝑑 (𝑠). Each feature 𝑥 (𝑠) is a function that maps (aspects of) the
observed state 𝑠 to a continuous value. One option for encoding features is the Fourier
basis (see Sutton and Barto (2018) for details), which encodes periodic, linear functions
as weighted sums of sine and cosine basis functions with different frequencies. The
overall number of features 𝑑 that describes the state is typically much smaller than the
dimensionality of a discretized state space with high resolution in table-based learning.
The resulting feature vector for encoding state 𝑠 is defined as follows:

x(𝑠) = {𝑥1(𝑠), 𝑥2(𝑠), . . . , 𝑥𝑑 (𝑠)}⊤with 𝑑 ≪ |S|

Relevant aspects of the environment are represented as one or more functions of the
observed state. For the simplified example in Figure 2.4, this could be used for encoding
the smile intensity calculated based on an SSP pipeline as illustrated in section 3.4. In
table-based learning, the agent has to discretize the continuous user’s smile intensity,
resulting in a set of distinct manifestations (in this example, sadness, happiness, and
neutral). In a simplified manner, the user’s smile intensity can be represented as a
continuous (non-discretized) input when using function approximation.

2.8.2. Approximation of 𝑞∗
In table-based learning, each state-action tuple (𝑠, 𝑎) is associated with one floating
point 𝑄 value. This mechanism does not work for function approximation since the
state’s features are now encoded as linear functions in the feature vector x(𝑠). Instead,

2In fact, table-based learning approaches are a special form of function approximation.
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each component in x(𝑠) is assigned a component of the weight vector w with the same
dimensionality 𝑑 of x(𝑠):

w = {𝑤1, 𝑥2, . . . , 𝑥𝑑}⊤

Instead of updating the 𝑄 values table, the vector w gets updated in every learning
step. The goal is finding a weight vector w for every action 𝑎 ∈ A in order to compute
a function �̂�(𝑠, 𝑎,w) that gives an approximation of the optimal action value function
𝑞∗(𝑠, 𝑎) for every state 𝑠 ∈ S. The main idea of linear function approximation is finding
the global optimum w∗, which describes as many as possible states. In the context of
linear function approximation, the notation �̂�(𝑠, 𝑎,w) indicates the use of the weight
vector. These action values are computed as follows:

�̂�(𝑠, 𝑎,w) = w⊤x(𝑠, 𝑎) =
𝑑∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 (𝑠, 𝑎)

Adjusting the weight vector relies on stochastic gradient descent methods as described
in Sutton and Barto (2018). They minimize the mean-squared-error (see section 2.7)
between the real and approximated values based on the observed samples (Sutton et al.,
2009):

w𝑡+1 = w𝑡 + 𝛼 [𝑞∗(𝑠, 𝑎) − �̂�(𝑆𝑡, 𝐴𝑡,w)] ∇�̂�(𝑆𝑡, 𝐴𝑡,w𝑡)

Since 𝑞∗(𝑠, 𝑎) is unknown to the agent and similar to section 2.6.3, the following calcu-
lation based on the current approximated �̂� values and the reward 𝑅𝑡+1 is used:

w𝑡+1 = w𝑡 + 𝛼
[
𝑅𝑡+1 + 𝛾max

𝑎
�̂�(𝑆𝑡+1, 𝑎,w𝑡) − �̂�(𝑆𝑡, 𝐴𝑡,w𝑡)

]
x(𝑠𝑡)

Greedy action selection happens based on the estimated �̂� values:

𝐴𝑡 = argmax
𝑎

�̂�(𝑆𝑡, 𝑎,w𝑡)

2.9. Conclusion

RL is a class of machine learning algorithms based on trial and error. An RL agent learns
optimal decision-making for a given environment. The agent iteratively executes actions
in different states and observes the environmental response, which consists of a numeric
reward and the next state. Over time, the learning process identifies an optimal policy,
which maps each state to one or more optimal actions. The calculation of this policy
happens solely based on the reward signal and observed state-action pairs, which makes
the agent autonomous and independent of expert knowledge. One of the core challenges
in RL is balancing exploitation and exploration, i.e., when and how often to take an
optimal or suboptimal action based on the observations made so far.

When modeling an RL problem, the system designer’s task is to define the action, state
space, and reward function. Typical properties of RL problems include (non)stationarity,
(non)determinism, and whether it is episodic or continuing. After modeling the problem,
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a suitable configuration for standard parameters, such as the learning rate, exploration
rate, and discount factor, must be chosen. Typical measures for monitoring an RL agent’s
learning progress include the received rewards, percentage of optimal actions, and
root-mean-squared error. This thesis uses stateless algorithms, tabular RL approaches,
and linear function approximation for learning problems of different complexity.

This thesis has several reasons for using the RL framework (see also chapter 12).
The structure and autonomy of the learning loop fit well into HRI, and it allows for
learning during the interaction. Many algorithms can deal with uncertainty about the
environment and its reactions, as expected from the human interaction partner. See
chapter 12 for more details. For these reasons, the RL framework serves as the basis for
the non-functional adaptation of social robot behaviors in Part IV of this thesis.
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In human-human conversation, natural language is only one modality for sharing and
communicating information. Meta information, such as the speaker’s current mood,
emotion, or interest in the conversation, is often communicated with verbal or non-verbal
behavioral cues. Studies by Mehrabian et al. (1971) observed that this meta information
significantly contributes to the success of a conversation.

Poggi and D’Errico (2010) describe signals as stimuli, which are emitted by an emitter
and can be interpreted by a receiver to extract the signal’s meaning. Both emitter and
sender can be individuals, a group of people, or artificial agents, such as robots or virtual
agents. The authors distinguish informative and communicative signals, which differ
because informative signals do not have an intention, goal, or function for conveying
information. Instead, they can occur accidentally by a random combination of events.
In contrast, emitters of communicative signals have a goal of communicating, which
might be a conscious intention (such as when using spoken words or symbolic gestures)
or an unconscious intention (such as subliminal facial expressions or gestures, which
are produced by the emitter automatically with “a low level of awareness”). Poggi
and D’Errico also point out that these signals can be influenced by regional or cultural
contexts, biological functions, and more.

A social signal is “a communicative or informative signal that, either directly or in-
directly, conveys information about social actions, social interactions, social emotions,
social attitudes, and social relationships” (Poggi and D’Errico, 2010). Different types of
verbal and non-verbal social signals simplify interpersonal communication and inter-
action because they communicate much more than what a person expresses solely via
speech. Social signals are not only essential in human-human communication but also
play an important role in the context of HRI. Equipping robots with the ability to express,
sense, interpret and react to social signals is one goal to (1) simplify interactions, (2)
make them more natural and intuitive for humans, and (3) make robots less “socially
ignorant” (Pentland, 2005).

This chapter gives an overview of human non-verbal communication. Both synthesiz-
ing (i.e., producing artificial social signals) and sensing (i.e., perceiving and interpreting
human social signals) are challenges for social robots. Chapter 5 addresses the former:
the synthesis of multimodal behaviors relies on verbal and non-verbal communication
channels for expressing the robot’s internal state or intentions. The end of the chapter
at hand addresses the latter: social signal processing techniques allow the machine to
sense, process, and interpret these signals to understand the user’s state or intentions.
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3.1. Terminology
Three terms occur frequently in the context of human non-verbal communication: be-
havioral cues, social signals and social behaviors (Vinciarelli, Pantic, and Bourlard, 2009).
They build on one another and describe concepts on different levels of complexity.

Behavioral Cues
Behavioral cues are the actual stimuli emitted by the human. As illustrated in Figure 3.1,
these cues include gaze, facial expression, vocal behaviors, body movements (postures
and gestures), interpersonal distance and more (see section 3.3). For the most part, the
dialog partner perceives these cues subconsciously. Typically, behavioral cues occur in
combination with verbal communication.

Social Signals
One or more behavioral cues in combination produce a social signal. For example,
mutual gaze, a forward posture, a raised voice, energetic gesticulation, and lowered
eyebrows typically communicate anger. A social signal can be complex because cues
might overlap and occur over time. Depending on the concrete characteristics, such as
amplitude, speed, and timing, these cues express a variety of meta information about
the signal sender, such as the current mood or emotion, agreement or disagreement,
attitudes, intentions, and more. For example, lowered eyebrows as a behavioral cue in
isolation could also indicate disgust. Therefore, one can identify social signals only by
considering all behavioral cues.

Social Behaviors
Vinciarelli, Pantic, and Bourlard define social behaviors as “temporal patterns of non-
verbal behavioral cues”. The authors point out the difference between social signals and
social behaviors, which lies in their temporal duration. Typically, social signals have a
short or medium duration, from milliseconds to minutes. Examples include turn-taking
or mirroring. In contrast, social behaviors, such as agreement, politeness, or empathy,
last for a longer time, from seconds to minutes or days.

3.2. Categories of Non-Verbal Behavior
Non-verbal behavior is a “continuous source of signals which convey information about
feelings, mental state, personality, and other traits of people” (Vinciarelli, Pantic, and
Bourlard, 2009). Ekman and Friesen (2010) classify non-verbal behaviors in five cate-
gories:

Emblems Typically, emblems are culture-specific and used intentionally with full aware-
ness when verbal communication is impossible. The emblem replaces a verbal
message using the body, face, and hands. Examples include the thumbs-up gesture
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for expression of agreement or praise or making a ring with the thumb and index
finger while splaying out the other fingers to express “okay”. However, there are
also cases of emblem use during verbal communication without being aware of it,
e.g., making a fist when being angry.

Illustrators accompany the spoken language. They enrich the verbal content by em-
phasizing the speech with movements. Examples include pointing at an object
or illustrating the size of a huge object by spreading the arms widely. Illustrators
might be used with slightly less awareness and intentionality than emblems.

Affect Displays The non-verbal expression of affect happens primarily with the fa-
cial muscles, such as biting one’s lips. There is a set of typical, mostly culture-
independent, facial movements for each primary type of affect, such as happiness,
fear, or anger. Other body movements, such as trembling, can result from the
underlying affect.

Regulators are related to a conversation. They regulate the interpersonal dialog flow
in terms of speaking and listening. For example, direct eye contact is used when
expecting an answer from somebody else or to give another person the chance
to talk. Typical regulators also include head nods and eyebrow raises. Regulators
are less intentional than emblems and illustrators. Typically, the sender expresses
them with low awareness.

Adaptors Ekman and Friesen define adaptors as “adaptive efforts to satisfy self or bodily
needs, or to perform bodily actions, or to manage emotions, or to develop or main-
tain prototypic interpersonal contacts, or to learn instrumental activities”. They
can be motivated or caused by the situation, environment (objects or other per-
sons), or the person’s needs. Often, they are expressed with little or no awareness
and varying intentionality, depending on their motivation.

As outlined above, these categories vary in cause, intention, and awareness. Non-verbal
behaviors accentuate or illustrate spoken words, regulate conversation flow, are used to
cope with a situation, and more. Some of these behaviors are very culture-specific, and
some are largely culture-independent, such as the expression of affect. The expression
and perception of non-verbal behaviors are crucial to human-human and human-robot
interaction.

3.3. Non-Verbal Communication Channels

As illustrated in Figure 3.1, this section focuses on non-verbal communication channels.
Kendon, Sebeok, and Umiker-Sebeok (2010) define the term non-verbal communication
as “all of the ways in which communication is effected between persons when in each
other’s presence, by means other than words.” Specifically, they refer to “bodily activity,
gesture, facial expression and orientation, posture and spacing, touch and smell” and
“those aspects of utterance that can be considered apart from the referential content of
what is said”. The authors also point out that non-verbal communication is essential to
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Figure 3.1.: Behavioral cues in HRI. Adapted from Baur (2018).

communicating information, which cannot be achieved in any other way, e.g., using a
specific pronunciation, timing, speed, or tone.

As a result, non-verbal behaviors convey personal information about their sender, such
as the emotional or mental state, feelings, and personality, but also social relationships
between all persons involved. Non-verbal communication is also crucial when the
verbal content in isolation is ambiguous or the intended meaning differs from the actual
utterance, such as irony (see chapter 10). Thus, non-verbal behaviors are not optional
but an inherent part of human and human-robot communication.

Both the perception and generation of non-verbal behaviors is a challenge for social
robots. The robot needs to sense human behavioral cues and interpret them. Only when
aware of its counterpart’s non-verbal behaviors can it estimate underlying intentions,
interests, and emotions and react accordingly. At the same time, the robot must also
mimic human social signals to communicate its internal state and intentions more clearly
and intuitively.

This work focuses on cues, which are produced and occur typically in the context of
HRI, both in terms of perception from the human and expression by the robot: posture,
gesture, facial expression, gaze, and vocal behaviors. Vinciarelli, Pantic, and Bourlard
(2009) also list physical appearance in terms of height, attractiveness, and body shape as
human behavioral cues. This thesis excludes these aspects since the human interaction
partner’s embodiment cannot be changed. A designer creates the robot’s embodiment
upfront, so it cannot be changed too. Similar applies to space and environment, which
includes distance and seating arrangement, as well as walking in the context of gesture
and posture. These aspects are relevant in the context of a mobile robot, which is not the
case for the work at hand (see chapter 11). In this thesis, the interaction scenarios are
stationary, with the human sitting opposite the robot.
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3.3.1. Gestures
Gestures are “conscious or unconscious body movements made mainly with the head,
the face alone, or the limbs” (Poyatos, 1984). They often accompany spoken contents,
e.g., by moving arms and hands (McNeill, 1985) or affective states, such as shame and
embarrassment, e.g., by touching the face (Costa et al., 2001). McNeill (2011) observed
that 90 % of body gestures occur during speech as one of the categories in section 3.2.
Frequently, gestures regulate interactions (e.g., for turn taking), communicating informa-
tion without speaking (e.g., the thumbs-up gesture for expression of agreement), greeting
(e.g., waving hands), and more (Vinciarelli, Pantic, and Bourlard, 2009). Most gestures
are performed consciously. McNeill (2011) classifies gestures in four primary categories,
distinguished as imagistic (when they depict imagery) and non-imagistic (when they do
not depict imagery) types:

Iconics are gestures with “close formal relationship to the semantic content of speech”.
They illustrate what is said in spoken language, e.g., raising the hand upwards
when talking about a rising balloon. Both speech and gesture must refer to the
same content to be iconic, but they can complement each other with information
that is not part of the other modality.

Metaphorics are more complex than iconics since they illustrate abstract concepts. They
must depict both a base (a concrete entity or action) and a referent (the concept of
a question or answer). This dual structure is the central element of a metaphoric
gesture.

Deictics are pointing movements. They are performed with objects or body parts, such
as the head, nose, chin, or – typically – with the pointing finger. They do not
necessarily refer to concrete entities but any meaning associated with the region
of the selected gesture space.

Beats do not express a concrete meaning, but they are rather “small, low energy, rapid
flicks of the fingers or hand”. Typically, they are performed in the current or rest
position of the hand.

Section 14.1 uses human gestures and posture for estimating user engagement, which
drives a robot’s adaptation process.

3.3.2. Posture
In contrast to gestures, posture is “more static [. . . ] and used less as a communicative
tool, although they may reveal affective states and social status” (Poyatos, 1984). Postures
are typically chosen unconsciously; therefore, they are the most reliable cue concerning
a person’s actual attitudes in the context of social situations (Vinciarelli, Pantic, and
Bourlard, 2009). Vinciarelli, Pantic, and Bourlard point out three properties:

Inclusive vs. non-inclusive Inclusive postures take the presence of others into account,
e.g., when facing each other. Non-inclusive postures do the opposite, e.g. when
facing the opposite direction.

37



3. Social Signals

Face-to-face vs. parallel body orientation Face-to-face interaction, such as when sit-
ting opposite each other, is “more active and engaging”, as it also requires mutual
monitoring. When sitting parallel to each other, this may be an indication of less
mutual interest.

Congruence vs. incongruence Congruent postures are symmetric, which indicates a
“deep psychological involvement”. Mirroring (Chartrand and Bargh, 1999) is an
example of symmetric posing, where the communication partners mutually imitate
the other. Incongruent postures are asymmetric and are an indication of the
opposite.

Example postures are sitting or standing, leaning back or forward. According to Vin-
ciarelli, Pantic, and Bourlard (2009) and McArthur and Baron (1983), postural behavior
also includes walking or other movements, as long as they convey social information,
such as status, dominance, and affective state. Mehrabian (1969) points out that posture
and position indicate attitudes towards communication partners. In this context the
author gives an overview of important posture variables: eye contact, body orientation,
arms-akimbo position and trunk relaxation. For example, a reduced distance indicates
more liking, and reduced eye contact indicates disliking. With increasing attitude, female
communicators orient their bodies more towards the addressee, similar to more direct
eye contact.

The posture is also an indicator of human affect and engagement. For example, leaning
back might indicate disengagement and boredom (D’Mello, Chipman, and Graesser, 2007).
Section 14.1 uses posture and gestures to implement a robot’s adaptation process based
on estimated human engagement.

3.3.3. Facial Expression

The human face has dozens of muscles, providing a very powerful non-verbal communi-
cation channel. It communicates emotions (Ekman, 1993), intentions and pain, regulates
interpersonal behavior and attitudes (la Torre and Cohn, 2011; Knapp, Hall, and Horgan,
2013). Facial expressions also provide cues about personality and alertness (la Torre and
Cohn, 2011). Movements happen very fast, including micro expressions, which reveal
concealed emotions and are used for exposing liars (Ekman, 2009).

The Facial Action Coding System (FACS) (Ekman and Friesen, 1978) is the de-facto
standard for specifying facial expressions and related emotions based on so-called action
units. For example, anger is expressed by a combination of lowered eyebrows, raised and
tightened eyelids and tightened lips; happiness is marked by raised cheeks and pulled
lip corners.

Besides emotion recognition, FACS provides a reference for designers and animators
for creating realistic facial expressions and animations (Tolba, Al-Arif, and El Horbaty,
2018) in the context of virtual agents and robots (Fong, Nourbakhsh, and Dautenhahn,
2003). Since many robots are appearance-constrained due to their hardware, a one-to-
one mapping between FACS and robotic hardware is often impossible. Thus, trade-offs
and custom designs must be made (Ribeiro and Paiva, 2012).
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Facial expression is of central importance in chapters 9, 10, 11 and section 14.3. On
the one hand, synthesizing humorous robot behaviors relies on facial expressions. On
the other hand, the user’s facial expressions are sensed for estimating their affect in the
context of adaptation.

3.3.4. Gaze

The human eye serves multiple purposes at the same time. It senses the emotions, feelings,
and intentions of interaction partners, guides social behaviors, and conveys emotional
information, all at once. Often, gaze behaviors are triggered subliminally, such as when
expressing emotional (Izard, 1991; Adams Jr and Kleck, 2005) and mental state (Teufel
et al., 2010). Gaze can also be used intentionally, for example, to guide visual attention
(Frischen, Bayliss, and Tipper, 2007), to shift the interaction partner’s focus (Senju and
Csibra, 2008) or to initiate, monitor, and regulate conversations (Reis and Sprecher, 2009).
Eye contact also plays a key role in close relationships for increasing warmth, expressing
involvement, and intimacy (Reis and Sprecher, 2009). Gaze duration (Kuzmanovic et al.,
2009) and direction are important parameters.

Gaze behavior is based on multiple low-level gaze cues (Ruhland et al., 2014). Saccades,
the vestibulo-ocular reflex, smooth pursuit, and vergence all serve the purpose of fixating
on static or moving gaze targets. Combined eye-head movements are used when eyeball
movements exceed certain thresholds. Eye movements come hand in hand with eye
blinks. The frequency of these voluntary or reflexive eyelid movements is related to the
cognitive state and activity (Stern, Walrath, and Goldstein, 1984). In human-computer
interaction (HCI) and HRI the generation of natural gaze behavior for social robots and
virtual agents (Ruhland et al., 2014; Pelachaud and Bilvi, 2003) makes embodied agents
appear more lifelike. For example, unblinking faces are visually disconcerting (Ruhland
et al., 2014).

Gaze is an essential modality in this work for generating multimodal behaviors for a
social robot. This ranges from low-level gaze cues and blinking as described in chapter 11
to humor markers in chapters 9 and 10 and their adaptation in section 14.3.

3.3.5. Vocal Behaviors

Speech is one of the most prominent communication channels in human interaction.
However, speech is more than just linguistic content. Every sentence, word and syllable
typically is surrounded by non-verbal vocal cues: paralinguistic or rather vocal behavior
deals with “how something is said, not what is said” (Knapp, Hall, and Horgan, 2013).

Prosody describes sound variations that occur during speech. It includes speech
rate, rhythm, pitch, accents, loudness, duration, pauses, variability, resonance, and
articulation (Knapp, Hall, and Horgan, 2013). Vinciarelli, Pantic, and Bourlard (2009)
summarize this under the term voice quality. These variations communicate information
beyond spoken language, including mood, emotion, and mental state, as well as humor
(see section 4.4.4) and irony (see section 4.4.5). Thus, vocal behaviors complement and
impact the linguistic content and can even change its intended meaning.

Beyond that, vocal behaviors also include linguistic vocalizations, such as “ehm” or
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“uhm”. They fill pauses when thinking about an answer for a question or a missing word
(Vinciarelli, Pantic, and Bourlard, 2009). They are also used for back-channeling, i.e.,
to express attention or agreement (Shrout and Fiske, 1981). Moreover, there are also
non-linguistic vocalizations (Vinciarelli, Pantic, and Bourlard, 2009). These standalone
vocal cues occur independently of spoken words and include laughter, cries, groans,
sighs, or yawns. They also communicate information about the interlocutor, such as
emotions or attitudes.

There are also different types of silence. Silence can result from difficulties in talking,
the need to think about the following words, hesitation or problems in dealing with a
conversation, as well as a sign of respect or ignorance (Vinciarelli, Pantic, and Bourlard,
2009). On top of that, vocal non-verbal behaviors are also used for turn-taking, i.e., for
regulating and coordinating the conversation.

Similar to facial expression, vocal behaviors are of central importance in chapters 9,
10 and 11 for producing multimodal, humorous robot behaviors, which are then adapted
in section 14.3.

3.4. Social Signal Processing

Pentland (2005) originally pointed out the “social ignorance” of computers since HCI
typically uses keyboard, mouse, or touch input and does not process non-verbal commu-
nication channels. In Pentland (2007), he came up with the term social signal processing,
which is the science of capturing and processing human social signals with computers.
SSP provides the machine with the ability to sense and interpret (Vinciarelli, Pantic, and
Bourlard, 2009) human implicit interaction (i.e., non-verbal behaviors), in addition to
traditional explicit interaction (e.g., input via mouse, keyboard, speech, touch) (Schmidt,
2000). Vinciarelli, Pantic, and Bourlard (2009) point out that SSP is not only important
for anticipating the users’ needs and improving their quality of life. It provides an op-
portunity for adapting the machine based on human social signals, which is of central
importance in chapter 14.

In the last decade, SSP has become an essential tool in both HRI and HCI for making
interactions more intuitive and natural. Observing and extracting information from the
dialog counterparts’ non-verbal behaviors seems intuitive for humans, who often do this
subconsciously. However, the machine must actively sense and process this information.
Baur (2018) points out four key challenges in SSP:

Synchronization The Machine must process multiple modalities in parallel.

Uncertainty Human communication is relatively chaotic, as compared with computers,
which follow defined rules.

Fusion Social cues should not be viewed in isolation, but analysis and interpretation of
complex behaviors require combining the data from multiple modalities.

Real-time Constant monitoring and interpretation happen in parallel to the interaction
to provide timely feedback.
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Over the years, several SSP software packages appeared, which implement these
techniques on desktop and mobile platforms. These include the Social Signals Interpre-
tation (SSI) framework (Windows) by Wagner et al. (2013), MobileSSI (Linux, Android)
by Flutura et al. (2018) and SSJ (Android) by Damian, Dietz, and André (2018).

The Social Signal Interpretation Framework
Figure 3.2 illustrates a typical pipeline approach for SSP as implemented in the SSI
software by Wagner et al. (2013). It records, analyses, and recognizes human behaviors in
real time and supports audiovisual and physiological sensors, including (depth) cameras
and microphones. The software includes algorithms for synchronizing and handling all
data streams, machine learning for online and offline analysis and training of models,
filters, feature extraction, fusion, pattern recognition, activity detection, clustering,
classification, and an application programming interface (API) for plugin development.

One can create complex pipelines by combining different node types and interconnect-
ing them, as illustrated in the bottom center of Figure 3.2. Typically, the pipeline passes
computed results to the application or robot as events over the network (see right side of
Figure 3.2).

3.5. Conclusion
Humans use both verbal and non-verbal communication. The spoken language is sur-
rounded by conscious and unconscious non-verbal vocal behaviors, gestures, posture,
facial expression, gaze, and spatial body movements. In combination, these behavioral
cues generate social signals, which communicate various information about the sender’s
current mood, emotions, intentions, attitudes, and more.

In HRI, non-verbal behaviors are challenging in two ways: a robot must both be able to
(1) produce and express these behaviors on its own and (2) process, interpret and react
to the user’s behavioral cues. The former often relies on mimicking human behavioral
cues that must be tailored to the individual hardware and appearance, limited by the
robot’s embodiment and actuators. Various SSP techniques addressed the latter in the
last decade. They make it possible to complement traditional explicit interaction in
terms of keyboard, mouse, touch, and speech input with implicit interaction based on
social signals. The SSI software implements these techniques. It synchronizes, processes,
interprets and fuses inputs from a wide range of sensors in real-time.

This thesis first deals with the generation of multimodal robot behaviors in Part III
with the help of the presented non-verbal communication channels. Building on this,
social signals and corresponding SSP techniques provide an essential building block for
adapting the generated multimodal robot behaviors to the individual user in Part IV.
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Figure 3.2.: The SSI software uses a pipeline approach. Adapted from Wagner et al. (2013).
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4. Psychological Background

A common approach is to mimic human verbal and non-verbal behaviors to realize
intuitive communication and interaction with social robots. Therefore, it is essential to
get an overview of the psychological foundations of these behaviors.

This chapter introduces the background of personality, persona, politeness, and humor.
Personality generally determines how people behave, express themselves, and react.
Breazeal (2004) points out that a compelling robot personality makes interaction more
interesting and supports establishing a relationship between the human and the robot.
Personality is closely linked to persona, politeness, and humor. The focus on these aspects
is also motivated by the application contexts assistance and entertainment, which form
the framework for this thesis’s experiments.

The psychological background is essential for the generation of verbal and non-verbal
behaviors expressing personality, persona, politeness, and humor in Part III, which aim
to equip the robot with socially intelligent behaviors. This chapter also presents theo-
ries about the compatibility between particular personality profiles, different forms of
politeness, and disparate humor presentation strategies since Part IV addresses hetero-
geneous findings by adapting the generated robot behaviors within the framework of
the presented psychological models and theories.

The contents of this chapter extend the background provided in Ritschel et al. (2019b),
Ritschel et al. (2020a), Ritschel et al. (2020b), Janowski, Ritschel, and André (2022), and
Kiderle et al. (2021).

4.1. Personality and Interpersonal Stance

Personality describes a person’s disposition to respond to specific events in a particular
manner. More specifically, this means an individual’s behavior patterns that can be
observed in a wide range of contexts or their disposition to respond in a certain way when
they find themselves in a particular situation (Argyle and Little, 1972). The literature
reports several models for describing and measuring human personality, including the
Five-Factor Model (McCrae and Costa Jr., 2008). Links exist between personality traits
and the interpersonal circumplex (Horowitz et al., 2006), which models attitudes towards
other persons, as well as the politeness theory by Brown and Levinson, 1987, which in
turn is linked to the interpersonal stance.

4.1.1. Five-Factor Model

A common theory for describing personality is the Five-Factor Model (McCrae and Costa
Jr., 2008), also known as Big Five. It defines personality in terms of five dimensions:
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Neuroticism describes a person’s tendency to experience negative affect (such as dis-
tress and anxiety), to act impulsively, or change moods quickly and frequently.
Emotionally stable people, however, are calm and relaxed. This factor is also known
as emotional stability.

Extraversion is associated with outgoing and assertive behavior traits. Extravert people
tend to be sociable, talkative, expressive, and active, whereas introverts are more
reserved and quiet.

Openness encompasses curiosity, creativity, and intellectuality. Open-minded people
have a wide range of interests and think unconventionally. Closed-minded people
are generally conservative and unimaginative.

Agreeableness is related to getting along well with others. It encompasses qualities
such as being kind, compassionate, forgiving, generous and trusting. In contrast,
disagreeable persons tend to criticize others and to be cold-hearted or inconsider-
ate.

Conscientiousness is concerned with disciplined and responsible qualities. People, who
score high in conscientiousness, are generally dutiful and reliable, well-organized
and thorough. They are efficient and productive rather than lazy and self-indulgent.

Personality affects human verbal and non-verbal behaviors. For example, extravert
people tend to be more energetic. They perform more posture shifts, wider and faster
(hand) gestures, have higher head movement frequency, use more facial expressions,
and have more mutual gaze with conversational partners than introvert people (Riggio
and Friedman, 1986; Lippa, 1998; Knapp, Hall, and Horgan, 2013; Gallaher, 1992; Gif-
ford, 1991; Hassin and Trope, 2000; Jäncke, 1993; Rutter, Morley, and Graham, 1972).
Extraverts also tend to prefer a closer interaction distance than introverts (Williams,
1971). The personality influences prosodic parameters while speaking, such as speech
rate, silence duration, and pitch (Smith et al., 1975; Scherer, 1979). Moreover, the litera-
ture has identified several linguistic features which correlate with different dimensions
of personality (Pennebaker and King, 1999; Pennebaker, Mehl, and Niederhoffer, 2003;
Mehl, Gosling, and Pennebaker, 2006; Fast and Funder, 2008). The work at hand focuses
on spoken language and – in specific – extraversion.

Siegman and Pope (1965), Cope (1969), Scherer (1979), Furnham (1990), Pennebaker
and King (1999), Mehl, Gosling, and Pennebaker (2006), and Gill and Oberlander (2019)
report linguistic and prosodic markers of extraversion in spoken language. These mark-
ers include being more talkative and repetitive at higher speech rates, being less hesitant,
making fewer and shorter pauses, using richer and longer words, using less formal
language, and more positive emotion words, agreements, and compliments. In con-
trast, introverts, i.a., tend to use more tentative words (e.g., “perhaps”), hedges (e.g.,
“somewhat”) negations, pauses, formal greetings and first-person singular pronouns as
opposed to less formal expressions used by extraverts (Siegman and Pope, 1965; Pen-
nebaker and King, 1999; Oberlander and Gill, 2006). Some of these markers correlate
with culture, such as the number of pauses when comparing American and German
introverts and extraverts (Scherer, 1979). Mehl, Gosling, and Pennebaker (2006) report
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Figure 4.1.: Two pairs of dimensions, which define the IC. Adapted from Janowski,
Ritschel, and André (2022).

gender-related variations of linguistic features. Extraverts tend to speak faster with
higher, louder, and less monotonous voices than introverts (Hall, 1990; Smith et al., 1975;
Pittam, 1994; Gill Woodall and Burgoon, 1983). The work at hand focuses on generating
robot utterances with varying degrees of extraversion in chapter 7.

4.1.2. Interpersonal Circumplex

The interpersonal circumplex (IC) (McCrae and Costa, 1989; DeYoung et al., 2013; Horowitz
et al., 2006) models attitudes towards other persons. It uses two dimensions:

Status ranges from submissive to dominant and is usually displayed as the vertical
dimension. It is also known as agency and describes peoples’ tendency to act
according to their own will.

Affiliation ranges from cold to warm and is placed horizontally. It is also known as
communion and describes a person’s social closeness to other people.

McCrae and Costa (1989) and DeYoung et al. (2013) show that status and affiliation are
related to extraversion and agreeableness. As explained in section 4.1.1, high extraver-
sion implies sociability and closeness to people, but also assertive and dominant behavior
tendencies. Similarly, agreeableness represents social compliance, a combination of
warm-hearted and submissive behaviors. According to McCrae and Costa (1989) and
DeYoung et al. (2013) these two traits form an alternate pair of axes, which is rotated
about 30–45 ◦ relative to status and affiliation, as shown in Figure 4.1.

4.1.3. Persona

The term persona is the Latin root of the term personality and is closely linked to it.
While personality refers to “regularities and consistencies in the behavior of individuals
in their lives” (Snyder and Ickes, 1985), persona means “a consistent pattern of behavior
and attitudes” (Snyder and Ickes, 1985). According to Snyder and Ickes the term persona
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originates from theaters in ancient Rome, where it referred to the mask worn by an
actor. Later, the meaning changed, and the word referred to the character played by
the wearer and finally to the actor. Today, the term persona describes “regularities and
consistencies in the characters created by actors on the stage” (Snyder and Ickes, 1985),
resulting in a fictional personality with varied and stable behavioral and personality
patterns (Matthews, Deary, and Whiteman, 2003).

4.2. Interpersonal Compatibility

The literature reports phenomena concerning the compatibility of different peoples’
attitudes and personality traits. Interpersonal attraction, i.e., the attraction between indi-
viduals, has been investigated for many decades in different populations. The similarity
and complementarity attraction paradigm (Byrne, 1997) have emerged as prominent
theories for describing interpersonal compatibility:

Similarity attraction attributes compatibility to people with similar attitudes or per-
sonality profiles (Byrne and Griffitt, 1969; Wetzel and Insko, 1982; Yeong Tan and
Singh, 1995; Montoya and Horton, 2013). According to this theory, an extravert
prefers extravert communication partners, and an introvert prefers introvert
interlocutors.

Complementarity attraction relies on the opposite assumption, assigning compatibility
to people with complementary attitudes or personality profiles (Byrne, 1997; Kristof-
Brown, Barrick, and Kay Stevens, 2005; Kausel and Slaughter, 2011; Estroff and
Nowicki Jr., 1992; Markey, Funder, and Ozer, 2003). According to this theory an
extravert prefers an introvert interlocutor and vice versa.

Similarity and complementarity attraction, as well as other findings, have not only
been observed in human interaction but also in HRI. See section 5.2.2 for more details on
human-robot personality matching. These heterogeneous findings about interpersonal
attraction are an important motivation for autonomous adaptation in section 14.1.

4.3. Politeness Theory

The politeness theory by Brown and Levinson (1987) assumes that every interlocutor has
a public self-image (i.e., identity), which is called the face. It consists of the following two
wants, which are related to the IC according to Oakman, Gifford, and Chlebowsky (2003):

Negative face People desire to be free and autonomous in their actions, without any
restrictions by others. This desire resembles the status dimension of the IC, which
represents a person’s tendency to act autonomously.

Positive face People desire to have other people’s approval and appreciation of their
own self-image. Similar to the affiliation dimension of the IC, it implies group
membership and a social bond with others.
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According to Brown and Levinson, 1987, politeness allows mitigating so-called face
threats, which threaten peoples’ negative or positive faces. Negative face threats occur,
for example, when putting pressure on the interlocutor (e.g., by ordering/requesting/sug-
gesting/reminding the person to do something). Positive face threats result, for example,
from any indication of the speaker not caring about the interlocutor’s desires, attitudes,
or feelings (such as expressing criticism, disapproval, complaints, or disagreement).
Brown and Levinson explain different politeness strategies for minimizing threats in
order to preserve the reputation of conversation partners:

Bald on-record strategy does not minimize the threats.

Positive politeness strategies minimize threats to the interlocutor’s positive face by
indicating that the speaker shares at least some of the interlocutor’s wants and that
the threat does not mean a “negative evaluation in general of [the interlocutor’s]
face”.

Negative politeness strategies minimize threats to the interlocutor’s negative face by
expressing understanding for the interlocutor’s wants and that the threat “will not
(or will only minimally) interfere with the addressee’s freedom of action”.

Off-record strategies indirectly communicate the speaker’s intention, leaving room for
negotiation.

Similar to the personality dimensions, politeness is reflected in spoken language. Brown
and Levinson provide an extensive list of linguistic politeness strategies. For example,
negative politeness strategies include being direct or pessimistic, using questions and
hedges, giving deference, and using nominalization. Conversely, positive politeness
strategies include noticing, approving, or showing interest in the interlocutor’s interests,
wants and needs, seeking agreement, using in-group identity markers (e.g., “Buddy”),
optimism, and joking. “Please” and “thank you” are common examples of positive polite-
ness. Off-record strategies include ambiguity, tautologies, metaphors, irony, rhetorical
questions, over-, and understatements. The personality literature also reports some of
these markers, such as questions, hedges, exaggerations, optimism, or pessimism (see
section 4.1.1). Furthermore, combined with using jokes as a positive politeness strategy,
this also illustrates the link between personality, politeness, and humor. In this thesis,
politeness is the subject of chapter 8, which presents a social robot with several politeness
strategies in different contexts. The robot adapts the strategies to the individual user’s
preferences in section 13.1.

4.4. Humor

Humor plays a very important role in human communication. Besides providing enter-
tainment and making conversations more enjoyable, it also has profound benefits: it
regulates conversations, helps to establish common ground between the conversational
partners, eases communication problems (Binsted et al., 2006) and helps to cope with
critique or stress (Nijholt, 2007). Moreover, a shared sense of humor has powerful effects
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on interpersonal attraction (Murstein and Brust, 1985; Cann, Calhoun, and Banks, 1997;
McGee and Shevlin, 2009). There is also a close link between personality and humor:
Thorson and Powell (1993) mention that humor is “something either innate or closely
related to personality that makes life more enjoyable and worth living”. What contributes
to personality are also the differences between individuals concerning humor appre-
ciation, which might be “either high or low in personal sense of humor or somewhere
in between” (Thorson and Powell, 1993). The individual style or lack of humor shapes
personalities and makes them unique, as are individual humor preferences. As outlined
in section 4.3, humor may also be used as a positive politeness strategy.

This section provides an overview of selected types of humor and how humans com-
municate them. The focus is on non-verbal communication. The overview provides the
basis for the multimodal behavior generation of humorous robot behaviors in chapters
9 and 10 and their adaptation to the individual user’s preferences in section 14.3.

4.4.1. Verbal and Non-Verbal Humor

Humor is a very personal, creative, and multifaceted sign of social intelligence. The
literature differentiates two types regarding the form of presentation. Verbal humor
is limited to “joke-carrying text” (Raskin, 2012), which is performed by the reader as
they read it (Norrick, 2004). However, in many cases, humor is presented orally and in
combination with non-verbal behaviors, including gestures, facial expressions, shifts in
dialect or voice quality, and more (see the following sections and section 3.3). In some
cases, humor might not even include spoken language, but consist of a solely non-verbal
performance, such as in the case of pantomime. Thus, non-verbal humor includes humor,
which is “not created, described and expressed by a text” (Raskin, 2012), but “depends
on presentation” (Norrick, 2004). In particular, non-verbal humor includes text, too,
as long as the text is just one component of the humorous content, such as a joke, and
accompanies the non-verbal performance (Norrick, 2004).

4.4.2. Canned and Conversational Humor

The literature distinguishes two types of verbal humor: canned humor and conversa-
tional humor (Attardo, Pickering, and Baker, 2011; Dynel, 2009). Canned humor is what
is commonly associated with jokes. Jokes (see section 4.4.4) are delivered “within a
humorous frame and rarely communicate meanings outside it” (Dynel, 2009), i.e., they
are contextually dissociated from the conversation topic.

Conversational humor is embedded in a conversation and context-dependent, for
example, by referring to the surrounding dialog topic. In contrast to canned humor, it
does not rely on a longer narrative. It ranges from “single-word lexemes, phrasemes
to whole sentences and even multi-turn exchanges interwoven into non-humorous
discourse” (Dynel, 2009). According to Dynel this includes neologisms (new words),
witticisms, puns, stylistic figures, such as irony (see section 4.4.5) and puns, and more.
Dynel also points out that there are overlaps between some of these categories.
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4.4.3. Construction and Presentation

The presentation of humor involves two participants: the speaker and the audience.
While the speaker produces the humor, the audience supports the humorist’s face (Hay,
2001) by providing feedback, such as laughter, smiling, and more. Thus, the audience
also contributes to successful joke delivery and conversational humor.

4.4.3.1. Markers and Factors

Instances of humor rely on a meta message “this is humorous/ironical/sarcastic” (Attardo,
Wagner, and Urios-Aparisi, 2013) to enhance the chances that the audience adequately
detects the humor and interprets the speaker’s performance and intentions correctly
(Gironzetti, 2017). This meta message is communicated with humor markers, which
are linguistic, paralinguistic, or nonverbal elements signaling the presence of humor.
Markers are not essential: one can remove them without removing the humor itself,
but their absence can affect the recognition of the humor negatively (Attardo, 2000b;
Gironzetti, 2017). In contrast, humor factors are essential elements. Their removal
destroys the humor. Attardo, Wagner, and Urios-Aparisi, 2013 further use the terms
indicators and indices to describe non-essential elements, which are always co-occurring
with humor. Similar to markers, indicators can be removed without affecting the humor,
while indices unintentionally indicate the presence of humor (Gironzetti, 2017).

The speaker’s task is to signal the presence of humor by including multimodal markers
in the performance. The markers presented in sections 4.4.4 and 4.4.5 provide the basis
for the multimodal generation approaches presented in chapter 9 and chapter 10.

4.4.3.2. Humor Support

The audience’s task is to provide the speaker with humor support (Hay, 2001). Hay points
out that any “reaction from [the] audience that implies appreciation of the humor” is
important since it displays acknowledgment and understanding. Attardo, Pickering, and
Baker (2011) describe humor support as “conversational strategies used to acknowledge
and support humorous utterances”.

Hay (2001) and Attardo, Pickering, and Baker (2011) list several humor support strate-
gies. The most apparent strategy is appreciating humor verbally and non-verbally
through laughter, smiles, smirks, facial statements, and additional body language. Be-
sides these multimodal behavioral cues, support can also be given by contributing more
humor, e.g., by playing along with the joke or witticism initially presented by the speaker
and developing it further. Hay mentions that this is often the case for irony and fantasy
humor. Humor support also includes echoing (repeating words of the speaker in appre-
ciation), offering sympathy, or contradicting self-deprecating humor (when laughter is
an inappropriate response, e.g., in troubles talk). In particular, Attardo, Pickering, and
Baker (2011) also include comments on the humorous utterance that express support,
such as “Yeah!” and other Meta-Knowledge Resources (see next section). Hay also points
out that the audience may display understanding but not provide explicit support (e.g.,
irony or if the humor is already a support strategy).
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Humor support is of central importance in section 14.3, which relies on human audio-
visual humor appreciation in terms of laughter and smile for adapting generated social
robot humor to the individual user’s preferences.

4.4.4. Jokes

Jokes have a two-part structure. The first part is the setup. It is a narrative, which typically
is decoupled from the non-humorous conversation topic (Attardo, Pickering, and Baker,
2011). The second part is the punchline, which engenders unexpected incongruity with
the setup (Dynel, 2009) and thus creates humor. Special forms of jokes are riddles and
one-liners (Dynel, 2009). Riddles consist of a question followed by an unpredictable or
silly answer, such as “Why don’t Calculus majors throw house parties? Because you
should never drink and derive.” One-liners have a very short punchline consisting of
only a few words, such as “Never trust atoms; they make up everything.”

Sometimes, a negotiating sequence, such as “Do you know this joke?” or “I will tell
you a joke”, is used by the speaker for introducing the joke (Attardo, Pickering, and
Baker, 2011; Canestrari, 2010). After the joke, humor support may be provided by the
audience explicitly, e.g., with linguistic expressions, such as “I did not like that one”,
“That was funny”, or “Do not make me laugh!” (Canestrari, 2010). These are examples of
explicit verbal instances of Meta-Knowledge Resource (Canestrari, 2010). Canestrari uses
this term for verbal, non-verbal, and para-verbal signals, which express a humorous
intention on the “meta-communicative level”.

Multimodal Markers

There is no consensus on whether and which multimodal markers are used for verbal
humor (Attardo, Pickering, and Baker, 2011; Gironzetti, 2017). Instead, it seems to
depend on the individual speaker and performance. However, the literature reports that
professional comedians use markers intentionally, e.g., to emphasize parts of the text
and to evoke the impact of the punchline.

Table 4.1 presents a list of multimodal markers from the literature, excluding those of
verbal irony (see section 4.4.5). These markers were observed in human conversational
humor and canned jokes. One of the most frequent observations is an increase in
pitch, volume, speech rate, and a break at the joke’s punchline (Pickering et al., 2009;
Attardo and Pickering, 2011; Gironzetti, 2017). Also, the literature reports an “atypical”
prosody with a minimal pitch range and a special linguistic syntax for the setup of
riddles. Comedians may also use other verbal and non-verbal markers, such as controlled
vocabulary, facial expression, gestures, and posture (such as head movements in stand-
up comedy (Martínez Estrada, 2020)). Sometimes, the speaker laughs or giggles. Facial
expressions include smiling and gaze behavior.

4.4.5. Verbal Irony

Verbal irony has been traditionally seen as “a figure of speech which communicates the
opposite of what was literally said” (Wilson and Sperber, 1992). Later, Attardo (2000a) and
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Table 4.1.: Multimodal markers of verbal humor
Modality Markers
Prosody Pitch ↑ (Bauman, 1986; Chafe, 1994; Audrieth, 1998; Norrick, 2001; Wen-

nerstrom, 2001), volume ↑ (Bauman, 1986; Chafe, 1994; Wennerstrom,
2001; Archakis et al., 2010), speech rate ↑ (Norrick, 2001; Wennerstrom,
2001; Archakis et al., 2010), break at punchline (Bauman, 1986; Chafe,
1994; Audrieth, 1998; Archakis et al., 2010), combination of limited pitch
range, minor pitch change (syllables, utterance), syntax and content in
the setup of punning riddles (Bird, 2011)

Speech Laughter (Gironzetti, 2017; Pickering et al., 2009; Attardo, Pickering, and
Baker, 2011)

Facial expr. Smile (Gironzetti, 2017; Pickering et al., 2009; Attardo, Pickering, and
Baker, 2011) and gaze at the face areas involved in the smile (eyes, mouth)
(Gironzetti et al., 2015; Gironzetti, Attardo, and Pickering, 2016), change
gaze target to another person (Katevas, Healey, and Harris, 2015)

Dynel (2009) differentiated more types and finer gradations of irony. Dynel categorizes
verbal irony as a stylistic figure within the scope of conversational humor. Verbal irony
is a type of conversational humor, i.e., it is part of a surrounding conversation or dialog.
Attardo (2000a) lists, i.a., the following properties:

1. it is contextually inappropriate,

2. at the same time relevant,

3. it is used intentionally with awareness of the contextual inappropriateness, and

4. the speaker intends that the audience recognizes the points 1–3.

It is important to note that irony may, but need not, result in humor. Moreover, there
is no clear-cut differentiation between irony and sarcasm, but Attardo (2000a) describes
sarcasm as an “overtly aggressive type of irony”. Irony factors and irony markers (Attardo,
2000b) are essential for communicating irony successfully.

4.4.5.1. Irony factor

The irony factor affects the actual meaning of the utterance. This thesis focuses on
ideational reversal irony, which “arises as a result of negation of a chosen element of the
literally expressed meaning or the pragmatic import of the entire utterance” (Dynel, 2014).
As a consequence, it is contextually inappropriate but, at the same time, still relevant.
Removing this factor would destroy the irony (Attardo, 2000b) since the negation is the
core feature of ideational reversal irony.

For example, if person A dislikes chocolate, an ironic utterance would be “I love choco-
late”. Person A is aware of this inappropriate utterance because it does not represent
the truth about A’s food preferences. At the same time, it is relevant because it addresses
the context of A’s liking.
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Table 4.2.: Multimodal markers of irony.
Modality Markers
Language Exaggerations and understatements (Attardo, 2000b), positive and neg-

ative interjections, onomatopoeic expressions for laughter (Carvalho
et al., 2009; Frenda, 2016), quotations and heavy punctuation marks
(Attardo, 2000b; Carvalho et al., 2009; Frenda, 2016), ellipsis (Attardo,
2000b), hashtags (Valitutti and Veale, 2015; Hee, Lefever, and Hoste, 2018;
Cignarella et al., 2018), emojis (Hee, Lefever, and Hoste, 2018; Cignarella
et al., 2018)

Facial expr. Gaze aversion (Williams, Burns, and Harmon, 2009), winking (Attardo,
2000b; Attardo et al., 2003), rolling eyes, wide open eyes and smiling
(Attardo et al., 2003)

Prosody Intonation and nasalization (Attardo, 2000b; Attardo et al., 2003), stress
patterns (Attardo, 2000b), speech rate, extra-long pauses and exaggerated
intonational patterns (Attardo et al., 2003)

Gestures Nudges (Attardo, 2000b)

4.4.5.2. Multimodal Markers

The irony factor alone is typically insufficient since the audience might not identify
the resulting utterance as irony per se. For example, a person, who does not know the
preferences of person A, might think that A loves chocolate if A says “I love chocolate”.
Thus, verbal and non-verbal markers make the audience aware of the ironic intention by
emphasizing and supporting the effect of the irony factor. They include the manipulation
of the linguistic content and additional modalities, such as facial expression, prosody,
and gestures. While the use of those markers varies and is highly individual, a deviation
from the speaker’s usual style of communication indicates the presence of irony. For
example, speakers use exaggerations, a modified speech rate, rolling eyes, and more to
make the counterpart aware of the ironic intention.

Table 4.2 summarizes common multimodal markers of irony from the literature. Sev-
eral linguistic markers were identified by Attardo (2000b) and Carvalho et al. (2009),
including exaggerations (e.g., “really”, “utterly”), understatements (e.g., “barely”, “al-
most”), as well as positive and negative interjections (e.g., “Great!”, “Super!”, “Damn
it!”, etc.). Interjections in subjective texts express the author’s emotions, feelings, and
attitudes (Carvalho et al., 2009). For example, a person who dislikes washing the dishes
might use a positive interjection and an additional exaggeration: “Great! I really love
washing the dishes on my own.” Furthermore, onomatopoeic expressions for laughter
(e.g., “haha”), acronyms, such as “lol” (laughing out loud) or “rofl” (rolling on the floor
laughing), emoticons (e.g., “;-)”), quotation and heavy punctuation marks (e.g., “!!!”) as
well as ellipsis (“. . . ”) are used in written language (Carvalho et al., 2009).

Regarding prosody, Attardo et al. (2003) list acoustic parameter modulations used when
presenting ironic utterances. These atypical speaking behaviors contrast normal speech
modulations in terms of pitch, rhythm, and speech rate. For example, the compressed
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pitch pattern is characterized by a “flat” intonation, causing minimal pitch range while
pronouncing the utterance. In contrast, pronounced pitch accents exaggerate the intona-
tion by accentuating words throughout the whole sentence, certain words, or multiple
syllables of the same word. Often, they are combined with elongations and stilted pauses.

Typical facial expressions when communicating irony include raised or lowered eye-
brows, wide open eyes, squinting or rolling, winking, smiling or a so-called “blank face”,
which is perceived as “expressionless”, “emotionless” and “motionless” (Attardo et al.,
2003). In addition, gaze aversion is a typical cue accompanying sarcastic statements
(Williams, Burns, and Harmon, 2009).

4.5. Conclusion
This chapter presented the theoretical background for personality, politeness, and hu-
mor and the links between them. Personality is often described based on the five-factor
model or interpersonal circumplex. Persona means a consistent pattern of behavioral
and personality patterns. Both politeness and humor are closely linked to personality.
The politeness theory suggests different formulations for expressing positive and nega-
tive politeness, with some linguistic markers being closely related to the extraversion
dimension of the Five-Factor model. In addition, humor has also been reported as a form
of positive politeness. The varied forms of canned and conversational humor rely, i.a.,
on multimodal verbal and non-verbal markers, which the speaker uses to communicate
the humorous intention. At the same time, audiovisual feedback from the interlocutor
also contributes to the overall performance.

The expression of personality constitutes a basic element of social robots. On top of that,
politeness and humor are important aspects to consider in HRI. Politeness and humor are
signs of social intelligence, which should also be taken advantage of in HRI. Similar has
been shown in the context of conversational agents, where humor makes interactions
more natural and enjoyable and increases credibility and acceptance (Nijholt, 2007).

Building on the presented personality, politeness, and humor foundations, Part III
deals with the generation of corresponding multimodal social robot behaviors. Motivated
by the varying insights from chapter 6 Part IV presents adaptation approaches, which
optimize the generated behaviors to the individual user.
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5. Expressive Social Robots

The generation of artificial verbal and non-verbal behaviors is a key challenge for social
robots. A social robot’s ability to generate these multimodal behaviors depends on its
actuators and software. Apart from typical human behaviors, robots can also use non-
verbal sounds, LED lights, or text and graphics on displays for communication. However,
the robot’s behaviors must be implemented for each machine considering its hardware
and software. For example, many robots do not have humanoid extremities, which
excludes communication via gestures.

This chapter first gives an overview of social robots, their embodiment, and commu-
nication channels. It includes important research projects in domestic environments
focusing on typical assistive functions. Afterward, the chapter details the generation
of multimodal robot behaviors. The focus is on the expression of personality, persona,
politeness, and humor with verbal and non-verbal behaviors in the literature. Politeness
is essential for preventing face threats (see chapter 8) in sensitive assistive functions,
such as health-related advice. Furthermore, the expression of personality, persona, and
humor are one opportunity to make the robot’s behaviors more believable and interest-
ing. For example, several studies have shown that humor can positively affect interaction
and the users’ perceptions of robots (Oliveira et al., 2021).

In most cases, human behaviors serve as a reference for the generation of robot be-
haviors (see chapter 4 for the psychological background and findings from human com-
munication). The robot’s multimodal behaviors may be scripted (i.e., they are prepared
by hand in advance and typically immutable during runtime) or generated dynamically
during runtime (e.g., based on natural language generation (NLG) techniques). Scripting
has the benefit of maximum human control over the outcome and quality. However, it
has the drawback that everything must be specified and tuned by hand, which results
in much effort and reduced variety. Generative approaches provide more flexibility
concerning the produced contents, which may, e.g., take user inputs into account, but
often at the expense of less control over the output.

In combination with the psychological background from chapter 4, this chapter serves
as a baseline for the generation approaches for robot personality, persona, politeness,
and humor in Part III. This chapter also provides an overview of human-robot compati-
bility, focusing on extraversion and introversion. The variety of findings underlines the
importance of adaptation and motivates the proposed real-time adaptation approach in
section 14.1. See section 6.6 for limitations and research gaps.

Parts of this chapter were presented in Ritschel and André (2017), Ritschel, Baur, and
André (2017a), Ritschel, Baur, and André (2017b), Ritschel (2018), Ritschel et al. (2019d),
Ritschel and André (2018), Ritschel et al. (2020a), Ritschel et al. (2020b), Ritschel et al.
(2019b), Ritschel et al. (2019a), Ritschel, Kiderle, and André (2021), Weber et al. (2018a),
and Kiderle et al. (2021). The contents of this chapter expand these publications.
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5.1. Social Robots

Dautenhahn, 1998 initially came up with a definition for socially intelligent agents. An
agent can be a “computation unit”, a “software tool” or a “life-like, believable agent”,
including virtual characters and humanoid robots, which are embodied agents. Accord-
ing to Dautenhahn’s definition social agents can be any “artificial agents which show
elements of human-style social interaction and behavior”. The term socially interactive
robots is used in Fong, Nourbakhsh, and Dautenhahn, 2003. They start with the historical
perspective, originating in the multiagent research area, which begins with biologically
inspired robots and organic computing techniques back in the 90s. These experiments
address robot-robot interaction exclusively without human involvement, such as for
synchronization tasks. Traditionally, the term social robot is not necessarily restricted
to the HRI domain. Later, Feil-Seifer and Mataric, 2005 use the term socially assistive
robotics to describe robots whose main task is to assist users with social interaction
instead of physical help. Social robots are used in many application domains, including
health care and therapy, education, toys, and entertainment, in work environments,
malls, public spaces, and at home.

Within the scope of the work at hand, the term social robot refers to an autonomous
agent with a physical embodiment for interaction and communication with the human
in a social manner, which is most closely related to Dautenhahn ’s definition. This thesis
explicitly focuses on the HRI domain, specifically on entertainment and assistance, which
represent typical application scenarios in domestic environments.

5.1.1. Social Interface and Social Awareness

Breazeal, 2003 describes social robots as machines with three basic tasks: perception
of the environment, decision-making and execution of actions to carry out a task. These
three aspects are in particular important in chapter 6 and Part IV. Furthermore, Breazeal
points out that a social robot should

1. be socially evocative, i.e., encourage people to interact with it due to anthropomor-
phization,

2. provide a social interface, i.e., use multimodal interaction channels for human-like
communication,

3. be socially receptive, i.e., learn from human social cues and behaviors, and

4. be sociable, i.e., “pro-actively engage people in a social manner” to help the user
and to pursue the robot’s aims.

Figure 5.1 illustrates the interrelation. The social interface and the robot’s awareness
of the user’s verbal and non-verbal behaviors are essential. The former allows the
machine for multimodal communication, i.e., both user and robot use familiar verbal
and non-verbal behaviors to communicate, which is encouraged by the robot’s socially
evocative embodiment. The latter is realized by processing and interpreting the user’s
behaviors; the resulting information allows for robot learning, such as adapting the
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Figure 5.1.: The robot’s social interface offers bidirectional multimodal human-robot
communication. At the same time, the robot reacts to the sensed verbal and
non-verbal user behaviors, e.g., by adapting its generated multimodal output
accordingly.

robot’s behaviors (see chapter 6). All together serves the purpose of implementing
sociable interaction.

The following sections focus on points 1 and 2 from the list above: socially evocative
robots and the implementation of their social interface. The overview includes social
robot embodiment, input and output modalities for social robots sensing and producing
human or humanoid verbal and non-verbal behaviors, and existing behavior generation
approaches based on these communication channels. Building on this, chapter 6 focuses
on point 3, i.e., existing approaches for adapting the presented social robot behaviors.

5.1.2. Embodiment

The robot’s embodiment is the first step toward socially evocative behavior. Often, social
robots use an anthropomorphic or zoomorphic design inspired by humans or animals.
Typically, they have a face with stylized eyes, eyebrows, a nose, mouth, and ears, which
are sometimes supplemented by extremities and wheels. Figure 5.2 illustrates exemplary
robotic platforms which characterize the social robot research domain. Pepper, NAO,
and Nexi are humanoid robots with many motorized limbs. Furhat’s face is rendered and
projected on a translucent three-dimensional mask. Paro’s embodiment is inspired by
the harp seal; its surface consists of fur. AIBO, iCat, and the MiRo robot use a zoomorphic
design. Reeti aims to represent an extraterrestrial species. As listed before, research
experiments use these robots in various application domains.

With advancements in hardware, computational power, and affordable prices, first
robots and robotic toys have also appeared on the consumer market for the general
population. Recent consumer products are illustrated in Figure 5.3. The Mabu robot
has motorized eyes. The other robots use displays for rendering the face. ElliQ (which
consists of a tablet and a charging station with a small robot) and Jibo use abstracted
faces with only one eye. Mabu, ElliQ, Pillo (which dispenses pills through an opening
on the underside), Moxie, Miko, Buddy, and Astro are promoted as robotic domestic
companions (see section 5.1.5).
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Paro
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Figure 5.2.: Exemplary robots used in research.

ElliQ Mabu Pillo

Jibo Miko Buddy Astro

Moxie

Figure 5.3.: Exemplary consumer companion robots.
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5.1.3. Input Modalities

Providing a social interface requires the robot to sense human verbal and non-verbal
communication channels. Corresponding hardware sensors, such as microphones, 2D
cameras, and touch sensors, are required. They are essential for SSP (see section 3.4),
since they allow the robot to sense the modalities found in human interaction: speech,
non-verbal vocal cues, gaze, facial expression, gestures, posture and movements (see
section 3.3). On top of that, additional sensors are required for discrete input, naviga-
tion, system monitoring, and more, including buttons, switches, depth cameras, sonars,
inertial (e.g., gyroscope, accelerometer), temperature sensors, and more. See Part IV
for more details on including the sensed data from the environment and human social
signals in the RL process.

5.1.4. Output Modalities

Besides sensing and processing human input, the robot must also generate multimodal
behaviors. As can be seen in Figure 5.2 and Figure 5.3 most robots offer only a few output
modalities. Many social robots are appearance-constrained, i.e., their embodiment is
limited, so they cannot communicate with gestures or facial expressions (Bethel and
Murphy, 2008). Colored light, motion, and sound are the most frequently available output
modalities of commercially available robots and research prototypes (Löffler, Schmidt,
and Tscharn, 2018).

5.1.4.1. Gaze and Facial Expression

Figure 5.2 and Figure 5.3 provide an overview of selected social robot platforms. Almost
all robots have eyes, be it in the form of a projection on a screen, LED lights, or motorized
actuators. Many robots also have a mouth, nose, and sometimes eyebrows. The degree
of realism varies – stylization is not only used for an appealing design and to shape the
individual robot’s personality profile but also for avoiding the uncanny valley (Mori, 1970).
Many of the presented robots produce more or less sophisticated facial expressions and
gaze behaviors, such as the Furhat, Nexi, MiRo, iCat, Reeti, Mabu, Pillo, Moxie, Jibo, Miko,
Buddy, and Astro robots. The Pepper, NAO, and ElliQ robot cannot move but light up
their eyes. Nexi, Reeti, iCat, and Mabu have motors for moving their eyes; most others
use displays to render their faces.

5.1.4.2. Gestures and Posture

Some social robots have limbs for expressing gestures, such as the Pepper, NAO, AIBO,
and Moxie robots. Depending on the degrees of freedom, this causes additional cost and
complexity, such as implementing inverse kinematics and preventing self-collision. In
addition to gestures, selected robots produce different postures. For example, Pepper,
NAO, Nexi, AIBO, and Jibo can move parts of their bodies to express postures; e.g., the
NAO robot can sit and stand. The Jibo robot’s body consists of twistable parts for looking
upwards and downwards physically, which allows for expressing, e.g., different emotions
in combination with the virtual eye.
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5.1.4.3. Movement

Many social robots are placed stationary in a room, requiring the user to go to the robot,
not vice versa. Mobile platforms, such as Pepper, MiRo, Miko, Buddy, and Astro, have
wheels for locomotion. NAO and AIBO can walk with their legs. Movement requires
additional hardware and software for steering, localization and mapping, navigation,
collision avoidance, and the targeted use of interpersonal distance and proxemics.

5.1.4.4. Speech, Prosody, and Sound

Spoken language often communicates complex information. Text-to-speech (TTS) soft-
ware implements speech synthesis, which converts text into audio. Typically, several
voices with individual sounds are available. Modern TTS systems take instructions into
account for controlling the prosody, i.e., for increasing or decreasing pitch, speech rate,
inserting breaks, vocal gestures, and more. In addition, a robot’s sound design may also
include non-verbal sounds, which express messages in a short time independently of
any particular language (de Gorostiza Luengo et al., 2017). They communicate, i.a., a
robot’s affective and internal state, approval and disapproval, hesitation, hush, summon,
encouragement, greeting, laughing, and more (de Gorostiza Luengo et al., 2017; Ritschel
et al., 2019a). Bethel and Murphy (2008) point out that the sonic interaction design
of appearance-constrained robots should use robot-specific social cues, which do not
anthropomorphize through human or animal sounds and tones.

5.1.4.5. Lights and Displays

LED lights often visualize the robot’s internal state (e.g., Pepper and NAO light up their
chest button in different colors depending on battery state). In some cases, however,
LEDs also replace hardware actuators. For example, the Pepper and NAO robots do not
have motorized or rendered eyes but use several LED lights. One can use animations,
e.g., for mimicking eye blinks.

As can be seen in Figure 5.2 and Figure 5.3, some social robots also use displays
for presenting additional information to the user or even for rendering parts of their
embodiment, such as the face. The advantage is that graphical and textual output can also
be provided simultaneously to the interaction with the other communication modalities.

5.1.5. Domestic Companion Robots

In the last decades, research experiments have explored the use of robots in users’ do-
mestic environments, especially in assistive, health-related support for cognitive tasks
or to improve mental and emotional well-being. There is also increasing interest and
development of robotic consumer products (see Figure 5.3). Typical functions replace or
complement those already known by today’s smartphones and smart speakers: informa-
tion retrieval, communication with relatives or medical professionals via voice or video
chat, notification, reminders of appointments, entertainment (e.g., playing games), home
surveillance, smart home integration, and health advice. Interaction with the user often
happens via a voice interface, a mobile app, or a touch display.
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Some commercial consumer products focus on health-related functions. For exam-
ple, Pillo (Tao, Moy, and Amirfar, 2016) monitors and dispenses medication to family
members, reminds the user of the care plan, health-related appointments, and answers
questions concerning the nutritional value of food. Pillo uses facial recognition to identify
and track family members. Basic entertainment and communication features include
playing radio and video calls with medical professionals or family members. ElliQ and
Mabu offer similar functions and target the elderly population. Mobile robots, such as
Miko, Buddy, and Astro, focus, i.a., on easing everyday life, such as video chatting with
relatives while following people around. The Astro robot includes a telescope camera
and allows the user to monitor the home remotely. As outlined in section 5.1.2 much
effort is put into the visual appearance, embodiment, motion and sound of consumer
devices, as is the case for robotic toys (e.g. Cozmo, Miko), to communicate intentions and
to portray certain personality stereotypes (see section 5.2.1) and emotions.

Kidd and Breazeal (2007) present a robotic weight loss coach for long-term, supportive
care. It carries out short conversations about daily diet and exercise goals. The user
reports the nutritional intake and number of conducted exercises. The robot provides
feedback, advice, and suggestions. The results of a study (Kidd and Breazeal, 2008), which
compares the robot with a touch-screen computer and a paper log for tracking calorie
intake and the number of exercises, show a significantly higher long-term motivation
for the robot and that users formed the strongest “working alliance” with it.

The CompanionAble project (Schroeter et al., 2013) presents an assistive robot for people
suffering from mild cognitive impairment. The mobile robot uses smart home technolo-
gies to provide social and cognitive support. Functions include reminders of appoint-
ments and activities, video calls, storage of personal items, and a cognitive stimulation
game addressing the impairments of the elderly target group. Smart home integration
allows tracking the user, controlling curtains and lights, and triggering situation-specific
reminders when the user enters or leaves home to notify about missed calls, agenda
items, or things to remember. The system uses a graphical user interface (GUI) on the
robot’s screen and a set of recognized dialog phrases for interaction.

In Al-Taee et al. (2017), a domestic robot supports diabetes patients. The authors present
an eHealth platform, which combines the NAO robot with several Internet of Things
(IoT) technologies. Several medical sensors are connected with online health care and
disease management hub to provide diabetes management for children. A core concept
is an adaptable and participatory design involving the children in their treatment plans
and personalizing the health profile. The robot performs dialogs created by specialist
clinicians with the patient to empower and motivate toward a healthy lifestyle. The
process allows for connecting the children and their caregivers over a distance instead
of periodic clinic visits.

The AlwaysOn project (Sidner et al., 2018) supports elderlies living on their own with a
social companion, which is embodied either by a virtual character or a Reeti robot. The
companion offers several activities, including counseling the user on diet and exercise
for the user’s well-being, entertainment (e.g., games), and communication with other
people. One important feature is the included approach for developing a relationship
between the user and the artificial companion. For instance, the system schedules shared
activities based on the current strength of their social bond, avoiding sensitive topics
(such as health advice) in the early stages (Rich et al., 2012). The agent also actively works
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to improve the relationship by suggesting activities to increase perceived closeness. It
furthermore employs strategies, such as interleaving advice with social interaction, for
example, by discussing the topic of exercise during a game of cards. It is “always on”,
recognizes the human with face detection, and initiates interactions on its own, too.

Cosar et al. (2020) present the ENRICHME system, which provides technologies for
health monitoring, social support, and care to enrich the day-to-day experience of el-
derlies with mild cognitive impairment in their domestic environments. Their platform
integrates a TIAGo robot with ambient intelligence and smart home sensors. It connects
to a care platform over the internet. The robot identifies and tracks users based on
face detection, biometric features, and objects based on RFID tags. Moreover, the robot
monitors physiological data, including body temperature, respiration rate, and heartbeat
rate. For example, it recognizes changes in temperature on images from the thermal
camera. The robot has several functions, including cognitive games, healthy tips, physical
activities, finding objects, monitoring environmental data, displaying the agenda, video
calls, weather forecasts, and news.

5.2. Personality

Robert et al. (2019) give an overview of personality in HRI, including human personality,
robot personality, similarities, differences, and factors impacting robot personality. In
contrast, the section at hand first details the expression of the Big Five extraversion-
introversion personality dimension (see section 4.1.1) with robot verbal (primarily)
and non-verbal behaviors. Afterward, it focuses on findings concerning human-robot
personality compatibility. Both subsections present selected literature, which is, for the
most part, also listed in Robert et al. (2019). Table 5.1 provides an overview of these
works.

5.2.1. Extraversion and Introversion

The expression of extraversion and introversion with robots is based on verbal and
non-verbal behaviors observed in human interactions (see section 4.1.1). Often, linguistic
or prosodic markers are combined with gestures or movements and, sometimes, gaze
and proxemics. Attempts were also made for training models by users (e.g., Cruz-Maya
and Tapus (2017), see below). Many works also investigate human-robot compatibility.
These results are presented in section 5.2.2.

5.2.1.1. Speech, Prosody, Facial Expression, Gestures, and Movements

Lee et al. (2006) use a variety of verbal (volume, pitch, pitch range, speech rate; volume,
rhythm, musical scale range, and mood of melodies) and non-verbal cues (frequency
and color of facial expressions via LEDs, angle, speed and frequency of movements) for
expressing extraversion and introversion with an AIBO robot. The extravert robot uses
higher voice pitch, speech rate, and volume, melodies with higher volume, faster rhythm,
a wider range of musical scales, and an exciting mood. It also uses colorful flashing
LED lights for facial expression and wider movements with higher speed, frequent tail
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Table 5.1: Expression of robot extraversion-introversion and human-robot extraversion-introversion compatibility.

Aly and Tapus, 2013; Aly
and Tapus, 2016

verbal & non-verbal
behavior generation  ○␣ ○␣ ○␣  ○␣ ○␣  en NAO S

Andrist, Mutlu, and
Tapus, 2015

gaze models, (mutual)
gaze duration ○␣ ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ fr/en Meka S

Çeliktutan and Gunes,
2015

gaze, attention, head
movement   ○␣ ○␣  ○␣ ○␣ ○␣ en NAO (S)

*
Craenen et al., 2018b;
Craenen et al., 2018a  gesture speed/amplitude ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ - Pepper S/C

Cruz-Maya and Tapus,
2017

distance, gesture speed
& amplitude ○␣ ○␣ ○␣ ○␣  ○␣  ○␣ - Pepper (S)/(C)/O

So, Kim, and Oh, 2008 thinking/feeling   ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ? I-Robi (S)/O
Joosse et al., 2013 task context ○␣  ○␣ ○␣   ○␣ ○␣ da NAO O

* Jung et al., 2012 eye contact/opening ○␣ ○␣   ○␣ ○␣ ○␣ ○␣ - KMC-EXPR S

Lee et al., 2006 voice, melodies &
non-verbal cues ○␣  ○␣   ○␣ ○␣ ○␣ en AIBO C

Mileounis, Cuijpers, and
Barakova, 2015

dominance and
extraversion   ○␣ ○␣  ○␣ ○␣ ○␣ en NAO (S)

Niculescu et al., 2013 voice pitch, humor and
empathy ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ en Olivia S

Salam et al., 2017 individual and group
engagement ○␣  ○␣ ○␣  ○␣ ○␣ ○␣ ? NAO S

Communication channels
 Reference Focus 7 É  ⌣  È  è ^ Robot �

Continued on next page
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Table 5.1: Expression of robot extraversion-introversion and human-robot extraversion-introversion compatibility. (Continued)

Tapus and Mataric,
2008; Tapus, Tapus, and
Mataric, 2008

RL of interaction
parameters   ○␣ ○␣ ○␣   ○␣ en Pioneer 2-DX S

Woods et al., 2005  socially
ignorant/interactive  ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ en PeopleBot C


Ritschel and André,
2017; Ritschel, 2018 personalization with RL  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ en Reeti -


Ritschel, Baur, and
André, 2017a; Ritschel,
Baur, and André, 2017b

NLG & personalization
with RL  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  en Reeti -

Communication channels
 Reference Focus 7 É  ⌣  È  è ^ Robot �

Legend:  part of the work at hand * not listed in Robert et al. (2019) 7 speech É prosody  gaze ⌣ facial expression
 gestures/movements È movement  proxemics è dynamically generated robot behaviors ^ language � observed
human-robot personality compatibility (Similarity/Complementarity attraction/Other findings)  no expression of extravert/in-
trovert robot behaviors
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wagging, and random walking. In contrast, the introvert robot does the opposite (e.g.,
lower pitch/frequencies/volume, less movement) when expressing introversion. There is
no manipulation of linguistic content.

So, Kim, and Oh (2008) rely on the Myers-Briggs Type Indicator (MBTI) personal-
ity model and express four personality types with an I-Robi personal service robot:
extraversion-thinking (ET), extraversion-feeling (EF), introversion-thinking (IT) and
introversion-feeling (IF). The MBTI model understands thinking as an “intellectual activ-
ity in which judgments are based on the rational application of principles” and feeling
as the “assignment of value (acceptance or rejection) to objects of experience” (McCrae
and Costa Jr, 1989). The robot uses speech (linguistic content, expression of feelings) and
prosody (speech rate, volume, pitch, pitch rate). Differences include that the ET/EF robot
speaks loudly, fast, and with a higher pitch; the IT/IF robot speaks silently, slowly, and
with a lower pitch. The ET/IT robot speaks only about one or selected subjects; the EF
robot talks freely; the IF robot has difficulties in starting a conversation and talks about
emotions and relationships afterward. While the expression of feelings or emotions for
the EF/IF robot is abundant, the ET/EF robot uses less expression or variation of feelings
or emotions. A TTS system renders the scripted speech output. It is post-processed by
hand for tweaking the prosody.

Niculescu et al. (2013) configure the robot Olivia in two variants. The extravert (intro-
vert) uses a higher (lower) voice pitch. Speech rate, timbre, and volume are configured
similarly. The extravert robot is also more exuberant and uses humor; the introvert is
calmer and more serious. Loquendo TTS produces the robot’s speech.

Joosse et al. (2013) conduct a study with the NAO robot with two tasks. They use scripts
including spoken language via TTS, gestures, and movements for expressing extraversion
and introversion, either with the robot acting as a tour guide or a cleaning robot. The
extravert robot talks loudly with a more varied pitch and higher speech rate and with
larger, faster, and more frequent body movements and gestures. Moreover, it talks more
than the introvert, which uses standard volume and slower speech rate and bows its
head down slightly when talking.

Çeliktutan and Gunes (2015) focus on attention and head movement for expressing
extraversion and introversion with the NAO robot. The extravert robot uses hand gestures
and posture shifts and talks fast and loud with a higher pitch (“Would you like me
to dance for you?”, “It is amazingly exciting!”). The introvert uses less energetic and
hesitant speech with lower pitch (“Hmm . . .well, ok. . .would you like me to play music
for you?”, “Well good. . . ”), without any hand gestures and almost static posture. Similar
paralinguistic and non-verbal cues for extraversion and introversion are also used in
Salam et al. (2017) but without verbal differences.

Mileounis, Cuijpers, and Barakova (2015) express the two personality dimensions
extraversion-introversion and dominance-submissiveness with the NAO robot in a “Who
wants to be a millionaire” game. The extravert robot is more talkative and uses a
higher speech rate and more gestures than the introvert robot. Moreover, the extravert
robot shows emotions; the introvert does not. Voice pitch and speech content match its
dominance: the dominant robot uses strong arguments with confident language and
lower voice frequency; the submissive robot uses arguments but expresses uncertainty
and uses higher voice frequency.
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5.2.1.2. Gaze

Jung et al. (2012) express extraversion and introversion with the KMC-EXPR robotic
face in three intensities (extravert, intermediate, introvert) based on different facial
expressions. The extravert robot has wide open eyes and maintains direct eye contact
with the user. The introvert robot opens its eyes less wide and does not always maintain
eye contact but looks down a little.

Andrist, Mutlu, and Tapus (2015) collect data from human-human interactions for
developing personality-expressive gaze behaviors. They extract an introvert and an
extravert gaze model from annotated puzzle tasks and implement both models for the
Meka robot. The extravert robot gazes into the user’s face more; the introvert robot
looks at the task space more. Moreover, the gaze durations are different. For example,
the extravert robot maintains the mutual gaze for longer.

5.2.1.3. Proxemics

Tapus, Tapus, and Mataric (2008) use a mobile Pioneer 2-DX robot in the context of
post-stroke rehabilitation. Three parameters express extraversion and introversion:
proxemics (interaction spaces defined by Hall (1966)), movement speed, linguistic (choice
of words), and paralinguistic (pitch and volume) behaviors. The authors adapt the
parameters based on the user’s task performance (see section 6.5). The extravert robot
uses challenging language (e.g., “You can do it!”) with high pitch and volume. The
introvert robot uses nurturing, gentle and supportive language (e.g., “Very nice, keep up
the good work.”).

In Cruz-Maya and Tapus (2017), users train a Pepper robot’s waving behavior. The
first study participants’ task is to personalize the speed and amplitude of the robot’s
left arm greeting gesture and the personal distance to their individual preferences over
several days. After the training, the authors test the trained robot behavior model in a
second study with respect to participants’ personalities and gender. For this purpose,
they use the trained model’s minimum and maximum values for expressing introversion
and extraversion. The extravert robot uses a much larger interaction distance (1.20 m),
gesture amplitude and speed (100 %, i.e., maximum possible values) than the introvert
robot (0.40 m, 20 % amplitude and 40 % speed). The authors do not manipulate the
linguistic content for the robot’s expression of personality.

5.2.1.4. Dynamic Generation

Aly and Tapus (2013) and Aly and Tapus (2016) present an architecture for generating
synchronized verbal and non-verbal NAO robot behaviors according to the Big Five
personality model (see section 4.1.1). It is based on the PERSONAGE system by Mairesse
and Walker (2011), which uses NLG to produce configurable restaurant descriptions
and comparisons according to the five personality traits dimensions. The BEAT toolkit
(Cassell, Vilhjálmsson, and Bickmore, 2004) generates animations in terms of gestures
(iconics, metaphorics, see section 3.3.1), posture shifts, and gaze for the generated utter-
ances. It performs linguistic and contextual analysis of the generated text and produces
gestures with corresponding amplitude, direction, rate, and speed. On top of the person-
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ality expression, the architecture can also estimate the user’s personality by analyzing
speech input. Thus, the robot attempts to match the individual user’s personality: first, it
estimates the user’s personality traits based on a psycholinguistic analysis of the spo-
ken language. Then, the robot generates verbal and non-verbal behaviors that fit the
characteristics of the human’s personality traits.

5.2.2. Human-Robot Compatibility
As outlined in section 4.2, interpersonal compatibility describes the compatibility be-
tween different peoples’ attitudes and personality traits. In HRI, the majority reports
similarity attraction effects with regard to extraversion and introversion. Other findings
include complementarity attraction and dependence on the task context.

5.2.2.1. Similarity Attraction

Tapus, Tapus, and Mataric (2008) investigate user-robot personality matching in their
post-stroke rehabilitation scenario. They examine individual user preferences regarding
the assistive therapist robot’s interaction parameters by adapting proxemics, speed,
and verbal and non-verbal behaviors during training to user task performance (see
section 6.5). Their study results show a similarity attraction effect since participants
preferred personality matching in the assistive domain.

Similarity attraction is also observed in Jung et al. (2012) with a robotic face expressing
extravert, intermediate, and introvert facial expressions and gaze. The authors observe
that extravert (introvert) people felt more friendliness and liking towards an extravert
(introvert) robot.

Aly and Tapus (2013) and Aly and Tapus (2016) investigate the similarity attraction
principle for synchronized generation of verbal and non-verbal behaviors for the NAO
robot. By mapping the user’s sensed personality profile to the robot’s generated behaviors,
the robot adapts its behaviors to the user’s personality. Results of the experiment validate
that most participants preferred to interact with robots with the same personality as
their own. Another finding is that adapting the robot’s verbal and non-verbal behaviors
was perceived as more natural and engaging than the adapted speech-only behavior.

Niculescu et al. (2013) compare an extravert and introvert robot, which differ in voice
pitch, humor, and talking style. Results of their Wizard of Oz (WoZ) study show that
introvert people prefer interacting with introvert robots. Introvert participants found
the interaction much easier and perceived the robot’s behaviors as more empathetic
than extravert participants, which confirms the similarity attraction effect.

The WoZ study by Mileounis, Cuijpers, and Barakova (2015) investigates the effect of the
two personality dimensions extraversion-introversion and dominance-submissiveness
on the perceived social intelligence of the NAO robot. They observed that participants
perceived the extravert robot as more socially intelligent, likable, animate, intelligent,
and emotionally expressive. Similarly, they perceived the submissive robot as more
socially intelligent, likable, and emotionally expressive than the dominant one. Moreover,
female participants perceived the extravert robot as more emotionally expressive and
lifelike than male participants. However, the authors support a similarity attraction
effect partly due to non-significant results.
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In the WoZ experiment by Çeliktutan and Gunes (2015), an introvert and extravert
NAO robot ask participants personal questions. Results of their show that an extravert
robot can positively affect the interaction experience, which is in line with the similarity
attraction principle. However, the authors did not observe this attraction effect for the
introvert robot.

Andrist, Mutlu, and Tapus (2015) evaluate their introvert and extravert gaze models
with the Meka robot. In their study, participants collaborate with the robot on a puzzle
task. The results show that the extravert gaze model with more frequent gaze behavior
toward the user made users perceive the robot as more extravert than the introvert model
with shorter and scarcer eye contact. The results show that people without intrinsic
motivation to solve the puzzle spent significantly more time collaborating with a robot
whose extraversion level was similar to their own and chose to solve more puzzle tasks
together.

Salam et al. (2017) investigate individual and group engagement in an interaction with
an introvert or extravert NAO robot. They measure involvement, interest, and enjoyment
during the interaction. Their results show higher levels of user engagement when the
robot’s degree of extraversion matches the user’s personality profile.

5.2.2.2. Complementarity Attraction

Woods et al. (2005) found out that extraversion plays an important role when users
evaluate a robot’s personality and assess to what extent it matches their personality.
In their WoZ study, they use a PeopleBot robot with either a socially interactive or a
socially ignorant behavior style, which differs in its navigation path, speed, orientation,
actions, and speech. Results from the study show that subjects rated themselves as being
significantly more social than the robot and assigned themselves stronger personality
characteristics, regardless of the robot’s personality. However, extraversion was identi-
fied as an important factor when evaluating the similarity between the test persons’ and
the robot’s personalities. Woods et al. point out that the experiment indicated that users
“do not tend to assign their personality traits to match the robot’s ones”.

Lee et al. (2006) express extraversion and introversion with the AIBO robot. Study
results show that participants correctly recognized the robot’s personality. Moreover, the
authors observed a complementarity attraction effect: extravert participants enjoyed
and rated the robot’s intelligence and social attraction higher when interacting with an
introvert robot and vice versa.

5.2.2.3. Mixed and Other Findings

So, Kim, and Oh (2008) report on a study based on the MBTI personality model. They
conclude that participants prefer kind, friendly, and mild personal service robots inde-
pendently of the participants’ extraversion and introversion. Moreover, their results
show that test persons had preferences for extravert or introvert robots regardless of
the correlation between their own and the robot’s personality. Although the authors
observed similarity attraction for certain combinations (e.g., EF/IF people preferred
EFIF behaviors, but ET people preferred EF) when a computer presented speech, these
observations were not observed when presented by the robot. Finally, they conclude
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that personal service robots do not need a fixed personality type. Instead, expressed
personality may vary depending on the task, as long as the differences are not too big.

Joosse et al. (2013) identify the task context as a potential determining factor for
similarity or complementarity attraction. Results of their study with the NAO robot
acting either as a tour guide or cleaner show that extravert people trusted the extravert
robot more than the introvert robot when it acted as a tour guide, which the authors
did not observe for introvert participants. Moreover, introvert participants trusted the
extravert robot slightly more than the introvert robot when it acted as a cleaner, which
was not observed for extravert participants. From that Joosse et al. conclude that the
attraction effects may depend on the task context and that the robot’s behaviors need to
be adapted “to the users’ expectations about what kind of personality and behaviors are
consistent with such a task or role”.

Cruz-Maya and Tapus (2017) present the evaluation of their experiment with the
trained model of waving gestures of a Pepper robot. According to the model, extravert
female participants would prefer a closer distance and gestures with higher amplitude
than males with the same personality. The model also predicts that male participants
would prefer a faster speed for the gestures. The evaluation partially confirms a similarity
attraction effect since the model did not fit all the parameters.

Craenen et al. (2018b) and Craenen et al. (2018a) investigate 45 robot gestures (five
core gestures with variations in speed and amplitude). The authors compare the 30
participants’ personality profiles with their ratings of the perceived robot personality
of each gesture. A similarity attraction effect was observed for 15 participants, and a
complementarity attraction effect for 9 participants. In particular, Craenen et al. identify
openness as the least important personality dimension concerning the two attraction
effects. Conscientiousness, extraversion, agreeableness, and neuroticism were similarly
relevant. In their conclusion, the authors point out that there would be a need to predict
the user’s preferred attraction effect to adapt the robot behaviors accordingly. They
conclude that the similarity and complementarity attraction paradigm might also be
observed for other factors and modalities, such as gender and verbal communication,
including the robot’s way of speaking.

5.2.3. Persona

Apart from the expression of personality traits, the literature has also investigated
how to equip social robots with personas (see section 4.1.3). In HRI, persona is typically
understood as “perceived or evident personalities”, which are expressed with identifiable
and expressible traits (Lacey and Caudwell, 2018), including habitual patterns of thought,
emotion, and behavior (Ruckert, 2011). One benefit of equipping robots with persona is to
provide the user with a clear mental model, which helps to make sense of and anticipate
the robot’s behavior (Lacey and Caudwell, 2018). Researchers use several modalities
to produce stable behavioral and personality patterns for investigating the impact of
different personas on users and their preferences. Table 5.2 provides an overview of
experiments investigating different personas for domestic companion robots.

Dautenhahn et al. (2005) present study results from HRI trials with a non-humanoid
PeopleBot robot in a simulated living room. The questionnaires address, i.a., the preferred
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Table 5.2: Different personas in the context of domestic companion robots.

 Reference Personas 7 É ⌣ È  è º ^ Robot
Bartl et al., 2016 companion vs. assistant  ○␣  ○␣ ○␣ ○␣  de Reeti
Dautenhahn et al., 2005  assistant vs. butler vs. friend ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ en PeopleBot

Huijnen et al., 2011  butler vs. helper vs. entertainer vs.
guardian angel ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  ? Hector,

Kompaï
Whittaker et al., 2021 butler vs. buddy vs. sidekick   ○␣   ○␣  en Olly


Ritschel et al., 2019d; Ritschel
et al., 2019c

companion vs. assistant; mentor vs.
opponent  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ de Reeti

Communic. channels

Legend:  part of the work at hand 7 speech É prosody ⌣ facial expression È motion  light è dynamically generated
robot behaviors º Wizard of Oz study ^ language  no (details on) expression of persona emphasized personas were
preferred by study participants
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robot persona, coming to the conclusion that most participants prefer the assistant or
machine over the butler. Only young participants were interested in the robot acting as a
friend. Key expectations regarding the robot’s behavior traits include high predictability,
controllability, and considerate behavior. The paper does not provide details on how the
robot communicates with the test persons during the conducted HRI trials.

Huijnen et al. (2011) conclude from their video and WoZ studies that different users
have different preferences regarding the role, responsibilities, and type of persona ex-
pressed by companion robots and that there is a need to adapt the robot’s character
accordingly. Their results also indicate that apart from the robot’s function, its character
and interaction style is significantly more important than its design and physical embod-
iment. The paper does not provide details on how the robot communicates with the test
persons during the conducted HRI trials.

Bartl et al. (2016) investigate the impact of robot persona on user acceptance in the
context of a social robot for the elderly. A Reeti robot expresses either a companion
or assistant persona, which differ in speech and facial expression. The companion
persona uses a prevalent friendly, emotional, enthusiastic, and expressive speech; the
assistant persona uses more authoritative and formal spoken language. Both personas
use a distinct configuration of linguistic features, such as fillers, questions, words of
agreement, pronouns, and more, as well as different facial expressions (smiles) and
poses (head tilt). Bartl et al. evaluate their approach with German native speakers. Their
scenario includes reminders about appointments in a calendar application. Results of
their WoZ experiments indicate that the companion persona is preferred and positively
impacts the robot’s likability and perceived intelligence. Moreover, the authors report on
the observed novelty effect and desired additional functions, such as recommendations
for drinking water regularly.

Whittaker et al. (2021) investigate three personas with a non-anthropomorphic Olly
robot. They use speech, prosody, motion and light to express buddy, butler and sidekick
personas. The personas differ, i.a., in terms of activity, spontaneity, reliability, sensitivity,
autonomy, helpfulness, and focus of the robot. For example, the buddy is talkative
and has a good sense of humor; the butler speaks in clear pronunciation, is officious
and serious; the sidekick is shy and speaks slowly and intentionally. The attributes are
mapped to TTS parameters (volume, pitch variation, amplitude), the motion of the robot
(movement speed, pause duration, attentional orientation to the user when they speak),
and colored LED light animations (number of colors, color scheme, several particle
animation parameters). Results of the WoZ study show that most participants preferred
the buddy persona, and the sidekick persona was the least popular.

5.3. Politeness

The HRI literature primarily relies on the politeness theory by Brown and Levinson
(1987) (see section 4.3) and spoken language for expressing politeness with robots. There
is work building on related frameworks, such as the politeness maxims by Leech (2016)
or the impoliteness framework by Culpeper (1996). There are also insights regarding
politeness towards the robot, such as the usage of polite wake words (e.g., “Excuse me,
Robot”), which may prime users to interact more politely with the machine (Williams
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et al., 2020). An overview of important works about politeness in HRI is given in Table 5.3.
The following sections focus on the theory by Brown and Levinson and the expression of
politeness with robots towards the user.

5.3.1. Politeness Strategies

Lee et al. (2011) focus on using positive, negative, and no politeness to mitigate robot
malfunctions. In their WoZ study, the OTTORO-S vacuum cleaning robot uses a female
TTS voice to communicate four events: the start of the cleaning, a malfunction when
being tucked by an obstacle, the removal of the obstacle by the user and the completion
of the cleaning process. Scripts with three message variations exist for each event. The
variations with no politeness use very short utterances consisting of two words, such
as “Barrier detected”. Variations with negative politeness include being pessimistic,
minimizing the imposition, and apologizing. Variations with positive politeness include
attending to the user’s interests, needs and wants, offering a promise, and using exag-
gerated interest. Lee et al. conclude from the study results that the negative impact
of robot malfunction on users’ impressions can be reduced by using a positive or no
politeness strategy, depending on the user’s relational or utilitarian orientation. All in
all, participants preferred a (primarily positively) polite robot.

Salem, Ziadee, and Sakr (2013) investigate the interplay between Brown and Levinson ’s
positive politeness or bald on-record (no politeness) strategies and the type of interaction
(goal-directed vs. dialog). In their WoZ study, the authors use the receptionist robot Hala,
which has an anthropomorphic torso and a screen for rendering a virtual face. The
Acapela TTS system generates the scripted speech output and accompanying visemes.
Apart from the visemes, the robot uses a neutral facial expression to focus on speech and
avoid effects resulting from using two modalities simultaneously. Participants interact
with the robot in a direction-giving task and a chit-chat task. In the polite condition, the
robot uses utterances with positive politeness, such as “Hello, how may I help you?” or
“You will want to turn right” in contrast to “Hello.” or “Turn right.” in the no politeness
condition. The polite robot uses “please”, “I’m very sorry” or “unfortunately” when failing
to respond to the user’s input. The authors conclude that the interaction context had a
greater impact on the user’s perception of the robot and task performance than the use
or type of politeness strategies, which had no major impact on the interaction experience.
In a later publication, Salem, Ziadee, and Sakr (2014) use the same setting to investigate
cultural effects on English and Arab native speakers. Their results show that positive
politeness and – again – the interaction task affected the interaction experience. However,
Arab native speakers perceived the robot as more competent, anthropomorphized it
more, and perceived it more positively than English native speakers.

Srinivasan and Takayama (2016) focus on robot politeness strategies for soliciting
help from people. The authors conduct two studies with the PR2 robot. The macOS TTS
(male voice) generates its speech based on a script. In their first study, they explore the
effectiveness of positive politeness, negative politeness, direct requests, and indirect
requests in a video study. Srinivasan and Takayama observed that people were more
willing to help the robot when it used the positive politeness strategy. Positive politeness
was more effective than the other strategies and made the robot’s requests seem more
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Table 5.3: Expression of robot politeness.

Hammer et al., 2016 verbalizations by Johnson et al. (2005)  ○␣ ○␣ de Reeti ○␣

Ishi, Mikata, and Ishiguro, 2020 person-directed pointing   ○␣ ja ERICA

Jackson, Wen, and Williams, 2019;
Jackson, Williams, and Smith, 2020 immoral commands  ○␣ ○␣ en Pepper, NAO

Lee et al., 2011 pos./neg./no politeness  ○␣ ○␣ ? OTTORO-S ○␣

Lee et al., 2017 polite cues, compliance intention   ○␣ en NAO ○␣

En and Lan, 2012 politeness maxims ○␣ ○␣ ○␣ * (concept) ○␣

Nomura and Saeki, 2010 politeness in motions   ○␣ ja Robovie-X ○␣

Rea, Schneider, and Kanda, 2021 (im)polite encouragement  ○␣ ○␣ ja (no name) ○␣

Salem, Ziadee, and Sakr, 2013; Salem,
Ziadee, and Sakr, 2014 pos./no politeness & interaction type  ○␣ ○␣ en/ar Hala ○␣

Srinivasan and Takayama, 2016 pos./neg. politeness; (in)direct request  ○␣ ○␣ en PR2

Strait, Canning, and Scheutz, 2014 pos./neg. politeness; (in)direct speech  ○␣ ○␣ en Nexi, PR2 ○␣

Strait, Briggs, and Scheutz, 2015 followup study: appear., voice, gender  ○␣ ○␣ en Nexi, PR2

Torrey, Fussell, and Kiesler, 2013 hedges, discourse markers  ○␣ ○␣ en Nursebot

Williams et al., 2020 wakewords  ○␣ ○␣ en Pepper ○␣


Ritschel et al., 2019d; Ritschel et al.,
2019c verbalizations, personalization with RL  ○␣ ○␣ de Reeti ○␣

 Reference Focus 7  è ^ Robot

Legend:  part of the work at hand 7 speech  gestures/movements è dynamically generated robot behaviors ^ language
 video study
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appropriate. Moreover, the size of the request also influenced participants’ willingness
to help the robot: smaller requests were more likely to make people help the robot.
In a subsequent WoZ study, the robot used the previously identified superior positive
politeness strategy. Participants were about 50 % quicker to help the robot if they had
the impression that it acted autonomously as opposed to being teleoperated by a person.

The behavioral ethics experiment by Jackson, Wen, and Williams (2019) focuses on
politeness to reject immoral human commands. The authors hypothesize that command
rejection should be phrased carefully, taking the severity of the norm violation into
account and without violating standing social norms, such as politeness. Otherwise, face
threats may result in losing trust and esteem towards the robot. In their experiment, the
authors present pairs of videos of a board game with a robot bystander and two players.
One player is interrupted by a phone call and leaves the room. The first video in each
pair shows the remaining player requesting the robot to violate a norm. For a norm
violation with low severity, the person requests to give a hint about how to win the game.
For the highly severe norm violation, it requests to look in the absent player’s wallet to
see if there is any money in it. Afterward, the second video shows the robot’s response
using either a low or a high face threat. In the first case, the robot uses indirectness as a
politeness strategy by asking the human a question expressing disapproval (“Are you
sure that you should be asking me to look in her wallet?”). In the second case, the robot
rebukes and admonishes the player and appeals directly to morality (“You shouldn’t
ask me to look in her wallet. It’s wrong!”). The results of the study confirm the authors’
hypothesis. They show, i.a. that miscalibrated responses reduce the robot’s likability
and impact participants’ perceptions of the robot as inappropriately polite, direct, or
harsh. In their follow-up study, Jackson, Williams, and Smith (2020) investigate the role
of gender in the same scenario with both a Pepper and NAO robot.

Some experiments focus primarily on robot gestures or movements for expressing
politeness strategies and related cues. For example, a study by Nomura and Saeki (2010)
investigates four types of movements with accompanying voice task instructions. The
scripted instructions are synthesized with a TTS system and use Japanese polite expres-
sions, including “please”, and “thank you”. During the study, the pre-rendered voice
instructions are the same for all evaluated movements (bowing, deep bowing, lying,
just standing) of the Robovie-X robot to control the level of politeness in the linguistic
contents. The study results indicate, i.a., that participants perceived the lying posture as
less polite than the other movements.

Lee et al. (2017) investigate the expression of politeness through gesture and speech in
healthcare advice with the NAO robot. Basis of their work is polite and social computing
(Whitworth, 2005; Whitworth and Liu, 2009), including respecting user choice (e.g.,
“would you mind”, “what do you think”), disclosure (e.g., “my name is NAO”), offering
useful choices (e.g., “I can provide you. . . ”) and using polite expressions, such as “excuse
me”, “thank you”, “please” in combination with honorifics and indirect suggestions. The
authors distinguish two levels of politeness: the higher politeness level uses a bowing slow
action movement in combination with spoken honorifics and indirect suggestions; the
lower politeness level uses a pointing fast action movement and spoken direct requests.
The study identifies direct speech with polite gestures as the most effective way for a
robot to increase patient compliance with the machine’s advice.

Ishi, Mikata, and Ishiguro (2020) use a formal and colloquial language variant of one
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Japanese sentence for evaluating different types (hand shape, hand orientation, motion
direction), speeds, and hold durations of person-directed pointing gestures. Results
of their video study with the ERICA android robot indicate, i.a. that hand shape and
orientation affect perceived robot politeness. Moreover, Japanese participants perceived
formal language as more polite than colloquial language.

5.3.2. Hedges and Discourse Markers

Torrey, Fussell, and Kiesler (2013) investigate using hedges and discourse markers to
mitigate the commanding tone in a robot’s advice. In their video study, a human or
robot helper advises a novice to make cupcakes. The helper uses hedges (“I guess”,
“maybe”, “probably”, “I think”, “sort of”, “kind of”) and/or discourse markers (“I mean”,
“so”, “basically”, “just”, “like”, “like you know”, “well”, “yeah”) in order to avoid giving
offense. The authors use scripted help messages in four variations for five steps of
cupcake baking. Each help message is provided as (1) a direct help message command,
(2) with a hedge, (3) with discourse markers, or (4) with both. The study videos use four
human actors and four variations of the same robot with different facial features. Due
to the acoustic variability in human speech, the authors do not use synthetic speech
for the robot. However, they use recorded post-processed human speech with a more
metallic sound and pitch variation to keep paralinguistic features consistent between
the human and the robot helper. Results of the study indicate that human and robot
helpers were perceived as more considerate, likable, and less controlling when using a
hedge or discourse markers. This effect was most pronounced for the robot that used
discourse markers. However, the authors did not notice any benefit in using both hedges
and discourse markers simultaneously.

Strait, Canning, and Scheutz (2014) extend the work by Torrey, Fussell, and Kiesler
(2013). They investigate different communication strategies (direct vs. indirect speech),
interaction modalities (participation vs. observation), interaction distance (local vs.
remote interaction), and robot appearance (humanoid vs. machine-like). In their WoZ
study, which requires participants to sketch simple objects, the authors use either a
humanoid Nexi or a non-humanoid PR2 robot for giving advice. Interaction happens
either from a third-person perspective (video of a robot and user, as is the case in Torrey,
Fussell, and Kiesler), a first-person remote (video of the robot on a screen), or a local
setting (robot sits opposite to the user). In the case of direct speech, the robot uses
commands (e.g., “Sketch a vertical oval. . . ”) without any hedges or discourse markers. In
contrast, the expression of indirect speech (e.g., “Great! Now, to add a nose, let’s sketch
a vertical oval. . . ”) uses both hedges and markers as proposed by Torrey, Fussell, and
Kiesler. The robot’s expression of positive politeness includes giving praise (e.g., “good
job”), rationale (e.g., “to make Y, do X”) and being inclusive (e.g., “we will now do X”);
negative politeness is expressed with markers (e.g., “now”), hedges (e.g., “kind of”) and
indirect requests (e.g., “could you do X?”). Strait, Canning, and Scheutz use macOS TTS
with a male or female voice for generating the robot’s speech. The robot does not move
or animate. Study results indicate that communication strategies, interaction modality,
interaction distance, and robot appearance can influence the users’ perceptions of robot
behaviors. The results contradict Salem, Ziadee, and Sakr (2014), who observed no major

77



5. Expressive Social Robots

Table 5.4.: Politeness categories with different degrees of positive and negative politeness
according to Johnson et al. (2005).

Phrasing Example
Direct command “Drink some water.”
Indirect suggestion “The system is asking you to drink some water.”
Request “I would like you to drink some water.”
System’s goal “I would drink some water.”
Shared goal “We should drink some water.”
Question “How about drinking some water?”
Suggestion of user’s goal “You would probably like to drink some water.”
Socratic hint “Did you think about drinking some water?”

impact on the interaction experience for politeness. Similar to the results by Torrey,
Fussell, and Kiesler (2013), the robot using politeness was perceived as more considerate
and likable and less controlling when observing it from the third-person perspective.
In first-person interactions Strait, Canning, and Scheutz did not observe preferences
for indirect speech. However, they observed that a mismatch in robot appearance and
voice might decrease ratings of liking and increase perceptions of task difficulty. In a
follow-up video study, Strait, Briggs, and Scheutz (2015) confirmed their findings for
a wider participant demographic. They furthermore observed age and gender effects,
including higher ratings of polite robots by women.

5.3.3. Verbalizations for Giving Advice

Johnson et al. (2005) present an experiment in the context of pedagogical agents in a
tutoring scenario based on the politeness theory and strategies by Brown and Levinson.
They propose eight different phrasings and evaluate them with American and German
native speakers. Advice is formulated as direct command, indirect suggestion, request,
actions expressed as the tutor’s goals, actions as shared goals, questions, suggestions of
student goals or socratic hints (see Table 5.4). The authors observe that politeness ratings
were similar between the American and German languages and that politeness theory
applied equally. They also noticed that the German formal pronoun “Sie” and informal
pronoun “Du” did not significantly influence perceived politeness.

The research by Johnson et al. serves as a basis for a later experiment in HRI: Hammer
et al. (2016) use a Reeti robot for presenting recommendations, which aim to support
single-living elderlies. Three recommendations (drinking water, opening the window,
going for a walk) exist in the eight variations by Johnson et al. The Reeti robot’s internal
Loquendo TTS system presents them in German. The authors evaluate the perceived
politeness and persuasiveness of each variation in a laboratory environment and with
the inhabitants of a retirement home. In the laboratory study, younger subjects perceived
questions as most polite; shared goals, requests, and system goals were also perceived
as polite, as opposed to direct commands. Participants perceived direct commands and
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questions as similarly persuasive; socratic hints and suggestions were perceived as least
convincing. Actions expressed as shared goals and requests were perceived as polite and
persuasive. In contrast, no significant differences concerning perceived persuasiveness
occurred in the study with elderlies. In addition, there were smaller and fewer significant
differences concerning perceived politeness. Again, questions were perceived as most
polite, followed by the system’s goal. Socratic hints and direct commands performed
worst but received higher ratings than in the laboratory study. Subjects perceived indirect
suggestions, requests, and socratic hints as polite and persuasive. However, the authors
point out limitations in the study with seniors, which might have biased the results,
including some elderlies’ fatigue and impaired hearing.

5.4. Humor

The computational generation of humor in HCI and its presentation by embodied agents
has developed as a research field for several decades. Results and experiments range
from scripted humor to dynamically generated humor based on human input, such as
keywords. For example, approaches for generating humor in the form of text include
the Light Bulb Joke Generator (Raskin and Attardo, 1994), JAPE and STANDUP for pun-
ning riddles (Binsted and Ritchie, 1997; Waller et al., 2009), HAHACRONYM (Stock and
Strapparava, 2002) for generation of humorous acronyms and the generation of lyrics
parodies (Gatti et al., 2017), only to name a few (see Amin and Burghardt (2020) for an
overview).

Using humor is an important opportunity for equipping social robots with social in-
telligence. Besides human verbal and non-verbal behavior channels, robots can use
additional audiovisual cues when presenting humor. For example, many social robots
have screens for displaying visual content, speakers for playing back speech, and arbi-
trary audio, such as (non-verbal) sounds. There are many audiovisual types of humor
(Buijzen and Valkenburg, 2004), including sounds and music for producing comic effects
(Arias, 2001; Deaville and Malkinson, 2014; de Valck, 2005).

Both the presentation and generation of multimodal humor are key challenges for
social robots. In contrast to a written joke, which is performed by the reader, a robot
must combine multiple modalities to provide a convincing and pleasing performance.
The appropriate use of auditive and visual cues, such as tailored prosody, timing, facial
expression, and more, is as important as the ability to generate humor linguistically.

Mirnig et al. (2017) point out that humor is multilayered and that it is “likely not
constructed through unimodal elements but through a combination of modalities.” Ac-
cording to the authors, adding unimodal verbal or non-verbal humorous elements to
non-humorous robot behavior does not automatically result in increased perceived funni-
ness. Instead, several modalities have to be combined so that each verbal and non-verbal
communication channel contributes to a more complex greater whole. For example, in
the context of irony, multimodal cues, such as facial expression and prosody, play an
important role in helping the listener identify spoken words as irony (see section 4.4.5).

Besides verbal and non-verbal communication, humor also exists in cartoons and
animation movies. Funny moments emerge from an exaggerated language of form,
motion, and timing, which makes humans laugh without a single spoken word. These
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forms of humor are especially interesting for robots with an appropriate, exaggerated
embodiment and design.

Most robot humor experiments are in the stand-up comedy domain, where jokes
usually consist of a setup followed by a short break and the subsequent punchline (see
section 4.4.4). Nijholt (2018) gives an overview of robot stand-up comedy. The following
sections focus on multimodal presentation and communication of robot humor with the
inclusion of more recent publications, as well as human input and feedback from the
audience, which is also the subject of chapter 6. Table 5.5 gives an overview of these
works.

5.4.1. Multi-Robot Comedy

Manzai is a traditional and very popular stand-up comedy dialog conversation from
Japan. It is performed at a fast pace by two entertainers with different roles: the Boke
is the funny man making jokes and gags often at the Tsukkomi’s expense, who reacts
to them and corrects the Boke. Hayashi et al. (2008) implement such a comedy show
with two Robovie robots with a particular focus on timing and coordination of speech
and motion, which is crucial in Manzai and a key challenge for making the conversation
feel natural and human-like. The authors use a network connection to synchronize both
robots’ performance, which consists of pre-recorded sequences, motions (e.g., gestures),
and movements. Hayashi et al. use five types of timing observed in professional Manzai
dialog based on turn-taking, barging into the conversation partner’s speech, waiting
for audience response, and more. They furthermore react to external stimuli from the
audience. Audible laughter and applause are estimated using a sound level meter. The
sensed data is discretized to distinguish the three levels of audience reactions burst out,
laugh and cool down. The synchronization of each robot’s communication and movement
with its comedy partner and the audience relies on the sensed data.

Robot Manzai dialog is also implemented in Umetani et al. (2015), Mashimo et al. (2015),
and Umetani, Nadamoto, and Kitamura (2017). The authors create the conversations
dynamically based on keywords from the audience and data from web news articles.
After searching for newspaper articles on the internet, a Manzai dialog is generated based
on the information. Two robots present the dialog with synthesized speech, motion, and
facial expressions. In Umetani et al. (2015), the robots’ faces are rendered on an iPod
touch display. In Mashimo et al. (2015), the authors use Ai-chan and Gonta robots. The
generated dialog coordinates robots’ movements, facial expressions, and speech output.

Apart from Japanese Manzai, Haraguchi et al. (2019) present Omotenashi Robots,
which generate a funny dialog for visitors who come to the tourist destination. Their
system has three components: the area-related information component, the place name
misunderstanding component, and the land classification component. The user inputs
the place name. Web search acquires area-related information, general geographical
data, and information. The place name misunderstanding component relies on names
with similar pronunciation to the user’s input place name. The authors present the
generated dialog with PaPeRo i robots.

Swaminathan et al. (2021) present a robot comedy duo, which is placed in a portable
theater and runs HRI experiments on its own by attracting bystanders to watch the show.
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Table 5.5: Expression of robot humor.

Addo and Ahamed, 2014 content personalization with
RL  ○␣ ○␣ ○␣  ○␣ ○␣  ○␣ en NAO

Haraguchi et al., 2019 funny dialog, geographical
data  ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ? PaPeRo i

Hayashi et al., 2008 timing, coordination  ○␣ ○␣    ○␣  ○␣ ja Robovie
Katevas, Healey, and Harris,
2015 reactions to the audience    ○␣  ○␣ ○␣   en RoboThespian

Knight, 2011; Knight et al.,
2011 dynamic sequence of jokes  ○␣ ○␣ ○␣  ○␣ ○␣   en NAO

Mirnig et al., 2016 self-irony, Schadenfreude  ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ de iCat, NAO

Niculescu et al., 2013 voice character., language
cues   ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ en Olivia

Sjöbergh and Araki, 2008 text vs. robot joke
performance  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ja Robovie-i

Swaminathan et al., 2021 in-the-wild, street-style
studies  ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ en Blossom

Umetani et al., 2015;
Mashimo et al., 2015;
Umetani, Nadamoto, and
Kitamura, 2017

generation based on
keywords  ○␣ ○␣  ○␣   ○␣ ○␣ ja (mixed)

Vilk and Fitter, 2020 timing, emotional tags   ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ en NAO
 Ritschel and André, 2018 NLG, personalization with RL   ○␣  ○␣ ○␣    en Reeti

Communication channels Input
 Reference Focus 7 É  ⌣  È è Á  ^ Robot

Continued on next page81
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Ritschel et al., 2020a; Ritschel
et al., 2020b multimodal generation & RL     ○␣ ○␣    en Reeti

 Ritschel et al., 2019b multimodal irony generation     ○␣ ○␣  ○␣ ○␣ en Reeti


Weber et al., 2018b; Weber
et al., 2018a

content personalization with
RL  ○␣ ○␣  ○␣ ○␣ ○␣   de Reeti

Communication channels Input
 Reference Focus 7 É  ⌣  È è Á  ^ Robot

Legend:  part of the work at hand 7 speech É prosody  gaze ⌣ facial expression  gestures È movement è dy-
namically generated robot behaviors Á auditory audience input/feedback  visual audience input/feedback ^ language
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A pair of Blossom robots presents scripted jokes and queries the audience during and at
the end of each show. Scripted jokes and movements exist in several variations. Since the
robots do not have an internal TTS system, recordings of female lab students are played
back with two speakers. The audience can give feedback via a show of hands to rate the
performance in terms of performer capability and joke quality. The show is recorded
and analyzed afterward. Swaminathan et al. present the system in an in-the-wild street
study on local farmers’ markets and festivals.

5.4.2. Single Robot Stand-up Comedy

Knight (2011) and Knight et al. (2011) use a NAO robot (see Figure 5.2) for stand-up
comedy. The robot’s show uses scripted two-minute-long comedy sketches, which include
jokes and robot animations. They are preloaded onto the robot. The robot adjusts the
joke sequence dynamically during the show according to feedback from the audience.
On the one hand, the audience sets the topic by selecting and showing postcards to the
robot. For this purpose, each joke is associated with a set of attributes “topic, duration,
interactivity, movement-level, appropriateness, and hilarity”. On the other hand, a
camera and microphone monitor the audience. Auditive and visual sensor data are
combined with an audiovisual audience feedback classifier to estimate the audience’s
current enjoyment level. This data includes noise caused by laughter, applause, or chatter,
as well as green or red cards, which the spectators use to provide feedback to the robot.
The robot generates the joke sequence based on the attributes associated with each joke,
the audience’s explicit prompts, and estimated enjoyment.

Addo and Ahamed (2014) present jokes with the NAO robot. The robot’s performance
includes pre-classified funny jokes. They are presented with the internal TTS system,
accompanied by hand, arm and head gestures and eye LED animations. A cloud service
provides the contents and records a user profile for each audience member. Personaliza-
tion of the show to the individual user is part of the WoZ experiment. The robot asks the
user how funny the joke was and whether it should continue with more jokes. Automatic
speech recognition (ASR) is used for recognizing the user’s spoken feedback in terms of
four keywords. See section 6.4 for more details on the adaptation approach.

Katevas, Healey, and Harris (2015) explore the use of gaze, gestures, and body orienta-
tion in stand-up comedy. They use the humanoid RoboThespian robot to present comedy
texts augmented with non-verbal behaviors. The robot optimizes the joke delivery dur-
ing the performance by reacting to the audience’s responses. It can explicitly address
individual spectators by looking into their faces or responding to them. An infrared
camera monitors the audience, and the SHORE™ software processes the video stream. It
provides basic SSP features, such as analyzing facial expressions and estimating different
people’s ages. As a result, the robot can address a random, the happiest or unhappiest, a
male or female, the youngest, the oldest, or a person of a specific age range. In addition,
a directional microphone monitors laughter and applause. Each text is associated with a
list of positive and negative responses. The robot uses them to react to the presence or
absence of laughter. Besides the comedy text and responses, the scripts include precise
presentation instructions, such as voice, tempo, pitch, volume, audio playback, pause
duration, and the person to address (Katevas, Healey, and Harris, 2014).
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Vilk and Fitter (2020) use a NAO robot (see Figure 5.2) for stand-up comedy performance
in the wild. They focus on the timing and using emotional tags. Emotional tags are
spontaneous short comments, gestures, or facial expressions, which the comedian uses
after the punchline to react to the audience’s (absent) feedback. For example, in case
of unsuccessful joke delivery, the comedian might say “Hey, these are the jokes, folks”
for regaining audience favor (Carter, 2010). Vilk and Fitter use scripted humor, which is
tuned upfront by skilled comedians with the speech synthesis markup language (SSML)
and the Amazon Polly TTS voice for fine-grained manipulation of inter- and intra-word
timing. The robot plays back these pre-rendered audio files instead of using its internal
TTS system in favor of comprehensibility. The NAO robot’s internal microphones and its
API evaluate audience reactions based on peak detection and counting the number of
sounds observed from the audience. Depending on the count, the robot presents positive
or negative emotional tags, which is described as “joke adaptivity”. The robot’s timing
includes waiting up to five seconds until laughter finishes since the authors discovered
fixed delays between jokes as a “critical flaw [. . . ] especially when the delays are too
short”. Vilk and Fitter conclude from their evaluation that performance with good timing
was significantly funnier and that emotional tags can improve audience responses to
jokes. They were not necessarily perceived funnier, but tags “almost always improved
audience perception of individual jokes”.

Srivastava and Fitter (2021) present three machine learning approaches for robot
self-assessment if a joke failed or not in the context of the system by Vilk and Fitter (2020).
They use Naive Bayes, support vector machines, and a neural network trained on human-
labeled crowd responses recorded from their preceding experiments. These techniques
allow the robot to “assess the joke’s success with a level of accuracy comparable to that
of experienced human raters” in real-time.

5.4.3. Effects of Humor

As mentioned in section 4.4, humor is not used only for entertainment but also for easing
communication problems, regulating conversations, and more. Sjöbergh and Araki (2008)
evaluate the difference in perceived funniness of jokes, which are presented either as text
or performed by a robot. Their results show that the robot’s embodiment and non-verbal
communication channels are crucial in delivering humor. The presentation method has
a significant impact: participants rated jokes significantly funnier when presented by
the robot than their text-only equivalents.

Niculescu et al. (2013) report a positive effect of humor in HRI, too. They explore
the relationship between voice characteristics, language cues (including empathy and
humor), and the perceived quality of the interaction. Their results show that the robot’s
use of humor improves the perceived task enjoyment and that the voice pitch impacts
the user’s perceived overall interaction quality and overall enjoyment.

Mirnig et al. (2016) conclude that positively attributed forms of humor (i.e., self-irony)
are rated significantly higher than negative ones (i.e., schadenfreude) regarding robot
likability. They also identify a general positive effect of humor, that different forms
of laughter may increase naturalness and enjoyment in HRI and an interaction effect
between user personality and preferred type of humor.
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5.5. Conclusion
Social robots provide a social interface for bidirectional human-robot communication.
The literature primarily reproduces findings from human interaction for expressing
personality, persona, politeness, and humor with robots. Most of the works use speech,
prosody, and gestures. Gaze, facial expression, other movements, proxemics, and lights
are used less often. Technically, almost all experiments use scripted behaviors, which
are prepared manually in advance. Conversely, the dynamic generation of verbal and
non-verbal behaviors is rare. Moreover, most experiments use laboratory environments,
and robots are often remote-controlled by an expert instead of acting autonomously.

The literature reports different findings about human-robot compatibility of person-
ality profiles. In the context of the extraversion-introversion dimension, many studies
report similarity attraction to a greater or lesser degree. However, there are also observa-
tions of complementarity attraction and mixed and other findings, such as dependence
on the task context. Similarly, the literature reports different user preferences concern-
ing the social robot’s expressed persona. The diversity of findings illustrates that there is
no single “right” or “wrong” approach for configuring a robot’s personality profile and
persona, as it may depend on individual preferences or other factors.

Different robot personas have been investigated in the literature a few times. There
are not many experiments with robots expressing persona; some experiments are based
only on the participants’ imagination and their expectations towards future robots.
The experiments come to different conclusions regarding users’ preferences, including
companion, assistant, and buddy robot persona.

The literature also investigates the expression and benefits of politeness. Results show
that the use of polite behaviors can reduce face threats of the user and have positive
effects, such as increased user experience, increased perceived competence, and more.
Different verbalizations of politeness also impact the robot’s persuasiveness.

Moreover, robots entertain audiences in comedy shows. In some cases, the audience
can participate in the interaction and influence the robot’s content selection and sequence
by providing keywords or topics. Sometimes, parts of the show are dynamic, such
as the robot’s comments to the audience’s reactions and timing, such as waiting for
laughter and applause after the punchline. However, the generation of multimodal
humor in its entirety, including linguistic content with accompanying verbal and non-
verbal behaviors, remains an open challenge.

The literature has identified many cues and strategies for communicating personality,
persona, politeness, and humor with robots. In addition, several studies prove their
impact on interaction experience, robot liking, and more. However, two basic needs
arise from the presented literature and state of the art:

1. When deploying robots in the wild, such as domestic environments, the robot
must be autonomous and react to user input dynamically. Thus, there is a need to
generate combined verbal and non-verbal robot behaviors dynamically.

2. Human preferences are diverse. Sometimes, the robot’s best communication strat-
egy might depend on other factors, such as task context. Thus, the robot’s behaviors
should be adapted and personalized to the individual user’s fundamental or tem-
poral needs and preferences.
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Chapter 5 provided an overview of verbal and non-verbal social robot behaviors ex-
pressing robot personality, persona, politeness, and humor in the literature. Multimodal
behaviors are essential for communicating the robot’s state or intentions and for provid-
ing the user with a familiar social interface. The robot should also adapt these behaviors
to the user’s individual needs and preferences.

An essential part of adaptation is acquiring user information. Depending on the
experiment design, the user might provide data upfront, such as demographic data in
a questionnaire. Another option is to acquire the data during the interaction, e.g., by
measuring task-related data via traditional input modalities, such as button clicks or
touch, or based on human verbal input or non-verbal social signals.

This chapter first gives an overview of user-adaptive interaction, functional and non-
functional adaptation, and different criteria and metrics for implementing and evaluating
adaptation. Afterward, the chapter details the use of RL for social robot adaptation in
the literature. The focus is on explicit and implicit human social feedback, feedback
modalities, and their integration in the RL framework. Finally, section 6.6 outlines
the limitations of the presented literature, followed by concluding research gaps and
resulting contributions of this thesis in relation to the literature from both chapter 5 and
the chapter at hand. In combination with the RL background from chapter 2, this chapter
serves as baseline for the adaptation of verbal and non-verbal social robot behaviors
with RL and SSP techniques in Part IV.

Parts of this chapter were presented and reviewed in Ritschel and André (2017),
Ritschel, Baur, and André (2017a), Ritschel, Baur, and André (2017b), Ritschel (2018),
Ritschel et al. (2019d), Ritschel and André (2018), Ritschel et al. (2020a), Ritschel et al.
(2020b), Ritschel et al. (2019b), Ritschel et al. (2019a), Ritschel, Kiderle, and André (2021),
Weber et al. (2018a), and Kiderle et al. (2021). The contents of this chapter expand these
publications.

6.1. User-Adaptive Interaction

In HCI, there are two related terms: adaptability and adaptivity. The former refers to the
user’s ability to adapt to the system’s interface. The latter means the system’s ability to
adapt its interface to the user (Dieterich et al., 1993; Bouzit et al., 2017). The same applies
to the HRI domain, where the robot represents the system. Martins, Santos, and Dias
(2019) point out that adaptability is typical in industrial environments, which require
the user to adapt to the robot required for working. In contrast, adaptivity is even more
important in domestic environments for increasing acceptance since the user adopts
and invests in the machine of their own free will.
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Martins, Santos, and Dias (2019) give an overview of user-adaptive interaction in
social robotics. User-adaptiveness is defined as “the system’s ability to adapt to its user’s
characteristic”. The goal of user-adaptive interaction is autonomy in interaction: the
agent should interact equally well with all users by generating personalized behaviors
which conform to the user’s abilities, needs, and preferences. According to the authors,
key elements for implementing user-adapted behaviors are:

Information about users They constitute the data sources that serve as input to the
adaptation process. The information covers “attributes of the user that are relevant
to the operation of the system”, which may include long-term and short-term
personal or task-related features. Examples include the user’s emotional state,
engagement, performance, and preferences (see also section 6.1.3.2).

User model Without a user model, the system performs reactive adaptation, i.e., behav-
iors are adapted based on the user’s immediate feedback by changing parameters
directly and without persisting user information. Alternatively, the information
can be stored or cached for maintaining (explicit) knowledge of the user in either
a static or dynamic user model. The former does not involve learning but contains
predefined, immutable user information, which is provided a priori (e.g., based
on a questionnaire) or collected by the system itself during the beginning of the
interaction. The latter updates user information gradually during runtime by re-
acting to and learning from the user’s feedback, which allows for continuing and
long-term adaptation.

Autonomous agent The adaptive system is autonomous, which allows changing its
behaviors during runtime based on the user’s immediate feedback or user model.

The authors point out that a user model can be “implicit in the design of the adaptive
system itself”. That means that it does not need to be modeled directly but may be part
of the system implicitly, be it a single parameter or more complex. Furthermore, the
authors mention that reactive adaptation without user models often breaks down to
adaptation of single attributes.

The decision between using a static or dynamic user model is determined by whether
the user’s needs or preferences change quickly: dynamic models adapt to such changes,
which is not the case for static models. Martins, Santos, and Dias mention that this is
not necessarily a problem since some information on users is unlikely to change, or it
changes very slowly (see also section 6.1.3).

Callejas et al. (2021) furthermore point out that user information can be either fully
or partially observable as follows. In full observability, the system can retrieve the
data automatically and with high confidence that the observed data are correct. In the
case of partial observability, the system must acquire the data either by asking the user,
involving explicit interaction or by implicitly inferring it from measurable data from the
interaction task and context.

6.1.1. Generic Architecture
Martins, Santos, and Dias (2019) identify a generic architecture of user-adaptive systems,
which is illustrated in Figure 6.1. It consists of two main components:
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Figure 6.1.: The generic architecture of user-adaptive systems by Martins, Santos, and
Dias with exemplary algorithmic approaches for decision-making. Adapted
from Martins, Santos, and Dias (2019).

Social interface In HRI, the interaction between the user and the machine occurs at the
robot’s social interface1, which allows for multimodal communication and input
(see section 5.1.1). Here, the machine presents synthesized adapted behaviors and
collects information about users simultaneously.

Decision-making The implementation of adaptation requires an algorithmic basis,
which takes a decision based on the sensed user information, either in the form of a
user model or immediate feedback. Algorithmic approaches include rule-based and
Bayesian techniques, Markov decision process (MDP)-related techniques (such as
RL and partially observable Markov decision processes (POMDPs)), or evolutionary
algorithms.

There are obvious similarities with section 5.1.1 and Figure 5.1. Breazeal’s general view
on social robots and the interplay between the robot’s perception of the environment,
decision-making, and execution of actions conceptually is a superset of Martins, Santos,
and Dias’s generic architecture for user-adaptive interaction. The social interface is
essential for realizing adaptation because it processes the human input required for
driving the adaptation process and presents the resulting adapted robot behaviors.

6.1.2. Functional and Non-Functional Adaptation
Martins, Santos, and Dias (2019) define (non-)functional depending on the main goal of
the system and whether it can be reached with or without adaptation:

Functional adaptation controls what the robot does. The system reaches its main goal
only by adapting to the user: the information on the user serves as input to the
adaptation process that controls the choice of actions2.

1Martins, Santos, and Dias (2019) use the term user interface. The term social interface is used here for
consistency reasons with chapter 5.

2Please note that “actions” in this context relate to different functions of a system and must not be
confused with the actions of a RL agent.
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Non-functional adaptation controls how the robot interacts with the user. The system’s
main goal is decoupled from the adaptation process that adapts parameters of the
executed actions (the choice of actions remains untouched). The system’s goal could
be reached without adaptation, but adaptation allows fulfilling or optimizing addi-
tional aspects, such as user satisfaction or happiness. Non-functional adaptation
can be more challenging since the adaptation goal can be harder to measure and
operationalize. For example, user satisfaction and happiness are very subjective.

For example, a social robot’s goal could be assistance in a daily rehabilitation plan. Its
set of actions could include reminding about medication, exercises, doctor appointments,
and telling a joke. Some users do not need medication; others have more frequent
appointments or fewer exercises. A functional adaptation approach would control,
e.g., which actions are needed for the user and their frequency. Only by selecting the
appropriate assistive actions the system’s goal can be achieved for the individual user’s
rehabilitation, and telling a joke is not vital. In contrast, non-functional adaptation could
rely on a fixed preconfigured rehabilitation plan but would adapt how these assistive
actions are executed in detail. For example, this could include the robot’s instructions
(e.g., should it be very polite or very demanding?), use of prosody, volume, voice, or
non-verbal behaviors. In addition, the robot could learn that telling a joke every once in
a while improves user experience. While not essential for rehabilitation, the adaptation
could motivate the user and speed up rehabilitation.

6.1.3. Criteria

The implementation of user-adaptive interaction requires three key considerations:

1. The system’s operational parameters, which are to be manipulated by the adapta-
tion process (see section 6.1.3.1).

2. The input, which drives the adaptation process, i.e., relevant user or context infor-
mation. It may also be integrated into an optional user model (see section 6.1.3.2).

3. The moment when adaptation happens (and thus, subsequently produced behav-
iors change), i.e., when decision-making happens in an ongoing interaction (see
section 6.1.3.3).

The last consideration is only relevant when using dynamic user models or no user
model at all (i.e., reactive adaptation) since static user models rely on information pro-
vided upfront or collected during the beginning of the interaction (see section 6.1).

6.1.3.1. Operational Parameters and Behavior Generation

The set of operational parameters contains any parameters manipulating the robot’s
behaviors. While the concrete set depends on the goal of the adaptation approach
and interaction scenario, parameters may differ depending on whether functional or
non-functional adaptation (see section 6.1.2) is implemented. In the case of functional
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adaptation, operational parameters may trigger different functions, such as the presenta-
tion of different information. For non-functional adaptation, parameters control details
of the robot’s behaviors, which provide a given function, such as the used modalities or
their specific configuration.

As outlined in section 5.1.2, a social robot’s embodiment provides many communication
channels, resulting in many potential operational parameters for implementing adaptive
behavior generation. The literature uses several verbal and non-verbal communication
channels to generate robot behaviors. Chapter 5 summarizes them for personality,
persona, politeness, and humor. The functional and non-functional adaptation of robot
behaviors based on different communication channels is subject of section 6.2 below.

In the context of adaptive systems for multicultural and aging societies, Callejas et al.
(2021) list operational parameters for functional and non-functional adaptation (they call
them “features of the companion system”). According to the authors, verbal parameters
include different forms of politeness (see section 4.3), which aim to avoid potential face
threats and to maintain the persuasiveness of the system. Given that the semantic content
is the same but differs only in the form of politeness, the adaptation of politeness is an
example of non-functional adaptation. Similarly, the robot should consider the user’s
cultural background to strengthen the social relationship since the literature reports
differences, i.a., for the sensitivity of topics in small talk conversations in European
and Asian cultures. The selection of more private or more situational topics thus is an
example of functional adaptation.

Callejas et al. also point out that paralinguistic and non-verbal behaviors (such as facial
expression, gaze, posture, gestures, vocal behaviors, see section 3.3), which accompany
the verbal output, are culture-specific. Examples include pauses and overlapping speech,
the use of gestures, their amplitude or speed, and more, which are all potential can-
didates for functional and non-functional adaptation. In general, the similarity- and
complementarity-attraction principle (see section 4.2 and section 5.2.2) often play an
important role in the context of adaptation.

In summary, many communication channels for verbal and non-verbal robot behaviors
are used in the literature and serve as potential operational parameters for functional
and non-functional adaptation. Some works also evaluate different sets of combined
verbal and non-verbal styles of communication, resulting in different simulated robot
personas.

6.1.3.2. User and Context Information

User information, which serves as input to the adaptation process, might be comple-
mented by data related to the task and interaction context. Callejas et al. (2021) list
several user information (called “features of the context (what to adapt to)” in their
work):

Long-term features include the user’s age, state of health, capabilities and experience,
preferences, personality, culture, and gender. These features typically do not
change; otherwise, they change over a longer time. The authors point out that
age may impact the user’s physical capabilities, including reduced hearing and
sight, concentration, memory, and endurance, but also on the willingness to adopt

91



6. Adaptive Social Robots

new technologies. However, there are wide variations among individuals, as is
the experience with technologies, curiosity, the diversity of cultures, personalities,
interests, hobbies, and more.

Short-term features (also called transient features) include the location, the current
situation or activity, the time of day, the day of the week, and the user’s current
personal conditions, such as the affective state, engagement and more (see also
section 12.3.4). For example, the location might impact the interaction modalities
(e.g., it might be more effective to communicate with a robot via touch in a noisy
environment instead of voice). The current situation might restrict activities and
interaction contents (e.g., the robot is used in a work environment vs. used for
entertainment in a domestic environment). The same applies to the time of day
and calendar (e.g., a social robot might be used for entertainment in the evening
or on weekends, but not on work days).

Many works from section 6.2 use interaction dynamics which are estimated based
on combinations of long-term and/or short-term features. Typical examples are user
attention, affect, and engagement. See section 12.3.4 for details on interaction dynamics.

6.1.3.3. When to Adapt

Static user models often rely on long-term features, which do not change quickly. Since
these data are often provided a priori or acquired by the system during the beginning of
an interaction, adaptation typically takes place before the interaction (Martins, Santos,
and Dias, 2019; Callejas et al., 2021). Dynamic user models use short-term features.
Adaptation must happen during the interaction since the features and user model change
over time (Martins, Santos, and Dias, 2019; Callejas et al., 2021).

There is no simple and universal answer to the question of when to react and adapt to
changes in dynamic user models. This question might be relevant, especially for non-
functional adaptation. For example, should the robot interrupt its current sentence and
change its wording immediately? Should it wait until after the current sentence finishes?
Is consistency in the robot’s behaviors more important than immediate adaptation?
Could a change in the robot’s verbal and non-verbal behaviors confuse the user? How
much time must pass until the next change can happen, and how big may the change
be? Can the behaviors be manipulated in smaller steps to prevent apparent changes and
maintain consistency in the robot’s behaviors? These considerations have to be made
depending on the use case, adaptation goal, and the behaviors to adapt. Otherwise, the
non-functional adaptation process could impact the user experience negatively.

6.1.4. Metrics
The implementation of adaptation typically goes hand in hand with the evaluation of
its function and effectiveness. Martins, Santos, and Dias (2019) identify three types of
metrics for evaluating adaptation approaches:

Introspective measurements evaluate the “self-motivated goal” of the adaptation pro-
cess. These measurements typically do not provide insights into the impact of
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the process on the user or user experience but into the algorithmic and technical
performance and operability. In the context of RL, this includes the measures from
section 2.7, such as observed rewards.

Interaction measurements are data related to the user’s experience, which the system
can collect during runtime. These automated measurements monitor aspects of the
interaction, such as the number of interactions, duration, user engagement, and
more. Interaction measurements “close the interaction loop”, since they provide
limited insight into how the adaptation process impacts the user.

Subjective measurements directly address the user’s experience and resulting “objec-
tive and empirical information on the user impact of the adaptive system”. Example
measures include user acceptance and satisfaction. Often, the measurements are
not automated and are collected offline, e.g., after the interaction, with question-
naires. Thus, the effort is relatively high due to the manual human intervention
and interpretation.

6.2. Reinforcement Learning for Social Robot Adaptation
There are different approaches for implementing adaptation (Martins, Santos, and Dias,
2019). The term adaptation does not necessarily involve learning (see also section 6.1):
reactive adaptation does not require a user model. However, it adapts parameters based
on the user’s immediate feedback directly. For example, there is literature on robots
performing adaptation, where the robot reacts to human behavior but does not learn its
behavior, i.e., it does not identify which of the possible reactions would be best for the
particular user.

The literature reports many works based on MDPs and related approaches, such
as POMDPs, the Training an Agent Manually via Evaluative Reinforcement (TAMER)
framework, and RL. This thesis focuses on RL as a machine learning framework for
autonomous non-functional adaptation of social robot behaviors. See chapter 12 for
detailed reasons for this decision.

As mentioned in section 5.1.1, Breazeal (2003) describes social robots as machines
with three basic tasks: perception of the environment, decision-making and execution of
actions to carry out a task. In fact, these tasks are also solved by RL agents (see chapter 2).
Thus, the RL framework has become popular in the robot research domain to adapt
social robot behaviors due to its autonomy. Akalin and Loutfi (2021) provide an overview
of RL approaches in social robotics. The authors distinguish three general types of RL,
which differ in the design of the reward signal:

Interactive RL relies on a human trainer for speeding up learning and learning from
social feedback, such as evaluative feedback, advice, or instruction (Lin et al., 2020).
The trainer modifies either the reward (reward shaping (Ng, Harada, and Russell,
1999), by providing explicit or implicit feedback, see section 6.3), the selected
action (policy shaping (Griffith et al., 2013)) or both. The robot typically optimizes
based on performance metrics related to user experience, engagement, attention,
satisfaction, and more (see interaction measurements in section 6.1.4).
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Intrinsically motivated methods originate from psychology. The exploration of the
environment is driven by an internal natural drive, e.g., to satisfy or maintain
internal needs or to gain new knowledge and skills. Intrinsically motivated RL uses
intrinsic motivations as a form of reward. Intrinsic and extrinsic motivation must
not be confused with internal or external motivation, which describes whether
the rewards are produced inside or outside the agent. See Oudeyer and Kaplan
(2008) for more details.

Task performance driven methods rely on reward signals inferred from the user’s or
robot’s task performance in a goal-directed interaction. The measures are highly
task-specific, such as the needed time, the number of sub-problems solved, the
accuracy of the user’s input, and more.

Table 6.1 provides an overview of selected works in the context of interactive RL and se-
lected task performance-driven (social) robot adaptation. The focus is on (non-)functional
adaptation, robot hardware, RL approaches, and their evaluation. Other literature with
other focus, feedback modalities (such as biosignals) or algorithmic approaches (such as
rule-based approaches, fuzzy control, context-free stochastic grammars, dynamic factor
graphs) is not part of this overview.

6.3. User Feedback and Modalities

Providing user information is essential for every user-adaptive interaction process. In
the context of adaptation via RL, it is mostly used for reward calculation, resulting in
feedback for the RL agent. In the interactive RL literature, trainers provide feedback via
GUIs, hardware interfaces, or human verbal and non-verbal communication channels,
including gestures, facial expressions, speech, pose, tactile feedback, and combinations
of these channels. Lin et al. (2020) give an overview of unimodal and multimodal sensory
input in the literature.

The literature distinguishes two types of user feedback: explicit and implicit feedback
(Akalin and Loutfi, 2021). In contrast to Akalin and Loutfi (2021) and Schmidt (2000), the
work at hand distinguishes explicit and implicit feedback depending on whether the
user is aware of giving feedback to the adaptation process or not:

Explicit feedback is provided by the user consciously. The robot might request explicit
feedback due to partially observable user information (see section 6.1). The user
communicates it, e.g., with a button press, voice commands, or gestures.

Implicit feedback is provided by the user without conscious interaction. This approach
might be desirable in order not to interrupt the interaction. The robot derives
implicit feedback automatically, e.g., from the user’s task performance or social
signals (see also section 12.3).

See Table 6.1 for an overview of explicit and implicit feedback and Table 6.2 for the
feedback modalities used in the literature presented below.
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Table 6.1: Interactive RL and selected task performance driven (social) robot adaptation.

Addo and Ahamed, 2014 ○␣ joke categories Q-learning ○␣  ○␣ NAO T14
Barraquand and Crowley, 2008 ○␣ situated behaviors Q-learning ○␣ ○␣ ○␣ AIBO
Chiang et al., 2014  interruption strategy Q-learning ○␣ ○␣ ○␣ ARIO
Churamani et al., 2018  facial expression DDPG ○␣ ○␣ ○␣ NICO

* Ferreira and Lefèvre, 2015 ○␣ dialog management Kalman TD  ○␣ ○␣ PR2 (sim.)
Gamborino and Fu, 2018 ○␣ social behaviors SARSA   ○␣ RoBoHoN
Gordon et al., 2016  affective reactions SARSA ○␣ ○␣  Tega
Grüneberg and Suzuki, 2014 ○␣ sorting procedure not specified ○␣ ○␣ ○␣ NAO

* Kim and Scassellati, 2007  waving behavior Q-learning ○␣ ○␣ ○␣ Nico
Knox and Stone, 2009; Knox, Stone, and
Breazeal, 2013 ○␣ sorting procedure TAMER ○␣ ○␣ ○␣ NEXI

Leite et al., 2011 ○␣ empathic behaviors 𝑘-armed bandit ○␣ ○␣ ○␣ iCat

Martins et al., 2019 ○␣
questions, movement,

volume 𝛼POMDP  ○␣ ○␣ GrowMu

Mitsunaga et al., 2005; Mitsunaga et al.,
2008

proxemics, gaze, motion
speed, timing PGRL ○␣ ○␣ ○␣ Robovie II

* Najar, Sigaud, and Chetouani, 2016 ○␣ sorting procedure Q-learning, SVFB ○␣ ○␣ ○␣ Baxter

* Nejat and Ficocelli, 2008 ○
voice, choice of words,

gestures Q-learning ○␣ ○␣ ○␣ Brian

Park et al., 2019 ○␣ task difficulty Q-learning ○␣ ○␣  Tega
Patompak et al., 2020  size of interaction space R-learning ○␣ ○␣ ○␣ Pepper

 Reference � Adaptation of Algorithm + º � Robot

Continued on next page
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Table 6.1: Interactive RL and selected task performance driven (social) robot adaptation. (Continued)

Ramachandran, Sebo, and Scassellati,
2019 ○␣ tutoring strategy POMDP ○␣ ○␣ ○ NAO

Schneider and Kummert, 2017 ○␣ exercise categories dueling bandit ○␣ ○␣ ○␣ NAO
* Wada and Shibata, 2006 ○ not specified not specified ○␣ ○␣ ○␣ Paro

Suay and Chernova, 2011 ○␣ sorting procedure Q-learning ○␣ ○␣ ○␣ NAO

Tapus, Tapus, and Mataric, 2008
distance, speed,

extraversion PGRL ○␣ ○␣ ○␣ Pioneer 2-DX

*
Tenorio-González, Morales, and Pineda,
2010 ○␣ movement/turning SARSA(_)  ○␣ ○␣ Pioneer 2 (sim.)

Thomaz and Breazeal, 2007 ○␣ sorting procedure Q-learning ○␣ ○␣ ○␣ Leonardo
Tseng, Liu, and Fu, 2018 ○␣ assistive procedure modified R-Max  ○␣ ○␣ ARIO
Yang et al., 2017 ○␣ assistive procedure Q-learning ○␣ ○␣ ○␣ Pepper
Zarinbal et al., 2019 ○␣ text summarization Q-learning ○␣ ○␣ ○␣ NAO


Ritschel et al., 2019c; Ritschel et al.,
2019d  politeness strategies 𝑘-armed bandit ○␣ ○␣  Reeti


Ritschel, Baur, and André, 2017a;
Ritschel and André, 2017; Ritschel,
Baur, and André, 2017b

 extraversion Q-learning ○␣ ○␣ ○␣ Reeti


Ritschel et al., 2020b; Ritschel et al.,
2020a; Ritschel and André, 2018; Weber
et al., 2018a; Weber et al., 2018b


joke selection, multimodal
joke presentation strategy QLC ○␣ ○␣ ○␣ Reeti

 Reference � Adaptation of Algorithm + º � Robot

Note: Adapted from Akalin and Loutfi (2021).
Legend:  part of the work at hand * not listed in Akalin and Loutfi (2021) � non-functional adaptation + reward shaping
º Wizard of Oz study � in-situ study  proposal (not implemented) ○ presumption (no details given)
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Table 6.2: (Human) feedback in interactive RL and selected task performance driven (social) robot adaptation.

Addo and Ahamed, 2014 E ○␣   ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Barraquand and Crowley, 2008 E  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Chiang et al., 2014 I ○␣  ○␣ ○␣ ○␣  ○␣ ○␣ ○␣   ○␣

Churamani et al., 2018 E ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣  ○␣ ○␣ ○␣

Ferreira and Lefèvre, 2015 E ○␣     ○␣    ○␣ ○␣ ○␣

Gamborino and Fu, 2018 E/I ○␣ ○␣  ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ 

Gordon et al., 2016 I ○␣ ○␣  ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ 

Grüneberg and Suzuki, 2014 E ○␣ ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Kim and Scassellati, 2007 E ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Knox and Stone, 2009; Knox, Stone, and Breazeal, 2013 E ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ ○␣ ○␣

Leite et al., 2011 I ○␣ ○␣   ○␣ ○␣ ○␣  ○␣ ○␣ ○␣

Martins et al., 2019 E ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Mitsunaga et al., 2005; Mitsunaga et al., 2008 I ○␣ ○␣ ○␣  ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Najar, Sigaud, and Chetouani, 2016 E ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣  ○␣ ○␣ ○␣

Nejat and Ficocelli, 2008 E ○␣  ○␣ ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Park et al., 2019 I ○␣ ○␣  ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ 

Patompak et al., 2020 E ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Ramachandran, Sebo, and Scassellati, 2019 I ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ ○␣  ○␣

Schneider and Kummert, 2017 E ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ ○␣ ○␣

Feedback Dynamics

 Reference ⋆   ⌣     3 AP
P
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T
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G
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F
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Table 6.2: (Human) feedback in interactive RL and selected task performance driven (social) robot adaptation. (Continued)

Wada and Shibata, 2006 E  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Suay and Chernova, 2011 E ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ ○␣ ○␣

Tapus, Tapus, and Mataric, 2008 I ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ ○␣

Tenorio-González, Morales, and Pineda, 2010 E ○␣  ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ ○␣

Thomaz and Breazeal, 2007 E ○␣  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Tseng, Liu, and Fu, 2018 E ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣ ○␣ ○␣

Yang et al., 2017 E  ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Zarinbal et al., 2019 E ○␣   ○␣ ○␣ ○␣ ○␣ ○␣  ○␣ ○␣ ○␣

 Ritschel et al., 2019c; Ritschel et al., 2019d E ○␣ ○␣ ○␣ ○␣ ○␣ ○␣  ○␣  ○␣ ○␣ ○␣


Ritschel, Baur, and André, 2017a; Ritschel and André, 2017;
Ritschel, Baur, and André, 2017b I ○␣ ○␣ ○␣ ○␣   ○␣ ○␣ ○␣ ○␣  ○␣


Ritschel et al., 2020b; Ritschel et al., 2020a; Ritschel and André,
2018; Weber et al., 2018a; Weber et al., 2018b I ○␣   ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣

Feedback Dynamics

 Reference ⋆   ⌣     3 AP
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AT
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G
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F

Legend:  part of the work at hand ⋆ type (Implicit/Explicit)  tactile  vocal ⌣ facial  gaze  gestures  pose
 graphical/text user interface or hardware device 3 task performance APP: user appraisals ATT: user attention ENG:
user engagement AFF: user affect  proposal (not implemented) ○ presumption (no details given)
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6.4. Explicit Feedback

Knox and Stone (2009) present the TAMER framework for knowledge transfer. It allows
users to train a learning agent’s policy via reinforcement signals manually, without
modeling environmental rewards as in MDPs. The idea is that humans often have
domain knowledge for sequential decision-making tasks, which could speed up the
learning process. Moreover, this knowledge should be communicated naturally, such as
via speech. Similar to RL, TAMER agents use positive and negative reinforcement (also
called “human reward” in Knox, Stone, and Breazeal (2013)) as a reaction to observed
agent behaviors, which the authors call “(interactive) shaping”. The resulting MDP\R
(Abbeel and Ng, 2004) does not encode a reward function. Instead, the human observer
judges the agent’s behaviors and provides a feedback signal mapped to a scalar value as
done in RL. In Knox, Stone, and Breazeal (2013), the authors demonstrate an application of
TAMER in robotics. Their experiment uses a mobile Nexi robot and functional adaptation.
The authors use TAMER for teaching the robot navigation: in order to reach an artifact
placed by the trainer, the robot uses four actions (turning left, turning right, moving
forward, and staying still). The state space has two features: the relative distance and
angle of the artifact placed by the trainer. The trainer explicitly communicates the
positive or negative reward signal via two buttons on a presentation remote.

Suay and Chernova (2011) investigate interactive RL for functional adaptation of a NAO
robot. Based on the work by Thomaz and Breazeal (2007), they combine human rewards
for past actions with anticipatory guidance for future actions. This approach aims to
restrict the agent’s action selection and reinforce the selection of actions according to the
trainer’s desired robot behavior. Suay and Chernova transfer the interaction interface
of the virtual kitchen task in Thomaz and Breazeal to the NAO robot. While the robot
solves a sorting task, the trainer sees the robot through a webcam video stream. The
trainer provides the reward signal and guidance targets with mouse clicks on a GUI.
The state space describes the characteristics of the objects to be sorted, as well as the
robot’s left-hand and right-hand positions; the action space contains eleven actions for
taking pictures, moving both hands, picking up, putting down, and dropping objects. The
authors use the Q-learning algorithm.

Schneider and Kummert (2017) formulate a functional adaptation approach of a
socially-assistive robot as a dueling bandit problem. In contrast to 𝑘-armed bandit
problems, dueling bandits do not receive a numerical reward signal. Instead, they are
based on relational preferences (Busa-Fekete and Hüllermeier, 2014), i.e., comparisons.
The robot’s goal is to engage and commit the user to long-term exercise by learning the
user’s individual exercise preferences. Therefore, the learning agent’s action set consists
of five exercise categories (strength, cardio, endurance, stretching, and relaxation/medi-
tation). Each category is associated with six exercises. In each learning step, the robot
selects two categories and presents one random exercise for each of the two categories.
The user compares them and signals their preference by selecting the preferred exercise
on a GUI. This information serves as explicit feedback.

Churamani et al. (2018) implement an architecture for sensing, modeling, and express-
ing emotions with the NICO robot. One goal is to make the robot learn how to express its
internal emotional state with facial expressions. It has four LED matrices, which project
eyebrows and lips on its face. One part of the experiment is an interactive RL process
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for non-functional adaptation, which aims to optimize the robot’s pre-trained behaviors
based on human feedback. For this purpose, the state space encodes the robot’s current
emotional state in terms of the five basic emotions anger, happiness, sadness, surprise,
and neutral. In an initial training phase, the system automatically calculates the reward
signal based on symmetry to assert symmetry in the robot’s produced facial expressions.
During the human evaluation, users are instructed to give feedback explicitly (no details
provided) on whether the robot’s facial expressions are appropriate within the con-
text of several dialogs. The maximum possible reward occurs only if the user finds the
robot’s behavior appropriate; otherwise, the agent receives no reward. An actor-critic
architecture (Sutton and Barto, 2018) with deep learning techniques is used for RL.

Tseng, Liu, and Fu (2018) use RL for functional adaptation of the ARIO assistive service
robot in domestic environments. The learning agent aims to personalize the robot’s
service (such as providing drinks, brief everyday information, or arranging the schedule)
to the user’s needs and preferences regarding service, situation, and time of day. A central
part of the system is the model of the service negotiation process. It might be initiated by
the human or the robot and is finally accepted or rejected by the user. The discrete state
space represents the progress of this negotiation process. The action space contains six
categories of robot actions for initiating the interaction, responding to human requests,
querying information, and more. Reward shaping combines indirect rewards from
the environment and direct “human” rewards. The former considers whether the user
(highest reward) or robot initiated the interaction and whether the user accepted it
or not (lowest reward). In addition, specific actions are rewarded negatively, such as
querying the user. Human rewards are provided explicitly via a text user (command
line) interface (no details provided). The user’s response time is measured and compared
with a previously learned reaction model, resulting in a higher reward if the response
time matches the predicted one from the model.

6.4.1. Tactile Feedback

Wada and Shibata (2006) use RL with the Paro robot for gradually tuning its behaviors to
children’s and elderly users’ preferences. It uses tactile input: stroking is interpreted
as positive feedback, and beating as negative feedback. While its behaviors cannot be
changed manually at once, the RL process allows the robot to adapt to the individual
user’s preferred robot behaviors over time. The authors do not provide detailed infor-
mation about RL and how it affects generated behaviors. Probably, it is a non-functional
adaptation approach.

Barraquand and Crowley (2008) use RL for learning appropriate behaviors – including
politeness – of an AIBO robot, depending on the current social situation. Their work is
motivated, i.a., by the dependence of politeness on social context and individual or group
preferences. Barraquand and Crowley rely on human tactile feedback for reward and
punishment, triggered by the user caressing or tapping the AIBO robot’s head or back to
indicate correct or incorrect robot behavior. In their experiments, the authors evaluate
whether the robot learns the expected behaviors in different situations. Situations define
the user’s attention toward the robot and their current activity, such as entering the
room, working, sleeping, reading, playing, and calling on the phone. The experiments
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use classical and modified versions of Q-learning (see section 2.6.3). The action spaces in
different situations include the robot’s actions barking, playing, sleeping, and saying hello,
resulting in functional adaptation. Scripted robot behaviors include speech, singing,
gestures, and dancing. The state space relates to the current social situation, combining
the user’s activity and attention towards the robot or another user. Barraquand and
Crowley use, i.a., cumulative reward as a measure for evaluating the performance of the
learning agent. Furthermore, they experiment with eligibility traces (Sutton and Barto,
2018) and propose adapted algorithms using heuristics and analogy for accelerating
learning. Barraquand and Crowley point out that using human social signals, such as
emotion recognition, would be an alternative to implementing haptic feedback based on
the AIBO robot’s sensors.

Yang et al. (2017) present an approach for functional adaptation in elder care with
a Pepper robot. Its task is to satisfy its own and user needs while playing nursing
and companion roles. The system relies on the homeostatic drives theory: the robot
has different drives, which aim at elder care and represent internal needs, such as
the need for achievement, socialization, and rest. Pepper’s goal is to compensate for
unsatisfied drives, resulting in serving, social and relaxative motivations. From the
perspective of RL, five actions result from the robot’s motivations and constitute typical
functions of domestic companion robots (see section 5.1.5): presenting the weather
report, reminding about the schedule, greeting, initiating conversations and resting. The
user gives feedback explicitly. Touch sensors on the robot’s head, left hand, and right
hand, are used to communicate a positive, neutral or negative reward signal. The state
space combines both the robot’s internal and external situation based on monitoring
itself and stimuli from the environment: Pepper’s battery level, the user’s presence,
recognized face names, incoming questions, user’s repetitions of utterances (which serve
as an indication of dementia) and the schedule time. The robot uses its camera and touch
sensors to acquire the data. The experiment uses the Q-learning algorithm. Yang et al.
simulate the RL approach before evaluating it with crew members in their lab.

6.4.2. Vocal Feedback

Tenorio-González, Morales, and Pineda (2010) present an approach for dynamic reward
shaping, where shaping rewards are not defined statically in advance but can vary
over time. The experiment involves explicit verbal feedback in a human-service robot
interaction. RL is used for functional adaptation to make the robot learn new tasks. The
authors use speech recognition for Spanish voice commands (words or short phrases,
e.g., “move forward”, “turn to your left”, “very good”, “excellent”, “bad”, “not like that”,
etc.), which are associated with rewards of different positive or negative value according
to the vocabulary. First, the user instructs the simulated mobile Pioneer 2 robot on what
actions to take to complete the given task. Then – building on the initial traces – RL
refines the robot’s policy. The reward signal for the SARSA(_) (Sutton and Barto, 2018)
algorithm is the sum of task-related rewards from the environment and human shaping
rewards. The state space corresponds to the sensory input of the simulated robot in the
simulated spatial environment; the action space corresponds to the robot’s movement
and turning abilities.

101



6. Adaptive Social Robots

Addo and Ahamed (2014) present a comedy robot, which presents pre-classified jokes
(see section 5.4.2). RL implements functional adaptation: the NAO robot aims to learn
the most liked jokes for individual spectators. The state space contains pre-classified
jokes in a database; actions present the jokes to test. The agent’s goal is to maximize the
user’s positive affective state. Therefore, the authors suggest monitoring the audience’s
affective states (neutral, happy, sad) with a Microsoft Kinect sensor, also used to identify
the individual user. However, the experiment uses a simplified, verbal reward signal
self-reported by the spectator. The feedback is obtained by the robot asking the user
explicitly how funny the joke was and whether it should continue with the comedy show.
ASR is used for recognizing four keywords (“very funny”, “funny”, “indifferent”, “not
funny”). The personalization of the robot’s show to the individual user also incorporates
a cloud service, which creates a profile for each user and processes the received feedback
after each joke. A human operator is required since it is a WoZ experiment. The authors
use the Q-learning algorithm.

Kim and Scassellati (2007) present an interactive RL approach for teaching a humanoid
Niko robot social waving behavior. The user acts as an expert tutor and provides prosodic
feedback on the non-functional adaptation process. The system classifies the tutor’s affect
as approval or disapproval based on analyzed audio data (pitch, volume) from three
seconds of recorded utterances after each of the robot’s waving behaviors. Q-learning
takes this binary reward signal as input for learning the optimal amplitude and frequency
of the robot’s elbow movements. Nine waving configurations span the state space with
two dimensions, which results from three amplitudes (small, medium, large) and three
frequencies (slow, medium, fast). Changing the waving behavior is achieved with the
action space, which allows for traversing the state space. In addition, an action for not
changing the behavior results in repeating the last waving behavior. The interaction
loop repeats a fixed number of iterations, resulting in different waving behaviors for the
individual users. Kim and Scassellati point out that they motivate users to speak with
exaggerated prosody to the robot by giving it one-year-old-infant proportions.

Thomaz and Breazeal (2007) investigate positive and negative feedback in a virtual
kitchen task and for the anthropomorphic Leonardo robot. In the virtual kitchen task,
the user provides explicit feedback via mouse input; the robot interaction uses explicit
human verbal feedback, such as “good job” or “not quite”. RL implements social learning:
the user acts as a teacher giving instructions to the robot and thus trains the RL agent. It
is a functional adaptation approach. The goal of the interaction is task learning within a
collaborative dialog between the robot and the user. The robot is equipped with speech
and vision input and can communicate via gestures and gaze. Results of the initial study
indicate that participants’ feedback was asymmetric: most people used more positive
than negative feedback. Moreover, users associated a single meaning with positive
feedback (“what you did was good”), but three meanings with negative feedback (“the last
action was bad”, “the current state is bad” and “future actions should correct that”). The
authors conclude that negative user feedback communicates past and future intentions
beyond the numeric reward signal for the RL agent. Hence, Thomaz and Breazeal modify
the Q-learning algorithm by including an undo action, which reinforces the reverse of
the negatively rewarded action. More experiments show that this modification helped
the agent to avoid failure and decreased the number of actions required and the number
of unique states visited.
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Martins et al. (2019) present 𝛼POMDP, which extends the classical POMDP with reward
shaping and model-based RL. They use a state-based reward function, which relies on the
estimated user’s state. The user’s state is a combination of discrete variables; potential
state variables are, e.g., user satisfaction, emotional state, or health. Each action is
expected to impact the user’s state and thus make it more or less valuable from the
user’s perspective. The reward signal encourages actions resulting most likely in positive
impact and vice-versa. Therefore, the agent learns a transition model for predicting the
impact of its actions on the user’s state. The authors evaluate their approach with the
GrowMu social robot (Martins, Santos, and Dias, 2015) for functional adaptation. The
robot aims to adapt to physical and logical information, including the temperature, the
robot’s localization, and its environment, but also the user’s “emotional status, current
ailments and possible motivations”. In Martins et al. (2019), the state space contains user
satisfaction, the robot’s current speaking volume, and its distance to the user. The robot’s
actions are asking the user a question, moving forwards or backward, and increasing or
decreasing its speaking volume. The system estimates the user’s state based on verbal
feedback (no details provided), which the user gives at the end of each iteration.

Patompak et al. (2020) present an approach for generating “socially competent naviga-
tion behaviors”, which relies on RL for non-functional adaptation of the Pepper robot’s
proxemics. A learning agent adaptively estimates the interpersonal distance between
the user and the robot. The authors propose two types of interaction areas: the quality
interaction area, where the interaction between the user and robot takes place, and the
user’s private area. The navigation system contains three parts: (1) a model of the user’s
social factors (i.a., discomfort feeling, which is maximized at the human’s location and
decreases with increasing distance from the user), which results in several social forces,
(2) the RL agent, which updates the social forces during the interaction, and (3) the social
path planner, which generates navigation using the human social model. It is the learning
agent’s task to estimate the user’s size of the private area and thus adapt its navigation
strategy accordingly to avoid intruding into the private area. The state space contains
parameters, which model three social forces (familiar, acquaintance, stranger); the action
space is used for manipulating these parameters (increase, decrease, no change). The
reward signal is calculated based on the ratio between the user’s perceived interaction
quality (easiness of interaction) and degree of discomfort. In real interaction, the robot
acquires human verbal feedback by asking the user explicitly, which results in a positive
reward when the user is comfortable with the interaction and vice-versa. The authors
use the R-learning algorithm, which does not discount future rewards (see section 2.5)
but takes every sample into account equally.

6.4.3. Facial Feedback

Grüneberg and Suzuki (2014) explore the use of human explicit binary feedback for
coaching a RL agent. They point out that coaching describes the problem of interpreting
human feedback, which results from socially situated learning. Coaching aims to bypass
the intensive trial-and-error search and resulting randomized behaviors, especially in
the initial learning period when learning from scratch. In contrast to reward shaping
and human rewards presented in other works (such as in Knox and Stone (2009), Tenorio-
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González, Morales, and Pineda (2010), and Ferreira and Lefèvre (2015)), Grüneberg and
Suzuki break down the shaping problem into two issues related to the temporal dimen-
sion of human feedback: (1) contingency (causality) detection, meaning the problem
of identifying the actions the feedback refers to, and (2) consistency (error) detection,
which checks to which extent given feedback is in line with previous feedback in sim-
ilar situations. In their experiments, they implement these detection mechanisms for
functional adaptation of the NAO robot using RL in a sorting game with green and red
balls. Participants use affective feedback for training the robot. The user’s facial expres-
sion determines positive or negative feedback: smiling is interpreted as a confirmation,
frowning as a correction.

Zarinbal et al. (2019) present an adaptive approach for improving query-based text
summaries. The overall challenge in summarizing texts is to score sentences from
different documents in a database according to their informational relevance to an initial
query provided by the user. Only those scores with the highest score are included in the
final summary. The experiment implements a functional adaptation approach: the task
of the RL agent is to identify the relevant sentences based on user feedback. The current
state contains the current summary, consisting of sentences and their scores. Based on
the user’s feedback, the current action re-scores each sentence in the database. Then,
the summary is updated and presented by the NAO robot verbally and as a projection
in written form. The user provides feedback with facial expressions, interpreted as a
positive, negative, or neutral reward, depending on their liking. This process repeats
five times. The calculation of the value function is very similar to the Q-learning update
formula. It relies on the similarity between the generated summary and the initial user
query, the information redundancy, and the sentence score, which is weighed by the
user’s feedback.

6.4.4. Gestural Feedback

Najar, Sigaud, and Chetouani (2016) investigate functional adaptation: they use eval-
uative feedback and unlabeled guidance signals in interactive RL for task learning by
natural interaction. Evaluative feedback is provided explicitly by the user in the form of
gestures. It determines the reward signal: head nods result in a positive reward; head
shakes result in a negative reward. The authors point out that evaluative feedback is
more informative for training the robot about optimal behavior (compared to learning
solely based on task rewards from the environment), but at the same time limited since
it is only reactive to the robot’s actions. Thus, the authors implement a mechanism for
providing unlabeled guidance signals (one per action) with one or both hands in the form
of hand gestures (pointing right, pointing left, pointing middle, raised open, and raised
closed). These signals allow the user to constrain the robot’s exploration in safety-critical
applications. The meaning of these signals is not hard-coded but learned by the robot
based on the evaluative feedback in parallel to task learning during the interaction. The
evaluative feedback corresponds to RL reward values, and guidance signals correspond
to optimal actions. The authors compare their proposed approach with previous versions
and Q-learning.
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6.4.5. Multimodal Feedback

Nejat and Ficocelli (2008) present a decision-making control architecture for socially
assistive robots, which utilizes RL for online learning in non-contact interaction, such as
monitoring, providing companionship, and reminders to patients. An important part of
their architecture is interpreting human body language (upper body gestures, i.e., trunk
lean and orientation, arm symmetry, location, and orientation), which provides the basis
for estimating the user’s affective state. The robot’s goal is to solve the assistive task, i.a.,
by expressing its emotional state. The authors do not provide details on the RL task used
in their evaluation setting with their humanoid robot Brian. However, they provide a
minimal proof-of-concept example, illustrating non-functional adaptation for convincing
the user to take medication. Two actions differ regarding the robot’s voice, choice of
words, and gestures (speaking in a loud stern with arms crossed vs. using an upbeat
voice with pauses between words). The current state includes, i.a., both the user’s and
robot’s emotional state (six basic emotions: happiness, sadness, fear, anger, disgust, and
surprise). The reward signal is calculated based on the next state encountered: two states
result in a positive reward based on user satisfaction, and the rest results in a neutral
reward. During the human evaluation, the robot asks the user explicitly to perform
predefined gestures and to provide verbal confirmation in case of satisfaction with the
interaction. Nejat and Ficocelli use the Q-learning algorithm.

Ferreira and Lefèvre (2015) promote the concept of “socially-inspired rewards”. In a
robot dialog management scenario, they use social signals for functional adaptation with
RL. The authors suggest using human behavioral cues as an additional reward signal at
each dialog turn to speed up policy optimization. This shaping reward is based on positive
or negative user appraisals inferred from facial expressions, vocal behaviors, gestures,
and gaze. The final reward signal combines task-related data from the dialog manager
with the shaping reward. It sums up both rewards. However, in their experiments
featuring a simulated user and PR2 robot in a 3D environment, the authors do not use
human social signals but an explicit five-star rating bar on a GUI as a workaround.
Kalman temporal differences (Geist and Pietquin, 2010) are used for RL.

6.5. Implicit Feedback

In the context of post-stroke rehabilitation therapy, Tapus, Tapus, and Mataric (2008)
use RL for behavior adaptation of an assistive therapist robot to the user’s preferences
during exercises for improving user engagement and motivation. The robot expresses
personality in terms of extraversion/introversion through vocal content and para-verbal
cues (see section 5.2.1.3). The authors realize non-functional adaptation: they adjust the
parameters of these behaviors, namely interaction distance, speed, and vocal content of
the therapist robot. Their experiment is task performance driven: the number of exer-
cises performed in a given time defines the reward signal. Since the patient’s recovery
has the top priority, adaptation is triggered as soon as the monitored reward falls below a
threshold, which indicates that the robot’s behaviors do not result in ideal patient recov-
ery. The threshold is adjusted over time to compensate for user fatigue and distraction
introduced by the robot’s adaptation process. Policy gradient reinforcement learning
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(PGRL) optimizes three interaction parameters gradually: proxemics (interaction zones),
activity (amount of robot movements/speed), and vocal content (introversion/extraver-
sion). The authors use PGRL (which does not learn value functions for state-action pairs)
since there is no notion of state in their setting. They also point out that the task-based
measuring of the robot’s efficiency in motivating the patient is highly subjective. It
depends on the individual patient, who might act inconsistently and unpredictably.

Ramachandran, Sebo, and Scassellati (2019) use a POMDP for functional adaptation of
a tutoring application with the NAO robot and a tablet. The tablet presents long-division
math content to 4th-grade students. The robot provides feedback and guidance; the
tablet is used as an input device and for displaying contents, questions, and feedback.
The action space consists of six actions: presenting an interactive tutorial, presenting an
example with comparable difficulty and the corresponding solution process, providing
hints, requesting the student to think aloud, taking a break, and taking no action. At the
same time, the agent monitors student knowledge and engagement. Both are calculated
based on the timing and accuracy of the student’s answers. The system interprets rapid
guessing with wrong answers as boredom (i.e., low engagement) and honest attempts at
the problem as high engagement. The knowledge level (little to no mastery, some mastery,
moderate mastery, and near-complete mastery), engagement level (low, high), and the
number of math problem attempts define the state space. Positive rewards are given for
transitions from lower to higher knowledge and engagement states and vice versa. In
addition, each action taken by the robot is penalized since it results in additional time
for the student to complete the task. While relying on engagement, the feedback is based
on task performance exclusively; it does not use social signals.

6.5.1. Facial Feedback

Gordon et al. (2016) use RL in the context of a student tutoring robot to maximize long-
term learning gains. The setup combines a mobile app on a tablet, which presents
educational content and a virtual animated Toucan character, with a Tega robot. The
robot acts as a peer tutor on the child’s level and provides instructions, hints, encour-
agement, and appropriate gaze toward the tablet or child. The virtual character and the
robot use scripted behaviors with pre-recorded voice scripts. During the interaction, the
child’s valence and engagement are estimated based on facial expressions in real-time
with proprietary software. Similar to Leite et al. (2011), Gordon et al. do not use posture
or gesture information. The RL agent implements a non-functional adaptation approach.
The state space includes the child’s affective state (discretized valence and engagement)
and task-related information (whether the child interacted within the last 5 seconds and
whether the last response was correct). The action space represents the robot’s support-
ing affective reactions. It is modeled as a combination of valence and engagement and a
no-operation action, resulting in no affective response. The weighted sum of the child’s
valence and engagement (sensed from facial expression) defines the reward. Traditional
SARSA algorithm (Sutton and Barto, 2018) is used for RL.

Gamborino and Fu (2018) investigate a functional adaptation approach with interactive
RL. The socially assistive RoBoHoN robot aims to improve the mood of children who
visit or stay in the hospital. The action space consists of four categories of verbal and
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non-verbal robot behaviors: speech, head motion, body gestures, and full-body motions.
Each category comprises several subcategories, such as dialogs with jokes and stories.
The robot’s camera monitors the child’s facial expressions. The system analyzes them
with SSP and calculates scores for seven core emotions. These affective features are
combined with estimated engagement and serve as dimensions of the discrete state space
representing the child’s mood. Human explicit feedback from a human trainer, who acts
as a wizard in the WoZ experiment, results in reward shaping. The agent presents four
suggested actions on a GUI. The trainer manually picks one of the suggested or other
actions, which results in a shaping reward. In addition, policy shaping with positive
and negative policy rewards encourages the agent to transition from bad mood states to
good mood states and to prevent transitions to bad mood states. Both shaping reward
and policy reward serve as combined reward value. Consequently, the child’s affective
state (estimated based on facial expression) also implicitly impacts the reward signal.
The authors use the SARSA algorithm for RL. The classification of their work as explicit
or implicit feedback is not straightforward. From the child’s perspective, feedback is
provided implicitly, but there is also explicit feedback from the trainer’s perspective.

Park et al. (2019) use RL for functional adaptation of a learning companion robot in
dialogic storytelling, which aims to foster early literacy and English language skills. In
each session, the Tega robot tells a story to a preschool-age child and asks lexical, factual,
inferential, and emotional questions, which allow for assessing the child’s engagement
and comprehension of the story content. After the robot finishes, the child is invited
to retell the story in its own words. While the child answers questions and retells the
story, its speech samples are analyzed to assess its lexical and syntax skills. Moreover,
the affective cues in facial expressions are processed to estimate engagement. After each
session, RL personalizes the content selection to the individual child: the action space
contains six actions, which explore stories with different lexical and syntactic complexity,
resulting in one action per session. The reward is the weighted sum of engagement and
task performance. The state space with 20 states consists of the child’s task performance
(whether questions are answered or not, with prompt or without prompt, length of
the utterance) and affective arousal (in four levels). Q-learning with decreasing 𝜖 and
decreasing 𝛼 updates the policy after each session.

6.5.2. Multimodal Feedback

Mitsunaga et al. (2005) and Mitsunaga et al. (2008) focus on subconscious human feed-
back for non-functional adaptation of a Robovie-II’s behaviors. They reason that giving
conscious feedback might interfere with or distract from the actual interaction. PGRL
(Kohl and Stone, 2004) uses human body signals as reward signal, relying on the user’s
time spent gazing at the robot’s face and movement distance. It aims to minimize the
user’s discomfort with the interaction by adjusting six parameters: three parameters for
interaction distance, the duration the robot looks at the user’s face, the duration the robot
waits until it presents a gesture after talking, and the gesture speed. The authors use a
motion capture system for measuring human movements, orientation, and interaction
distance. A weighted sum of the user’s movement distance and gaze meeting determines
the reward value.
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Leite et al. (2011) learn a robot’s empathic behaviors with RL in the context of a chess
companion for children. The main goal is to keep the child engaged and motivated. To
this end, the iCat robot uses a functional adaptation approach. The action space contains
supportive behaviors: encouraging comments, scaffolding, suggesting a good move, and
intentionally playing a bad move. A camera monitors the child to estimate its affective
state. Besides visual affective cues in terms of facial expression (e.g., smiling, mouth
fidget) and gaze (e.g., looking at the robot vs. looking elsewhere), task-related features
take the game evolution and chess board configuration into account from the child’s
perspective (e.g., captured pieces). These data allow the robot to estimate the probability
of positive feeling before and after employing a supportive strategy. The learning agent’s
computational goal is to maximize the child’s positive valence throughout the game: the
difference in those probabilities before and after executing the action serves as a reward
for the learning process. Thus, both human social signals and task-related information
contribute to learning. Adaptation is implemented as a 𝑘-armed bandit problem.

Chiang et al. (2014) use RL for non-functional adaptation of an ARIO robot’s interrup-
tion strategy. The robot has six primitive actions to grab the user’s attention, including
gestures (waving the arm, shaking the head), locomotion (approaching the person, mov-
ing around), and audio (making a sound, calling the person’s name). The state space
has two dimensions: the human’s awareness of the robot and the intensity of human
attention towards the robot. It is divided into engaged (no attention, user noticed the
robot, lose attention, user looks at robot) and non-engaged (neglect, medium attention,
high attention) states. Human attention is inferred based on a hidden Markov model
(HMM) from human non-verbal social signals: the user’s current pose (face and body
heading direction) and voice activity. The reward signal results from the current state:
the more engaged and attentive the user, the higher the reward. The Q-learning algorithm
implements the RL. First, the authors evaluate their human attention estimator in a
WoZ experiment, where participants label their attention level by themselves based on
the recorded video of their interaction. Afterward, the authors evaluate the adaptation
approach and conclude that the best policy varies from user to user. For example, one
subject preferred the robot to play a sound to inform about the interruption with subse-
quent movement toward the participant. Another subject preferred approaching the
user first and then calling their name.

6.6. Limitations and Research Gaps

Martins, Santos, and Dias (2019) point out several research gaps in user-adaptive inter-
action in social robotics. These gaps are also reflected in the presented literature. This
thesis addresses some of these important gaps. They are listed below in combination with
several differences between the presented literature and this thesis. First, the focus is on
differences in experiment design and RL. See Table 6.1 for a complementary overview.

• The majority of research investigates functional adaptation (Martins, Santos, and
Dias, 2019). Non-functional adaptation, which addresses how a robot interacts with
the user (e.g., by tweaking parameters of its multimodal communication strategy),
is less explored. The thesis at hand focuses on non-functional adaptation.
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• The adaptation of robot personality, persona, politeness, and humor has not yet
been explored in the literature extensively. The work at hand focuses on these
aspects due to the focus on domestic companion robots.

• Many experiments use goal-directed tasks, which provide measurable data regard-
ing the success or failure of adaptation per se. In such experiments, the reward
signal of the environment can be inferred from task-related data, such as perfor-
mance. Reward shaping or similar techniques guide the learning agent based on
human feedback. The thesis at hand focuses on tasks that do not have a measurable
task-related goal. For example, the robot provides recommendations without hav-
ing the ability to verify whether users accept them (see section 13.1) or entertains
the audience (see section 14.1 and section 14.3). Thus, human feedback is all the
more important for adapting the robot to the individual user. In chapter 14, human
social signals are the only source of feedback for the adaptation process.

• Continuous adaptation with completely autonomous agents, which do not require
intervention from technical personnel, remains the exception (Martins, Santos, and
Dias, 2019), which is the case in the presented literature, too. A few experiments
use WoZ techniques, where a human operator controls the robot. The thesis at
hand investigates autonomous adaptation approaches exclusively.

• Almost all experiments are evaluated in controlled laboratory environments. Very
few works use in-situ studies for evaluating adaptation in real life (Martins, Santos,
and Dias, 2019) with the target population in target environments. The works in
the presented literature, which carry out in-situ studies, focus on young children.
In contrast, the work at hand focuses on social companion robots for domestic
environments. Specifically, one of the experiments addresses the less represented
elderly user base with an in-situ study in chapter 13.

• A portable, relatively small, and low-cost robot is required in this thesis for an in-situ
study in participants’ domestic environments. The Reeti robot (see chapter 11) is
used for this purpose since it provides an expressive face. The presented literature
did not yet use it for adaptation (see also Table 6.1).

In addition, the following observations exist for the used modalities and design of
human social feedback in the presented literature. See also Table 6.2 for a complementary
overview.

• Most literature uses explicit human feedback, where the user engages actively and
consciously in providing feedback to the adaptation process. The work at hand
explores both explicit and implicit feedback, focusing more on the latter. The use
of implicit feedback makes it possible to adapt to the user without interrupting the
interaction for the additional effort of providing feedback.

• The literature often infers feedback for adaptation from signals via GUIs or hard-
ware interfaces. Concerning verbal and non-verbal communication, the literature
uses vocal and facial feedback most often. Tactile, gestural feedback, and feedback
via gaze and pose are used the least. The thesis at hand explores both explicit
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feedback via hardware buttons and implicit multimodal feedback, including pose,
gestures, facial expression, and vocal behaviors.

• This thesis does not use task-related feedback. In goal-oriented tasks, the user needs
to solve a problem, which results in a final environmental reward or measurable
user performance. In non-goal-oriented tasks, other interaction dynamics, user
opinions, and human social signals play a crucial role.

• Some literature relies on higher-level interaction dynamics for motivating or mod-
eling the feedback mechanism. User affect and engagement are used most often,
followed by appraisals. This thesis relies on user affect and engagement in chap-
ter 14 and on user appraisals in chapter 13.

In combination with the experiments and insights reported in chapter 5, this results in
the following overall picture of non-functional and real-time adaptation of multimodal
social robot behaviors:

• The presented literature with robots expressing personality use scripted robot
behaviors and adaptation based on static user models. The thesis at hand combines
the real-time generation of the robot’s spoken language and real-time adaptation
of the generated behaviors based on implicit feedback derived from human social
signals. By using the RL framework, the autonomous learning agent adapts to
whatever the situation requires to re-engage the user in the interaction. This
generic and task-independent model is neither restricted to the similarity nor
complementarity attraction principle since the literature reports various findings.

• The expression of different robot personas has not yet been explored extensively in
the literature. While experiments are comparing hypothetical robot personas with-
out being implemented, and very few experiments investigating robot personas,
no experiment has yet used an autonomous adaptation approach for evaluating
different personas in HRI. This thesis addresses this issue in combination with
politeness in an in-situ study.

• All presented literature in the context of robot politeness uses scripted verbal
behaviors, sometimes combined with gestures or movements. This thesis is the
first one combining it with a RL approach for real-time adaptation of the robot’s
verbal politeness and persona based on explicit human feedback. An in-situ study
with elderly participants evaluates the approach in the German language.

• In most presented experiments addressing robot humor, the behaviors are scripted.
In about half of the works, visual and sometimes auditive input is used for esti-
mating the audience’s amusement – primarily for functional adaptation of the
robot’s content selection. The thesis at hand presents approaches for generating,
presenting, and adapting multimodal robot humor. Specifically, the non-functional
real-time adaptation addresses generated para-verbal and non-verbal robot behav-
iors for the first time.
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6.7. Conclusion
User-adaptive interaction requires information about the user. In social robotics, this
information includes task-related data, such as user performance in goal-oriented tasks,
but also social feedback, which is often inferred from human verbal or non-verbal
behaviors. This explicit or implicit feedback allows the adaptation process to learn about
individual user needs or preferences. Implementing social robot adaptation requires
a social interface (which both produces artificial social behaviors and senses human
social feedback), a decision-making process, and a user model. Functional adaptation
controls the robot’s function; non-functional adaptation controls how certain functions
are executed.

The literature reports several experiments in non-functional social robot adaptation,
although there is more research regarding functional adaptation. This thesis contributes
to the combination of RL with human social feedback for non-functional multimodal
behavior adaptation, i.e., the adaptation of verbal and non-verbal robot behaviors. In
this context, the literature overview has outlined existing approaches and how the work
at hand extends and differs from these works. To sum up, the most significant research
gaps are as follows:

• There is not yet a generalized view on the integration of human explicit and implicit
social feedback in the RL framework, especially with regard to verbal and non-
verbal social signals. Chapter 12 fills this gap.

• Almost all experiments use scripted robot behaviors; very few experiments gener-
ate robot behaviors during runtime. In particular, this also applies to experiments
realizing non-functional adaptation. Part III fills this gap for personality, persona,
politeness, and humor in the context of a domestic robot companion.

• The non-functional adaptation of personality, persona, politeness, and humor with
RL has not yet been explored extensively. This gap is addressed in Part IV. Politeness
and persona have not been explored in combination with adaptation. Chapter
13 fills this gap with a RL approach and an in-situ evaluation. Experiments with
personality have focused to a large extent on personality matching, typically with
scripted robot behaviors. Chapter 14 fills this gap with a more generic RL approach
and dynamic generation of the robot’s verbal behaviors. The literature made a
few attempts to adapt humor primarily to larger audiences, typically with scripted
behaviors. Chapter 14 fills this gap with a RL approach for personalizing manually
designed and dynamically generated multimodal robot humor, including adapting
para-verbal robot behaviors.

• The majority of works are evaluated using the English or Japanese language and
related cultures. The thesis at hand uses German and English, depending on the
experiment and required technologies.

The combination of real-time generated robot behaviors and real-time non-functional
adaptation of these behaviors with RL based on explicit or implicit human social feedback
is the central contribution of this thesis.
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7. Storytelling with Personality

The expression of personality is very important for social robots. Equipping them with a
compelling personality profile can make the interaction more engaging (Breazeal, 2004).
This chapter focuses on extraversion (see section 4.1.1) since it is the dimension with the
most influence on language (Furnham, 1990), “the easiest trait to model from spoken
language” (Mairesse, 2008) and plays an important role with regard to evaluating robot
personality (Woods et al., 2005) and interpersonal compatibility (see section 4.2).

This chapter presents a rule-based approach for generating utterances with varying de-
grees of extraversion in the context of storytelling. It transfers the approach by Mairesse
and Walker (2011) from the context of restaurant recommendations to the storytelling
domain. It enriches character descriptions and plot summaries of the book “Alice in
Wonderland” with the expression of extraversion/introversion. A knowledge base with
structured facts about characters and the plot is a basis for the subsequent NLG. Based on
this information, the linguistic content is generated during runtime instead of preparing
several alternative formulations in advance.

The concept and implementation were part of the works presented and reviewed in
Ritschel and André (2017), Ritschel, Baur, and André (2017a), Ritschel, Baur, and André
(2017b), and Ritschel (2018). The contents of this chapter expand these publications.
Section 14.1 relies on this work for adapting the robot’s personality to the individual
user’s preferences.

7.1. Knowledge Base

The knowledge base contains information about the main characters and the plot of
the chapters. It includes a simplified summary of each chapter, which makes it possible
to re-tell each excerpt in a few minutes. Moreover, each character is associated with
several attributes and facts designed to convey a general impression of the character’s
role, strengths, weaknesses, and personality. All contents were prepared as JavaScript
object notation (JSON) files.

Figure 7.1 illustrates the general, abstracted idea based on the two characters Alice
and the White Rabbit. Each character is associated with several attributes, including
adjectives, such as imaginative or anxious, and general information, such as name,
external appearance, role, ownership of items, and much more. These data are kept as
generic as possible, meaning they apply to the respective character, preferably throughout
all chapters. Temporary data (e.g., a character’s mood to a certain point in time) is part of
the data associated with the plot of each chapter. As Figure 7.1 illustrates, grammatical
information supplements the attributes and facts in order to simplify NLG.
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Figure 7.1.: A simplified illustration of the data store containing attributes of different
complexity about the main characters.

7.2. Natural Language Generation
The NLG module is responsible for producing natural utterances for the robot that reflect
a particular type of personality. Inspired by the PERSONAGE system by Mairesse and
Walker (2011), it applies a set of parameters in different stages of generation depending
on the robot’s degree of extraversion 𝑋 ∈ [−2; 2] (integer interval). The values represent
very introvert (−2), introvert (−1), neutral (0), extravert (1) and very extravert (2).
𝑋 is an integer value instead of a floating point variable for two reasons. First, 𝑋 is part

of the discrete state space in a RL process in section 14.1.4. Second, 𝑋 indicates the degree
of extraversion only roughly because 𝑋 serves as a base value. The actual NLG parameter
values are randomized based on 𝑋 to a certain degree (see section 7.2.1) for linguistic
variety in the generated utterances while maintaining roughly the same amount of
extraversion. The process implements the traditional, pipelined NLG architecture (Reiter
and Dale, 2000):

1. Content planning selects the attributes and facts presented when talking about
characters or the events during re-telling the plot of the book chapters. For exam-
ple, an introvert robot will be less verbose and present less information in one
statement, while an extravert one may use restatements to reinforce its statement.

2. Sentence planning arranges the selected contents within one utterance. It orders,
aggregates, and sets the final lexical item for each word. For example, an extravert
robot may emphasize adjectives or use expletives, while an introvert robot will
soften them or use a double negation.

3. Surface realization transforms the abstracted representation of the previous steps
into a string, which the robot finally presents with the internal TTS system.

Figure 7.2 illustrates the process with two essential inputs: the data from the knowledge
base and the current extraversion 𝑋 . The latter determines the set of NLG parameters
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Figure 7.2.: Overview of the NLG pipeline. Adapted from Mairesse and Walker (2011).

to apply during generation, i.e., which ones of the specific cues about extraversion or
introversion are employed. A threshold is assigned for each NLG parameter: 𝑋 does not
activate or deactivate parameters directly but increases or decreases their probability of
applying them. This approach aims for more variation in the generated output. Given
a fixed 𝑋 , it prevents repeatedly applying the same parameters for each generated
description, which would cause utterances to be stylistically too similar and may annoy
the user. Thus, the content and sentence planning parameters are used only with certain
probabilities. The parameter thresholds and probabilities are set by hand since some
parameters result in a more significant and noticeable change in the output than others.
For example, those with a highly distinctive effect, such as stuttering for the minimum
𝑋 = −2, have lower probabilities.

The parameters and their implementation are similar to the PERSONAGE system by
Mairesse and Walker (2011), which provides details on the parameters and how they map
to extraversion/introversion. In contrast to Mairesse and Walker, the contents and data
structures are optimized for the storytelling scenario, which differs from the restaurant
recommendations. The description of the main characters is similar to the description
and comparison of restaurants in Mairesse and Walker (2011). Especially when talking
about the plot, the re-narration of the book chapters is structurally different from descrip-
tions and comparisons. Technically, the implementation at hand uses the open-source
SimpleNLG library (github.com, 2021) as surface realizer in the last stage instead of the
proprietary RealPro framework in Mairesse and Walker (2011). The WordNet®database
(Miller, 1995) is used for several purposes, e.g., for looking up synonyms or antonyms.

7.2.1. Parameter Set
Table 7.1 lists all implemented NLG parameters. A description with examples of almost
all parameters can be found in Mairesse and Walker (2011). A few modifications were
made for the storytelling scenario. Moreover, some parameters, such as probabilities for
concessions or restatements, can be specified individually for more control.
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Table 7.1: The parameter set of the NLG pipeline.

Content planning
Verbosity I round(4 · randomize(𝑥 + 0.2 · (1 − 𝑥)))
Restatements I round(randomize(0.8𝑥))
Repetitions I round(randomize(0.8𝑥))
Content polarity F randomize(0.8𝑥 − 0.8 · (1 − 𝑥))
Repetition polarity F randomize(0.8𝑥 − 0.8 · (1 − 𝑥))
Request confirmation B randomize(0.8𝑥) > 0.5
Initial rejection B randomize(0) > 0.5
Competence mitigation B randomize(0) > 0.5
Positive content first* B randomize(0.85𝑥) > 0.5
Syntactic template selection
Self-references B randomize(0.8𝑥) > 0.5
Template polarity F randomize(𝑥)
Aggregation operations
Period P 0.01𝑥 + 0.1 · (1 − 𝑥)
Relative clause P 0.4 · (1 − 𝑥)
With cue word P 0.1𝑥 + 0.3 · (1 − 𝑥)
Conjunction P 0.1𝑥 + 0.3 · (1 − 𝑥)
Merge P 0.5𝑥 + 0.2 · (1 − 𝑥)
Also cue word P 0.1𝑥
Concession contrast* P 0.8𝑥 + 0.2 · (1 − 𝑥)
Concession concede* P 0.2𝑥 + 0.8 · (1 − 𝑥)
Restate conjunction* P 0.5𝑥 + 0.2 · (1 − 𝑥)
Restate comma* P 0.5𝑥 + 0.4 · (1 − 𝑥)
Restate object ellipsis* P 0.4 · (1 − 𝑥)
Elaborate period* P 0.125𝑥 + 0.33 · (1 − 𝑥)
Elaborate conjunction* P 0.3625𝑥
Elaborate merge* P 0.625𝑥 + 0.67 · (1 − 𝑥)
Pragmatic markers
Subject implicitness B randomize(𝑥) > 0.5
Stuttering B randomize(1 − 𝑥) > 0.5
Pronominalization B randomize(0) > 0.5

Parameter Type Initialization

Continued on next page
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Table 7.1: The parameter set of the NLG pipeline. (Continued)

Negation B randomize(1 − 𝑥) > 0.5
Softener hedges B randomize(1 − 𝑥) > 0.5
Emphasizer hedges B randomize(𝑥) > 0.5
Acknowledgements B randomize(𝑥) > 0.5
Filled pauses B randomize(1 − 𝑥) > 0.5
Exclamation B randomize(𝑥) > 0.5
Expletives B randomize(𝑥) > 0.5
Near expletives B randomize(𝑥) > 0.5
Tag question B randomize(𝑥) > 0.5
In-group marker B randomize(𝑥) > 0.5

Parameter Type Initialization

* Parameter was introduced in the work at hand.
Note: Inspired by Mairesse and Walker (2011). 𝑥 ∈ [0; 1] is the normalized value

of 𝑋 . Types: I = integer, F = floating point ∈ [0; 1], B = boolean.

Similar to Mairesse and Walker (2011), there are different types of parameters. Ver-
bosity, Restatements and Repetitions determine a maximum amount in terms of an integer
value. Content polarity, Repetition polarity and Template polarity are floating point values
which determine the amount and selection of positive or negative contents. The rest of
the parameters represents either a probability for applying the parameter or a binary
on/off switch.

The generator creates a new parameter set for each utterance. The parameters relat-
ing to content planning determine which contents are selected for presentation, while
the remaining ones for sentence planning control how the content is formulated. All
parameters are initialized based on the desired extraversion 𝑋 ∈ [−2; 2], which gets
normalized to 𝑥 ∈ [0; 1]. The last column in Table 7.1 lists each parameter’s initialization
formula. A central part of these calculations is the function randomize, which is essential
for the variation in the generated utterances. It modifies the input value 𝑣 ∈ [0; 1], which
is hand-tuned as a function of 𝑥, by applying a fraction 𝑓 ∈ [0; 1] of a random value
𝑟 ∈ [0; 1]:

randomize(𝑣) = (1 − 𝑓 ) · 𝑣 + 𝑓 · 𝑟

7.2.2. Examples

Figure 7.3 illustrates an exemplary, simplified content plan for describing the main char-
acter Alice. It shows that each content from the knowledge base is assigned a polarity in
the interval [−1; 1]. It indicates whether this data has a positive or negative connotation
for content planning. For example, Alice’s lack of sensitivity can be interpreted as a
negative aspect (−0.3), while her courteousness represents a positive one (0.6). This infor-
mation is used to select the next facts for presentation based on the polarity parameters.
The individual elements from the knowledge base pass on the polarity to the higher-level
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Figure 7.3.: A simplified content plan for talking about Alice.

rhetorical relation. The relation determines the combination of the elements, such as a
comparison, restatement, elaboration, justification, and more. Polarity is also essential
in a later stage during sentence planning, where it decides the order of the facts within
one sentence. For example, an extravert and an introvert robot differ in whether they
tend to present negative or positive content first.

Figure 7.4 illustrates another exemplary, simplified content plan, but for the presenta-
tion of the plot. A significant difference is that there is no polarity in this context since
the correct order and completion of the story are most important. Changing the order of
events would not make sense. The plot is re-narrated in the past tense; character facts
use the present tense.

As a result, Figure 7.5 presents samples that result from differently configured pa-
rameter sets. The samples describe Alice with a maximum introvert, a neutral, and a
maximum extravert personality. One obvious difference is utterance length, mainly
due to the different content plans. In the case of high extraversion with high verbosity,
the robot presents a larger number of propositions (i.e., facts) within one utterance.
Moreover, the introvert robot uses fewer positive emotion words and softens positive
content (“somewhat imaginative”). The extravert robot uses many positive emotion
words (“loving”, “affectionate”) and repeats itself (“imaginative”). In case of high ex-
traversion the use of acknowledgments (“I see”), tag questions (“isn’t she?”) in-group
markers (“buddy”) and expletives (“damn”) is more likely. Stuttering (“Al-Al-Alice”) and
softener hedges (“somewhat”) are typical for introvert utterances.

7.3. Conclusion

Equipping a social robot with a compelling personality profile is one step toward making
interaction more engaging. This chapter presented a rule-based approach and implemen-
tation for generating utterances with varying degrees of extraversion and introversion
in the context of storytelling. It transfers the work by Mairesse and Walker (2011) from
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Figure 7.4.: A simplified content plan for telling the plot of a chapter.

Did you say Alice Liddell? I see, Alice just is damn loving 
and she is darn affectionate, isn't she? Alice is imaginative, 
buddy. I think that Alice is lacking sensitivity, but she is 
courteous to all though. Alice is imaginative. extravert

Alice is trustful. While Alice is lacking sensitivity, she is 
courteous to all. neutral

Al-Al-Alice is, like, somewhat imaginative. introvert

Figure 7.5.: Examples of generated descriptions with different degrees of extraversion.
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the context of restaurant recommendations to the storytelling domain. Structured data
serve as a knowledge base, which provides information for the robot’s narrative. Facts
about the characters and plot of the book “Alice in Wonderland” are transformed into
utterances with NLG techniques during runtime. The implementation uses the custom
reeti-rest software (see chapter 11) for playing back animations and interfacing with the
Reeti robot.

As described in section 5.2.2 there are varying insights concerning similarity and
complementarity personality attraction, as well as other findings, such as the dependence
on task context. Thus, the generation process at hand serves as a basis for adapting the
robot’s verbal behaviors in terms of expressed personality in section 14.1 automatically.
There, an RL approach aims to address individual user preferences by manipulating the
robot’s extraversion/introversion. It uses the configurable NLG pipeline at hand.
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8. Assistive Support with Persona and
Politeness

Besides entertainment, assistance and information retrieval are everyday tasks for social
robots in domestic environments. Remembering upcoming appointments, informing
about news and events, and health-related advice are core features of research and
consumer companion robots (see section 5.1.5). Today, smartphones, mobile apps, and
digital voice assistants already assist in these tasks in everyday life. With robotic compan-
ions entering everyday human life and domestic environments, they have the potential
to take on such tasks, too. At the same time, how these machines communicate with
users will be of central importance for a long-lasting, positive user experience. Chapter
7 already presented a rule-based approach for a robot’s expression of personality in a
storytelling context. Motivated by the links between personality, persona, and politeness
(see chapter 4), the focus is now on the robot’s expressed politeness and persona when
giving advice and providing assistance, but also in the context of entertainment.

This chapter presents an autonomous domestic robotic companion, which can commu-
nicate with different personas and politeness strategies in assistive and entertainment
functions. First, the overview covers the robot’s functions. They address basic needs
and are used in the literature and current robotic products on the consumer market.
Afterward, the robot’s communication abilities are presented, which rely on contents in
the German language. The prototype serves as a basis for adapting the robot’s verbal
behaviors to the individual user’s preferences in section 13.1 automatically.

The implementation at hand uses the Reeti robot and the custom reeti-rest software
for multimodal animation generation (see chapter 11). It was presented and reviewed in
Ritschel et al. (2019d). The contents of this chapter expand this publication.

8.1. The Assistive Robotic Companion
Figure 8.1 outlines the setup. The stationary robot acts as a companion in the user’s
home. The user can use it at any time. In addition to the speech output and animation,
the setup includes a screen for graphical output (menus and virtual board games) and
a hardware control panel for input (navigation through menus and feedback for the
adaptation process). The setup considers privacy concerns of many study participants
regarding automatic facial or speech recognition. Audio is played back with the robot’s
internal speaker.

Inspired by former experiments in the literature and common features in recent
commercial consumer products, the companion offers typical assistive functions (see
also section 5.1.5). These applications cover entertainment, information retrieval, health-
related recommendations, and communication. Figure 8.2 illustrates an overview and
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Figure 8.1.: Setup of the robotic companion in one of the study participant’s domestic
environments, including the robot, screen, and hardware control panel.

Memory

Uno
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games

mentor vs. opponent
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communication

messaging with
emotional expression

politeness personalization

hobbies

relaxation
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recommendations

etc. appointments
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news(feeds)

companion vs. assistant

Figure 8.2.: Overview of the robot’s assistive and entertainment functions.
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8.1. The Assistive Robotic Companion

Figure 8.3.: User interface and robot facial expression examples.

the categorization of all applications. The categories also serve as the context for the RL
approach in section 13.1, where every application category explores and manipulates
either the robot’s expressed persona or politeness.

8.1.1. Assistive Functions

The assistive applications cover four categories: entertainment, information retrieval,
health-related recommendations, and communication.

Entertainment includes a set of virtual board games: Memory, Uno and Ludo. All games
exist as a two-player version: the user plays against the social robot, which acts either
with a mentor or opponent persona. Ludo’s board size is optimized for two players,
resulting in a smaller game board (see Figure 8.3) for reduced playing time. The screen
next to the robot displays the virtual game board, cards, tokens, and game statistics.
Furthermore, the robot tells jokes from different categories in a joke-telling application.

Information retrieval applications provide the user with news, weather forecast, and
contact information about friends and family members. When the user is interested
in news feeds, the robot reads out loud headlines and the abstract of recent articles.
News sources are configurable and collect the data from the Internet via RSS/ATOM feeds.
The robot generates a corresponding description when triggering the weather forecast
for the next seven days. It also gives appropriate hints, such as having an umbrella or
suitable clothing when it gets cold. The OpenWeatherMap service (openweathermap.org,
2021) provides weather data over the internet. The robot also informs about upcoming
appointments in the personal calendar. The system triggers automatic reminders in
configurable intervals. Furthermore, an overview and details of contact information can
be retrieved. Corresponding data has to be provided by the user.

Health-related recommendations are designed for single-living elderly users to support
their independence. They address physical, mental, and environmental well-being and
encourage activities, e.g., about hobbies, relaxation, exercises, and much more. For
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example, suggested activities include reading books, airing and turning up the heating
in the morning, doing gymnastics, listening to music, watering the plants, drinking
enough, and much more. The contents are adapted from the CARE research project (Rist
et al., 2015; Seiderer et al., 2015) and include encouraging activities, e.g., for hobbies,
relaxation, exercises, and much more. The CARE project uses a digital picture frame
for presenting recommendations with a textual description and an illustrating image
or animation based on context information acquired by sensors in the elderly user’s
domestic environment. In contrast, the robot at hand presents the recommendation’s
text to the user directly with speech. Additionally, the screen displays a corresponding
image without the textual description.

Basic communication features provide email and instant messaging applications to
receive messages from friends and family members. For this purpose, the user can pass
on the robot’s email address and instant messenger ID to associated persons. As soon
as the robot receives a message, it calls the user’s attention and, if desired, presents
the content. In addition, an XMPP chat client receives text messages. When presenting
incoming messages, the robot uses facial expressions to express emoticons in the text
(see section 8.4).

8.1.2. Control Panel

Interaction with the robot and system is realized completely with a custom hardware
control panel with lit physical buttons. This decision was made instead of a touch panel
due to issues reported in the literature concerning touch-based interaction. For example,
Motti, Vigouroux, and Gorce, 2013 point out that touch-based interaction may alleviate
barriers to getting started for elderlies. However, at the same time, they detect several
usability issues, such as the timing of tapping gestures. Probably, the users encountered
similar timing issues during tapping, as reported in Leonardi et al., 2010. Due to these
potential problems, later versions of the CARE system used a combination of touch
screen and hardware buttons (Rist, Seiderer, and André, 2018). The system does not
use automatic speech or face recognition due to participants’ privacy concerns in their
domestic environments.

Figure 8.4 illustrates the setup and functions of the control panel in detail. It includes
buttons for (1) giving feedback to the adaptation process (see section 13.1), (2) navigating
through menus, (3) confirming selections or starting an application, (4) canceling or
quitting an application, (5) repeating the robot’s last utterance in case of poor under-
standing and (6) accessing help. See Ritschel et al., 2019d for details on the electronics,
the building, and the 3D printing of the device.

8.2. Personas

In each of the three application contexts, the robot uses a set of different linguistic
variations. Each application context focuses on one aspect: either the robot’s persona or
its politeness. These aspects are expressed in terms of language as follows.
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reward signal1stop/quit4

navigation2

repeat5
help6

start/confirm3

Figure 8.4.: Control panel with physical, illuminated buttons for interacting with the
robot.

8.2.1. Mentor vs. Opponent

In the context of a poker game, Gebhard et al., 2008 suggest enriching virtual agents
with an affective model, which influences the agent’s reactions to the course of play. The
adaptive robotic companion implements this idea in terms of two different personas.
The robot behaves and expresses itself either as a mentor or an opponent when playing
virtual board games with the user. Both personas are configured based on the Five
Factor personality model (see section 4.1.1). They differ significantly concerning the
dimensions agreeableness and neuroticism. In addition, game events, such as losing a
token or successfully revealing a pair of cards in the Memory game, are appraised based
on the OCC model (Ortony, Clore, and Collins, 1988) from the perspective of the robot.
Depending on the persona, the same event elicits different robot emotions.

The mentor acts more agreeable, less neurotic, and reinforces positive emotions. As a
result, it is configured to like the user, show positive emotions, and expresses empathy.
Moreover, it presents collaborative comments and reactions and behaves towards the
shared goal of enjoying the gameplay with the user.

The opponent is less agreeable, more neurotic, and reinforces negative emotions. It is
more pessimistic and judges undesirable events as more likely. Moreover, it dislikes the
user and therefore experiences resentment or gloating depending on the same event.
When acting competitively, the robot primarily pursues its own objectives.

The robot’s persona results in different comments and reactions, expressed primarily
via the robot’s spoken language. Figure 8.5 illustrates an example. When losing the
game, the robot may say “Congratulations! You won!” when it uses the mentor persona.
The same event can result in “You do not deserve that victory!” (both translated from
German) when using the opponent persona. Furthermore, the robot’s comments are
emphasized by basic non-verbal behaviors (see Figure 8.3 and section 8.4).
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Great, you won! Congratulations! 
Keep it up! mentor

Bummer! I lost. But next time I 
will win, certainly! opponent

Good day! You received a 
new email. assistant

Oh, I received a new email for you! Would  
you like to read it? companion

Figure 8.5.: Examples for the robot’s expressed mentor vs. opponent persona and com-
panion vs. assistant persona (translated from German).

8.2.2. Companion vs. Assistant

The study by Bartl et al., 2016 investigates two different personas for a social robot in
the elderly domain: companion and assistant. The robotic companion implements the
corresponding cues of prototypical behavior within the scope of several applications.
These apps include the news, weather forecast, appointments, contacts, and messaging
applications.

Inspired by Bartl et al., 2016, the companion and assistant persona is reflected in the
robot’s language. Figure 8.5 illustrates an example. Within the scope of the assistive
applications, instructions, suggestions, reminders, notifications, confirmations and de-
scriptions differ, i.a., with respect to fillers (“oh”, “ah”), words of agreement (“okay”,
“alright”, “good”) or pronouns (informal “we” vs. formal “you”) to reflect the correspond-
ing persona. Texts from external services, such as news article headlines, abstracts, or
message contents, are not modified.

8.3. Politeness

Hammer et al., 2016 investigate different politeness strategies (see section 4.3) as ex-
pressed in the language of a robotic elderly assistant. Their findings indicate that the
robot’s politeness strategy impacts perceived persuasion and that perceived robot po-
liteness and persuasion are subjective. Consequently, there is no single “best politeness
strategy” for everyone. Thus, the robotic companion at hand adapts its politeness to the
individual user in the context of health-related recommendations in section 13.1.

Each recommendation exists in the eight politeness strategies from section 4.3. While
their formulation changes, the semantic content remains the same. The robot’s rec-
ommendations are formulated either as a (1) direct command, (2) indirect suggestion,
(3) request, (4) question, (5) socratic hint, (6) shared goal, (7) robot’s goal or (8) user’s
goal. Figure 8.6 illustrates an example recommendation for painting pictures. An image
on the screen illustrates all recommendations.

8.4. Non-verbal behaviors

Independently of the language-specific behaviors for persona and politeness, the robot
uses animations (including gaze behavior and blinks, see chapter 11) to take advantage
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Paint some pictures in order to aid 
relaxation and to put your creativity 
into practice. direct command

In order to aid relaxation and to put your 
creativity into practice you should paint 
some pictures. indirect suggestion

I would like you to paint some pictures in order to aid relaxation 
and to put your creativity into practice. request

I would paint some pictures in order to 
aid relaxation and to put my creativity 
into practice. system's goal

We should paint some pictures in order to aid relaxation and to 
put our creativity into practice. shared goal

How about painting some pictures in 
order to aid relaxation and to put 
creativity into practice? question

You would probably like to paint some pictures in order to aid relaxation 
and to put your creativity into practice. suggestion of user's goal

Did you think about painting some pictures in order to aid rela-
xation and to put your creativity into practice? socratic hint

Figure 8.6.: Examples of the same recommendation presented with different politeness
strategies and an image (translated from German).

of its physical embodiment. For example, during the games, the robot shifts its gaze
(Mehlmann et al., 2014) towards the screen or user (depending on the current player’s
turn) and shows basic emotions depending on its game progress (see Figure 8.3). The
animations include smiling when the robot is happy about its own or the user’s move
or an unhappy face in contrasting situations. Another example is the robot’s commu-
nication features. When receiving text messages, the robot maps basic text emoticons
automatically onto the corresponding facial expressions of the robot. Grimaces include
smiling, winking, sadness, anger, confusion, laughter, and more.

After one minute of human inactivity, the robot stops any idle animations. The system
aims to be an “always on” (Sidner et al., 2018) companion and chooses a sleeping pose
with closed eyes to protect the motors. Additionally, the LEDs in the robot’s cheeks
indicate that it is in “stand by” mode and can be reactivated when desired. The display
turns off after three minutes to save energy. Pressing any button on the control panel
reactivates the robot’s animations and display.

8.5. Hardware and Software

Figure 8.7 provides an overview of the technical setup. A Linux computer runs the main
Java application, renders the GUI to the screen, and receives input from the control panel
via USB. The main application interfaces with the robot via the custom reeti-rest software
for multimodal animation generation (see chapter 11). A wired connection between the
robot and computer ensures minimum latency. The computer connects to the user’s
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Figure 8.7.: Overview of the hardware and software setup.

domestic router via (wireless) LAN for internet access. Otherwise, those applications,
which require external data from the internet, cannot be used.

In order to respect the user’s privacy, the prototype does not use proprietary cloud
services, such as Google Calendar or Google Mail. Each application can be enabled or
disabled when configuring the robotic companion, depending on the user’s preferences.
Web-based services are accessed with open protocols for news aggregation (RSS/ATOM),
communication (IMAP, XMPP), as well as calendar and contact administration (WebDAV).
These protocols interface with self-hosted, non-proprietary services, such as OpenFire,
NextCloud, radicale, etc. Recommendations, entertainment, and help functions work
without internet access. Offline functions are essential since study participants may not
have an internet connection or be unwilling to give access to it (see section 13.3).

8.6. Conclusion
With robotic companions becoming part of everyday human life and domestic envi-
ronments, how they communicate with users is increasingly important. Based on the
psychological background from section 4.1.1 and section 4.3, this chapter presented a
novel robotic companion, which can express variants of persona and politeness in the
context of assistive, communication, information retrieval, and entertainment functions.
In contrast to chapter 7, which focused on extraversion, the robot’s personas at hand
are based, i.a., on the personality dimensions agreeableness and neuroticism. The fully
autonomous robot comments on the course of play in German when playing board
games, when presenting health-related recommendations, when presenting the weather
forecast, and more. It uses manually designed behaviors because the evaluation in
section 13.3 uses German native speakers, and there was no reasonable NLG technology
for the German language at the time of writing. Due to potential issues reported in the
literature for touch-based interaction in the elderly domain, a custom hardware control
panel with physical buttons and lights is used to interact with the robot and system. The
implementation uses the custom reeti-rest software (see chapter 11) for playing back
animations and interfacing with the Reeti robot. It serves as the basis for the adaptation
approach in section 13.1, which aims to learn about the users’ individual preferences
concerning the robot’s expressed politeness and persona.
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9. Joke-Telling
Entertainment is a common task for social robots. Chapter 7 already presented an
approach for the generation of texts with personality in the context of storytelling;
chapter 8 introduced a domestic companion robot, which can express variants of persona
and politeness in the context of assistive, communication, information retrieval, and
entertainment functions. Verbal and non-verbal humor has many functions and does not
necessarily serve the purpose of entertainment (see section 4.4). However, in stand-up
comedy, joke-telling is done explicitly to entertain an audience. As such, joke-telling is
also one application scenario of interest for implementing robot entertainment, which
has the benefit of being fun to look at and listen to. However, the generation of humorous
content is a challenge for computers. While dynamic generation traditionally focusses
on verbal humor, experiments with social robots typically use scripted content, including
non-verbal behaviors like gestures and gaze behavior (see section 5.4).

This chapter starts with combining different modalities for producing multimodal hu-
mor. Subsequently, it proposes a technique for generating multimodal canned humor for
a social robot dynamically during runtime. The latter augments dynamically generated,
textual punning riddles produced by the STANDUP (Manurung et al., 2008) generator
with appropriate prosody and non-verbal behaviors to benefit from and make use of
the robot’s embodiment. These cues are inspired by the humor markers observed in the
literature (see section 4.4.4) and aim to communicate humor effectively by transferring
typical human joke presentation behaviors to the robot’s hardware and embodiment.
Non-verbal communication channels (see chapter 3) are of central importance in this
process. The ability to present and generate humor in HRI is an important opportunity
for making the robot appear more socially intelligent. While this chapter focuses on
jokes, chapter 10 focuses on conversational humor in terms of verbal irony.

The following techniques and implementations were presented, evaluated and re-
viewed in Weber et al. (2018b), Weber et al. (2018a), Ritschel and André (2018), Ritschel
et al. (2020a), and Ritschel et al. (2020b). The contents of this chapter expand these publi-
cations. Section 14.3 relies on this work for adapting the robot’s humor to the individual
user’s preferences.

9.1. Multimodal Humor Contents

Different stimuli can elicit human amusement. The first that comes to mind is canned
jokes (see section 4.4.4). The text itself, but also the paralinguistic presentation, substan-
tially contribute to the joke delivery. They include proper prosody, intonation, timing,
facial expressions, and gestures.

Apart from verbal content, non-verbal humor can also get the audience in fits, such as
grimaces – think of pantomime – or funny sounds. Besides spoken words, social robots
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grimaces

sounds

joke categories

combinations

Figure 9.1.: The robot presents multimodal humor, including canned jokes, grimaces,
and sounds.

can also playback or produce natural and artificial sounds, including recorded samples
and designed or procedurally generated audio. Moreover, many social robots can express
grimaces with hardware actuators or render facial expressions on a screen. The robot’s
embodiment is a curse and a savior at the same time: on the one hand, the hardware
limits its expressiveness regarding the fixed appearance, design, and actuators; on the
other hand, the technical nature opens up new possibilities and modalities, such as sound
playback and LED lights.

Jokes, Grimaces, and Sounds

Experiments in the literature primarily rely on scripted humor, such as in the domain
of robot stand-up comedy. This section uses manually designed content as the first
attempt for the Reeti robot (see chapter 11). The contents include canned jokes in the
German language, grimaces, and sounds. Figure 9.1 illustrates the multimodal content
and points out that the modalities can also be combined. The Reeti robot’s humor uses
every modality offered by the robot’s hardware.

Against the background of different individual humor preferences, several canned
jokes have been hand-picked and sorted into different categories, such as gross-out,
slapstick, or academic jokes. The punchline has been marked manually in the jokes
so that the robot can synchronize its non-verbal behaviors with the verbal TTS output
during the performance. For example, it displays one of the grimaces or plays a funny
sound. These cues are motivated by the literature, which reports multimodal humor
markers, which occur in particular at the punchline (see section 4.4.4).

The robot has a stylized face with large, rotatable eyes and eyelids (see Figure 11.1).
Facial expressions present grimaces (see Figure 9.2). They were designed based on
observations made in human and cartoon grimaces, such as intentional squinting or
unusual mouth shapes and half-open or asymmetric eyelid positions in comedy or
animation.

Since the use of sounds and music is a common approach for producing comic effects
(Arias, 2001; Deaville and Malkinson, 2014; de Valck, 2005) several sounds were prepared
in addition to canned jokes and grimaces. They include comedy sound effects associated
with humor from the media, including iconic sound effects from famous feature films.

132



9.2. Dynamic Multimodal Joke Generation

Figure 9.2.: Some of the robot’s grimaces.
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Figure 9.3.: Overview of the multimodal joke generation approach.

These auditive cues are not part of the literature overview from section 4.4, which
includes human canned and conversational humor, but augment the machine with
additional, artificial instances of humor.

9.2. Dynamic Multimodal Joke Generation

The generation of humorous content requires the synchronization of multiple modalities.
As described in section 4.4.3, humor factors and markers are core elements in joke
delivery. Besides the actual joke text, additional verbal and non-verbal cues are important
for signaling the presence of humor, including prosody, timing, and facial expression.
This section focuses on a generative approach for multimodal punning riddles, where
the robot dynamically generates verbal and non-verbal behaviors during runtime. It is
illustrated in Figure 9.3.
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The text of a punning riddle consists of a setup and punchline (see section 4.4.4). The
setup asks a question to the listener (e.g., “What do you get when you cross a choice
with a meal?”). Subsequently, the punchline presents the unexpected solution (e.g., “A
pick-nic.”). The STANDUP joke generator (Manurung et al., 2008) generates the text of
both parts, resulting in a string, which – in theory – could be presented to the user directly
by the robot’s TTS system. However, this does not automatically result in a convincing
and amusing presentation since these systems do not yet automatically consider typical
paralinguistic characteristics for joke-telling.

Thus, the robot augments the setup and punchline with typical human multimodal cues.
Gaze, prosody, and facial expression are added and later optimized by the adaptation
process in section 14.3.3. The SSML (w3.org, 2021) is a key technology in this regard.
Embedding instructions for the TTS system in the original text of an utterance gives
more control over the audio generation. For example, this includes setting the emotion,
controlling the prosody, and adding breaks or vocal gestures (i.e., sounds, such as clearing
the throat, “humph”, laughter or giggling, and more). Moreover, the robot’s face is
animated to include gaze behavior and smile. The implementation uses the Reeti robot
and the custom reeti-rest software for multimodal animation generation (see chapter 11).
Similar to section 7.2, the paralinguistic cues are randomized to a certain degree to create
variety in the produced multimodal output.

9.2.1. Text Generation

Since it is common to introduce a joke in conversations (see section 4.4.4), the robot
can optionally add a negotiating sequence, such as “Do you know this joke?” or “The
following punning riddle is a real pearl of comedy!” When embedded in HRI, this aims
to (1) set the stage for the robot’s performance by announcing its intention explicitly
and (2) enhance the chance of receiving humor support (see section 4.4.3) from the user,
which is essential for the adaptation process later on.

Then, the STANDUP joke generator (Manurung et al., 2008) is used to generate the
setup and punchline text of the punning riddle. It creates different subtypes; those
used in the application at hand are listed with examples in Table 9.1. Different topics
or keywords serve as input to the generation of puns. STANDUP uses different schemas
and templates in combination with information about pronunciation and semantic
relationships of words. A schema describes the linguistic requirements for the punchline,
e.g., the stylistic form of the underlying script opposition from which the humor arises.
Descriptive rules define the guidelines for generating the formulations for the question.
The text template selects and aggregates the previously generated contents. Additionally,
a database with information about pronunciation and semantic relationships of words is
used for instantiating these rules. The generator produces a pair of setup and punchline
as two separate strings, e.g., “What do you call a washing machine with a September?” –
“An autumn-atic washer.” Table 4.1 gives an overview of linguistic markers of the syntax
and content of setup and punchline. The software checks for duplicates to avoid creating
the same joke more than once.

Subsequently, the setup and punchline are augmented with appropriate prosody, gaze,
and facial expressions according to the findings from the literature as follows.
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9.2. Dynamic Multimodal Joke Generation

Table 9.1.: Utilized STANDUP joke types.
Joke type Riddle structure
Cross What do you get when you cross X with Y?
Call What do you call a cross between X and Y?

What do you call X that has Y?
What do you call X with Y?
What do you call X?

Difference What is the difference between X and Y?
Why is X different from Y that is Z?
Why is X different from Y?
How is X different from Y?

Similarity What do X and Y have in common?
Why is X like Y?
How is X like Y?

Type What kind of X has Y?
What kind of X is Y?

9.2.2. Setup

9.2.2.1. Prosody

In human joke-telling, a specific pitch range and variability in the speaker’s voice may
accentuate the spoken language. As outlined in Table 4.1, a typical occurrence is the
combination of limited pitch range and minor pitch change within syllables or the whole
utterance. The latest SSML specification (w3.org, 2021) defines two options of interest
for reproducing this effect:

• The range attribute of the prosody element determines the pitch range (variability)
of the enclosed text. The value can be set either in the form of a relative change
in percent, presets x-low, low, medium, high, x-high and default, or as a frequency
value in Hertz.

• The emphasis element emphasizes the enclosed text. Its attribute level can be
set to strong, moderate, none and reduced. While reduced means the opposite of
emphasizing text, the specification mentions that the element may be rendered
by a “possible combination of pitch change, timing changes, loudness, and other
acoustic differences”.

As with all SSML parameters, their realization depends entirely on the TTS software
interpreting them. The range attribute is set to the default value during the setup to
contrast the subsequent punchline. Unfortunately, the emphasis tag does not produce an
audible effect with the Cerevoice TTS system and the William voice. For example, using
level reduced does not result in reduced pitch variability. Thus, the setup of the riddle
converts into SSML without additional tags. Encapsulating the text in a prosody element
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Listing 9.1: Generated punning riddle with SSML.
<speak>

<s>What do you get when you cross a choice with a meal?</s>
<break time="1500ms"/>
<s><prosody pitch="high" rate="fast" volume="loud">A pick=nic.</prosody></s>
<spurt audio="g0001_019"></spurt>

</speak>

Figure 9.4.: The robot’s gaze and facial expressions: a saccade (left), its neutral facial
expression when centering on the spectator (middle), and smile (right).

with the range attribute set to default would be redundant and therefore is omitted. See
the first sentence in Listing 9.1 for an example.

9.2.2.2. Gaze

The robot’s gaze behavior during the setup aims to mimic natural human gaze behavior.
Robots and virtual agents often implement saccades since they represent one of the
most noticeable eye movements (Ruhland et al., 2014). In order to contrast the following
punchline, the robot performs this type of eye movement while telling the setup. Techni-
cally, it rotates the eyeballs (and neck, see below) in parallel to random points near the
spectator’s position (see Figure 9.4). See section 11.5 for details on the implementation.

9.2.3. Punchline
9.2.3.1. Prosody

Typically, there is a break between telling the setup and punchline of a joke (see Table 4.1).
During this time, the listener has time to think about a possible answer to the riddle’s
solution. Adding a break in SSML can be realized with the break element. Its parameter
time specifies the duration in milliseconds. Since there are no clear findings about the
duration of such breaks in the literature, the robot uses a random value in the hand-tuned
range between 1.5 and 2.0 seconds.

In addition to a preceding break, the speaker presents the punchline often with a
different pitch, volume, and speech rate than the setup (see Table 4.1). SSML provides
tags and attributes to imitate these prosodic features with the prosody element. For
example, the pitch attribute accepts the values low, medium and high. Similarly, the
volume attribute works well with the values soft, medium and loud. The speech rate
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9.2. Dynamic Multimodal Joke Generation

can be modified with slow, medium and fast. More extreme variants, such as x-low
or x-high result in more synthetic and less natural sounding output. They impair the
robot’s comprehensibility, particularly when compared to the neutral prosody during
the setup. See the second sentence in Listing 9.1 for an example configuration of the
prosody element during the punchline.

9.2.3.2. Laughter

Laughter and giggling after the joke occurs not only for the audience but occasionally
also for the speaker (see Table 4.1). The SSML standard does not support this kind of
sound per se. However, Cerevoice TTS voices provide so-called vocal gestures. These
audio samples include different sounds, such as breathing, coughing, and more. For
the William voice, this set also includes different types of laughter, ranging from short
giggling to long laughter sounds. The non-standard SSML spurt element embeds these
sounds in the SSML markup. It requires providing the ID of the sound from the manual
as the value of the audio attribute.

When used excessively after every punchline, giggling and laughter sounds appear
unnatural to the audience, especially if the same sample occurs repeatedly. Thus, the
usage and sample IDs are randomized. Based on the insights by Attardo, Pickering, and
Baker (2011) the probability for adding the spurt element to the generated output is set
to 30 %. At the time of this writing, the manual contains six IDs related to laughter for
the William voice: IDs 19 and 20 produce giggling, and 21 to 24 contain laughter samples.
A random sample from this set of sounds is drawn each time the element is embedded.
See Listing 9.1 for an SSML sequence with the spurt and other markers included.

9.2.3.3. Gaze

Speakers often gaze at the face areas involved in the spectators’ smile when presenting
the punchline (see Table 4.1). These areas include the eyes and the mouth, which express
smile, laughter, or giggling. While the robot mimics natural gaze behavior during the
setup, its head and eyes focus on the spectator during the punchline. To this end, the
robot’s head and eyes center on the spectator in front (see Figure 9.4). The scenario at
hand involves a single-person audience. Thus, the robot does not change its gaze between
different spectators, as observed and implemented in Katevas, Healey, and Harris (2015).

9.2.3.4. Smile

Speakers may use a smile when presenting the joke’s punchline (see Table 4.1). Based on
the insights by Attardo, Pickering, and Baker (2011), the robot uses this marker with a
probability of 80 % by raising its lip corners. The robot raises its large ears to emphasize
the smile even more (see Figure 9.4). After the joke finishes, the robot’s face returns to a
neutral facial expression.
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9.3. Conclusion
The ability to present and dynamically generate humor in HRI is an important opportunity
to make a social robot appear more socially intelligent. Based on the psychological
background from section 4.4, this chapter presented approaches for multimodal joke
delivery with a social robot. They allow the robot to present jokes, grimaces, sounds, and
combinations of them. Moreover, a novel generative approach for multimodal punning
riddles allows the robot to create canned jokes dynamically during an interaction. While
the first approach explores comic sound effects, which a human cannot use, the second
approach adheres to the findings concerning multimodal markers of humor, including
verbal and non-verbal communication channels. The implementation uses the STANDUP
joke generator (Manurung et al., 2008), SSML, Cerevoice TTS, as well as the custom reeti-
rest software (see chapter 11) for dynamically generating and playing back animations
and interfacing with the Reeti robot. This work provides the basis for section 14.3, where
the social robot’s joke presentation adapts to the individual spectator based on their
social signals.

138



10. Small Talk with Irony
Chapter 9 presented an approach for the generation of canned humor by enriching
generated texts with multimodal cues for a social robot. In human interaction, jokes
are typically known in advance and presented spontaneously within a conversation
(e.g., when remembering a joke because of the current conversation topic) or as part
of a longer show, such as in stand-up comedy. However, humans also create humorous
content in a specific situation on the fly, inspired by the interaction context or topic,
which is the case in conversational humor (see section 4.4.2).

Ideational reversal irony (see section 4.4.5) is particularly interesting for the presented
rule-based irony generation approach below. While other types of irony require an
“understanding” of the actual semantic content or some form of creativity for generation,
this chapter implements ideational reversal irony based on natural language processing
(NLP) and NLG techniques without a deeper understanding of the text.

The purpose of irony “lies in its rhetorical and social effects” (Attardo, 2000b). Giving
robots the ability to create ironic utterances is one opportunity to make them appear more
socially intelligent. Thus, this chapter presents an approach to generating multimodal
irony. A multistage generation process transforms the robot’s original utterance into an
ironic version with the opposite meaning based on NLG and NLP techniques. Afterward,
it augments the modified text with specific multimodal markers, including prosody and
facial expression, which are essential for making the human recognize the irony. Again,
non-verbal communication channels (see chapter 3) are central to this process.

The approach and implementation were presented, evaluated, and reviewed in Ritschel
et al. (2019b). The contents of this chapter expand this publication.

10.1. Overview

The following rule-based transformation process for creating an ironic version of a
non-ironic utterance involves three steps (see Figure 10.1):

1. Given the original input, the first task of the approach is to check with NLP tech-
niques whether the utterance fulfills the requirements concerning vocabulary

NLP

annotation ironic
utterance

original
utterance

NLG

irony factor

linguistic markers

SSML, animation

prosodic markers

visual markers

Figure 10.1.: Overview of the irony transformation approach.
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and structure. The transformation algorithm works only if the sentence meets the
requirements. Otherwise, the process stops.

2. If the input fulfills the requirements, the next step is the generation of an irony
factor and the insertion of linguistic markers. NLG techniques solve this task.

3. In addition to the linguistic manipulation, the final step is to add additional markers
of irony. These include prosodic markers and accompanying non-verbal behaviors,
such as gestures and facial expressions.

This process transforms a non-ironic linguistic utterance into a multimodal ironic
version. Steps one and two are applicable for any robot because they only manipulate the
linguistic content. The multimodal cues depend on and are restricted by the robot’s soft-
and hardware. For example, not every TTS system supports all proposed manipulation
tags. In particular, facial expressions and gestures require corresponding hardware
actuators or a virtual representation on a screen, which differ for each robotic platform.
The following approach is implemented based on the Reeti robot (see chapter 11).

10.2. Natural Language Processing
The implemented approach receives an arbitrary text utterance as input. As a first step,
this input is analyzed based on NLP techniques to ensure that it fulfills the requirement
of the algorithm to be transformed into an ironic utterance. The input must have a
strong polarity, such as a positive or negative connotation, which can be inverted based
on dictionary data. CoreNLP (Manning et al., 2014) identifies adjectives, nouns, and
verbs with polarity based on sentiment analysis (Socher et al., 2013). For example, in
the sentence “I hate my worst enemy.” the words “hate”, “worst” and “enemy” indicate
a negative polarity. The algorithm marks polarized words as candidates for creating
the irony factor in the following step, i.e., the incongruity in the resulting sentence’s
meaning. If the original input does not have positive or negative polarity, the following
steps cannot be applied, and the approach stops.

10.3. Natural Language Generation

10.3.1. Irony Factor
The generation of the irony factor uses the concept of ideational reversal irony (Dynel,
2014) (see section 4.4.5). The irony results from negating one of the marked, polarized
irony factor candidates from step one. First, the algorithm replaces a polarized word
with its antonym by looking up antonyms in the WordNet database (Miller, 1995) for
each candidate. If a suitable antonym is found, the original word gets replaced according
to the following prioritization:

1. verbs,

2. adjectives, and
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3. nouns.

However, only one word is replaced not to nullify the negation. A nullification could
happen when replacing multiple items simultaneously, such as in the case of “I love my
best friend.”, which would prevent the emergence of irony. The flexion of words is real-
ized with the SimpleNLG (Gatt and Reiter, 2009) programming library while preserving
the conjugation of verbs, the comparative and superlative of adjectives, and the number
of nouns. As an example, this transforms the former example into the sentence “I love
my worst enemy.”

If the algorithm does not find a suitable antonym, it inverts the main verb with “not”.
Alternatively, it removes “not” if the original sentence already contains a negated verb.
In this case, there is no need to search for antonyms.

10.3.2. Linguistic Markers

Replacing a single word with an antonym does not automatically make the ironic inten-
tion recognizable to the listener without further ado. In addition to the generated irony
factor, markers of irony (see section 4.4.5) make it easier for the human to recognize the
robot’s irony. Thus, this step inserts linguistic markers in the resulting utterance, i.e.,
exaggerations, understatements, and positive and negative interjections. Exaggerations
and understatements can be realized by valence shifting (Guerini, Strapparava, and
Stock, 2008). Single words are modified by adding, removing, or replacing adjectives and
adverbs to strengthen or weaken the sentence’s meaning, e.g., resulting in “I absolutely
love my worst enemy.” This increases or decreases the intensity of the irony factor.
For example, the former negatively polarized example can be prefixed with a positive
interjection to generate “Super! I love my worst enemy.” In contrast to the irony factor,
multiple markers can be applied simultaneously to emphasize the use of irony, e.g., by
adding an exaggeration, which results in “Super! I really love my worst enemy.”

Keeping in mind that the output medium for the generated ironic text at hand is the
robot’s TTS system, some linguistic, text-specific markers, such as onomatopoeic ex-
pressions for laughter, acronyms, emoticons, ellipsis, quotation, and heavy punctuation
marks (see section 4.4.5) do not make sense in the scenario at hand. Instead of laughter,
onomatopoeic expressions for laughter, or emoticons, the robot can use facial expres-
sions with its hardware directly (see section 10.4.2). Similarly, its prosody is adjusted
accordingly (see section 10.4.1) instead of ellipsis, quotation, and heavy punctuation
marks. While prosody, facial expressions, and gestures depend on the robot’s available
actuators and TTS capabilities, they supersede text-only markers, which only make sense
in written text and not in a spoken utterance.

10.4. Multimodal Markers

In written text, typographic or morphosyntactic markers (see section 4.4.5) help the
reader identify ironic content. However, the benefits of social robots are in multimodal
communication while relying on their embodiment, hardware actuators, and spoken
output. Thus, it makes sense to use paralinguistic and visual clues to communicate
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Listing 10.1: SSML for the compressed pitch pattern
<emphasis level="strong">Great!</emphasis>
<prosody volume="x=soft">

<emphasis level="none">I absolutely love my worst enemy.</emphasis>
</prosody>

Listing 10.2: SSML for the pronounced pitch accents
<prosody rate="x=slow">

<emphasis level="strong">Great!</emphasis> I <emphasis level="strong">
absolutely<break strength="medium"/> love <break strength="medium"/>

</emphasis> my <emphasis level="strong">
worst <break strength="medium"/> enemy<break strength="medium"/>

</emphasis>.
</prosody>

irony beyond linguistic tweaks. Depending on the robot’s hardware and TTS software,
intonation and visual clues, including prosody, gestures, and facial expressions, can be
used to implement those markers presented in Table 4.2. Given the Reeti robot as an
implementation target, prosody and facial expressions are the relevant modalities to
support and augment the formerly prepared linguistic ironic content.

Not all markers are applied for every ironic utterance. Instead, the use of the individual
markers is randomized to a certain degree. If applicable, the corresponding probabilities
are initialized based on the findings from Carvalho et al. (2009) and Williams, Burns,
and Harmon (2009).

10.4.1. Prosody

Two acoustic parameter modulations from Table 4.2 are used to generate typical prosody
for ironic utterances: the compressed pitch pattern and the pronounced pitch accents.
As described in section 4.4.5, they result in atypical speaking behaviors, which contrast
with normal speech. For their implementation, one needs control over pitch, rhythm,
speech rate, and accents during the audio generation process of the TTS system. Thus,
the prosodic markers are implemented based on the SSML standard (w3.org, 2021). It
defines XML elements and tags, which control these parameters for syllables, words, or
whole utterances by adding the corresponding markup to the text input. However, their
support, specific implementation, and the resulting auditive effect in the generated audio
are specific to the used TTS system and voice. The implementation at hand was created
and tested for the Cerevoice TTS software (cereproc.com, 2021) with the “William” voice.

The implementation of the “flat” intonation of the compressed pitch pattern is illus-
trated in Listing 10.1. It uses the volume tag of the prosody element to prevent emphasis
and emotion in the generated audio. Specifically, its value x-soft aims to emulate reduced
pitch movements while pronouncing the utterance, as observed in the literature.
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smile roll eyes wink eyes wide open gaze averted

Figure 10.2.: Implemented facial expressions.

In contrast, Listing 10.2 illustrates the markup for the pronounced pitch accents. The
markup exaggerates the intonation by accentuating words and adding elongations and
pauses to reproduce findings from the literature. Firstly, it reduces the overall speech
rate by setting the rate tag of the prosody element to x-slow. Secondly, it utilizes emphasis
tags for the main verb, all adjectives, adverbs, and nouns. In addition, the inserted break
tags accentuate these even more to reproduce stilted pauses. For the example above, this
results in putting emphasis on “I absolutely love my worst enemy.”

Interjections are emphasized for both patterns independently of the prosodic marker
to highlight their emotional intensity.

10.4.2. Facial Expressions
Social robots have a physical embodiment, which makes it possible to implement facial
expressions in addition to the other markers. Depending on the robot’s face and actu-
ators, it needs to realize these expressions by animating the whole head, mouth, eyes,
eyelids, and eyebrows. Since the Reeti robot at hand does not have eyebrows, those
markers, which require eyebrows, cannot be applied to this specific hardware. However,
Figure 10.2 illustrates the implemented markers for the Reeti robot:

• Smiling is realized by raising the robot’s lip corners and lowering its lower lip to
give the mouth a typical, round shape. At the same time, the head is rotated slightly
around the roll axis to increase the effect.

• Rolling eyes are implemented using keyframe animation section 11.3.2. An anima-
tion track for each eyeball contains keyframes for the tilt and pan axis to realize a
smooth transition of the pupils from one side to the other while tilting upwards in
the middle of the animation (i.e., looking at the ceiling).

• Winking is realized with keyframe animation, too. It uses one animation track for
closing and opening one of the eyelids.

• Wide open eyes are implemented by raising the eyelids to their maximum open
position. The robot’s neutral position sets the eyelid rotations to a slightly closed
position, which leaves some space to open the lids even further.

• Gaze aversion is another keyframe animation, which pans both pupils to one side.

These poses or animations are presented for the duration of the ironic utterance,
respectively. Afterward, the robot returns to its neutral face with its gaze centered on its
dialog partner.
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10.4.3. Additional Markers and Restrictions
The realization of multimodal markers of irony heavily depends on the robot’s hard- and
software. The Reeti robot and the Cerevoice TTS system cannot implement some of the
markers from the literature. For example, not all markers can be realized with SSML,
such as the nasalization (Attardo et al., 2003). There are no suitable tags for defining the
desired effect. In addition, the strong within-statement contrast marker would require
the division of the utterance into a high-pitch and a low-pitch part, which is non-trivial.

Similarly, the robot’s available motors and degrees of freedom limit the applicable
gestures and facial expressions. Since the Reeti robot only has a face, it cannot perform
gestures. The blank face marker can only be applied if the robot’s face is permanently
animated. Then, a non-animated face will contrast the robot’s default behaviors. However,
as long as the robot’s face is primarily static (as is the case for the Reeti robot), the blank
face marker does not show a difference from a non-animated face and thus is superfluous.

Ambiguity is a challenge in the context of NLP for checking the polarity of words and
the antonym lookup when generating the irony factor. For example, instead of marking it
as a positively polarized word, “great” might be classified as neutral since it is associated
with more than one synset, including “big”. Similarly, “great job” could be transformed
into “small job” instead of “bad job”. Thus, knowledge about the word’s context could
improve the antonym lookup with semantic relatedness (Pedersen and Kolhatkar, 2009).

10.5. Pseudocode

Algorithm 1: Pseudocode of the transformation approach.
Input: original utterance 𝑢orig
Output: TTS text and facial expression

1 𝑝←− is_polarized(𝑢orig) // boolean
2 if 𝑝 then
3 𝑓 ←− determine_irony_factor(𝑢orig)
4 𝑢ironic ←− replace_with_antonym(𝑢orig, 𝑓 )
5 𝑢ironic ←− insert_linguistic_markers(𝑢ironic, 𝑓 )
6 𝑢ssml ←− add_prosodic_marker(𝑢ironic)
7 𝑒←− random_ironic_facial_expression()
8 return 𝑢ssml, 𝑒

9 return 𝑢orig, null

Algorithm 1 presents a simplified, high-level pseudocode of the transformation ap-
proach. First, the input utterance is analyzed to identify words with strong polarity (see
section 10.2). The algorithm returns the original utterance as-is if it is unsuitable for the
ironic transformation. Otherwise, the irony factor and the steps for converting the utter-
ance and adding corresponding markers are applied as outlined in the previous sections.
Afterward, the robot presents the ironic, multimodal version, including prosody and
animation based on the custom reeti-rest software for multimodal animation generation
(see chapter 11).
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Figure 10.3.: Study setup with two robots of the same type and appearance.

10.6. Evaluation

An empirical study with users was conducted in the lab to evaluate the performance and
the effects of the proposed irony generation approach. In particular, the study aimed to
explore

• whether participants would be able to identify the generated behavior as ironic
and

• how the generated behavior would influence the participants’ user experience.

The hypothesis was that an ironic robot would be considered more “fun” to communi-
cate with and “entertaining” to interact with. As a result, the expectation was that an
ironic robot would receive higher user ratings associated with hedonic qualities than
a non-ironic robot. Since both (1) the context and topic of the conversation play an
important role in the appropriateness of irony usage and (2) related research has shown
that a shared sense of humor has a powerful effect on interpersonal attraction when
people meet each other for the first time (Cann, Calhoun, and Banks, 1997), it was decided
to focus on a small talk scenario for the evaluation. It provided the opportunity to break
down barriers between the interaction partners and present the robot’s personality.
Thus, this seemed to be an innocuous and predestined context for the use of irony.

10.6.1. Participants, Apparatus, and Procedure

Twelve participants (six male, six female), aged 19 to 32 (avg. 25), were recruited from
a university campus. The study design had a within-subject design. Each participant
interacted with all versions of the robot (i.e., a baseline robot and an ironic robot) in a
counter-balanced order. Instead of reusing the same physical robot, two Reeti robots (see
Figure 10.3 and chapter 11) were used in order to minimize potential carry-over effects.
The purpose was to clarify that participants were interacting with two different robots
(or personalities). Otherwise, participants could have had difficulties if they were asked
to interact and rate their interactions with the same physical instance of the robot again,
which would only change its programming. The study procedure had four subsequent
parts: introduction, small talk sessions one and two, and wrap-up.
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I hate raining. I usually have a bad mood when it rains.
original utterance

Let's talk about the weather. Do you like when it rains?

Super! I   utterly   love   raining. ironic

Yeah I like when it rains.

smile, wide open eyes
pronounced pitch accents

interjection, overstatement
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I usually have a bad mood when it rains. 

Figure 10.4.: An example of the robot’s produced irony during the evaluation.

10.6.1.1. Part 1: Introduction

First, participants were welcomed and provided with an introduction, which included
demographic data collection, a short description of the study, and additional information
about the following study procedure. Participants were told that they would be asked
to conduct dialogs for approximately ten minutes with two robots of the same type,
which were differently programmed. Afterward, they would be asked user experience
questions about how they perceived the robots. They were not told that one of the robots
uses irony or that the study was about irony or humor.

10.6.1.2. Part 2 & 3: Small Talk Sessions

An automatic speech recognizer was not available for the study. Thus, participants
were informed that they could speak with the robot, but the experimenter would enter
their statements via keyboard, and, thus, short delays in the robot’s answer could occur.
Furthermore, participants were asked to reply to the robot’s questions and ask questions
to the robot themselves whenever they wanted to or felt it was appropriate.

At the beginning of both sessions, the participant sat in front of one of the two Reeti
robots. Both robots used the Cerevoice TTS software (cereproc.com, 2021) with the
“William” voice and identical animations. The open source A.L.I.C.E chat bot (source-
forge.net, 2021) that used freely available corpora for small talk generated the robot’s
answers. On average, the chatbot generated 19.25 answers per session. Each session
started with the robot greeting the participant and asking for their name. Participants
could see what the experimenter entered via the keyboard on the screen next to the robot
at any time. Thus, it was transparent that the experimenter was not acting as a “wizard”
and entering the robot’s answers but typing the participants’ replies and questions.

In the sessions with the ironic robot condition, the robot’s answers were – whenever
applicable – computationally transformed into an ironic utterance with multimodal
markers of irony. Figure 10.4 illustrates a real-world example generated during the
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Figure 10.5.: Basic emotions (neutral, happy, sad) used independently on the irony condi-
tion.

I almost   love   pop   songs, too! ironic

I hate pop songs, too! original utterance

Hi there! I am Dave. What is your name?
My name is Marcus.

That's a charming name, Marcus. How are you?
I am fine. How are you?

Glad to hear it. I'm doing fine thanks. How much 
time a day do you spend listening to music?

Multiple hours.
That is interesting. I usually listen to music all day with an MP3 
player. What do you think about the teenagers' music style?

It is horrible.

Teenagers tend to choose loud and fast music like Rock or Rap. Everyone has their 
own taste of music though. What kind of music genere do you dislike?

I hate pop songs.

Yes. I play piano.

RO
BO

T
PARTICIPANT

Do you play any instrument?

Figure 10.6.: Beginning of a dialog from the evaluation logs.

runtime of the experiment. On average, the robot produced 4.33 ironic answers per
session.

In the neutral (baseline) condition, the robot never manipulated its answers to turn
them ironic. The robot used basic emotion postures (see Figure 10.5) for the non-ironic
spoken texts according to the answer’s polarity in both conditions. These postures aimed
to make the robot appear more lifelike in addition to the automatic gaze behaviors
presented in section 11.5.

At the end of each dialog, session participants completed a questionnaire measuring
their experience. Half of the participants started with the ironic condition and the
other half with the neutral condition. Similarly, half of the subjects started with the left
robot and half with the right robot, independent of the condition. A sample dialog with
non-ironic and ironic contents is illustrated in Figure 10.6.
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10.6.1.3. Part 4: Wrap-Up

At the end of all sessions, participants were asked which of the two robot versions they
preferred. In addition, they were asked whether they liked or disliked the voice and
visual appearance of the robot. These questions collected explicit robot preferences and
measured if the appearance and voice of the robot were generally acceptable.

10.6.1.4. Questionnaires

The standardized attrakDiff questionnaire by Hassenzahl, Burmester, and Koller (2003)
measured UX because it is widely used in research and industry. It provides an overview
of a product’s or technique’s perceived qualities, especially hedonic qualities beyond
traditional usability.

The attrakDiff questionnaire consists of 28 items. Seven items measure pragmatic
quality (PQ), a measure of perceived traditional usability. The rest of the items measure
hedonic quality (HQ), which results from a combination of HQS, HQI, and ATT. These
(sub)constructs of hedonic quality are measured by seven items each. HQS measures
the perceived ability of a product to meet a person’s desire for self-improvement, HQI
measures the perceived ability of a product to communicate a valuable identity to others,
and ATT measures overall attractiveness.

In addition, a five-point Likert scale asked for agreement scores based on statements,
such as “the robot’s output was ironic”. These were specific to the user study setup and
aimed to measure participants’ subjective impression of the robot’s output (replies and
questions) concerning content, naturalness, humor, irony, fitting facial expressions and
voice, and perceived (social) intelligence (see Figure 10.9).

10.6.2. Results

This section presents insights into the study results. The expectation was that an ironic
robot based on the irony generation approach would receive higher user ratings on
the hedonic dimension of UX. First, general trends are illustrated based on graphical
presentations of the collected UX data. Then, results are interpreted based on fitting a
statistical model to the data, i.e., results of statistical tests are provided. Afterward, the
results of the additionally collected explicit robot preferences and agreement scores are
presented.

10.6.2.1. General Trends

The left side of Figure 10.7 presents the mean values for all four measured UX constructs
(i.e., PQ, HQS, HQI, and ATT). It shows that the ironic robot received higher mean ratings
in all measured constructs. The differences in how the ironic robot was perceived
compared to the baseline robot are in constructs explaining hedonic qualities, which
matches the hypothesis. The biggest differences in the means include ATT (overall
perceived attractiveness) and HQS (i.e., the hedonic quality associated with the perceived
ability of a product/technique to meet a person’s desire for self-improvement). The
smallest difference exists in PQ (i.e., perceived traditional usability).
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Figure 10.7.: Mean ratings for the measured UX constructs PQ, HQS, HQI, and ATT explain-
ing pragmatic (i.e., perceived traditional usability) and hedonic qualities
for both the ironic robot and the baseline robot. Error bars denote 95 %
confidence intervals (CIs).

The right side of Figure 10.7 shows the difference in how the ironic robot is perceived
differently from the baseline (non-ironic) robot, considering the pragmatic quality (PQ)
and hedonic quality (HQ) (i.e., combination/aggregation of HQS, HQI, and ATT). While
one can observe a difference in HQ between both robots, the difference between the
baseline robot and the ironic robot considering the pragmatic quality (PQ), seems very
small.

For each construct, Figure 10.8 depicts mean values for all seven items, detailing
how participants experienced the interaction with both robots. Regarding HQS, the
participants experienced the ironic robot as bolder but more innovative. The ironic
robot received higher ratings for most items explaining the modalities’ hedonic quality.
It was perceived as more stylish, appealing, or likable, thus, potentially communicating
a valuable identity to others (HQI) and generally being perceived as attractive (ATT). The
overall difference seems systematic, with the ironic robot being perceived as consistently
more desirable, which is reflected in higher ratings on the hedonic dimension of UX.
There seem to be no clear differences in the pragmatic dimension of UX.

Figure 10.9 depicts the mean ratings explaining (dis)agreement of study participants
with several statements. These statements checked whether participants recognized the
robot’s irony and evaluated whether its facial expressions and prosody fit its presented
utterances. The main differences in mean ratings exist for the statements about robots
being ironic, humorous, and natural. It indicates that participants were able to identify
the use of irony and experienced humor and naturalness as associated causes of irony
use.

10.6.2.2. Statistical Analysis

First, paired-sample t-tests compare the participants’ ratings for PQ, HQS, HQI, and ATT
for both modalities. For HQ and its constituting constructs HQS, HQI, and ATT, a one-sided
test was used since the hypothesis was that the ironic robot would receive higher ratings
on hedonic quality compared to the baseline robot. There was no hypothesis on how
irony would affect PQ. Thus, a two-sided test tests the significance of users’ self-reports
considering PQ in both robot conditions.
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Figure 10.8.: Details show the mean ratings for each item of the attrakDiff questionnaire.

150



10.7. Technical Limitations

1

2

3

4

(Dis)Agreement to: The reply of the robot was/had...

Ra
tin

g
(ra

ng
e f

ro
m

 1 
to

 5)

with irony without irony

meaningful
intelligent

natural
humorous

ironic
appropriate facial expression
appropriate prosody

Figure 10.9.: Communication style of the robot: mean ratings for the agreement scores to
all additional statements (which were translated and slightly paraphrased
to fit the plot) on a five-point Likert scale (1 = strongly disagree, 5 = strongly
agree). Error bars denote 95 % confidence intervals (CIs).

A main effect of irony exists on the overall hedonic quality HQ (𝑡 = 1.86, 𝑝 = 0.044,
𝑟 = 0.49). As hypothesized, participants found the ironic robot more desirable: the
difference in self-reports on the hedonic dimension of UX was significant. When looking
at the specific (sub)constructs of HQ separately, the difference in HQS (𝑡 = 2.29, 𝑝 = 0.021,
𝑟 = 0.56) is significant, too. But differences are non-significant for HQI (𝑡 = 1.27, 𝑝 = 0.115,
𝑟 = 0.35) and for ATT (𝑡 = 1.44, 𝑝 = 0.089, 𝑟 = 0.39). There was no significant difference
in PQ (𝑡 = −0.67, 𝑝 = 0.516, 𝑟 = 0.19).

Similar statistical tests were conducted for the agreement scores from Figure 10.9.
Significant differences were found for statements about the robots’ ironic (𝑡 = 2.34,
𝑝 = 0.019, 𝑟 = 0.57) and humorous (𝑡 = 1.85, 𝑝 = 0.045, 𝑟 = 0.48) behavior while all other
differences were non-significant, including naturalness (𝑡 = 1.26, 𝑝 = 0.116, 𝑟 = 0.35).
Overall, the results demonstrate that participants correctly rated the ironic robot as
significantly ironic and humorous. Moreover, it shows that user experience (especially
the hedonic quality) was significantly higher due to the multimodal irony generation.

At the end of the study, each participant was asked which of the robots they would
prefer overall. Seven participants preferred the ironic robot, four preferred the baseline
(non-ironic) robot, and one was undecided. Thus, most participants seemed to prefer an
ironic robot in the small talk dialog.

10.7. Technical Limitations

Potential limitations are associated with the specific chatbot and robot utilized in the
technical implementation. Occasionally, the A.L.I.C.E chatbot produced confusing re-
sponses, which could have negatively influenced the participants’ user experience in both
conditions. For example, the chatbot sometimes had problems matching pronouns and
extracting the relevant data from too complex responses. While the questionnaires did
not address dialog quality directly, participants rated if the robots’ responses were mean-
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ingful (see Figure 10.9). In both conditions, ratings were high in the mean, suggesting
that the associated limitations were small.

While the irony generation approach works well for the Reeti robot at hand, it is yet
unclear how well it will affect user perceptions of differently embodied robots or agents.
The Reeti robot’s overall appearance is already cute and potentially funny (e.g., it has
big eyes, see Figure 11.1), which is beneficial for conveying irony and associated humor.
Thus, the technical implementation tailors the Reeti robot and its set of modalities and
actuators. When transferring this to another platform, the embodiment will determine
which markers of irony can be implemented for the targeted hardware, which might
differ from the evaluated hard- and software at hand.

Last but not least, the small talk scenario served as context for evaluation, which used
irony whenever possible. There is not yet a mechanism for estimating the appropriate-
ness of irony use, which would require the machine to “understand” the dialog content
and context.

10.8. Conclusion
This chapter presented a novel rule-based approach for creating conversational humor
for a social robot by transforming a non-ironic sentence into an ironic utterance. Addi-
tional multimodal markers of irony, such as appropriate prosody and facial expression,
are added on top of the linguistic transformation in order to make the human recognize
the irony. The literature on human irony inspired both linguistic and multimodal cues.
The techniques for the transformation approach include NLP, NLG, and animation play-
back. The implementation uses CoreNLP, WordNet, SimpleNLG, SSML, Cerevoice TTS,
as well as the custom reeti-rest software (see chapter 11) for creating and playing back
animations and interfacing with the Reeti robot.

The user study hypothesized that proper and meaningful use of irony would improve
the conversation skills of social robots and consequently improve the human’s conver-
sation experience. The study investigated the effect of a robot using irony in a small
talk dialog scenario by comparing it to a version of the same robot, which makes no
use of irony. Results have clearly shown that the irony generation approach works
well and that, indeed, participants (1) were able to identify their robotic conversation
partner’s use of irony correctly and experienced associated humor, (2) associated a better
user experience with the ironic robot and (3) overall, more participants preferred the
ironic robot. The results have been consistent with what was expected in case the irony
generation approach worked.
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11. Implementing Multimodal
Behaviors for the Reeti Robot

Implementing multimodal social robot behaviors requires software for interfacing with
the robot’s hardware. A flexible API is desirable for creating and manipulating robot
behaviors during the application’s runtime. For example, it might be necessary to change
the robot’s utterances based on the user’s input, combine speech with appropriate,
synchronized animation, and add secondary actions (Lasseter, 1987), gaze behavior, or
randomized movements. Doing everything by hand is not always a reasonable approach.
A technical basis is essential for implementing multimodal robot behaviors, whether
they are manually designed or produced with a generative approach.

This chapter presents a new software developed as part of this thesis to help imple-
menting the behavior generation approaches from chapters 7, 8, 9 and 10. It allows for
dynamic generation and manipulation of the robot’s verbal and non-verbal behaviors.

Parts of this chapter were presented and reviewed in Ritschel, Kiderle, and André
(2021). The contents of this chapter expand this publication.

11.1. Robot Hard- and Software

The experiments in this thesis use the Reeti robot (reeti.fr, 2021), which has an extrater-
restrial, childlike face (see Figure 11.1). It has motors in its head for generating facial
expressions. These actuators control the eyeballs (horizontal and vertical rotation), eye-
lids (open/close), mouth (raise or lower left and right lip corner, open/close mouth with
the lower lip corner, move top lip forwards/backward), and ears (rotate upwards/down-
wards). Moreover, the head can rotate (pan, tilt, and roll). There is one RGB LED on each
of the robot’s cheeks and an internal speaker for speech and audio playback.

The robot is running Ubuntu Linux (ubuntu.com, 2021). Proprietary software can
be used for defining robot poses and for generating simple animations1. These tools
run on the robot exclusively, which requires connecting a screen, mouse, and keyboard
each time content is edited. Animations and audio files must be prepared in advance
and saved directly on the robot’s hard drive. The robot can be controlled remotely with
the manufacturer’s Reeti API for the C++ and Java programming languages. Functions
include playing prepared animations, poses, speech, audio, and movement of single
motors to a new position. The robot is Universal Robot Body Interface (URBI) and Robot
Operating System (ROS) compatible.

1In this thesis, the terms movement and animation are used interchangeably for the movement or
manipulation of a robot’s actuators over time (including non-motorized actuators, such as LED lights
or TTS output).

153



11. Implementing Multimodal Behaviors for the Reeti Robot

Figure 11.1.: Reeti robot.

The manufacturer’s robot API has limitations, includ-
ing the following (see section 11.3.1 for details with re-
gard to animation). The API (1) cannot create keyframe
animations with independent and parallel movement of
several motors during runtime, and (2) cannot playback
speech commands with dynamic text content in parallel
to the robot’s animation playback. Moreover, (3) it lacks
essential function, such as setting the robot’s system au-
dio volume. However, the robot talks and animates in
typical social robot applications simultaneously. Anima-
tions must be created on-the-fly depending on the user’s
input and synchronized to speech output. In addition,
(4) all resources, such as animations or audio files, must
be copied to the robot’s hard drive upfront. The most
important restriction is the missing programming inter-
face for dynamic generation of keyframe animations,
i.e., parallel and independent manipulation of all actuators and TTS output.

11.2. Overview
In order to overcome the aforementioned limitations, the reeti-rest software, API and
plugins were written as part of this thesis (see Figure 11.2). This new technology controls
the robot remotely via Hypertext Transfer Protocol (HTTP) commands over the network
(access to the robot’s desktop environment is not needed) and provides an extended
API with more functions than the manufacturer’s API. In particular, reeti-rest allows the
programmer to generate and playback keyframe animations in code, which is impossible
with the manufacturer’s robot software. As a result, the robot animates with parallel
movement of all motors and parallel TTS commands during the application’s runtime.
Poses and audio playback are supported, as well as TTS via the robot’s internal or the
commercial Cerevoice TTS software, without placing files on the robot’s hard drive
upfront. New functions include automatic eyeblinks and saccades for making the robot’s
appearance more lifelike, an alternative TTS system, and setting and getting essential
parameters, such as the robot’s system volume. The API generates multimodal behaviors
during runtime. They are essential for speech, animation, facial expressions, and sounds
in the scenarios at hand.

reeti-rest-server
The central component of the software is the reeti-rest-server application, which is an
HTTP server. It provides most of the function for controlling Reeti robots, animation
handling, gaze planning, resource loading and caching, converting data for the robot,
calling subprocesses for TTS generation, and more. The server connects to one or more
hardware robots or virtual robots (see below). A programmer of a social robot application
interfaces with the server via the corresponding API (see below) or HTTP commands to
control the robots.
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Figure 11.2.: Overview of the implemented reeti-rest software.

The user authors poses and animations with new tools (see below), or creates and
manipulates them entirely in code during runtime. The server implements an alternative
to the robot’s internal TTS system by interfacing with the Cerevoice TTS system, which
supports the SSML standard (w3.org, 2021). The server starts a Cerevoice process for
each utterance and caches its output as an audio file. Audio files (including generated
utterances of the Cerevoice TTS) are cached and streamed over the network to the
hardware or virtual robot. Poses and animations are converted into URBI code and are
sent directly to the hardware robot’s URBI console over the network.

reeti-direct-rest-server

The helper utility reeti-direct-rest-server runs on the hardware robot itself for providing
necessary functions to the server, which must have access to the robot’s hardware,
operating system (OS), and file system. Features include retrieving the robot’s name,
settings, neutral pose, and system volume. Moreover, the reeti-direct-rest-server also
plays back audio files from the server (including the ones generated by the Cerevoice
TTS). Therefore, the program starts an avplay process.

VirtualReeti

A virtual Reeti robot with a subset of the hardware robot’s functions is a replacement
for the hardware robot. Its primary purpose is prototyping and debugging social robot
applications without a hardware robot but with the same API. The HTML5 application
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Figure 11.3.: VirtualReeti is a replacement for the hardware robot. It allows for creating
and exporting poses in the web browser.

runs in the web browser, which benefits from being independent of a local installation.
It communicates with the server via a WebSocket connection.

Besides the playback of poses, TTS and audio files, VirtualReeti (see Figure 11.3) can be
used to create and export poses as JSON files, which can be loaded and sent to the robot
via the API. The 3D model was created based on reference photos in the 3D graphics suite
Blender (blender.org, 2021), which provides tools for defining the shape and deformation
skeleton of 3D objects.

Application Programming Interface

The API was implemented for the Java and Python 3 programming languages. It controls
the hardware and virtual robots connected to the reeti-rest-server. The implementations
of the APIs use HTTP requests to interface with the server. Adding support for additional
programming languages is straightforward concerning the communication protocol.

In contrast to the robot manufacturer’s software, the reeti-rest API can generate and
manipulate poses and – in particular – also animations in program code. This essential
benefit makes it possible to adapt these resources based on user input and any other
external data during runtime and without physical access to the robot. For example, the
implemented automatic gaze behavior (see section 11.5) makes heavy use of this feature.

11.3. Animation

One benefit of many embodied agents is their ability for animation, including gestures
and facial expressions. A severe challenge for convincing and lifelike animation is good
timing and parallel movement of several actuators. Humans and animals do not move
from one static pose to another, but smaller movements merge and blend into each other
fluently. In addition, agents with humanoid or zoomorphic embodiment also benefit
from imitating behaviors of their archetypes. Typical examples include eyeblinks and
gaze behavior: staring at one point all the time might appear unnatural because humans
and animals frequently change their gaze focus. The reeti-rest software extends the Reeti
robot’s animation abilities for realizing these behaviors and complex animations.
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Figure 11.4.: Comparison of the robot animation capabilities delivered by the manufac-
turer and the new reeti-rest software.

11.3.1. Reeti’s Native Animation Capabilities

When using the software by the Reeti robot’s manufacturer, there are two options for
animating the robot (see section 11.3.1). They are illustrated on the left side of Figure 11.4.
Due to the limitations of these approaches, the reeti-rest software implements a more
flexible and natural approach: keyframe animation (see section 11.3.2). The following
subsections explain all approaches.

11.3.1.1. Track-/Pose-Based Animation

Option one is to use the manufacturer’s graphical software for preparing a reduced form
of keyframe animation (see the left part of Figure 11.4). These sequences are stored on
the robot’s hard drive and can be played back by calling a method of the manufacturer’s
robot API with the name of the animation file. This option has several limitations:

• The software does not support real keyframe animation with independent, parallel
movement of all motors. Instead, several tracks exist to define a pose sequence of
several motor groups (e.g., ears, all head motors, and eyes).

• The proprietary animation software runs on the Reeti robot exclusively. A screen,
keyboard, and mouse must be connected to the hardware since one cannot run the
software on a standard computer. However, the robot is typically used in “headless”
mode (without any peripheral devices).
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• Animations must be prepared upfront with the robot’s software and are immutable
during program runtime. It is impossible to generate new animations during
runtime, e.g., based on the user’s input.

• In animations, the texts of TTS utterances are saved directly as part of the animation,
and thus they are immutable. A workaround is sending two commands: one for
playing an animation without text and one for TTS speech output. Then, animation
and text play consecutively, but not in parallel.

• Real-time saccades and eyeblinks cannot be realized during animation playback
since all movements must be part of the animation upfront. They must be “baked”
in the resulting animation, i.e., one must add every single eyeblink or saccade by
hand.

• The resulting animation files are saved directly on the robot’s hard drive, which
makes it cumbersome to add, update or remove animations since access to the
file system must be guaranteed. However, in typical social robot scenarios, the
application often does not run on the robot itself but interfaces with the robot over
the network.

One advantage of the robot’s internal software is the fact that the robot itself schedules
animation playback. The programmer only needs to call the animation playback function
with the name of the animation file. Moreover, due to the single playback call, the
overhead is minimal. It results in minimal delay when interfacing with the robot over
wireless networks, and animation playback is smoother than pose-based animation.

11.3.1.2. Pose-Based Animation

Option two for realizing animations based on the manufacturer’s software is to send
poses one after the other (see Figure 11.4 in the middle and the left part of Figure 11.5).
In contrast to the approach above, this gives more flexibility: the programmer can define
poses during the program’s runtime to create animations. However, this option has
limitations, too:
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• The programmer must implement all the scheduling, saving, and loading poses on
its own.

• Posing and TTS commands cannot run in parallel since poses do not contain text.
The robot can never move and speak simultaneously.

• Due to the necessity of sending many poses one after the other, there can be a
significant delay when using wireless networks, which results in choppy animation.

• Parallel movement (and thus, keyframe animation) is impossible since pose com-
mands block the robot’s animation. One pose defines the values of all motors; it
cannot move one motor and start a movement of another motor while the first
movement is still playing.

The left part of Figure 11.5 shows an example sequence of pose and TTS commands,
which, in combination, aim to express happiness. Smiling is used as a facial expression
to support the utterance “I am so happy!”. In addition, the robot’s eyes blink two times.
The command sequence is processed one after the other, and the user must wait for the
robot’s following speech output until all movements finish.

11.3.2. Keyframe Animation
The reeti-rest software implements a keyframe animation approach in order to overcome
the limitations of the software by the robot manufacturer (see section 11.3.1). Keyframe
animation is a technique from traditional animation. The keyframes are the most critical
frames, which give the animator an idea of the extreme poses of a character throughout
the animation. Animators draw keyframes first. After that, they draw the in-between
frames. Interpolation algorithms do this in computer animation and robotics.

Each robot’s actuator (motors, LEDs, text output) has a track containing an arbitrary
number of keys. A key is a tuple of time 𝑡 and value 𝑣 information, which is interpreted
as the motor has value 𝑣 at time 𝑡. The tracks are independent of each other, i.e., keys
on different tracks do not need to share the same time offsets or values, which allows
for independent and parallel animation of all its actuators. Interpolation algorithms
calculate the values for each point in time computationally. For example, the robot can
start tilting its head from seconds 1 to 10 with multiple eyeblinks in between and a head
roll from time 5 to 6. In addition, the robot can play back audio or speech during the
animation. This results in the following advantages over the manufacturer’s software:

• Animations can be created entirely in code or loaded from hard drive (JSON files). In
both cases, they are modifiable during program runtime. For example, keyframes
(including TTS texts) can be created, modified, or deleted.

• Due to this flexibility, the reeti-rest software can insert eyeblinks and saccades
automatically out of the box.

• There is no need for storing animations on the robot’s hard drive, which makes
programming much more flexible.

• The tools for creating animations run on all important OSs.
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Listing 11.1: A small part of an URBI script implementing keyframe animation with
independent, parallel movement of motors, text output and LED color.

{ Global.servo.neckTilt=50 smooth: 0.5 | Global.servo.neckTilt=75 smooth: 1.5 } & {
Global.servo.rightEyeTilt=40 smooth: 0.75 | Global.servo.rightEyeTilt=19 smooth: 1.0 }
& { sleep(1.0) | Global.servo.changeLedColorRGB(2,1023,1023,0,1) } & { Global.tts.say("
\\language=English \\voice=Simon \\volume=50 I am so happy!") } |

Implementing Keyframe Animation with URBI Scripts

The reeti-rest-server converts the keyframe animation timeline to an URBI script as
follows (see Figure 11.2 and Listing 11.1):

• Curly brackets encapsulate each track. Ampersands (&) separate the tracks.

• The command motor=value smooth: offset sets keyframes, where motor is the
actuator’s identifier and value is its value at time offset (offset is relative to the
preceding keyframe).

• Vertical strokes (|) separate keyframes.

• The command changeLedColorRGB sets LED keyframes in combination with a pre-
ceding sleep(offset) command, with offset being the keyframe time.

• The say() function is used for TTS output.

• A vertical stroke (|) terminates the resulting script.

Based on the script, the URBI console calculates the in-between values and translates
the instructions into hardware movements. Listing 11.1 shows a small excerpt of an
URBI script for the Reeti robot. For example, the neckTilt motor is set to value 50 after
0.5 seconds. 1.5 seconds later, its value is set to 75. rightEyeTilt is animated in parallel.
changeLedColorRGB is used to set the robot’s LED in combination with the sleep function,
which sets the offset on the timeline. At the beginning of the animation, the robot starts
its utterance “I am so happy!”.

As illustrated on the right side of Figure 11.5, the keyframe animation approach enables
the robot to produce utterances with parallel movements, such as eye eyeblinks, facial
expressions, or gaze behavior at the same time. There is only one network request
required between the reeti-rest API and the reeti-rest-server, as well as between the
reeti-rest-server and the robot’s URBI console. The result is less network overhead and,
thus, fewer delays than animation based on multiple pose requests. The generated
animations are scheduled automatically by the robot’s URBI runtime, which has the
additional benefit of smooth animation playback.

Figure 11.6 shows stills2 of the pose-based and keyframe animation approach from
Figure 11.5. In the top row, all movements are limited to distinct poses. They are processed

2Comparison video: https://archive.org/details/robot-keyframe-movement
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Figure 11.6.: Stills of the animation from Figure 11.5. Top: the robot presents several
poses and an utterance sequentially without parallel movements. Bottom:
several actuators move independently and in parallel (keyframe animation).

one after the other (e.g., 1–3 eyeblink, 4 smile, talk, 5 return to the neutral position, 6–8
eyeblink). In the bottom row, keyframe animation blends movements into each other (e.g.,
1 start ear movement and speaking, 2 set LED and start eye movement, 3 start eyeblink
and head movement, 4–5 continue the head movement, eyeblink already finished, 6–7
eyeblink, 8 stop eye movement, 9 stop ear movement).

11.4. Text-To-Speech

The Reeti robot has an internal TTS system: Loquendo TTS. It provides one male and
one female voice for several languages, including English and German. Like the SSML
standard, Reetis internal TTS system provides text commands to control basic parameters,
such as playback speed, pitch, volume, and timbre during an utterance. Moreover, it is
possible to add effects, include pauses of specific duration, stress on words, and play
paralinguistic sounds, such as coughing, laughing, sniffing, and more. However, it does
not support the SSML standard.

The reeti-rest software integrates the commercial Cerevoice TTS system as an alterna-
tive to the robot’s internal TTS. Cerevoice implements the SSML standard and has more
parameters for controlling the resulting speech audio. In contrast to the robot’s internal
TTS system, most Cerevoice voices sound very human and mature.

Implementation

Figure 11.7 provides an overview of the TTS implementation. URBI scripts trigger the
robot’s internal Loquendo TTS (a). The URBI converter in the reeti-rest-server converts
the utterance to URBI code each time a TTS or animation is triggered. The result combines
all movements, and TTS commands for parallel playback of speech and animation.

When using Cerevoice (b), the Cerevoice software produces an audio file. The file
is cached, and a request is sent to reeti-direct-rest-server, which streams the file from
reeti-rest-server for playback via the robot’s speaker. All animation is played back in
parallel with an URBI script as in (a).
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Figure 11.7.: Speech audio is generated either (a) with the robot’s internal TTS system or
(b) with the commercial Cerevoice SDK.
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Figure 11.8.: Exemplary robot behavior. (a) Eyeblinks and saccades are planned upfront
and merged into a single animation command. (b) The robot blocks during
command execution and queues pending commands.

11.5. Automatic Gaze Behavior

The reeti-rest software implements automatic gaze behavior, which aims to give the robot
a more natural and lifelike appearance. These behaviors include eyeblinks and saccades
based on the background provided in chapter 3. No additional programming is needed
for scheduling and triggering the robot’s blinks and saccades. Automatic gaze behavior
can be activated and deactivated with the API.

There are a few restrictions concerning the Reeti robot’s hardware. On the one hand,
the motors are pretty noisy, which may annoy users if it occurs too frequently. On the
other hand, the motors cannot move as fast as human muscles, such as the eyelids. Thus,
the robot’s gaze behaviors must be implemented in a reduced form, considering the
hardware restrictions.

Eyeblinks and saccades trigger in randomized time intervals. Technically, an animation
is created and played back each time. Due to the restrictions of the robot’s URBI console,
which blocks until the current command finishes (e.g., when executing TTS or animation
playback), it is not possible to trigger eyeblinks or saccades during animation playback.
Instead, the software plans eyeblinks and saccades upfront. See Figure 11.8 for examples
of different cases of robot commands, automatic gaze behavior, and resulting animations.
Eyeblink and saccade planning works as follows:
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• The software plans eyeblinks and saccades upfront, i.e., the program knows how
much time is left until the next eyeblink or saccade occurs.

• When it is time for an eyeblink or saccade, and the robot is idle at that moment (i.e.,
it does not talk or play any animation), the eyeblink/saccade animation is played
immediately.

• When an animation playback command is received, eyeblinks and saccades are
scheduled for the duration of the animation unless the animation controls the
eyes or eyelids directly. The software combines the original animation with the
eyeblink/saccade animation into one animation.

Regarding motor movements, eyeblinks are animations that close and open the robot’s
eyelids. Starting at the robot’s neutral eyelid position, the motor movement for closing
and opening the eyelids is 150 milliseconds each, which is about the maximum possible
speed. While this is much slower than human eyelid movements, this is a technical
restriction. As a workaround, the robot does not close the eyelids completely, but only
for about 50 % of the motor range.

Saccades are implemented based on an algorithm that realizes a combined eye-head
movement (see also Ruhland et al. (2014)):

• By default, the saccade rotates only the eyeballs.

• Both neck and eyeballs rotate in case the angle between the robot’s neutral (cen-
tered) viewing direction and the desired focus point exceeds a threshold. For
humans, the threshold is approximately 15–20 degrees (Stahl, 1999).

• The roll axis is not modified.

11.6. Conclusion
This chapter presented the technical foundation for the multimodal behavior gener-
ation approaches of the preceding chapters. The newly developed software enables
the programmer to generate multimodal behaviors dynamically during an interaction,
including the independent and parallel movement of all actuators of the Reeti robot. The
software and API can combine and synchronize speech, audio playback, and movements.
On top of that, the approach schedules automatized gaze behaviors, which aim to make
the robot’s appearance more lifelike by equipping it with automatically scheduled non-
verbal behaviors, reducing the effort of manual movement creation. Thus, the presented
technology is an essential step for implementing expressive robot behaviors for the Reeti
robot, which might also apply to other robots with an URBI interface. The development
of this software is an essential technical contribution and serves as a fundamental basis
for all conducted experiments in Part IV.
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12. Socially-Aware Reinforcement
Learning: From Start to Finish

Applying the RL framework involves several challenges. As described in chapter 2
modeling an RL problem is a critical step, which requires a precise idea of all relevant
aspects: state space, action space, and reward, as well as several properties of the problem
and learning algorithms. However, how must this be done for social robot behavior
adaptation? What are the requirements, and which restrictions exist in the context of
HRI? Which role does the user play, and which human and task-based data guides the
robot towards the goal of the adaptation process? Which pitfalls exist when simulating
and evaluating such real-time learning processes? Moreover, how does the learning task
at hand influence algorithmic decisions?

This chapter presents a structured overview and proposes several steps for modeling,
simulating, and evaluating RL problems from start to finish. Starting with the unique
requirements and desires of the HRI context, it explains the process of modeling the
problem, incorporating the human in the learning process, algorithmic considerations,
simulation, and evaluation challenges. Building on this and the multimodal behavior
generation techniques from Part III, chapters 13 and 14 present experiments which
implement the presented procedure.

Parts of this chapter have been presented and reviewed in Ritschel, Baur, and André
(2017a), Ritschel (2018), Janowski, Ritschel, and André (2022), and Kiderle et al. (2021).

12.1. Preliminary Considerations
Before starting with a concept for setting up social robot adaptation based on RL, it is
important to outline the motivation for choosing the RL framework. As briefly hinted in
section 6.2, RL fits well in the typical HRI loop due to the learning agent’s autonomy. The
following sections present multiple reasons why this thesis uses RL for implementing
adaptation.

12.1.1. Stakeholders
As illustrated in Figure 12.1 multiple stakeholders are involved in an adaptation process:
the user, the robot, and the system designer. The user and robot are involved directly
in the interaction. The rest of this chapter is written primarily from the system de-
signer’s perspective since they combine most pre- and post-tasks necessary for analyzing,
modeling, simulating, tuning, and evaluating an adaptation approach. Once prepared,
the interaction and adaptation should run autonomously and independently of expert
supervision.
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Figure 12.1.: User, robot, and system designer have specific functions in a socially-aware
RL process.

12.1.1.1. User

As already outlined in section 6.1, the primary motivation for adaptation is addressing
individual users’ needs and making interaction more comfortable or efficient for the user.
Thus, the human is the center of the whole adaptation process. They have the greatest
benefit but also some responsibility in giving feedback to the robot (not compulsory when
using task-based feedback exclusively) for making adaptation possible. At an abstract
level, the user acts as input (being a receiver for the robot’s behaviors) and at the same
time also as output (giving feedback to the adaptation process).

12.1.1.2. Robot

From the technical perspective, the robot primarily serves as an output medium present-
ing verbal and non-verbal behaviors to the user. These behaviors include i.a., speech,
gaze, posture, and gesture. Often – but not necessarily – the robot also serves as an input
medium, e.g., when sensing the human’s social signals. In this case, it might be useful to
rely on the robot’s internal hardware, which might be closest to the user (e.g., webcams
in the robot’s eyes). In some cases and depending on the platform, this might not be
sufficient, e.g., when specific sensors are required, or the robot’s hardware does not
provide sufficient power or quality. While the robot is not a human stakeholder but a
humanoid machine representing the interaction partner, its multimodal output aims to
mimic human behaviors. It is listed here as a stakeholder since the task of this machine
is to provide a humanoid and natural interface for the user.

12.1.1.3. System designer

The system designer is not involved in the interaction itself directly. Nevertheless, they
are responsible for setting up, observing, and evaluating the adaptation process. Being
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the expert, the designer needs to analyze the problem, interaction, and results – in
advance and afterward, ensuring that the adaptation fulfills its purpose. Thus, they have
the most responsibility and needs to solve many tasks.

12.1.2. Requirements

The HRI context comes hand in hand with a few requirements for adaptation:

Real-time The adaptation process should work in real-time during the interaction to
learn simultaneously and react as quickly as possible. Suppose the robot needs
to wait until the end of the interaction when the user fills out a questionnaire to
provide information about the user experience or individual preferences. In that
case, the robot’s goal might already be missed.

Autonomy Adaptation should require only a minimum of additional user interaction,
or ideally none, to save the user from additional effort and not disrupt or distract
from the actual task. Moreover, people do not necessarily like to teach machines
and thus serve as an “oracle” (Amershi et al., 2014) all the time. Depending on the
abstraction of the preferences to learn, humans might not even be able to tell what
their actual preferences are.

Uncertainty The adaptation approach must be able to handle uncertainty, at least when
used in a non-laboratory environment. Different kinds of noise occur in HRI, such
as nondeterministic user behavior and noisy feedback (see section 12.3.1.3). See
section 12.4 for details.

Long-term For nonstationary problems (see section 2.4.1 and section 12.4.1), adaptation
should not be limited to an initial training phase, but happen constantly. User pref-
erences might change in the future, which requires continuous learning. Otherwise,
the robot’s behavior might not be optimal for the user in the long run.

12.1.3. Desirable Properties

Apart from the essential requirements listed above, the following desirable properties
for implementing adaptation may not be required or may not hold in some scenarios.
One might not be able to realize all of them for a particular task. For example, the
user’s privacy might limit the set of sensors or data that the robot can use and acquire
during the interaction. The following list constitutes a starting point for finding a good
compromise during the problem modeling process.

Unobtrusiveness Similar to the fact that the adaptation process should not distract from
the task, it should also be unobtrusive. Ideally, the robot should get spontaneous
human feedback without requiring the user to think about it for a long time, which
might change the answer when evaluating it rationally. The ultimate goal is to
sense the actual user’s opinion quickly: the user should act naturally, just as they
would interact with a robot without adaptation.
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Figure 12.2.: The process of developing, simulating, and evaluating an adaptation ap-
proach based on RL.

Task independence If possible, the implementation should be independent of the task,
making it reusable for various contexts and scenarios. Minimizing and eliminating
task-dependent information is desirable when modeling the RL problem. How-
ever, task-specific data can be very informative and valuable. Finding a good
compromise is an important aspect when modeling the adaptation process.

12.2. Planning and Conducting a Reinforcement Learning
Experiment

The previous sections listed requirements and desired properties for an adaptation
process of a social robot. RL is the method of choice in this thesis since it fulfills the
requirements (see also chapter 2): an RL agent can learn autonomously based on scalar
feedback in real-time during interaction with a potentially noisy environment. Besides
episodic tasks, RL can also run for a very long time and adapt to nonstationary tasks,
making it suitable for long-term learning. Thus, the following sections present a con-
ceptual framework for modeling, simulating, and evaluating a real-time social robot
adaptation approach based on RL, focusing on including human social signals in the
learning process.

12.2.1. Overview

Figure 12.2 provides a general overview of designing and evaluating an adaptation
approach based on RL. The process has three interdependent stages:

1. During problem modeling, the RL task needs to be specified, including the agent, its
environment, and the learning algorithm.
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2. This model should be verified first before conducting a human evaluation of the
adaptation approach. A simulation helps identify and fix implementation issues,
re-iterating the model and tuning parameters.

3. In the last step, the adaptation approach is evaluated with human users for insights
about the robot’s learned behaviors and its impact on the interaction.

The stages should follow the order listed above. First, the problem must be modeled
in-depth. This includes the action space, state space, reward and the selection of an
appropriate learning algorithm, taking into consideration RL specific properties (see
section 12.2.2 and section 12.2.3) and properties resulting from the interaction with the
human (see section 12.4). One central question in this context is how to include user
feedback and human social signals in the RL process. Different types of data and sources
of feedback might be available in different tasks and contexts. All these considerations
are reflected in the RL model and thus directly impact the adaptation speed.

The simulation (see section 12.2.4) is optional. However, it makes sense to simulate the
result of the modeling stage first to find mistakes and fix them before spending much
time and effort evaluating the approach in a natural environment. During simulation, the
model is evaluated primarily with a technical focus. The key challenge is to replace the
human user with abstracted simulated user behaviors. In contrast to a human evaluation,
a simulation requires less cost and time. Nevertheless, it is essential before deploying the
adaptation approach to the real environment because it makes it possible to re-iterate
and tune the model and observe the resulting implications. The problem modeling and
simulation stage require expert knowledge concerning RL and HRI.

After modeling and simulating the task, a human evaluation (see section 12.2.5) gives
insights into the learning progress and effects in a natural HRI context. Studies are
conducted in the lab or “in the wild” in an in-situ study. Human evaluations go hand in
hand with additional challenges and noise from the real environment and interaction
(see section 12.2.5.1 and section 12.3.1.3).

There is no unique solution for modeling, simulating, and evaluating problems and
also no single solution on how to approach these three steps themselves. Thus, this
section shows the necessary considerations that must be made during this process for
modeling RL problems for social robot behavior adaptation in HRI.

12.2.2. Problem Modeling
In the first stage, details of all aspects of RL have to be fleshed out. The dependency
graph in Figure 12.3 illustrates this process. The system designer must clearly define
the root nodes (environment, adaptation goal) before continuing with more detailed
aspects in the child nodes. The black leaf nodes (state space, action space reward, and
the specific RL algorithm) must be specified based on their predecessor nodes. Section
12.2.3 presents a tool specifically for the HRI context, which assists in this process.

The user is part of the RL environment since the learning agent’s actions cannot directly
control the user’s behaviors and reactions. Nevertheless, the state space and reward
may include aspects of sensed human behaviors, and the action space may contain
actions that aim to influence the user’s behaviors (see below). See also section 12.4 for
algorithmic implications.
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Figure 12.3.: Necessary considerations during modeling and their mutual influences on
aspects and properties of a socially-aware RL adaptation process.

12.2.2.1. Action Space

It begins with thinking about the overall goal of the adaptation process. Which aspect of
the robot’s behavior should be optimized? For example, in a puzzle task, the goal could
be keeping the user engaged or helping the user solve the task quickly, i.e., increasing
task performance. After defining the adaptation goal, the system designer must identify
the agent’s actions for achieving this goal. They span the action space, which may also
include manipulating the robot’s behaviors. In the puzzle task, user engagement might
increase if the robot comments or uses humor, while different kinds of advice might be
helpful when focusing only on task performance. Actions for non-functional adaptation
include switching communication modalities and tweaking parameters of the verbal
and non-verbal robot behaviors, such as setting, increasing or decreasing gesture speed,
talking speed or voice pitch, changing formulations, and much more. The action space
depends on the interaction goal and the environment.

As mentioned in section 6.1.3.3 one should also consider whether manipulating the
robot’s behaviors impacts user experience. Do the actions change the robot’s behaviors
gradually, or do they cause immediate and inconsistent, big changes, which might be
surprising or irritating to the user? An action might result in the robot changing its
behaviors immediately or over a longer timespan, from seconds to minutes, depending
on the implementation. Of course, if an action’s execution takes longer, the robot needs
more time for learning. Both aspects need to be balanced. It may be possible to split
the change into several smaller steps for improved consistency. For example, instead
of setting a parameter from minimum to maximum value, the action can increment or
decrement the parameter in smaller steps, changing the robot’s (non-)verbal behaviors
gradually.
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12.2.2.2. State Space

The state space depends entirely on the environment, task, and interaction goal. It needs
to capture all relevant aspects and features of the environment and cover all relevant
situations that potentially occur during the interaction. In HRI, the user is typically a
crucial part of the environment. Any user-, interaction-, or task-dependent data, but
also the state of the robot, can be relevant for the state space. It may include the user’s
mood, interest in the interaction, engagement, task performance, and much more. For
the puzzle task mentioned above, the state space might include the number of remaining
pieces, the user’s current mood or engagement, or the remaining time.

12.2.2.3. Learning Algorithm

The learning algorithm depends on multiple problems and properties of the environment.
For example, the adaptation goal determines whether the task is episodic or non-episodic.
It is episodic in case there are final states in the learning process, which naturally
terminate the task, such as complete failure (e.g., the user quits the interaction) or
success (e.g., when solving a puzzle). Otherwise, the adaptation process is open-ended
and runs forever until somebody stops it manually.

Another important property is whether the environment is deterministic or nondeter-
ministic (see also section 12.4.2). Most probably, human reactions are nondeterministic
and thus vary from time to time. For example, external influences can bias the user’s
reactions. In this case, the user’s reactions are not caused by the adaptation process
(see section 12.4.2). Moreover, the environment might also be nonstationary (see sec-
tion 12.4.1), e.g., when the user’s preferences or attitudes change over time.

Section 2.6 listed basic learning algorithms, including 𝑘-armed bandits for stateless
problems and the Q-learning algorithm for stateful tasks. The bandits and Q-learning
algorithm are suitable for both stationary and nonstationary problems.

12.2.2.4. Reward Signal

After specifying the adaptation goal, the system designer needs to identify potential
sources for reward calculation. Given the goal, they must think about the information
that indicates success for the learning agent. Since functional and non-functional adap-
tation affect the set of actions (i.e., what the robot does), the type of adaptation does not
necessarily impact the sources of reward. Typical sources include the task itself (such as
task performance in terms of elapsed time, amount of answered questions, and whether
the problem is solved) and information about the user (such as user engagement, mood,
and other interaction dynamics as described in section 12.3.4).

Task-related and user information can be relevant to functional and non-functional
adaptation goals. When combining task-related and user-related data, the latter might be
implemented as a shaping reward, guiding the adaptation process towards the system’s
goal. Again, the design of the reward signal depends entirely on the task at hand.

The reward can be of implicit or explicit nature (see section 12.3.2). In addition, the
data also differs in terms of objectivity or subjectivity. For example, user information can
be objective (e.g., demographic data, measured interaction dynamics) or subjective (e.g.,
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user experience). Task-related information typically is objective (e.g., task performance).
Explicit, implicit, objective, and subjective data are not mutually exclusive. For example,
the user can explicitly provide subjective information about their mood with a button
press, or the system can estimate their happiness based on the sensed facial expressions.
The decision of using implicit, explicit, objective, or subjective reward sources (or a
combination of them) will also come hand in hand with weighing up the advantages and
disadvantages of these options (see also section 12.3.2).

The next step is to consider how this data can be combined or used to guide the
robot toward solving the problem. For example, in a puzzle task, it might be sensible
to combine user engagement and task performance for a satisfactory user experience
while also keeping an eye on efficiency. In the context of dialog systems, Walker et
al. (1997) present the PARADISE framework for measuring user satisfaction. Rieser
and Lemon (2011) combine qualitative measurements with subjective user ratings for
calculating rewards based on task performance (efficiency of the dialog system) and user
experience (user satisfaction, using PARADISE) in the context of adaptive dialog systems
with RL. Thus, relying on reward sources can be a solution, e.g., by weighing them in
terms of their importance. In an industrial context, solving the task most efficiently
might be more important than the user’s happiness within this interaction. Thus, the
implementation can give task performance more importance for calculating the reward.
In an entertainment context, the reverse situation might be desirable by focusing the
reward signal more on user engagement, thus giving engagement more weight. The
specific design of the reward signal depends on the adaptation goal.

Again, the task’s episodic or non-episodic notion also comes into play. A typical ap-
proach in an episodic task is to send a positive or negative reward signal only in case of
success or failure when entering a final state. Reward shaping is an opportunity to guide
the robot towards the goal based on expert feedback or other valuable data observed
during the interaction. For example, the user solves a puzzle task successfully. However,
user engagement can be low over a long time during the interaction, indicating how the
robot behaves is suboptimal despite finally solving the task. In such cases, it also makes
sense to consider user engagement for calculating a reward during the interaction. Thus,
reward shaping is one opportunity for reacting and adapting to the user’s behaviors
during the interaction. It becomes even more important in non-episodic tasks, which do
not end in final states and thus require continuous rewards.

The reward signal also depends on the environment. In a nondeterministic environ-
ment, the reward will be noisy, which will most probably be the case when relying on
human input. In a nonstationary environment, rewards will change over time, as do the
real values of the underlying, changing problem. Again, this can happen, for example,
when the user’s preferences or attitudes change over time. The induced variance in the
reward signal thus affects the set of appropriate learning algorithms, which must be
able to cope with it.

12.2.3. The Adaptation Triad

Figure 12.4 shows a visual tool called the Adaptation Triad. It helps during problem
modeling for brainstorming, collecting, and sorting relevant data for the RL model. The
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system designer sorts the data in different cells depending on their intended purposes,
such as potential state variables, actions, or reward sources. At the same time, the
diagram automatically gives a rough estimate of the complexity of the RL problem: the
fuller the diagram, the more complex the resulting problem. A particular advantage
of the Adaptation Triad is that it explicitly splits the learning agent’s environment into
the user, task, and robot. One can always see at a glance the specific role of the human
and robot and which data is needed and processed. The diagram consists of three parts:
the user, robot, and task. Each of these parts is further subdivided into subcategories,
corresponding to aspects of RL.

12.2.3.1. Task

The interaction task is part of the adaptation process if the robot assists the user while
processing a task, such as in socially assistive scenarios. For example, adaptation might
address how the robot should behave in different situations of the task, and manipulating
the task itself might also be an option for the RL agent. The task can contribute to the set
of states (TS), actions (TA), and also as sources of reward (TR).

12.2.3.2. Robot

The robot is part of the set of states and actions. For example, the learning process
might change the robot’s multimodal behaviors, e.g., to explore different modalities,
formulations, and more. Actions (RA) manipulate these behaviors. Moreover, the robot’s
current configuration of these modalities or other properties might be relevant, resulting
in different robot states (RS). There is no reward section in the Adaptation Triad for the
robot because it is only an output medium, which does not provide any reward signal.
Data sensed by the robot’s hardware might be used as reward signals, such as the user’s
social signals or task-specific data captured with internal cameras. Nevertheless, this
data semantically originates in the user or task category.

12.2.3.3. User

The user contributes to the Adaptation Triad in terms of states and rewards. For example,
the user’s state may include their current mood, engagement, or other data, which might
be important to react to changes in these variables. Thus, information about the user
might serve as potential user state variables (US). Similarly, the user might also contribute
explicit or implicit reward signals (UR), e.g., by pressing buttons for rating the robot’s
actions or sending social signals, such as engagement or amusement. There is no action
category for the user in the Adaptation Triad since the learning agent cannot control the
user. Requesting the user to do something semantically is a task or robot action.

In some interaction scenarios, there might be a fluent transition between task and robot
states and actions. For example, in case of robot adaptation happens in an interaction
scenario without assistance (e.g., robot storytelling or joke-telling, which aims to entertain
the user while the user is passively consuming the content), the task and robot category
might collapse into one single unit.
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12.2.4. Simulation

The first step for evaluating the RL model typically involves conducting simulation
experiments. They serve several purposes at the same time:

1. checking whether the learning agent’s technical implementation is correct,

2. checking whether the RL model converges,

3. checking how fast it converges given a specific parameter configuration,

4. checking how prone it is to noise, and

5. tweaking parameter values correspondingly.

The basic idea is to replace the natural environment with a simulated one driven by a
rule-based or statistical model. Everything except for the environment remains the same,
as modeled in step one. Since the user is part of the environment (see section 12.2.2), the
simulation of human reactions constitutes a key challenge for simulations, along with
potential task-related effects. In the context at hand, a user simulation implements those
reactions to the learning agent’s executed actions, which are expected to occur in the
real-life evaluation. User simulations have also become a common approach, i.a., for
training RL agents in spoken dialog systems (Schatzmann et al., 2006).

User simulations might use machine learning techniques by training and inferring the
simulated user’s reactions from real observations. For example, probabilities for different
user reactions in different situations might be calculated based on annotated recordings.
These probabilities then determine how the simulated user reacts to the agent’s executed
actions. Recorded and annotated interaction corpora can also be interpreted as sequential
decision-making problems for training RL agents offline.

Measuring agent performance is the second key element of every simulation. As
illustrated in Figure 12.2 introspective measurements (see section 6.1.4) are used for
measuring performance in simulations. In RL, the measures presented from section 2.7
are used to get an impression of the agent’s success or failure over time. For example, the
average reward and the percentage of optimal actions should increase. The RMSE should
decline. Otherwise, there are mistakes in the RL model, implementation, or suboptimal
parameter values. Conversely, such insights point out technical and conceptual mistakes,
which must be fixed by re-iterating, debugging, and improving the model. Running lots
of experiments with different settings and configurations allows for eliminating as many
potential mistakes as possible before initiating an evaluation with human users.

12.2.4.1. Advantages

Simulations have advantages when compared with the subsequent evaluation. Making
a simulation often takes a fraction of the time it would take to conduct a user study.
Depending on the complexity, simulations can sometimes run in seconds or milliseconds.
Moreover, simulations are reproducible if implemented deterministically. They allow for
tweaking parameter values by running the same experiment repeatedly while carefully
making small changes. Thus, the designer has maximum control, which is handy for
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debugging the process. Potential implementation errors might be found soon with a
simulation, and – most important – one can re-iterate and tweak the model for as long
as it may be necessary. Going back to step one and re-iterating the model allows for
excluding as many potential problems as possible during a human evaluation. The
simulation also allows observing how the learning agent reacts to different external
influences. For example, the simulation logic can implement different kinds of noise (see
section 12.3.1.3). Due to the reproducibility, simulations also allow for isolated focus on
one specific aspect or parameter without the influence of potential influences occurring
in real interactions.

Since a simulation does not involve human participants, the overall cost of execution
time and effort is low. A fast iteration cycle and batch processing are the results, making it
possible to diagnose errors early and to start troubleshooting without running the risk of
jeopardizing study results due to implementation errors or wrong problem modeling. A
challenge in this context is that implementing the simulated environment is an additional
possible cause of errors, which could lead to wrong conclusions.

12.2.4.2. Disadvantages

The major problem with simulations is that the environment – including the user – needs
to be abstracted and approximated. Depending on the level of abstraction, the simulation
might not emulate human behaviors and reactions adequately due to their complexity.
In some scenarios, the user’s reactions to the robot’s actions might not be known upfront.
However, this will also be one of the core reasons why an RL approach is desired.

The system designer must define the simulated user’s behaviors and the accompanying
environmental response. A rule-based approach can be programmed in code but might
not emulate realistic human reactions. One approach for overcoming this issue is a
combination with WoZ experiments (see section 12.2.5.2), which are also used in spoken
dialogue systems (Rieser and Lemon, 2011). When relying on statistical models for user
simulation, another challenge is to acquire the required data in sufficient quantity.

All in all, simulations should be considered a first evaluation step in parallel to problem
modeling. They are important to ensure that the proposed adaptation approach works
on a technical level and can achieve a specified goal. Due to abstractions made for the
user model, a simulation is no guarantee for learning success during human evaluation.

12.2.5. Evaluation

The adaptation approach is evaluated with humans in the real environment during
real-world evaluation. In case of technical problems, the system designer would need to
go back to step one to re-iterate the RL model. Since the effort for a human evaluation is
typically much higher than for a simulation, it is helpful to identify and address as many
potential errors as possible in a preceding simulation. However, a human evaluation is
the best opportunity for:

1. getting insights about the agent’s performance in the user’s real environment, and

2. getting subjective feedback from participants on user experience.
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As illustrated in Figure 12.2 all of introspective, interaction and subjective measure-
ments (see section 6.1.4) are used for measuring performance and for getting insights
about the adaptation process. While a simulation primarily provides insights into the
agent’s performance in an abstracted environment, the subjective feedback is more
informative about the impact on user experience and potential side effects. Moreover,
different kinds of noise (see section 12.3.1.3) and other unanticipated problems will
potentially occur in natural environments.

The agent’s performance can still be automatically measured based on the runtime
interaction data. However, those measures from section 2.7, which rely on the knowledge
of the real values 𝑞∗ (e.g., percentage of optimal actions, RMSE), are not applicable during
evaluation since the real values are unknown in the real environment. User experience-
related data can be acquired, e.g., based on questionnaires.

Advantages and disadvantages result from the opposites of their counterparts in
simulations: user studies are more time-consuming and expensive, they often cannot
be repeated or reproduced easily, and the system designer has less control than in
a simulation. In addition, external influences might bias participants’ reactions and
decisions, which are not controllable by the agent and cannot be simulated. At the same
time, studies in real environments are necessary to get these valuable insights.

All in all, evaluations typically follow an initial simulation. They are essential for getting
insights beyond the technical performance, including user experience. The following
section outlines additional challenges that arise for in-situ studies due to uncertainty in
uncontrolled environments.

12.2.5.1. In-Situ Evaluation Challenges

In-situ evaluations are important since participants may behave differently in a con-
trolled laboratory versus a domestic environment, as observed in Berry et al. (2009). The
authors mention that users accepted suboptimal recommendations under laboratory
conditions, and consequently, a meeting scheduling agent was improperly trained. Thus,
deploying adaptive systems to end-users “in the wild” allows for testing the adaptation
process under real-life conditions.

The evaluation of adaptation in domestic environments involves additional challenges.
Evaluating an adaptive system per se is not trivial because it requires observation over
an extended time. Since the number of samples collected during training limits the
performance of RL, the amount of feedback collected during evaluation should be as
large as possible. Some experiments in the literature conduct studies with several weeks
of duration to get insights on long-term impacts, e.g., in the context of education. The
evaluation can also address the novelty effect over a longer time as a positive side effect.
Initially, people are enthusiastic about new technology, which decreases over time when
they get used to it. This bias impacts their feedback and user experience in the beginning.

Another issue is privacy. When relying on human feedback in terms of social signals
(see section 12.3), corresponding sensors and SSP techniques are required. Participants
must agree to be monitored by the machine with cameras, microphones, or other sen-
sors in their domestic environment. As outlined in section 12.3.1.3, there are different
potential external influences in the user’s environment impacting this sensing and inter-
pretation process.
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In general, there are also substantial technical challenges when conducting in-situ
studies. Since the system needs to be completely autonomous, there is no possibility
to intervene, such as in a controlled environment in the lab. Thus, error handling is
an important aspect, which becomes increasingly important when several components
need to work together. There is no option to make sure that it is working correctly or to
control the robot remotely if there is no internet connection.

12.2.5.2. Wizard-of-Oz Studies

In WoZ experiments, the robot is not acting completely autonomously, but (a part of) it
is remote-controlled by a human operator (the wizard). The test person is not informed
about this manipulation but has the illusion of interacting with an autonomous robot.
WoZ setups allow for conducting complex HRI experiments even if the robot is not
autonomous, e.g., because processing the user’s input is too complex. Moreover, they
allow for rapid prototyping of behaviors and testing the effect of behavior variations
without needing to implement them. For example, the majority of HRI studies about
robot personality uses WoZ setups or hybrid systems where only part of the robot’s
behavior is autonomous (Robert et al., 2019).

Furthermore, WoZ experiments have another purpose in the context of RL and HRI:
they address the cold-start problem, i.e., the problem of having to learn from scratch
without any previous knowledge. An untrained RL agent with an empty policy needs to
learn exclusively based on random exploration – trial and error. In contrast, the human
wizard controls the agent’s action selection in a WoZ experiment. Thus, expert human
knowledge and intuition train the learning agent, which can be refined in autonomous
interactions without a wizard. The state and reward calculation is typically automated
and monitored by the wizard, who picks only the action. A potential limitation of this
human guidance approach is the number of states visited. The more states visited during
the WoZ study, the better the pre-trained agent will perform autonomously. Special care
must be taken to ensure that the wizard behaves consistently for all participants. Unlike
an autonomous application, human operators are subject to fatigue and distractions.

12.3. Socially-Aware Reinforcement Learning

Pentland (2005) introduces the term socially-aware computing. The author describes
computers as “socially ignorant” and that this contradicts human life and communication.
However, he points out that by “building machines that understand social signaling
and social context, technologists can dramatically improve collective decision-making”.
According to Pentland, two aspects are of central importance for addressing the machine’s
social ignorance: quantifying social context and teaching successful social behavior.

Thus, researchers have started creating socially-aware interfaces in HCI and HRI over
the years (Schiller et al., 2019). In general, social awareness is the “spontaneous under-
standing of social situations that does not require attention or reasoning” (Vinciarelli,
Pantic, and Bourlard, 2009). As outlined in section 3.4, SSP techniques process human
social signals during the interaction. The inclusion of such data in the machine’s decision-
making is essential for making the machine aware of the user and their current affective
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Figure 12.5.: Human social signals can be used in two ways.

state or intentions. By employing SSP techniques, the machine can infer interaction
dynamics (see section 12.3.4) implicitly and automatically without additional explicit
user feedback.

Schiller et al. (2019) point out that the implementation of socially-aware interfaces
requires three building blocks:

1. social perception,

2. socially-aware behavior synthesis, and

3. learning socially-aware behaviors.

As outlined in section 5.1, many social robots have typical sensors required for imple-
menting the social perception with SSP techniques, as well as actuators for synthesizing
socially-aware behaviors (see Part III). One approach for implementing learning of
socially-aware behaviors is RL. The specific opportunities and challenges in the context
of socially-aware RL are detailed below.

12.3.1. Integration of Human Social Signals
A socially-aware RL process includes human social signals in its model. There are two
non-exclusive options for including the signals in the RL loop (Figure 12.5 illustrates
both):

1. inclusion as feature(s) in the state space, and

2. shaping the reward signal.

12.3.1.1. State Space

The learning agent learns to react to specific user states by including social signals in
the state space. For example, the robot could learn its optimal behavior for different
user engagement (e.g., using a stronger voice when the user is disengaged and a normal
voice when the user is engaged). There is a dependency between the user’s state (current
engagement) and the robot’s behaviors (volume) because the robot aims to learn how to
behave given the user’s current state. Then, the corresponding social signals (here: user
engagement) must1 be included in the state space to make the robot aware of the user’s
state and state changes. Chapter 14 uses this approach.

1One could also think about not including engagement in the state space, but rewarding the robot
according to changes in user engagement (e.g., a positive reward for increasing engagement and
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12.3.1.2. Reward Signal

The second option is to include human social signals in the RL reward signal. For example,
shaping rewards (see section 6.2) are used in parallel to a task-based reward. They guide
the agent towards the goal, relying not only on task-based measurements, such as user
performance but also considering interaction dynamics, such as user engagement. A
positive or negative reward may be calculated based on the temporal development of such
dynamics. For example, high user engagement is desirable and preferred over low user
engagement. By estimating user engagement 𝑒𝑡 continuously over times 𝑡, 𝑡 + 1, 𝑡 + 2, . . .
and calculating the difference of user engagement Δ𝑒 = 𝑒𝑡 − 𝑒𝑡−1 after execution of a
robot’s action Δ𝑒 encodes the increase or decrease of engagement and thus can be used
as a (shaping) reward.

There will be no more positive feedback when reaching the maximum 𝑒 value. Sim-
ilarly, there will be no more negative feedback when reaching the minimum 𝑒 value.
Nevertheless, the agent can learn in these situations since a decrease at the maximum
value results in negative feedback (which the agent aims to avoid), and an increase at the
minimum value results in positive feedback (which the agent aims to achieve). Chapter
14 uses this approach.

Including human social signals and related interaction dynamics in the reward signal
is also one option for addressing the problem of sparse rewards. This problem exists if
a positive or negative reward is delivered only sparingly (for example, when reaching
a terminal state in case of success or failure) with no or few non-zero rewards along
the way (Sutton and Barto, 2018). As a result, the agent appears to wander aimlessly for
long periods of time because the agent cannot detect whether it makes progress towards
the goal (Sutton and Barto, 2018). With social signals and interaction dynamics being
a continuous source of feedback, they may guide the agent towards the goal. They are
also of particular interest for non-episodic tasks without terminal states since non-zero
rewards must be delivered during the open-ended interaction.

12.3.1.3. Noise

Including human social signals in the RL loop has its challenges. Different kinds of noise
occur in this process (see Figure 12.6 and Figure 12.9):

• The human is a nondeterministic environment: their reactions do not need to be
correlated with the actions the robot executes. Human feedback can vary from
time to time, e.g., due to external influences (see also section 12.4.2).

• The sensing hardware itself is subject to physical restrictions that limit the signals
which can be perceived (e.g., camera field of view or resolution, interferences, such
as backlight, loud noise).

a negative reward for decreasing engagement, see next section). While this might work in some
cases, there is an important restriction: the robot cannot learn a dependency between current user
engagement and optimal action. It might result in suboptimal behavior because the robot cannot
distinguish whether the user is engaged in this moment or not. Thus, it can only learn whether the
strong or normal voice is good or bad “in average”.
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Figure 12.7.: Human social signals can be used to realize both explicit and implicit feed-
back.

• When processing social signals, the interpretation of the raw data often relies on
machine learning itself, and the result can only be an approximation of the actual
user’s behaviors. Consequently, the data received for learning are noisy and allow
concluding the user’s intentions, needs, or preferences only to a certain degree.

• The user’s reaction to the robot’s actions and behavior may vary from time to time
as preferences may change, too (see also section 12.4.1).

12.3.2. Explicit vs. Implicit Feedback

Feedback for adaptation can be provided either explicitly or implicitly (see section 6.3).
The user provides explicit feedback often via traditional input, such as a keyboard,
mouse, or touch. The system can automatically derive implicit feedback from task-based
information, such as user performance measurements and biosignals. Explicit feedback
can be very expressive and informative but comes at the expense of additional effort
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Figure 12.8.: A typical socially-aware RL process.

for the user. They have to consciously provide input, which might distract from the
actual interaction and task. In contrast, implicit feedback with the user unconsciously
providing feedback does not require additional effort. However, it might be less reliable,
less efficient, more prone to noise, and raise privacy questions.

Human social signals can be used as explicit and implicit feedback (see Figure 12.7).
For example, the user might use iconic gestures (see section 3.3.1), such as thumb signals,
for agreeing (thumbs up for positive reward) or disagreeing (thumbs down for negative
reward) explicitly. At the same time, user engagement, attention, or affect can be inferred
from posture, prosody, and more based on SSP techniques and serve as shaping reward or
feature in the state space. Verbal and non-verbal human social signals can be combined,
used explicitly and implicitly to create a more complex reward signal or state space.

12.3.3. Learning Loop
Figure 12.8 illustrates a socially-aware RL process, which closes the loop between adap-
tation of robot behaviors and human reactions:

1. Hardware sensors sense human verbal and non-verbal signals.

2. SSP techniques are applied to interpret the raw sensor data. The inferred interac-
tion dynamics of relevance, such as engagement or affect, serve as the dynamic
user model (see section 6.1).

3. Changes in the user model influence the current state or reward signal as described
in section 12.2.2 and section 12.3.

4. The execution of the next action manipulates the robot’s behaviors.

184



12.4. Algorithmic Considerations

12.3.4. Interaction Dynamics

Different types of information about users (see also section 6.1) are of interest in a
socially-aware RL process. Section 6.2 and Table 6.1 outlined the use of such data in the
literature. Typical interaction dynamics are described in the following (see also chapter 3
on SSP). Additional examples include user comfort and rapport.

Attention is the division of a limited amount of mental resources over different bodily,
sensorial, cognitive, or combined activities (Kahneman, 1973; Bakker and Nie-
mantsverdriet, 2016). In HCI and HRI user attention is often measured based on
visual and neurophysiological data, including eye gaze and neural activity (Peters,
Asteriadis, and Rebolledo-Mendez, 2009; Szafir and Mutlu, 2012).

Affect and emotion are related to someone’s feelings, drives, mood, and more. Often,
the two-dimensional valence-arousal model by Posner, Russell, and Peterson (2005)
is used to differentiate positive and negative emotions (valence) and mental and
physical activity (arousal). Automatic affect recognition systems use facial ex-
pression, paralinguistics, gestures, postures, and physiological responses, such as
heart rate, blood volume pulse, skin conductivity, muscle activity, respiration, body
temperature, pupil dilation, and electroencephalography.

Engagement is “often used synonymously to refer to a number of related concepts,
such as interest, sustained attention, immersion and involvement” (Oertel et al.,
2020). The thesis at hand focuses on social engagement, i.e., the user’s engagement
with a robot in contrast to task engagement, which focuses on the interaction task.
Automatic prediction mechanisms for social engagement use a diversity of social
signals, including the user’s eye gaze, posture, valence, interest, and anticipatory
behavior, and physiological signals, such as heart rate and electrodermal activity
(Oertel et al., 2020).

The inclusion of such interaction dynamics in the RL agent’s state space is what makes
the learning process “socially-aware”: the agent gets the ability to perceive changes in
these dynamics and learns to react accordingly.

12.4. Algorithmic Considerations

Using RL for personalization and including human social signals in the RL loop involves
several challenges. These challenges arise from the human being part of the RL agent’s
environment, but at the same time having limited ability to sense information about
the user. The following sections present essential aspects to remember when including
human social signals and human feedback in a RL process.

12.4.1. User Preferences and (Non)Stationary Problems

User and context information serves as input to the adaptation process. Such short-term
and long-term features are listed in section 6.1.3.2. The user’s individual preferences
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Figure 12.9.: Different kinds of noise in a domestic environment.

thus may be influenced by a range of diverse personal attitudes. Some of them (typically
related to long-term features) will hardly change as they might be deeply anchored in a
person’s social environment, culture, education, upbringing, or personal experiences.
Others (typically related to short-term features) might change in a shorter time.

From an algorithmic perspective, the potential change of user preferences is of rel-
evance in terms of the (non-)stationarity of the underlying problem (see section 2.4.1).
When analyzing tasks, modeling problems, and selecting corresponding algorithms,
(non-)stationarity is an important property. Suppose fixed user preferences over the
whole interaction. In that case, this might be interpreted as real values 𝑞∗, which do not
change over time, which section 2.4.1 defined as a stationary problem. Otherwise, the
learning algorithm must be able to cope with nonstationary problems.

12.4.2. User Behaviors, Distractions and (Non)Determinism
Even when facing a stationary problem, user behaviors and feedback might nevertheless
not always be consistent due to different reasons, especially in uncontrolled environ-
ments, such as at home:

1. Users might get distracted due to external influences, such as radio news, other
people in the room, street noise, and much more (see Figure 12.9). It might result
in unintentional reactions, such as laughing because somebody else is making a
funny comment while the user interacts with the robot.

2. The user’s current mood and emotion might bias the expressed reactions towards
the robot. In one situation, a user might laugh about a funny joke presented by
the robot. However, in another situation, they might not laugh due to a disappoint-
ing message received moments ago, even if the joke corresponds to their humor
preferences.
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3. The user might try to adapt to the adaptation process itself to compensate for the
robot’s change of behaviors (see also section 16.4).

An extensive amount of sensitive and context information is necessary for a social
robot to recognize that the user’s reactions are not caused by the robot’s behaviors, which
is beyond the scope of this thesis. Instead, from an algorithmic point of view, inconsistent
user feedback is interpreted as a result of a nondeterministic environment (see also
section 2.4.2).

12.5. Conclusion
This chapter presented a structured overview and a conceptual framework for modeling,
simulating, and evaluating RL experiments for social robot adaptation in HRI. Stakehold-
ers in this context are the robot (which expresses the adapted behaviors), the user (who
expresses explicit or implicit feedback), and the system designer (who is responsible
for setting up and evaluating the process). The RL framework, introduced in chapter 2,
allows for real-time adaptation during the interaction and can deal with uncertainty.

Apart from the specification of the RL problem with state space, action space, reward,
and learning algorithm (all of which are inter-dependent), the system designer faces
a set of challenges when simulating and evaluating user-adaptive interaction in HRI.
During simulation, the user’s reactions and feedback can be emulated only to a certain
degree; during human evaluation, different types of noise occur, which bias human
feedback, sensed data, and ultimately the resulting policy. In addition, in-situ studies in
the participants’ domestic environments provide the opportunity to get more reliable
results but also face additional challenges, such as the participants’ privacy.

Two central contributions of this chapter are the Adaptation Triad and the description
of socially-aware RL processes. The former provides a graphical tool for brainstorming
and breaking down the RL problem into three categories: the user, the robot, and the
task, listing their contributions and influence within the RL problem. The latter gives
an overview of the inclusion of human social signals and related interaction dynamics,
such as engagement, in a RL process for user-adaptive interaction. This data allows for
reacting timely to changes regarding the user’s state and shaping the reward signal, thus
also addressing the problem of sparse rewards.

This chapter serves as a blueprint for the following experiments, which implement,
simulate, and evaluate adaptation processes based on explicit and implicit human feed-
back. The robot’s behaviors rely on the generation approaches from Part III while the
design of the RL agents follows the considerations listed in this chapter.
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Chapter 12 presented a structured overview and conceptual framework for implementing
robot behavior adaptation with RL. The current and following chapters build upon this
approach: they put it into practice while focusing on the non-functional adaptation of
social robot behaviors. The chapters’ difference is in the RL model. The chapter at hand
uses a stateless environment and explicit feedback for approximating user preferences;
the next chapter includes human social signals in stateful RL processes to react to changes
in user state and relies on implicit feedback. Both chapters use the generation approaches
from Part III for expressing robot behaviors. In combination, the presented experiments
address the identified research gaps about the real-time non-functional adaptation of
robot personality, persona, politeness, and humor.

The literature from section 5.2.3 and section 5.3 indicated different liking for different
robot behaviors based on user surveys. Motivated by these insights, the following sections
present a real-time adaptation approach for a domestic robotic companion’s expressed
politeness and persona. While chapter 8 already explored the corresponding generation
of the robot’s verbal utterances and function of the evaluation prototype, the focus is
now on the adaptation process design, its simulation, and evaluation. It uses a stateless
model but is modeled as an associative search with different actions in three application
contexts. The agent receives explicit feedback via buttons on a hardware control panel
and interprets it as a positive or negative reward signal. After initial simulations of the
user’s feedback, the adaptation approach is evaluated in the wild, and the results of the
in-situ study are discussed.

The concept and implementation were part of the works presented and reviewed in
Ritschel et al. (2019d) and Ritschel et al. (2019c). The contents of this chapter expand
these publications.

13.1. Experiment: Approximating Politeness and Persona
Preferences

This section introduces an RL approach, which combines explicit human feedback with
stationary problem modeling for approximating user preferences about the robot’s
expressed politeness and persona. It is implemented based on the robotic elderly com-
panion introduced in chapter 8. The domestic robot with assistive and entertainment
applications serves as the technological basis and evaluation context. The following adap-
tation approach is simulated in section 13.2 and evaluated in the domestic environment
of senior study participants in section 13.3.
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Figure 13.2.: Adaptation is realized with associative search, involving one 𝑘-armed bandit
problem for each application category.

13.1.1. Overview

Chapter 8 presented a domestic robotic companion, which communicates politeness
and persona. This section presents an RL approach to personalize the social robot’s
verbal behaviors autonomously to the individual user. In contrast to the literature from
section 5.2.3 and section 5.3 the approach at hand approximates user preferences and
optimizes action selection during the interaction.

Figure 13.1 illustrates the interaction scenario. The robot presents information and
comments on what happens on the screen in different application contexts. Adaptation
uses associative search: three RL agents are split up into three application contexts,
each addressing one of politeness or persona preferences (see section 13.1.2). The user
explicitly gives the reward to the agent associated with the currently active application.
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13.1.2. Adaptation Process

Figure 13.2 illustrates the overall adaptation approach. RL is realized with an associative
search (see section 2.6.1), which uses three distinct 𝑘-armed bandit problems for the
games, recommendations and information retrieval context (see also Figure 8.2). The
games and information retrieval agent learn about mentor vs. opponent and companion
vs. assistant robot persona, respectively; the recommendations agent approximates
the user’s preferences about the robot’s politeness. Personas and politeness were not
combined in a single agent by intention to not mix different factors during evaluation.

Politeness and persona preferences are assumed to be related to long-term user infor-
mation, such as preferences, personality, culture, and gender (see section 6.1.3.2). Thus,
they are expected to be fixed in the long run. As a result, the learning tasks are modeled
as stationary problems with fixed 𝑞∗ values (see also section 12.4.1), without prejudice to
nondeterminism due to variations in the user’s feedback (see also section 12.4.2). Since
there is no final state in this problem, it is a continuing learning process, which runs
until it is stopped manually (see section 2.4.3).

The first task for setting up the adaptation process is to define the RL model as described
in chapter 12. Figure 13.3 gives an overview of the identified user, robot, and task features
contributing to the RL model. The figure is a slightly modified version of Figure 12.4:
since the experiment at hand is stateless and implemented as an associative search, there
is no state space but a context for independent agents. State areas were renamed to
context for illustrating the different contexts of each 𝑘-armed bandit. The different areas
are described in the following.
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13.1.2.1. Action Space

The actions of the three learning agents correspond to the personas and politeness
strategies as explained in section 8.2 and section 8.3. Two actions make the agent learn
about the persona in the context of games: mentor (ME) and opponent (OP) persona.

Agame = {ME,OP}

Similar applies to the agent used in the context of information retrieval, resulting in
two actions: assistant (AS) and companion (CO) persona.

Ainfo = {AS, CO}

For recommendations, the actions correspond to the eight politeness strategies: direct
command (DC), indirect suggestion (IS), request (RE), question (QU), socratic hint (SH),
robot’s goal (RG), user’s goal (UG), and shared goal (SG).

Areco = {DC, IS,RE,QU, SH, SG,RG,UG}

13.1.2.2. Reward

The user provides explicit feedback via buttons on the control panel. As outlined in
section 8.1.2 and Figure 8.4, the control panel includes buttons for giving positive and
negative feedback about the robot’s verbal behaviors, which are interpreted as RL reward.
The system informs the user when to give positive or negative feedback at each action
execution by lighting up the feedback buttons. Afterward, the user has 30 seconds to
rate the robot’s presented utterance.

The right button (thumbs up) maps to a positive reward (+1), and the left button (thumbs
down) maps to a negative reward (−1). There is no “neutral” value in between. If the
user is undecided, they can ignore the assessment. In this case, the learning agent does
not get a reward signal and does not learn, resulting in no change to the estimated 𝑄
values. It forces users to express a clear signal or tendency whether they like or dislike
the robot’s behavior. Pressing one of the buttons sends the feedback to the adaptation
process and turns off the lights. In case of no feedback, the lights automatically switch
off after 30 seconds. Afterward, the user cannot give feedback anymore.

Both positive and negative feedback is essential for estimating the actions’ values. For
example, if users would give only positive, neutral, or negative rewards for all actions,
this would result in all the same 𝑄 values.

𝑅𝑡 =

{
+1, for pressing the thumbs up button
−1, for pressing the thumbs down button

13.1.2.3. Algorithm

In combination, the three 𝑘-armed bandits implement the associative search. In each
application context, the associated learning agent receives the user’s feedback and
calculates each action’s 𝑄 value, independent of the other agents. These estimate the

192



13.2. Simulation

real values 𝑞∗, which represent the human’s individual preferences, i.e., liking of the
corresponding personas or politeness strategies, which are unknown to the agent.

The algorithm for stationary problems from section 2.6.1 estimates each action’s 𝑄
value by computing the average iteratively:

𝑄(𝐴𝑡) ← 𝑄(𝐴𝑡) +
1

𝑁 (𝐴𝑡)
[𝑅𝑡+1 − 𝑄(𝐴𝑡)]

The agents use UCB action selection (see section 2.3.3) with 𝑐 = 1 (see next section),
which ensures a prioritized exploration of actions based on the associated uncertainty
about their estimated values.

13.2. Simulation

The simulation focuses on politeness strategies with eight actions. A simplified simulated
user replaces the human and acts based on a predefined behavior. Since different kinds
of noise might bias human feedback in the real, domestic environment in an in-situ
study (see also section 12.3.1.3, section 12.4.1 and section 12.4.2) the simulation uses ran-
domized user feedback. Randomized user feedback is interpreted as a nondeterministic
environment since the user is part of the environment.

Since there is no notion of state for the bandit problem at hand, user feedback is
the only aspect that needs to be automated for the simulation. The reward is the only
information the user provides in the real-world setting. Thus, the reward calculation is
the task of the simulated user.

13.2.1. Simulated User

The simulation replaces the human with a rule-based logic. Each simulated user is
represented by eight randomly initialized values, one for each of the actions inAreco:

𝑝𝐷𝐶 , 𝑝𝐼𝑆, 𝑝𝑅𝐸, 𝑝𝑄𝑈 , 𝑝𝑆𝐻 , 𝑝𝑆𝐺 , 𝑝𝑅𝐺 , 𝑝𝑈𝐺 ∈ [0; 1]

They represent probabilities and determine how likely the user will give positive
feedback when the agent executes the corresponding action. For example, 𝑝𝐷𝐶 = 0.6
means that the simulated user gives positive feedback in 60 % of the cases when the
agent selects action 𝐷𝐶. See algorithm 2 for pseudocode.

In real interactions, the agent ignores the absence of human feedback for an executed
action (estimated values do not change). There is no need to consider this case for the
simulation, which would also skip this learning step.

The probabilities also determine the best action for the agent. If the agent learns
correctly, it should identify the action with the highest 𝑝 value as the greedy action over
time since it receives the most positive reward. Since all 𝑝 values have random values,
no action will likely result in positive feedback exclusively. Conversely, all actions likely
get negative feedback with a certain probability, even if the action is greedy. This noise
simulates the agent’s nondeterministic environment, i.e., biased human feedback.
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Algorithm 2: Reward calculation for the simulated user.
Input: array of action probabilities 𝑝 ∈ [0; 1), executed action 𝑎 ∈ [0; 7]
Output: reward value

1 𝑟 ←− a random float in [0; 1)
2 if 𝑟 < 𝑝[𝑎] then // with 𝑝[𝑎] probability
3 𝑅←− 1.0 // positive reward
4 else
5 𝑅←− −1.0 // negative reward
6 return 𝑅

13.2.2. Results
The simulation uses a set of 10 artificial users with different, randomly initialized prefer-
ences (𝑝 values), similar to the expected number of participants in the in-situ study. Each
simulated user interacts for a fixed number of 300 actions, corresponding to 300 robot
utterances, each followed by positive or negative feedback from the human. Since the
learning task is non-episodic but continuing, the simulation logic terminates the learning
process after these 300 learning steps. It reinitializes the 𝑝 values to new random values
for the next run. Thus, the learning task changes and the agent does not take along
previous knowledge, as would be the case for episodic problems. Each simulated agent
starts from scratch and needs to estimate the preferences 𝑝 within 300 steps.

As described in section 12.2.4, introspective measurements are used in simulations to
evaluate the self-motivated goal of the adaptation process. The measures include the
reward (see section 2.7.1), the percentage of optimal actions (see section 2.7.2) and the
RMSE (see section 2.7.3). Each measure averages all ten simulated users. Measurements
were repeated for different values of 𝑐 for the UCB action selection to illustrate the
resulting different learning behavior and performance. Moreover, the final 𝑐 value for
the human user study was identified by analyzing the simulation results and selecting a
reasonable compromise (see below). All plots use a 95 % confidence interval (CI) band to
illustrate the similarity of the results between all simulated users.

Figure 13.4 illustrates the simulation results. For better readability, the reward plot
is scaled to the interval [0; 1] instead of [−1; 1] (0 becomes 0.5). Since the number of
simulated users is relatively small, the resulting plots of the averaged data appear more
or less jagged in the Figures 13.4(a), 13.4(b) and 13.4(c). Thus, Figure 13.4(d) adds another
plot averaging over 1000 simulated users. It smooths out the curves and gives a better
impression of the agent’s performance in general, which is especially visible in the
average reward.

13.2.2.1. Reward

The reward is calculated based on the simulated users’ binary feedback. At the beginning
of each run, the algorithm selects every action once before continuing with UCB action
selection. The intention is to get at least one sample for each action. As a consequence,
the agent’s behavior is not greedy in the first steps of the simulation, which is also visible
in the averaged rewards. Afterward, the reward tends to increase over time.
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(a) 𝑐 = 0, averaged over 10 simulated users
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(b) 𝑐 = 1, averaged over 10 simulated users
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(c) 𝑐 = 10, averaged over 10 simulated users
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(d) 𝑐 = 1, averaged over 1000 simulated users

Figure 13.4.: The agent’s simulation performance over time with a 95 % CI band. Figure
13.4(b) shows typical UCB spikes at the beginning.
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There is an obvious connection between the 𝑐 parameter and the average rewards since
𝑐 controls the amount of exploration. The more exploration, the smaller the received
rewards due to suboptimal action selection, which is especially visible when comparing
the averaged rewards in Figure 13.4(a) or 13.4(b) with Figure 13.4(c).

One might wonder why the average reward does not approach 1.0. The main reason
is the agent’s exploration. Moreover, the greedy action probably does not have a 𝑝
value of 1.0. Thus, user feedback will always be noisy since it includes more or less
negative feedback, even if the greedy action is selected, resulting in a nondeterministic
environment. Negative feedback occurs even more often if the agent selects a suboptimal
action during exploration.

The plots based on averages from 10 simulated users are too noisy to indicate a general
trend. Thus, Figure 13.4(d) makes the performance gain visible: in the long run, rewards
increase as the agent identifies the greedy action over time.

13.2.2.2. Percentage of Optimal Actions

The percentage of optimal actions confirms the findings from the reward plots. The
parameter 𝑐 controls the degree of exploitation and exploration and, thus, the final
percentage of optimal actions. The more exploration, the more often a suboptimal action
is selected, which leads to a lower final percentage of optimal actions. The percentage
of optimal actions is relatively high for 𝑐 = 0 because the agent primarily acts greedy.
Even though this results in many positive rewards, it adversely affects the accuracy of
the estimated preferences (see below). With increasing exploration, the percentage of
optimal actions decreases significantly, as does the reward.

13.2.2.3. RMSE

The RMSE measures the accuracy of the estimated preferences. In contrast to a human
evaluation, the preferences 𝑝 are known in the simulation, as its logic initializes them
randomly. The RMSE decreases quickly, which implies that the estimated values become
more accurate over time and that the agent successfully improves action selection.

As with the other measures, there is a clear connection between the RMSE and the
parameter 𝑐. The greater the value of 𝑐, the more accurate the estimated preferences.
For example, the final RMSE in for 𝑐 = 10 is approximately 0.1, which is much smaller
than for 𝑐 = 0 or 𝑐 = 1. A higher amount of exploration produces more samples for
suboptimal actions. Therefore, their estimated values become more accurate, too, which
reduces the overall RMSE. In the case of a small amount of exploration, there are many
samples for the optimal action but few for the majority of suboptimal actions, which
prevents the RMSE from approaching zero. The estimated preferences become more
accurate with increasing 𝑐, and the RMSE settles down at about 0.25 for 𝑐 = 0.

13.2.2.4. Compromise

The following observations derive from the simulation results:

• In the long run, the agent identifies the optimal action, and the accuracy of the
estimated preferences increases over time, independently of the parameter 𝑐.
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• 𝑐 directly controls the degree of exploration. In turn, the exploration-exploitation
dilemma greatly influences the agent’s performance.

• Performance and accuracy of the estimated preferences cannot be optimized at the
same time. The objective of increasing performance in terms of received rewards
and percentage of optimal actions at the expense of accuracy and vice versa.

• The first 20–50 steps have the greatest impact on the estimated preferences’ accu-
racy for the experiment at hand with eight actions.

As a consequence, 𝑐 = 1 is used for the human evaluation (see section 13.3) as a
compromise. It aims to address a reasonable accuracy of the estimated preferences and
reasonable robot behavior, which presents recommendations in the user’s preferred
style for approximately 50 percent of all actions.

13.3. Evaluation: In-Situ Study
After optimizing the learning parameters in the simulation, an in-situ study was con-
ducted with elderlies in their familiar surroundings. The study aimed to learn about the
users’ individual preferences regarding the robot’s expressed persona and politeness.

13.3.1. Acquisition Challenges
Apart from general challenges in in-situ studies (see section 12.2.5.1), the evaluation of the
assistive social robot involved some challenges. The acquisition of elderly participants
was not easy. Users, who did not use computing technologies throughout most of their
lives, sometimes were not interested in participating in the robot study. For example,
people refused to let a robot into their home without even being told the robot’s functions.
The lower affinity with electronic devices prevalent in the elderly population (Karrer
et al., 2009; Hammer et al., 2016) might explain this phenomenon.

Sometimes, people mentioned privacy concerns irrespective of their age, being afraid
of what happens to their data, such as when using speech recognition. The computing
resources in the wild still do not have enough power to realize speech recognition and
natural language processing with consumer hardware and open source software for
solving these tasks locally without sending data to external cloud services. Users also
needed to be healthy enough to interact with the robot since the applications addressed
seniors who wanted assistance but could interact with the system unassisted.

Most participants joined after a popular science talk by the author. The talk covered
social robotics and ongoing research at the lab. One part of the talk also presented
the general idea of the experiment. The author pointed out that new test persons are
welcome to participate in the in-situ study. After the talk, one member of the audience
offered their participation. They also informed friends about the robot study, and the
information spread based on personal recommendations.

Some participants did not have internet access at home or did not permit its usage due
to privacy concerns. Consequently, selected applications were deactivated for these test
persons, e.g., the weather forecast and news.
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Figure 13.5.: Participants’ attitudes towards electronic devices (TA-EG).

13.3.2. Participants, Apparatus, and Procedure

While the literature examined individual preferences about robot persona and politeness
in the lab and WoZ studies, the in-situ study addressed the target population in their
domestic environment. Nine participants (5 female, 4 male), aged 61 to 78 (𝑀 = 68.33,
𝑆𝐷 = 5.59), were recruited for an in-situ study in their domestic environment. All of
them were native German speakers, and all texts presented by the robot were in German.

At the beginning of the study, the participants were asked to fill in the TA-EG question-
naire by Karrer et al. (2009) about their attitude towards electronic devices. It measures
four aspects: Enthusiasm, Competence, Positive Effects of Technology and Negative Effects
of Technology. Figure 13.5 illustrates the result of the questionnaire. The scale [−2; 2]
reflects the wording used in the questionnaire: −2 corresponds to “strongly disagree”, 0
is “neutral” and 2 represents “strongly agree”.

Participants scored rather high on the positive aspect (𝑀 = 1.20, 𝑆𝐷 = 0.56), indicating
a general trust in electronic devices and belief that these can improve everyday life.
These results align with the lower rating of the negative aspect (𝑀 = −0.84, 𝑆𝐷 = 0.62),
indicating that participants attribute fewer negative consequences to electronic devices.
In average, enthusiasm (𝑀 = 0.16, 𝑆𝐷 = 0.40) and competence (𝑀 = 0.22, 𝑆𝐷 = 0.67) are
relatively neutral with a trend towards positive ratings. These results indicate a positive,
optimistic opinion about electronic devices. Since participants did not attribute a lack of
competence to themselves, they seemed confident in their ability to handle electronic
devices, at least at a basic level. This phenomenon is not overly common among this
demographic, possibly one reason why the test persons agreed to participate in the study.

First, the system was set up and configured according to the participant. This pro-
cess included activating or deactivating applications (see section 8.5) and entering the
participant’s city name to provide the correct weather forecast. Apart from a two-sided
manual for the hardware control panel and for starting, stopping, and interacting with
the robotic companion, only a few further instructions were given.

Participants were told that they should pay particular attention to the robot’s spoken
language and that their feedback should be given depending on whether they liked or
disliked how the robot expressed itself. They were also told to decide independently of
the semantic content or factual information presented, e.g., in the context of information
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Figure 13.6.: A female test person interacts with the robotic companion.

retrieval tasks. Furthermore, they were told that giving positive and negative feedback
is essential for the robot, and thus they should provide honest feedback whether they
like or dislike the robot’s behavior. These instructions were also part of the two written
and illustrated manual pages. Participants were not told which aspects of the robot’s
behaviors were manipulated in detail. After providing all this information and reviewing
the manual pages, the experimenter left the participant’s domestic environment.

Each user interacted with the robotic companion for one week. They were free to
interact with it whenever and as often as they wanted. The participants could explore
the different applications at will: at any time, participants were able to pick whatever
application they were interested in. During the study, the robot explained using the
control panel and application when the application started for the first time. Additionally,
the manual contained a labeled overview graphic with information about the control
panel’s keyboard assignment. At the end of the week, the experimenter revisited the
participant. The participant filled out a final questionnaire addressing user experience.

13.3.3. Results

13.3.3.1. User Experience

After the study, when collecting the hardware, the participant had to fill in the final
questionnaires to evaluate subjective measurements. First, the System Usability Scale
(Brooke, 1996) evaluated the custom-made control panel to get an idea of potential
operating errors or misunderstandings. It measures the usability of an electronic device
on a scale from 0 to 100, with everything above 68 being better than average. The right
side of Figure 13.7 illustrates the result. The control interface achieved good results (𝑀 =

80.00, 𝑆𝐷 = 12.93), which indicates that the participants perceived it as straightforward
to use and did not experience many problems.
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Figure 13.7.: Participants’ ratings of the robotic companion (AttrakDiff) and hardware
control panel (SUS).
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Figure 13.8.: Number of application invocations, i.e., how often each participant used
each application.

Second, the AttrakDiff questionnaire by Hassenzahl, Burmester, and Koller (2003)
measured the overall perception of the system. It consists of four subscales: Pragmatic
Quality (PQ), Hedonic Quality - Identity (HQ-I), Hedonic Quality - Stimulation (HQ-S) and
Attractivity (ATT). The results can be found on the left side of Figure 13.7 in range [−3; 3].
In average, all subscales were rated positively, especially with regard to ATT (𝑀 = 1.81,
𝑆𝐷 = 0.72) and PQ (𝑀 = 1.32, 𝑆𝐷 = 0.83). On the HQ-S (𝑀 = 1.05, 𝑆𝐷 = 0.85) and HQ-I
(𝑀 = 1.11, 𝑆𝐷 = 0.82) subscale, the robot achieved lower scores, but still above the
neutral value of zero. These results indicate that the robotic companion was perceived
as an attractive product. In addition, the assigned pragmatic quality is also in line with
the positive aspect in the TA-EG questionnaire, which revealed the users’ attitude toward
the positive effects of modern technology.

200



13.3. Evaluation: In-Situ Study

Uno Ludo Memory recom-
mendations

calendar news weather address
book

mail jokes
0

200

400

600

800

1000

1200

am
ou

nt
 o

f f
ee

db
ac

k

311
127 217 201

103

144
188

189
63

120

306 180

90

99

132

234 143

383

238

135

90

217

P1 P2 P3 P4 P5 P6 P7 P8 P9

Figure 13.9.: Collected human feedback for each application.

13.3.3.2. Collected Human Feedback

Interaction measurements revealed insights into the overall adaptation process. Fig-
ure 13.8 gives an overview of all participants’ use of the robot’s functions. It visualizes
how often each participant started each application. Five participants (no. 1, 2, 4, 6, 7)
used all the robot’s functions, one (no. 3) used everything except the Ludo game, and
one (no. 5) used everything except for those functions that required internet access. The
remaining two (no. 8 and 9) did not use the calendar, address book, and mail. The bar
chart illustrates that interests in the different applications were diverse, but they tried
each application at least once. Moreover, all participants used at least one application per
learning agent, allowing them to provide feedback on the robot’s adaptation mechanism.

While this information indicates what participants were most interested in and how
often they started interacting with the robot, it does not necessarily correlate with the
amount of human feedback for the adaptation process or the time spent per session.

Figure 13.9 plots the amount of feedback given by each user within each application,
which is the most interesting information for the learning task. The bar graph includes
both positive and negative ratings. It does not sum up the ratings’ values but the number
of times the buttons were pressed. Thus, the robot received the most feedback in the
context of games, which provided the opportunity to give feedback after each of the
robot’s and user’s moves. The recommender application also received a decent amount
of feedback. In contrast, information retrieval tasks received fewer human ratings,
which is also because these applications primarily present external content. Since the
adaptation process did not control and manipulate these contents, the user often could
not provide feedback to the robot. Only some of the robot’s formulations (such as how it
calls attention) provided the opportunity for rating, which accounts for a smaller fraction
of assessable content than other applications. Thus, the amount of feedback in a certain
amount of time spent on information retrieval tasks is smaller than in other contexts.

In order to compare the actual data used for adaptation, Figure 13.10 aggregates all
applications which contributed to the same learning agent. It stresses that the agent
learning about the mentor and opponent persona received the most feedback, followed
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Figure 13.10.: Collected human feedback for each learning agent (corresponding applica-
tions combined).

by the agent for politeness strategies and the agent for companion vs. assistant persona.
However, it does not follow from these graphs without more ado that the agent’s learned
preferences are most accurate for games and most improper for information retrieval
tasks for all participants. Preferences are not aggregated but learned by each participant
individually, ignoring knowledge from previous test persons. For example, participant 9
provided more feedback in the context of recommendations and less for games. Also, the
amount of feedback provided is different between test persons, which becomes apparent
in Figure 13.9 and Figure 13.10.

13.3.3.3. Exemplary Learning Progress

The learning agents identified individual preferences based on the collected participants’
feedback, i.e., subjective measurements. As explained in section 13.1.2, the adaptation
process calculates a value for each multi-armed bandit problem’s actions. These values
represent the estimated participant’s preferences, which are approximated and refined
over time, but also contribute to optimizing action selection during runtime.

Figure 13.11 illustrates this process based on real data of one participant in the context
of recommendations. The top graph plots each of the eight politeness strategies’ (i.e., the
actions’) values on the y-axis; the x-axis represents the time. Since users can stop interac-
tion anytime, switch apps, or come back later, the system persists the samples after each
step. The time axis strings together all learning steps from all recommender application
invocations throughout the participant’s study progress (one week). The bottom graph
plots the user’s feedback, which corresponds to button presses and represents positive
or negative rewards. In each step, one selected action’s value increases or decreases
accordingly. It follows that the length of the x-axis (217 steps) corresponds to the amount
of feedback given for recommendations by participant 9 as listed in Figure 13.10.

One can see clearly that value changes become smaller over time due to the stationary
problem modeling and how the algorithm works. In the beginning, each reward greatly
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influences the action’s value. The more feedback provided, and the more often a specific
action has been executed, the smaller the impact on the action’s value. The resulting best
and worst politeness strategies have a solid line; the remaining use a dashed line.

For each participant, this plot looks different. In this example, the agent identified
the direct command as the best formulation, and requests performed worst for this
participant. Interestingly, the participant consistently rated the best and worst actions
exclusively positive or negative, which is why their values two never change. The values
of the remaining actions received more varied human feedback, which is why lines cross
every once in a while. Figure 13.12 illustrates similar learning progress for the agent
focusing on the mentor vs. opponent persona in the context of games. It looks much
simpler because the agent has two instead of eight actions, which also applies to the
companion vs. assistant agent. Nonetheless, these plots illustrate the agent’s adaptation
progress for each user.

13.3.3.4. Learned User Preferences

While the plots mentioned above give insight into each agent’s learning progress in
temporal terms and for each participant individually, the final task is to identify the
resulting preferences. For this purpose, the corresponding best and worst actions (i.e.,
those with the greatest and smallest value) were identified for all participants. The
results are as follows. In the context of games (see Figure 13.13(a)), the mentor behavior
is identified as the preferred persona for seven participants, and, in turn, the estimated
best persona for the remaining two users is the opponent persona. Similar applies to the
information retrieval context (see Figure 13.13(b)): the assistant persona was superior six
times, the companion persona three times. The corresponding worst actions result from
the opposite distribution automatically since it is a binary problem with two actions.

For the eight politeness strategies, which were used in the context of recommendations,
the results are listed in Figures 13.13(c) and 13.13(d). First of all, it must be noted that
these numbers do not add up to the number of participants. It is not possible to identify
one single best or worst strategy for some participants since they rated multiple strategies
equally good or bad. For example, if each request or shared goal occurrence is rated
consistently negative, the calculated value is −1 for both actions. Consequently, the final
value of multiple actions may be −1 or +1, making the results even more interesting.

Based on the received human feedback, five participants rated the system’s goal best,
followed by the questions, which had maximum value for three users. The suggestion
of the user’s goal, shared goal, socratic hint, and direct command had maximum value
in two cases. Indirect suggestions and requests are both represented once. On the
other side, the worst performers include the request (five times), followed by indirect
suggestions, which have the minimum value in four cases. Direct commands, questions,
the suggestion of the user’s goal, and formulations as shared goals occur three times
each. The system’s goal (two times) and socratic hint (once) appear as the worst options.

13.3.4. Discussion
Most interestingly, all politeness strategies appear as best and worst options, indicating
that what is best for one user might be worst for another user and the other way round.
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Figure 13.13.: Final distribution of all participants’ preferences. DIR = direct command,
IND = indirect suggestion, REQ = request, SYS = system’s goal, SHA = shared
goal, USE = suggestion of user’s goal, QUE = question, SOC = socratic hint.
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While the overall number of participants needs to be higher to derive generally valid
findings, the results indicate that preferences can be diverse and of individual nature.
For the participants at hand, one can observe the following aspects:

• There is a tendency towards the mentor and assistant persona in the context
of games and information retrieval. The preference of assistant over companion
persona contradicts the findings by Bartl et al. (2016) but is in line with Dautenhahn
et al. (2005). The preference of mentor over opponent persona is in line with
works in the context of games. For example, Altmeyer, Lessel, and Krüger (2018)
observed that seniors aged 75+ primarily play to socialize, resulting in collaboration,
caretaking, and avoiding competition.

• Regarding the robot’s politeness, formulations as the system’s goal had the best
rating most of the time when compared with the other strategies.

• As the distribution of best and worst politeness strategies illustrates, there is not
one single strategy that is best or worst for all users.

These results suggest that an adaptive approach for exploring a social robot’s communi-
cation style and behavior is an opportunity to optimize the individual user’s interaction
experience. The goal is to estimate and identify the best behavior during runtime and to
adapt the robot’s verbal behaviors to the humans’ individual preferences.

13.4. Conclusion
This chapter presented the first implementation of the conceptual framework for non-
functional social robot behavior adaptation from chapter 12. The non-functional adapta-
tion approach explores variations of politeness and persona as expressed in a domestic
companion robot’s verbal utterances. The contribution of this chapter is the model,
implementation, simulation, and evaluation of a fully autonomous adaptation approach
based on RL and explicit human feedback. Users provide feedback via button presses on
a custom hardware control panel. The stateless learning agent uses associative search
with three agents for different application contexts. A simulation identified a reasonable
value for the parameter 𝑐 of the UCB action selection mechanism. The subsequent in-
situ study evaluated the fully autonomous system based on the hardware and software
from chapter 8 in elderly participants’ domestic environments for one week. Evaluation
results indicate that there is not a single best or worst communication style for all users
but that a learning approach can adapt the robot’s behaviors to the users’ liking.
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14. Implicit Feedback
After investigating explicit feedback and associative search for stateless, but context-
dependent RL in chapter 13, the chapter at hand focuses on the inclusion of human social
signals in the adaptation process. As outlined in the structured conceptual framework
from chapter 12, these signals and related interaction dynamics can be included in
the user model, which allows the learning agent to react to changes in the user’s state.
Consequently, this chapter requires dynamic user models updated during the interaction.

The learning agent’s goal in the following experiments is to optimize user experience
by maximizing an interaction dynamic (engagement or affect), which is sensed with SSP
techniques. The monitored data is used in the state space or for deriving the reward
signal, thus guiding the agent toward its goal. There is no task-based reward in the
presented experiments, i.e., human social signals are the only source of reward.

Motivated by the diversity of findings concerning user preferences on robot personality
(see section 5.2.2), the first experiment focuses on the adaptation of a robot’s expression of
the introversion-extraversion trait in a storytelling application. The NLG approach from
chapter 7 generates the robot’s verbal behaviors for producing utterances with varying
degrees of extraversion. Temporal changes in user engagement drive the adaptation
process. User engagement is also used as an interaction dynamic in a range of user-
adaptive HRI experiments in the literature (see section 6.2).

Afterward, human affect is used to adapt a robot’s presented humor. The experiments
are motivated by the reported positive effects of humor in HRI but rare attempts for
adaptation of robot humor in the literature (see section 5.4) and much fewer experiments
using RL (see section 6.2), let alone the dynamic generation of robot humor. The behav-
ior generation techniques from chapter 9 produce multimodal the robot’s behaviors.
Temporal changes in human affect drive the adaptation process.

Again, chapter 12 serves as a blueprint for the model and implementation of socially-
aware RL processes. They realize non-functional adaptation of the robot’s behaviors,
either verbal or combined verbal and non-verbal behaviors. The structure of each exper-
iment is as follows: after a short overview of the general approach, the SSP technique
is outlined first since it is a central element in the socially-aware learning processes.
Afterward, details on the RL model and simulation/evaluation are provided.

14.1. Experiment: Adaptive Storytelling with Personality
This section introduces an approach to exploring human preferences regarding a social
robot’s extraversion-introversion trait. Motivated by the varying insights about human-
robot compatibility, including similarity and complementarity attraction, as well as
mixed findings (see section 5.2.2), the experiment at hand provides an approach for
automatically adapting the robot’s degree of extraversion to the user. Previous studies
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Figure 14.1.: The storytelling interaction scenario.

from the literature found out that the adaptation of agent personality can positively
influence the user’s liking of the robot, interaction experience, interaction dynamics
(such as user engagement, see section 12.3.4), and the like (see section 5.2.2). Therefore,
the socially-aware and nonstationary RL approach uses implicit feedback derived from
sensed user engagement to optimize the degree of extraversion for the user’s desired
personality profile automatically based on the user’s reactions. Section 14.2 presents the
simulation of the adaptation approach.

The concept, simulation and implemented adaptation approaches were presented
and reviewed in Ritschel and André (2017), Ritschel, Baur, and André (2017a), Ritschel,
Baur, and André (2017b), and Ritschel (2018). The contents of this section expand these
publications.

14.1.1. Overview

The following sections present the interaction scenario, SSP and RL model for adaptation
of the robot’s communication style. The learning agent manipulates parameters of the
NLG approach from chapter 7, which, in turn, produces the robot’s utterances. In contrast
to the literature from section 5.2 and section 6.2 the adaptation approach controls the
robot’s utterances via the NLG module during runtime in order to keep interaction engag-
ing while talking about the content of the book “Alice in Wonderland”. A storytelling task
was chosen as an appropriate setting for exploring the non-functional adaptation process
since storytelling is one form of entertainment and fits well in domestic environments.

Figure 14.1 gives an overview of the storytelling scenario. The user and the robot sit
opposite each other. The robot uses its language as the primary output medium. No GUI
is used in this application, neither as input nor output modality. Instead, the interaction
between the user and the root is realized via speech recognition. A quiet environment
with a microphone for speech recognition, a Microsoft Kinect 2 sensor, and a powerful
computer is required for SSP. The robot’s language is presented with its internal TTS
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Figure 14.2.: Main interaction states from the perspective of the robot/application.

system. The resulting audio is played back with the robot’s internal speaker.

14.1.2. Dialog Flow and Interaction
The general idea of the storytelling application is to provide the user with information
about the book “Alice in Wonderland” by Lewis Carroll. The robot acts as the narrator, pre-
senting the plot of different chapters and details about the main characters. Meanwhile,
the user primarily acts as a listener.

The application starts as soon as the user greets the robot. It introduces itself to the
listener, outlines its ability to talk about the book, and suggests the user select from a set of
different characters. The robot asks whether it should talk about Alice, the white rabbit,
or the queen of hearts. The user accepts or declines via speech commands and listens to
the presented contents. As soon as no new information is left, the robot suggests another
character. The selection of the book chapters works similarly by selecting chapter indices.
Figure 14.2 illustrates the interaction loop:

1. the robot asks for input about which topic to talk about, and

2. the subsequent storytelling phase optimizes the robot’s expressed degree of ex-
traversion based on the user’s engagement.

The robot suggests a character or book chapter (e.g., “Shall I tell you something about
the white rabbit?”) and waits for the human’s response from the ASR. The user’s answers
are captured with the worn headset. As soon as the answer is identified, the SSP starts
capturing and interpreting the user’s non-verbal behaviors (see section 14.1.3) and sends
the result to the RL (see section 14.1.4) process. During talking about the book, all the
robot’s presented utterances are generated dynamically (see section 7.2). The process
restarts when the robot finishes its presentation. Then, the robot asks for the next
character or chapter of interest, and the user instructs the robot on how to proceed.

14.1.3. Social Signal Processing
A central part of the adaptation process is processing the user’s non-verbal social signals.
The continuous estimation of human engagement is based on posture information.

Figure 14.3 illustrates the SSP setup. A Microsoft Kinect 2 sensor captures the user’s
posture and movements during the interaction. It uses a depth camera for skeletal body
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Figure 14.3.: Social signal processing is based on a Microsoft Kinect 2 sensor for posture
estimation and a headset for speech recognition.
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Figure 14.4.: The simplified Bayesian network for user engagement.

detection. The human’s pose is passed on to the SSI framework (Wagner et al., 2013),
which processes and interprets the skeleton data in real-time (see below). In addition, the
user wears a headset with a microphone. Its sole purpose is to record the user’s audio for
ASR, which is realized with the SSI framework and the Microsoft Speech Platform. The
headset has the main advantage of being near the audio source for better audio quality,
making recognition more accurate. The recognized keywords are used for controlling the
program flow (see section 14.1.2). They do not have an impact on engagement estimation.

User engagement at time 𝑡 is defined as the floating point value 𝑒𝑡 ∈ [−1; 1]. A positive
value 𝑒𝑡 > 0 indicates that the user is engaged, and a negative 𝑒𝑡 < 0 indicates that they
are disengaged. The absolute value determines the magnitude of (dis)engagement. 𝑒𝑡 = 0
is the neutral value, i.e., neither engaged nor disengaged. As suggested in Baur, Schiller,
and André (2017), the user’s engagement 𝑒𝑡 is estimated based on a Dynamic Bayesian
network (BN), which is a directed, acyclic graph with nodes representing variables
and edges describing conditional probabilities (Russell and Norvig, 2003). Moreover, in
Dynamic BNs temporal dependencies between the current state of variables and their
earlier states can be modeled.
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Figure 14.5.: An engaged and disengaged user interacts with the storytelling robot.

Figure 14.4 illustrates a simplified abstraction of the Dynamic BN for user engagement.
Each of the observed nodes contains two discrete states: present and absent. Based on
the observations in these nodes, the probability of the values present and absent for the
final node engagement can be inferred. The network further contains “hidden” values
that may not be directly observed but have to be inferred from observable variables. As
an example, the likelihood that the variable interested head pose has the value present is
high if the value for the variable head pan tends towards present and the value for the
variable look away would be close to absent. The evidence for these values is constantly
updated in real time. For example, the probability that the variable arms crossed has
the value present is high if the corresponding social cue has been recognized with high
confidence.

Cues considered relevant for the scenario at hand include head tilt and orientation,
indicating whether the user is interested in the current interaction. The openness of
the body is determined by the arm posture (opened or closed/crossed). 𝑒𝑡 increases or
decreases depending on the user’s gesture and posture over time. Figure 14.5 shows
a user applying engaged and disengaged non-verbal behavior towards the robot. For
example, users who lean forward are interpreted as more engaged than when they lean
back. Further, the amount of conversational regulators (Ekman and Friesen, 1969), such
as back-channels, indicates high engagement. The BNs at hand has been modeled with
the GeNIe software (bayesfusion.com, 2021). The probabilities of the variables in the
network were learned based on the NoXi corpus (aria agent.eu, 2021), which includes
interactions of experts and novices about a certain topic, including audio, video, and
Microsoft Kinect 2 depth streams.

Based on the floating point value 𝑒𝑡 calculated by the BN, which is sent every 200 ms
from SSI to the adaptation process, a moving average with a five seconds window is used
to smooth the estimated value. Thus, the user’s engagement 𝑒𝑡 can be estimated at any
time 𝑡.

With SSP being an inherent part of the adaptation process, different types of noise
potentially occur during runtime (see section 12.3.1.3). Their impact on the learning
approach is addressed in the simulation in section 14.2.
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Figure 14.6.: Overview of the RL problem. It is modeled based on human engagement
and social signals.

14.1.4. Adaptation Process

Figure 14.6 provides a general overview of the adaptation process. User engagement
serves as short-term user information input (see section 6.1.3.2). The robot’s goal is to
maximize human engagement by adjusting the degree of extraversion in its spoken
language. For this purpose, implicit human feedback is calculated automatically without
additional interaction from the user.

The temporal development of user engagement plays a key role and is integrated into
the socially-aware RL process both in the state space and reward signal. In turn, the
agent’s actions manipulate the robot’s expressed extraversion over time based on the
user’s engagement over time; the robot thus learns how to react to these changes in user
engagement. Section 12.3 described such dependencies: given a specific user state, the RL
agent will choose a greedy action for the current degree of user engagement (see below).

The learning problem is modeled so that it aims to learn after each sentence and
should receive feedback every few seconds. Similar to section 13.1.2, one RL time step
corresponds to the robot’s presentation of one generated description, which takes several
seconds depending on the utterance length.

Due to user engagement being a short-term feature the task is expected to be nonsta-
tionary with potentially changing 𝑞∗ values (see also section 12.4.1 and section 14.1.4.4).
There is no final state by intention: even if the user reaches maximum engagement, the
robot is not “finished” with its task because user engagement could drop afterward. The
robot must continue and do its best to keep the user engaged. Therefore, the task at
hand is a continuing problem (see section 2.4.3) and only stops when the interaction is
finished.

Figure 14.7 illustrates the RL model as proposed in chapter 12. In contrast to sec-
tion 13.1.2, the user is now involved in both reward and state space while the task itself
does not contribute. Again, there is only one source of reward, and the actions of the
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Figure 14.7.: General overview of the RL model.

learning agent manipulate the robot’s behaviors. The robot’s degree of extraversion and
the estimated user engagement span the state space, allowing the learning agent to select
greedy actions based on pairs of user engagement and robot extraversion as follows.

14.1.4.1. State Space

The state space has two dimensions:

1. Estimated user engagement 𝐸: The idea of the adaptation process is to be able
to react to changes in user engagement. It means that the agent’s learned policy
will encode the knowledge of how to behave when user engagement increases,
decreases or stays the same. Thus, the robot must be aware of the user’s current
engagement and differentiate between different degrees of engagement.

2. Robot’s extraversion 𝑋 : In combination with the action space (see below), the
robot needs to know its current degree of extraversion. The combination of user
engagement and the robot’s degree of extraversion makes it possible to change
its extraversion in smaller steps and learn when it should increase or decrease
extraversion depending on the user’s engagement.

The estimated user engagement as calculated by the SSP pipeline has been defined as
a floating point value 𝑒𝑡 in section 14.1.3. However, discretization is necessary for use
in the tabular state space. The floating point value 𝑒𝑡 ∈ [−1; 1] is mapped to the integer
interval 𝐸 ∈ [−2; 2] by splitting the original range [−1; 1] into five equally big sections of
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size 0.4. For example, if 𝑒𝑡 ∈ [−1;−0.6] this corresponds to 𝐸𝑡 = −2, for 𝑒𝑡 ∈ [−0.2; 0.2]
corresponds to 𝐸𝑡 = 0, etc.

The robot’s degree of extraversion 𝑋 ∈ [−2; 2] is as previously defined in section 7.2
with 𝑋 = −2 representing maximum introversion and 𝑋 = −2 representing maximum
extraversion. 𝑋 influences the NLG parameters (see section 7.2), which cause the robot’s
next utterance to be generated more extravert or introvert accordingly.

With 𝐸 and 𝑋 both being integer values with five possible values each, a total of 25
distinct states represent the state space:

S = 𝑋 × 𝐸

14.1.4.2. Action Space

There are three actions: increasing (INCR) and decreasing (DECR) the robot’s degree of
extraversion 𝑋 , as well as doing nothing (NOP):

A = {INCR,DECR,NOP}

In the case of INCR or DECR, the value 𝑋 increments or decrements by one while
limiting the result to the maximum range [−2;+2]. The manipulation of 𝑋 then causes
new utterances to be generated according to the new extraversion value by adjusting the
parameter set as presented in section 7.2. 𝑋 remains untouched when executing NOP.
Without NOP, the robot would be forced to change its degree of extraversion in every
time step.

𝑋 ←−


min(𝑋 + 1, 2), for 𝐴𝑡 = INCR
max(𝑋 − 1,−2), for 𝐴𝑡 = DECR
𝑋, else

Alternatively, one could choose one action for each of the robot’s extraversion values in
the range [−2; 2], which would directly set the robot’s extraversion to the specific value.
In this case, 𝑋 would not be required to be part of the state space since the actions would
already represent the absolute degree of robot extraversion. However, the limitation to
INCR, DECR, and NOP has an important advantage. It prevents the robot from changing
𝑋 too fast, which would cause the generation of stylistically diverging utterances in
terms of expressed extraversion within a very short time. With the presented solution,
a change from maximum introvert to maximum extravert would require at least four
steps as extraversion can increase or decrease only by one unit per step.

14.1.4.3. Reward

The learning agent aims to maximize user engagement. Thus, it is important to select
actions that either increase or maintain human engagement, e.g., when engagement is
already at its highest level. Thus, there is a direct mapping from reward to the human’s
progression of engagement over time.

In each time step, the pipeline measures the user’s engagement 𝑒𝑡 as a floating point
value (see section 14.1.3) after each of the robot’s actions, i.e., presented utterance. Based
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on the value 𝑒𝑡−1 from the last learning step, the agent calculates the difference Δ𝑒𝑡,
which indicates how much the user’s engagement changed during the execution of the
last action:

Δ𝑒𝑡 = 𝑒𝑡 − 𝑒𝑡−1
Δ𝑒𝑡 is used as the reward signal for the agent since it reflects the temporal change in

user engagement with higher accuracy than the discretized difference 𝐸𝑡−𝐸𝑡−1. The robot
gets a positive reward when the user’s engagement increased and a negative reward
when human engagement decreased. In contrast to section 13.1.2.2, where the reward
was either +1 or −1, the magnitude of Δ𝑒𝑡 also determines the magnitude of the reward
signal here, which is more accurate information for the learning agent due to floating
point operations:

𝑅𝑡 = Δ𝑒𝑡

14.1.4.4. Algorithm

In contrast to 13.1.2, the problem at hand is stateful and nonstationary, i.e., the optimal
policy might change over time. Therefore, the Q-learning algorithm (see section 2.6.3)
is used in combination with 𝜖-greedy exploration (see section 2.3) for implementing
adaptation. For real-time interaction, the learning agent uses the following parameter
values:

• 𝜖 = 0.2: An exploration rate of 20 % allows for greedy behavior in 80 % of action
selection while maintaining a reasonable amount of exploration. For exploration,
the agent uses uniform action selection with a one-third chance for each action.

• 𝛼 = 0.1: The learning rate is constant, which is essential for nonstationary problems
to adapt to potential 𝑞∗ changes. Moreover, it is small enough to prevent divergence
in the long run, which could occur when the learning rate is too high.

• 𝛾 = 0.9: The discount factor is slightly smaller than 1 to let the agent focus on the
most efficient long-sighted solution.

14.1.4.5. Reinforcement Learning Loop

In the beginning, 𝑋𝑡−1 is initialized with 0, i.e., the robots starts with neutral introversion-
extraversion. One iteration of the RL algorithm involves the following steps in this
order:

1. User engagement 𝑒𝑡−1 at the time just before presenting the next content is stored.

2. An action is selected based on 𝑋𝑡−1, 𝐸𝑡−1 and 𝜖-greedy.

3. The robot’s extraversion updates according to the executed action. A new utterance
is generated and presented with 𝑋𝑡 serving as initialization for the NLG parameter
set. In the meantime, social signals are continuously interpreted to estimate user
engagement.
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Figure 14.8.: Overview of the hardware and software setup.

4. When the robot stops speaking, the current value 𝑒𝑡 is used to calculate the differ-
ence in user engagement Δ𝑒𝑡 = 𝑒𝑡 − 𝑒𝑡−1, which serves as reward.

5. The Q-learning algorithm is used to update the Q values. Afterward, the next time
step 𝑡 + 1 begins.

14.1.5. Hardware and Software

Figure 14.8 outlines the technical setup. It consists of the robot, the Microsoft Kinect 2
sensor, and a PC for handling the control flow of the application and SSP. The computer
runs the Microsoft Windows operating system, which is required for interfacing with the
Microsoft Kinect 2 sensor via its proprietary SDK, which is used by the SSI framework.
A Visual SceneMaker (VSM) (Gebhard, Mehlmann, and Kipp, 2012) project implements
the overall interaction flow and delegates specific tasks, such as RL, to external Java
code. On the other side, VSM receives input from the SSI framework via network sockets,
including estimated user engagement and keywords from the ASR, which are required
for the interaction flow (see section 14.1.2).

14.2. Simulation

In addition to the running system, a simulation of the real-time adaptation process was
implemented. The simulation is based on the same Q-learning and 𝜖-greedy approach
described above. Similar to section 13.2, the human is replaced with a simulated user
to test the learning process. The main task of the simulation is to simulate the user’s
reactions to the robot’s utterances, i.e., the simulation of a change in user engagement,
given the robot’s degree of extraversion.

14.2.1. Simulated User

The basic idea is that the simulated user’s engagement increases when the robot’s ex-
pressed personality matches the actual preferences and decreases otherwise. Completely
deterministic user behavior is not realistic due to several types of noise, which might
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occur in a real interaction (see section 12.3.1.3, section 12.4.1 and section 12.4.2). The sim-
ulation introduces two types of noise. The first one, user noise, causes random changes in
user engagement. They could occur, e.g., when the user is distracted from the interaction,
and their reactions are not related to the robot’s actions. The second one, sensor noise,
causes deviations of the sensed value from the real 𝐸𝑡 value in each learning step. For
example, this could occur when the SSP fails due to many problems, such as wrong
perspective, lighting, and more.

The RL reward calculation is the most important part of the simulation (see algorithm 3
for pseudocode). It introduces both user and sensor noise to the simulation. These prob-
abilities 𝑛𝑢 ∈ [0; 1) and 𝑛𝑠 ∈ [0; 1) are constant throughout the simulation. In addition,
the simulated user’s real preferences 𝑥𝑢 ∈ [−2; 2], the robot’s current extraversion
𝑥𝑟 ∈ [−2; 2], as well as the simulated last and current engagement 𝑒𝑙𝑎𝑠𝑡 ∈ [−2; 2] and
𝑒 ∈ [−2; 2] need to be provided as input.

Algorithm 3: Reward calculation for the storytelling simulation.
Input: user noise probability 𝑛𝑢 ∈ [0; 1), sensor noise probability 𝑛𝑠 ∈ [0; 1),

user extraversion preference 𝑥𝑢 ∈ [−2; 2], robot’s current extraversion
𝑥𝑟 ∈ [−2; 2], user engagement 𝑒 ∈ [−2; 2], last user engagement
𝑒last ∈ [−2; 2]

Output: reward value
1 𝑟𝑢 ←− a random float in [0; 1)
2 if 𝑟𝑢 < 𝑛𝑢 then // random user reaction?
3 𝑟tmp ←− a random integer in [−2; 2]
4 𝑒←− max(min(𝑒 + 𝑟tmp, 2),−2)
5 else
6 Δ𝑥 ←− abs(𝑥𝑢 − 𝑥𝑟)
7 if Δ𝑥 = 0 then // robot extraversion matches user pref.?
8 𝑐 = 1
9 else
10 𝑐 = −1
11 𝑒←− max(min(𝑒 + 𝑐, 2),−2)
12 𝑟𝑠 ←− a random float in [0; 1)
13 if 𝑟𝑠 < 𝑛𝑠 then // sensor noise?
14 𝑒sensed ←− a random integer in [−2; 2]
15 else
16 𝑒sensed ←− 𝑒

17 Δ𝑒←− 𝑒sensed − 𝑒last
18 𝑅←− Δ𝑒
19 𝑒last ←− 𝑒sensed
20 return 𝑅

First, a random number is drawn according to the user noise probability 𝑛𝑢. In the
case of user noise, the simulated user’s engagement increases or decreases by a random
amount (see line 4). In the regular case, the rule-based approach checks how much the
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Figure 14.9.: Q-learning results (30 simulated users).

simulated user’s preferences diverge from the robot’s current extraversion (see line 6). In
the case of equality, the simulated user’s engagement increases. Otherwise, it decreases.

Second, another random number is drawn according to the sensor noise probability
𝑛𝑠. In the case of sensor noise, a random value is used as sensed user engagement 𝑒𝑠𝑒𝑛𝑠𝑒𝑑
instead of the “correct” value 𝑒 (see line 14).

Finally, the difference in current and previous user engagement (from the last step) Δ𝑒
is calculated (see line 17). For Δ𝑒 ≠ 0, the reward signal is positive or negative according
to Δ𝑒. While the real running system uses the more accurate floating-point difference
from the SSP pipeline as the reward (see section 14.1.4.3), the simulation uses the integer
difference 𝐸𝑡 − 𝐸𝑡−1 since the SSP pipeline is not running.

14.2.2. Results
For the simulation at hand, 30 simulated users were used, each interacting for 30 steps.
The simulation initializes the simulated user’s preference randomly in each run. The
robot starts with neutral extraversion 𝑋 = 0, and the agent’s Q table is initialized with
zeros at the beginning. Each of the 30 runs stops after 30 steps, corresponding to 30 gen-
erated robot utterances and feedback from the human in terms of user engagement. The
simulation uses the same learning parameter values as the interactive robot application
(see section 14.1.4.4).

Introspective measurements are used to evaluate the self-motivated goal of the adap-
tation process as described in section 12.2.4. The average reward (see section 2.7.1) is
calculated for all 30 users to illustrate the agent’s performance. Figure 14.9 plots the
result for different noise probabilities: 0 %, 5 %, 10 % and 30 %. They determine the
amount of user and sensor noise that may occur simultaneously. The simulation runs
for each probability, i.e., 30 simulated user interactions with 30 steps each. In order to
make them more comparable, the same random seed is used for all noise probabilities.

In addition to the noise, the simulation includes another challenge to make the learning
progress more visible. To evaluate how much time is needed to adapt to preference
changes algorithmically, user preferences change at steps 14 and 25 (vertical lines)
during the experiments to a new, random value. It represents a worst-case scenario as
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Figure 14.10.: Q-learning results (1000 simulated users).

preferences are expected to change gradually in real interaction and not within one
step. However, it illustrates the agent’s ability to adapt to the new preferences after a
temporary performance loss.

Without noise, learning is quite robust. The average reward approaches zero: when
the robot’s extraversion level 𝑋 equals the user’s preference, it learns not to change 𝑋
anymore. As a result, the user’s engagement does not change (which results in zero
rewards) apart from random noise. After the initial learning phase, positive and negative
rewards can be attributed to exploration, noise, and resulting suboptimal behavior of the
agent. Increasing noise leads to non-zero rewards more frequently. Figure 14.10 plots the
result for 1000 users, which smooths the plot and gives an impression of performance
on average.

14.3. Experiment: Adaptive Joke-Telling

This section introduces an experiment in the entertainment context, where a social
robot’s multimodal joke presentation gets adapted to the individual user. Similar to the
scenario above, the socially-aware adaptation approach runs autonomously based on
implicit feedback. It aims to maximize the spectator’s amusement by personalizing the
robot’s verbal and non-verbal behaviors. The experiment explores two variations:

1. Content selection: The robot presents multimodal humor, including canned jokes
in different joke categories, grimaces, and sounds (see section 9.1). The content
is manually designed and prepared in advance. The adaptation process aims to
select those contents and combinations of modalities that maximize the user’s
amusement.

2. Multimodal augmentation: The robot presents dynamically generated punning
riddles, which are augmented with multimodal, paralinguistic cues (see section 9.2).
The adaptation process aims to optimize the multimodal presentation, i.e., the
specific use of paralinguistic cues, to maximize the user’s amusement.
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Figure 14.11.: The joke-telling interaction scenario.

While selected literature explored adaptation in terms of content selection in stand-up
comedy shows (see section 5.4), the focus is here on adaptation to generate and personal-
ize a multimodal performance by intelligently combining multiple modalities. Therefore
– and similar to section 14.1 – a socially-aware and nonstationary RL approach with im-
plicit feedback is implemented. Again, SSP is a central component of the process: human
affect is included in the adaptation process as an interaction dynamic. The adaptation
approach is simulated in section 14.4 and evaluated in a lab study in section 14.5.

The concept, simulation, and implemented adaptation approach were presented and
reviewed in Ritschel and André (2018), Ritschel et al. (2020a), Ritschel et al. (2020b),
Weber et al. (2018b) and Weber et al. (2018a). The contents of this section expand these
publications.

14.3.1. Overview

This section describes the setup, SSP and RL model of the adaptation approach. The RL
learning agent manipulates parameters of the joke-telling approaches from chapter 9,
which results in a personalized multimodal performance. In contrast to the literature
from section 5.4 and section 6.2 the focus is on the non-functional adaptation of the robot’s
multimodal humor in a joke-telling scenario, which fits well in domestic environments.

Making the robot acquire the human interaction partner’s sense of humor quickly
is one opportunity to improve the user experience in social interactions. As varied as
human humor preferences are also the topics of jokes, such as gross-out, slapstick, or
academic jokes. There is probably no topic without jokes about it. However, many jokes
require background knowledge from a specific domain, which makes it hard to predict
whether a person will understand and like the joke.

The social robot approaches entertainment by trying many humor stimuli and learning
from human reactions. Depending on the interests of the interaction partner, jokes from
different categories and visual and audible content work better or worse for different
persons.
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Figure 14.12.: Overview of the classification model training and real-time recognition
process.

Figure 14.11 illustrates the interaction scenario. The robot presents jokes while the
user is watching the performance. The humorous multimodal content includes jokes,
funny sounds, and grimaces (see chapter 9). During the interaction, the user watches
the robot’s joke presentation. A webcam and microphone record the user. Similar to
section 14.1 the processed human’s social signals serve as input to the adaptation process.

All the robot’s utterances are realized with the Cerevoice TTS software (w3.org, 2021)
and played back with the robot’s internal speaker. Grimaces are presented with the
robot’s face via internal motors. Besides the robot and the headset, a powerful computer
handles SSP and the application’s control flow.

14.3.2. Social Signal Processing

A crucial part of the adaptive joke-telling robot is its ability to understand the specta-
tor’s reaction to its performance. The SSP component constantly estimates the user’s
amusement. In particular, the robot can recognize human visual smiles and audiovisual
laughter as a contemporary response to the robot’s performance during the interaction.
The estimated amusement is an essential input for the socially-aware RL process, which
aims to optimize the show to the individual spectator’s preferences (see section 14.3.3).

Laughter has for years been identified as a crucial part of social interaction by tra-
ditional conversation analysis (Glenn, 1989). It is the most evident reaction toward a
successful punchline within a joke. Naturally, audible laughter is accompanied by a
visual component, i.e., a smiling expression in the facial modality. The automated recog-
nition of human laughter behavior has been applied to several conversational interfaces
to generate an engaging and pleasant user experience (Urbain et al., 2010; Niewiadomski
et al., 2013). The audience’s smile and laughter serve also as user input for adaptation
in some literature addressing robot stand-up comedy and humor (see section 5.4 and
section 6.2).
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The user’s laughter and smile are key components to estimating user amusement. A
two-step approach is presented in the following for the interpretation of these social
signals (see Figure 14.12):

1. A custom machine learning model is trained offline to recognize human smiles and
audible laughter.

2. The trained model is used during runtime for real-time classification of the visual
and audible sensor input.

14.3.2.1. Annotation and Training

A custom machine learning model is trained offline to recognize laughter from the audio
modality and smiles from video images. The models are trained using the NOVA annota-
tion and cooperative machine learning tool (Wagner et al., 2018). The tool is designed
to annotate social signals in continuous audiovisual recordings of social interactions
between humans and between humans and social robots. Additionally, it supports coop-
erative machine learning during the annotation process to reduce the annotation labor
and speed up the overall task.

To describe the paralinguistic content of voice, Mel-frequency cepstral coefficients
(MFCCs) spectral, pitch, energy, duration, voicing, and voice quality features are em-
ployed, which were extracted using the EmoVoice toolbox (Vogt, André, and Bee, 2008).
These features are used within an support vector machine (SVM) model. It is trained
on excerpts of the Belfast Storytelling Database (McKeown et al., 2015), which contains
spontaneous social interactions and dialogs with a laughter-focused annotation. Person-
independent evaluation of the model on the training database showed an unweighted
accuracy of 84 % for recognizing laughter frames. For detecting smiles in the video,
transfer learning is applied to fine-tune the deep convolutional neural network VGGFace
(Parkhi, Vedaldi, and Zisserman, 2015) by retraining it on the AffectNet (Mollahosseini,
Hassani, and Mahoor, 2019) facial expression corpus.

14.3.2.2. Real-time Recognition

Audiovisual laughter recognition is carried out in real time during the interaction based
on the trained models. The lower part of Figure 14.12 illustrates the approach: the
robot continuously captures the spectator’s social signals with a headset microphone
and webcam. It analyzes the data with the SSI framework (Wagner et al., 2013) (see
Figure 14.13). SSI monitors video and audio inputs from the sensors, voice activity,
laughter, and smile probabilities.

The software detects bursts of laughter on a frame-by-frame basis: the audio signal
is analyzed within a one-second sliding window that is shifted every 400 milliseconds,
resulting in a decision rate of 2.5 Hz. The overall activity is monitored by applying a voice
activity transformation to the signals via hamming windowing and intensity calculation.
Coherent signal parts (i.e., frames) in which the mean of squared input values – multiplied
by a Hamming window – that exceed predefined thresholds for intensity are identified
as carriers of vocal activity. They serve as input for feature calculation and subsequent
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Figure 14.13.: Sensing the spectator’s smile and laughter with the SSI framework.

classification. Video is captured at a rate of 15 frames per second. Each frame is classified
with the neural network model described above. The probabilistic results are averaged
with the same sliding window as the audio modality to gain equally clocked classification
results from both input signals.

The final output of the recognition system is the intensity of recognized laughs and
smiles in the form of continuous scores. McKeown and Curran (2015) state the strong
connection of high-intensity laughs with perceived humor, a continuous relation that
has already been proposed by Darwin mentioning a range “from violent to moderate
laughter, to a broad smile, to a gentle smile” (Darwin, 1965). Following these guidelines,
it makes sense to incorporate an intensity assessment. To this end, the confidence scores
given by our laughter and smile classifiers are interpreted as intensity measurements.
Though there are other sophisticated approaches to quantify the intensity of vocal laughs
(Urbain et al., 2014) and facial smiles (Lynch, 2010), the restrictions of real-time capability
must be taken into account. The probabilistic output of the implemented classification
systems is a good intensity measure that can be computed efficiently.

The result of the SSP pipeline are two continuously updated and averaged floating
point values, which serve as input to the adaptation process:

• 𝑖smile ∈ [0; 1]: current intensity of visual smile

• 𝑖laughter ∈ [0; 1]: current intensity of audible laughter.

14.3.3. Adaptation Process
The goal of the learning agent is to maximize user amusement over time. As mentioned
previously, the approach is investigated in two variations. Due to the complexity of
the task, each aspect is treated individually, i.e., different state and action spaces are
presented for content selection and the paralinguistic presentation strategy. The rest of
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Figure 14.14.: Overview of the adaptation process.

the model is the same, as is the learning agent’s task: find the optimal policy for the indi-
vidual spectator, either concerning content selection or the paralinguistic presentation
strategy. In both cases, the same SSP approach calculates the reward signal as described
before.

Figure 14.14 gives an overview of the adaptation process. User affect is the user
information (see section 6.1.3.2) that serves as input to the adaptation process. Similar to
section 14.1.4, the change of the interaction dynamic over time determines the reward.
Thus, it is used as implicit feedback in the socially-aware RL process.

The robot’s actions determine the selection and use of jokes and multimodal behaviors.
One RL time step corresponds to the presentation of one joke. Learning happens after
each joke so that the robot receives feedback a few times per minute, depending on the
duration of the presented content.

Similar to section 14.1.4 user affect is a short-term feature and thus the task is expected
to be nonstationary with potentially changing 𝑞∗ values (see also section 12.4.1 and
section 14.1.4.4). Again, the task is non-episodic since the user’s amusement should be
preserved over a longer time. However, it could also drop at any point. Therefore, the task
at hand is a continuing problem (see section 2.4.3) and only stops when the interaction
finishes.

Figure 14.15 and Figure 14.16 illustrate the RL models as proposed in chapter 12.
The reward signal is the same, but they differ in state and action space. In contrast to
Figure 14.16, the user is involved both in terms of reward and state space in Figure 14.15,
similar to section 14.1.4. Again, the user is the single source of reward. The learning
agent’s actions control the robot’s generated behaviors.

14.3.3.1. State Space

Content Selection

The general idea of the content selection agent is to choose an amusing joke, grimace,
sound, or one of their combinations depending on the user’s current amusement level
(see Figure 14.15). The user’s current amusement level is part of the state space to make
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it possible to react to user amusement changes and learn the connection between the
presented stimulus and the resulting degree of amusement. The state is defined as a
two-dimensional non-discretized feature vector. It contains the current floating point
intensities of smiles and laughter as calculated and reported by the SSP pipeline (see
section 14.3.2):

x(𝑠) =
(
𝑖smile
𝑖laughter

)
Traversing the state space can be interpreted as the agent observing the user and

deciding which action to take depending on the user’s reactions to the last action. Having
observed the result, the agent would then learn that choosing action 𝐴𝑡 increases or
decreases user amusement. This traversal would then be associated with a positive or
negative reward (see below) and thus increase or decrease the probability of selecting
the corresponding action 𝐴𝑡 in the future in state x(𝑆𝑡) and in similar states.

Paralinguistic Presentation Strategy

In contrast to the content selection problem, the paralinguistic presentation agent aims
to adjust its multimodal cues depending on the current configuration of its multimodal
behaviors (see Figure 14.16). The state encodes the robot’s multimodal humor markers
that are applied during the generation of the robot’s next utterance, including the current
configuration of pitch, speech rate, volume and break (see also section 9.2). A four-tuple
(pitch, speech rate, volume, break) ∈ S is converted into an eleven-dimensional feature
vector:

x(𝑠) = (𝑝1, 𝑝2, 𝑝3, 𝑟1, 𝑟2, 𝑟3, 𝑣1, 𝑣2, 𝑣3, 𝑏1, 𝑏2)⊤

Figure 14.17 illustrates the design of the vector. x(𝑠) is divided into four sections. All
components in the vector are associated with a specific manifestation of the respective
marker: digits (1 or 0) are associated with the pitch attributes (𝑝1, 𝑝2, 𝑝3, i.e., low, medium,
high), with the speech rate (𝑟1, 𝑟2, 𝑟3, i.e., slow, medium, fast), with the volume (𝑣1, 𝑣2, 𝑣3,
i.e., soft, medium, loud) and with the length of the pause (𝑏1, 𝑏2; i.e., short, long). Every
section is one-hot-encoded, i.e., only one manifestation per marker can be 1, and the
rest of the section is 0. The configuration in Figure 14.17 illustrates the initial state with
medium pitch, speech rate, and volume, as well as a short break. Traversing the state
space can be interpreted as gradually changing the multimodal presentation strategy
step by step (see below).
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14.3.3.2. Action Space

Content Selection

A set of seven actions is used for learning about the most effective humor stimuli in
terms of modalities and their combination (see Figure 9.1 for an illustration). It includes
presenting a grimace (GRC), presenting a sound (SND), telling jokes about three different
topics (JOK1, JOK2, JOK3), presenting a grimace with a sound (GRC_SND), and presenting
a joke with a grimace (JOK_GRC):

Acont = {GRC, SND, JOK1, JOK2, JOK3,GRC_SND, JOK_GRC}

Each action is associated with a set of different contents, i.e., grimaces, sounds, and
multiple sets of jokes associated with different topics. For example, when executing the
GRC action repeatedly, the robot shows different grimaces each time GRC is executed
to provide variety and avoid repetitions. The selection within the sets of multimodal
content is random; already presented contents are removed until all contents from the
set have been presented.

19 grimaces and 23 sounds were created or selected by hand. The jokes were prepared
in advance, too. However, one could combine them with the multimodal joke generation
approach presented in section 9.2 by using the topic as input, e.g., for the STANDUP joke
generator, as done for the paralinguistic presentation strategy. However, as the study
participants were German native speakers, manually designed contents in the German
language were used as a compromise (see also section 14.5).

Paralinguistic Presentation Strategy

The action space of the adaptation process for the optimization of the paralinguistic
presentation strategy is tightly coupled with the state space. As illustrated in Figure 14.17
two actions exist for each of the multimodal markers to increase and decrease pitch
(INCR_PITCH, DECR_PITCH), speech rate (INCR_RATE, DECR_RATE), volume (INCR_VOL,
DECR_VOL) and break time (INCR_BREAK, DECR_BREAK). Moreover, the action NOP
does not change anything and leaves the current configuration untouched. Otherwise,
keeping the current marker configuration would be impossible, such as when the optimal
presentation strategy has been found.

Apara = {INCR_PITCH,DECR_PITCH, INCR_RATE,DECR_RATE,
INCR_VOL,DECR_VOL, INCR_BREAK,DECR_BREAK,NOP}

Consequently, the robot can change one marker per learning step. Marker values can-
not be set to a specific value directly to prevent switching between minima and maxima.
First, it reduces the number of required actions and therefore speeds up learning due to
less required exploration for the action space. Moreover, setting parameters from one
extreme to another could make the robot’s behavior appear strange.

The action space is state-dependent. In each state, the set of actions contains NOP and
those actions that change the state. If a marker already has the minimum/maximum
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Figure 14.18.: The spectator’s estimated amusement is monitored continuously. The
relevant smile and laughter samples are averaged and summed up as the
reward signal.

value, it cannot decrease/increase any further. Corresponding actions are removed from
the action space for the particular state (see also Figure 14.17). For example, the action
DECR_PITCH does not exist in states with a low pitch.

As illustrated in Figure 9.3, the robot’s smile and laughter are randomized to a certain
degree for variation. The adaptation process does not manipulate them.

14.3.3.3. Reward

Similar to the storytelling scenario in section 14.1, social signals determine the reward
signal. The estimated human amusement (see section 14.3.2) is used to calculate the
reward for the learning agent based on the intensity of smiles and laughter during and
after the punchline. In contrast to section 14.1, it does not calculate the difference from
the last time step but an absolute value.

Findings by Katevas, Healey, and Harris (2015) indicate that human reactions to a joke
usually peak just after the punchline. As illustrated in Figure 14.18, user amusement is
sensed continuously from the punchline until 2.5 seconds after the end. This timespan
was hand-tuned to capture timely and delayed human social signals. Delayed reactions
occur when the user needs time to think about the punchline until the joke is fully
understood, and laughter occurs only a few moments later. It was observed in initial tests
that some people slightly smile during the setup of a joke before the punchline because
they anticipate an answer, expect a funny outcome, or are amused by the robot’s visual
embodiment. However, this is person- and joke-dependent. Thus, the sensed amusement
during the joke setup is not considered for reward calculation, which is in line with the
findings by Katevas, Healey, and Harris.

Grimaces and sounds do not have a punchline. Katevas, Healey, and Harris (2015)
mention the best time for measurement is during and right after the action, but not
before either. Thus, the reward calculation starts in parallel with sound playback or
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animation. Again, all signals accumulate until 2.5 seconds after the grimace/sound and
contribute to the reward.

The relevant smile and laughter samples are averaged in order to eliminate outliers.
The averaged smile (𝑖smile) and laughter (𝑖laughter) intensities are weighed and summed
up to estimate the spectator’s amusement, which is used as the reward signal:

𝑅𝑡 =
1
2
· 𝑖smile +

1
2
· 𝑖laughter

14.3.3.4. Algorithm

Similar to section 14.1, the experiment at hand is stateful and nonstationary. It uses
the algorithm from section 2.8 for linear function approximation in combination with
𝜖-greedy action selection (see section 2.3). Linear function approximation is used here to
benefit from generalization between similar states. Generalization makes it possible to
apply knowledge from known states in new states that have not been observed before. It
is an important advantage over the table-based learning algorithms used in section 13.1
and section 14.1. The Fourier basis is used as described in Konidaris, Osentoski, and
Thomas (2011) for learning potential non-linear dependencies between state values. Most
likely, there will not be one optimal solution for all users, but preferences might differ
individually and change over time.

For real-time interaction, the following parameter values are set:

• Initial 𝜖 = 0.5: with an exploration rate of 50 % in the beginning, the agent explores
half of the time to collect many samples. Over time, the exploration rate decreases
by 0.05 after each step and is capped at a minimum of 0.1. Uniform action selection
is used in case of exploration with the same chance for each action.

• 𝛼 = 0.5/𝑘 with 𝑘 = 15: the learning rate is set in relation to the chosen Fourier base
and number of actions to guarantee convergence.

• 𝛾 = 0.2: the discount factor is chosen in relation to the learning rate. Smaller
discount factors focus the agent primarily on the immediate reward, resulting in a
more short-sighted behavior.

14.3.3.5. Reinforcement Learning Loop

In the beginning, the robot tries every action once to obtain at least one sample for
each action. Afterward, it uses the 𝜖-greedy strategy. The weights for the linear function
approximator are initialized with a normal distribution based on Sutton et al. (2009).

One iteration of the RL algorithm involves the following steps in this order:

1. An action fromAcont orApara is selected and executed.

2. When reaching the punchline, the application starts recording the calculated smile
and laughter intensities over time. If there is no punchline (e.g., for sounds or
grimaces without speech output), the application starts recording this data parallel
with action execution.
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3. After the humor presentation, the received data from the SSP pipeline are used to
calculate 𝑖smile and 𝑖laughter and the resulting reward.

4. The RL algorithm updates the weights. Afterward, the next time step 𝑡 + 1 begins.

14.3.4. Hardware and Software
Figure 14.19 gives an overview of the technical setup of the hardware and software.
A computer with Microsoft Windows runs a Java application, which implements the
overall program and interaction logic. The STANDUP joke generator by Manurung et al.
(2008) generates the punning riddles. Robot grimaces, sounds, and texts are loaded from
the hard drive. The Java control application interfaces with the robot via the custom
reeti-rest software for multimodal animation generation (see chapter 11).

Since there is no GUI in this application, the robot’s only input is from the user’s headset
microphone and the webcam. Both connect to the computer with a USB cable. The SSI
software processes the streams of the sensors in real time. SSI and the Java control
application with the RL logic communicate via a socket connection.

14.4. Simulation
Similar to section 13.2 and section 14.2 a simulation was implemented for the real-time
adaptation process. Again, the purpose was to get a first impression of the learning
process based on a simulated artificial user before evaluating it with real humans.
The rule-based simulation uses the same learning algorithm from the running system
described above. It focuses on the adaptation of the paralinguistic presentation strategy.

14.4.1. Simulated User
Similar to the simulation from section 14.2, the idea is to give each simulated user a set
of user preferences unknown to the learning agent. These preferences are initialized
randomly in each simulation run, corresponding to a set of different human users with
different preferences. As in the interactive prototype, the task of the RL agent is to
estimate the artificial user’s preferences.
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The underlying idea of the simulation is that the user’s amusement increases if the
robot’s humor presentation style matches its preferences. For the simulation, this means
that the more parameters of the paralinguistic presentation strategy match the user’s
preferences, the higher the reward (see below). Again, such a rule-based and deter-
ministic user behavior is probably not what occurs in real-world interactions with the
robot due to different types of noise. Similar to section 14.2, user noise and sensor noise
are introduced to randomize the simulation to a certain degree (see section 12.3.1.3,
section 12.4.1 and section 12.4.2). In contrast to section 14.2, both types of noise directly
influence the reward in the implemented simulation at hand.

Algorithm 4: Reward calculation for the joke-telling simulation.
Input: user noise probability 𝑛𝑢 ∈ [0; 1), sensor noise probability 𝑛𝑠 ∈ [0; 1),

user preferences 𝑐𝑢, robot’s current configuration 𝑐𝑟
Output: reward value

1 𝑅←− 0.0
2 if 𝑐𝑟 [PITCH] = 𝑐𝑢 [PITCH] then // pitch matches user prefs?
3 𝑅←− 𝑅 + 0.25
4 if 𝑐𝑟 [RATE] = 𝑐𝑢 [RATE] then // speech rate matches user prefs?
5 𝑅←− 𝑅 + 0.25
6 if 𝑐𝑟 [VOLUME] = 𝑐𝑢 [VOLUME] then // volume matches user prefs?
7 𝑅←− 𝑅 + 0.25
8 if 𝑐𝑟 [BREAK] = 𝑐𝑢 [BREAK] then // break matches user prefs?
9 𝑅←− 𝑅 + 0.25

10 𝑟𝑢 ←− a random float in [0; 1)
11 if 𝑟𝑢 < 𝑛𝑢 then // random user reaction?
12 𝑟tmp ←− a random float in [−1; 1]
13 𝑅←− 𝑅 + 𝑟tmp

14 𝑟𝑠 ←− a random float in [0; 1)
15 if 𝑟𝑠 < 𝑛𝑠 then // sensor noise?
16 𝑟tmp ←− a random float in [−1; 1]
17 𝑅←− 𝑅 + 𝑟tmp

18 𝑅←− min (max (𝑅, 0.0) , 1.0)
19 return 𝑅

Algorithm 4 details the reward calculation. Both user and sensor noise are configured
as probabilities 𝑛𝑢 ∈ [0; 1) and 𝑛𝑠 ∈ [0; 1). They are constant during each simulation run.
In each run, the reward is initialized to 0.0. Then, the current configuration of the humor
markers in terms of pitch, speech rate, volume, and break duration is compared to the
simulated user’s preferences. For each matching feature, the reward is increased by 0.25.
With a total of four matching features, the maximum possible reward is 1.0, which is
interpreted as making a real user very amused because of a successful joke presentation.

User noise, which occurs with probability 𝑛𝑢, adds a random value in the interval
[−1; 1] to the reward. Semantically, this imitates a real user’s amusement being biased
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Figure 14.20.: Simulation results.

and this bias not being correlated with the learning agent’s actions, which might occur in
reality every once in a while. Sensor noise is implemented analogously, which translates
to the SSP failing to estimate the real user’s amusement correctly. Noise also manipulates
the reward by adding a random number. The resulting reward value is trimmed to the
interval [0; 1], with 0.0 being the smallest and 1.0 being the highest possible reward.

14.4.2. Results

The average reward (see section 2.7.1) is used as an introspective measurement to evalu-
ate the self-motivated goal of the adaptation process (see section 12.2.4). It is calculated
for all 30 users to illustrate the agent’s performance. The plot in Figure 14.20 averages
over 30 trials, each consisting of 30 steps. These numbers are analogous to a study with
30 participants, with the robot telling 30 jokes to each of them. The agent has no initial
knowledge, and the learned policy resets between trials. Performance is evaluated for
0 % (baseline), 5 %, 10 %, and 30 % of both user and sensor noise, which randomizes the
reward as described in section 14.4.1. The simulation uses the same parameter values as
the interactive prototype (see section 14.3.3.4).

Without noise, learning results in a pretty stable reward of about 0.5. With increasing
noise, the overall performance decreases as expected. On average, the reward is still very
similar to the baseline most of the time, indicating that the learning approach can cope
with noise. The initial random seed is the same for each noise probability experiment.

14.5. Evaluation: Lab Study

In order to explore the performance of the adaptation approach in real HRI, a within-
subjects user study was conducted after the initial simulation in the lab. The evaluation
focussed on the first learning agent design using the German language. Concerning
the second agent design that learns the robot’s use of humor markers, a pilot study
revealed that German native speakers had problems understanding generated jokes.
According to most participants, the English humor by the STANDUP joke generator was
difficult to understand in terms of semantic content and vocabulary but also due to the
pronunciation of the TTS system.
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Figure 14.21.: Participants’ self-rated sense of humor from non-humorous (1) to humor-
ous (5). Error bars denote 95 % CI.

Two conditions were prepared:

1. a learning robot, which chooses jokes by learning from the user’s reactions, i.e.,
social signals, and

2. a non-learning robot, which uses a random function to choose the next joke (base-
line).

The performance of both robots was compared. Introspective and subjective mea-
surements (see also section 6.1.4) were used to get insights into the agent’s performance
and user experience. In terms of subjective measurements, the study explored (1) if
users laugh more when being entertained by a learning robot and (2) if users perceive a
learning robot as more or less entertaining than a non-learning robot.

14.5.1. Participants, Apparatus, and Procedure
24 participants (12 female and 12 male), aged from 18 to 29 (𝑀 = 22.04, 𝑆𝐷 = 3.25) were
recruited from a university campus. All participants were students. The study started
by welcoming participants and providing an introduction to the user study. To this
end, participants were handed out a short description, which informed them about the
general study procedure, and a short questionnaire to report their self-perceived sense
of humor. Moreover, participants were informed that there would be two sessions, one
after the other, in which they would be asked to listen to a robot telling jokes. After each
session, they would be asked to provide feedback about their general experience based
on a questionnaire. The interaction was as described in section 14.3.1: the participant
sat opposite the robot and was recorded with a webcam and a headset microphone for
SSP (see Figure 14.11 and section 14.3.2). The setup was identical in both sessions.

Participants were told that the two sessions were different in terms of the program
version uploaded to the robot. However, participants were not informed that they would
experience the robot once telling random jokes and once telling jokes based on their
reactions. At the end of all sessions, participants were asked which version of the robot
they preferred overall.

In both sessions, 25 actions were executed, which took around 10–15 minutes. In
both conditions, the robot measured the reward of every performed action as described
in section 14.3.3.3. While the reward was only used in the learner condition for joke
selection, the data was saved for both sessions for comparison. The order of the sessions
was counter-balanced, with half of the participants starting with the learner version of
the robot and the other half starting with the non-learner version of the robot. The above
questionnaire revealed an almost equal rated sense of humor as depicted in Figure 14.21.
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Figure 14.22.: Average reward of both sessions/amusement level of participants. Error
bars denote 95 % CI.

14.5.2. Results

Figure 14.22 presents a frequency plot of the participants’ amusement levels separated
by condition, which shows no obvious difference over all collected output measures
(i.e., amusement level/reward). However, when frequencies are separated by round, the
following can be observed: in round one, participants were more amused by the learning
robot, and in round two, participants were more amused by the non-learning robot.

One can also observe an interaction between the first and second round/session and
between the learner and non-learner conditions. On the one hand, participants, who
experienced the learning version of the robot, kept being amused even when, in the
second session, the same robot told randomly selected jokes. On the other hand, partici-
pants, who started to experience the robot telling randomly chosen jokes, kept feeling
less amused in the second session when the robot started to adapt its joke preferences to
the user’s reaction. Thus, a carry-over effect can be observed in the data addressed in
the following statistical analysis.

14.5.2.1. Statistical Analysis

Since repeated measurements were collected from each participant, a paired Student’s
t-test was performed. As expected after exploring the data plot in Figure 14.22, it shows
that the learner vs. non-learner condition does not affect participants’ amusement levels
over all collected data (𝑀 = 0.0123, 𝑆𝐸 = 0.0157), 𝑡(23) = 1.714, 𝑝 = 0.022 (Field and
Hole, 2003).

However, a significant effect occurs when focusing on evaluating round one, without
including the results of round two, to avoid the ordering effect. The group is divided into a
control group (users having watched the non-learning version first) and an experimental
group (users having watched the learning version first) with 12 participants each. Using
the independent Student’s t-test shows a significant effect that is also substantial (𝑝 = 0.02,
𝑑 = 0.87, see Figure 14.22) regarding the gained reward. Comparing the averaged
amusement level over both rounds (see Figure 14.23) also shows an overall significant
difference (𝑝 = 0.03, 𝑑 = 0.83) between those two groups, including the second round.

234



14.5. Evaluation: Lab Study

Figure 14.23.: Participants’ amusement level (reward) averaged over both rounds. Error
bars denote 95 % CI.

14.5.2.2. User Preferences

At the end of the study, participants were explicitly asked which version of the robot
they preferred overall. Participants did not know how the two versions of the robot
differed. Most participants preferred the version they experienced last: 54 % preferred
the robot from the second round, 25 % preferred the robot from the first round, and the
rest could not tell which version they preferred. Figure 14.24 provides an overview of
self-reported data, which was utilized after each session to collect subjective data about
how participants perceived the robot’s performance.

14.5.3. Discussion

Many participants preferred the robot they listened to in the last session. This result
was somewhat unexpected since the order of the learner and non-learner conditions was
counter-balanced to prevent ordering and carry-over effects. The participants’ collected
amusement level data, which is a non-subjective measure, explains why participants
started to prefer the second version of the robot. Considering the participants’ amuse-
ment level in each round and condition, Figure 14.23 shows clearly that participants’
amusement levels did not change across rounds.

This observation suggests, in retrospect, that choosing a repeated measurement setup
might have been naive since the interactions (i.e., telling jokes) and effects (i.e., positive
emotions and amusement) have been of slow nature and difficult to change in short
periods. There seems to be only a very small decrease in amusement level in the sec-
ond round, independent of condition, which could be attributed to a novelty aspect
disappearing in the second round.

Consequently, the carry-over effect was addressed by dropping the data collected in
the second round and analyzing the remaining data as between-subjects data. It revealed
that the condition had a main effect on the amusement level and that the robot achieved
significantly higher levels of amusement in the learning condition than one that does not
learn from its user’s implicit feedback. This procedure eliminates any carry-over effects
and demonstrates that a robot can successfully learn the users’ humor preferences based
on the proposed socially-aware RL approach. In the joke-telling scenario, this resulted
in a significant increase in amusement level compared to the non-learning baseline
condition.
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Figure 14.24.: Overview of participants’ self-reports, ranging from strongly disagree (1)
to strongly agree (5). Error bars denote 95 % CI.
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Figure 14.25.: The percentage of frequently chosen action categories.

14.5.3.1. The Importance of First Impressions

Figure 14.23 also shows that the amusement level was not only significantly influenced
by the learner vs. non-learner condition (see Figure 14.22), but that the level stayed stable
even when the robot adapted its humor presentation. This insight indicates that in a
joke-telling scenario, the first impression of a robot is more important than having a robot
adapt later on. It seems that the good impression in the first session left by the learning
version of the robot made the users like the robot, and the following non-learning version
was found almost equally good because of the first perceived impression. On the other
hand, when participants experienced the non-learning version first, it seemed to have
left a worse first impression. Although the robot changed its behavior and started to
adapt to the users’ preferences in the second session, the first impression seemed to have
dominated the participants’ opinions about the robot. This hypothesis is in line with
our study data, which shows that in two out of three cases, the learning version made
users laugh less in the second session (compared to only one out of six cases in the first
session).

Consequently, applying the ability to adapt to human preferences can be in vain if
users already have had a bad first impression of the robot, as mentioned above. It also
shows that when trying to adapt to humans’ preferences, the robot should not make too
many mistakes and learn about their preferences as quickly as possible.

14.5.3.2. Learning and Reward Function

The SSP of both users’ smiles and vocal laughter worked reliably during the experiment.
Combining smile and vocal laughter performed well as a reward signal for the adaptation
approach. As a result, the robot developed a tendency towards a specific action in contrast
to the non-learning version based on the data collected during the study. For example,
the percentage of action categories that were frequently chosen (more than seven times)
was much higher for the learning robot (see Figure 14.25).

The crucial point is, however, to determine when to take measurements as an indicator
of the user’s level of amusement. As seen in Figure 14.18, the interval used for collecting
the frames required for assessing the user’s amusement was statically predefined by the
punchline as suggested by Katevas, Healey, and Harris (2015). Sometimes, this interval
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did not optimally fit the user’s reactions to a particular joke. Some users reacted before or
after the interval, resulting in a lower reward than it could have been. In the worst case,
they only reacted after the interval, when the new action was already in progress when it
took them a while to understand the joke. Nevertheless, such shifts in expected reactions
did not happen often, and this noise is likely overwritten in subsequent learning steps.

14.5.3.3. Benefits of Variation

The non-learning version of the robot was sometimes perceived as funnier, as also
indicated by participants’ preferences and self-reports (see Figure 14.24). For example,
this can be seen for the items “The Reeti was sympathetic” and “Robot’s faces were
funny”. This could be caused by the fact that the non-learning robot varies its actions
more drastically due to its randomized behavior. Of course, this is not the goal of the
learning robot, which continuously aims to determine which action the user prefers
most. Consequently, this may result in less variation for the learning agent in shorter
periods.

The collected data has shown that a robot should leave a good first impression by
adapting to the user’s sense of humor. It also indicated that later on, there is no harm
in integrating variations. Apart from adaptation, additional moments of surprise and
variety will also contribute to successful robot performance in a scenario that aims to
entertain listeners.

14.6. Conclusion

This chapter presented another three models and experiments that implement the con-
ceptual framework for non-functional social robot behavior adaptation from chapter 12.
In contrast to chapter 13, the socially-aware and stateful RL processes use implicit human
feedback so that the user does not need to provide an explicit assessment for each of
the robot’s actions. Instead, the reward signal is derived from human social signals
automatically. User engagement and affect served as interaction dynamics and input to
the adaptation process.

The presented socially-aware RL models differ in the design of their learning agents:

• The first model (section 14.1) adapts the robot’s expressed extraversion in terms
of generated linguistic content; the temporal progression of the user’s engage-
ment (which is estimated based on the user’s pose) determines the reward. Here,
the difference in the user’s engagement from their engagement in the last step is
interpreted as a reward signal, resulting in a positive/negative reward for increas-
ing/decreasing user engagement. By including both the user state (engagement)
and the configuration of the robot’s extraversion in the state space, the model
allows the agent to learn the dependencies between its communication style, the
user’s engagement, and the resulting effects.

• The second model (section 14.3) adapts the robot’s content selection and combi-
nation of multimodal humor while the user’s amusement determines the reward.
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User amusement is estimated based on the probabilities of visual smiles and audi-
ble laughter observed during the robot’s humor presentation. Similar to the first
model, the inclusion of the user state (amusement) allows the agent to learn the
dependencies between user amusement and the most effective communication
style for the individual user.

• The third model (section 14.3) relies on the same reward signal as the second model.
However, it uses dynamically generated behaviors for producing multimodal hu-
mor during the interaction. Here, the non-functional adaptation addresses the
specific configuration of different modalities, including prosody and timing. Sim-
ilar to the first model, the configuration of the robot’s behaviors is part of the
state space, which allows the agent to learn the dependencies between the user’s
amusement, the robot’s use of multimodal cues, and the resulting effects.

The contributions of this chapter are the different models, implementations, simu-
lations of the non-functional adaptation processes, and the insights of the evaluation,
which report on the feasibility of the presented approaches. Furthermore, they illustrate
the variety of application possibilities of the structured overview of socially-aware RL for
non-functional robot adaptation from chapter 12. In particular, the contributions also
include using real-time SSP techniques, which are fully integrated into the autonomous
adaptation approaches. Apart from nondeterministic user behaviors (i.e., nonstationary
problems), the simulations also address different types of noise in the context of SSP.
Finally, the evaluation of the second model showed that a socially-aware RL process with
implicit feedback achieves significantly higher levels of user amusement than one that
does not learn from the user’s implicit feedback.
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Conclusion
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15. Contributions
This thesis presented and evaluated approaches for the real-time and non-functional
adaptation of social robot behaviors. For reaching this goal, it contributed on the con-
ceptual, technical, and empirical levels to two building blocks: behavior generation and
adaptation. The following sections detail these contributions.

15.1. Conceptual Contributions

Based on an extensive literature review in Part II, the conceptual contributions cover
models for behavior generation and adaptation in Part III and Part IV. Moreover, a
comprehensive conceptual framework for implementing real-time socially-aware non-
functional adaptation of social robot behaviors is one of the core contributions of this
thesis. The following sections break down the conceptual contributions according to
their focus on behavior generation or adaptation.

Generation of Multimodal Socially Intelligent Robot Behaviors

Social robot behavior generation is an essential part of the proposed adaptation ap-
proaches. Part III equips the robot with variable verbal and non-verbal behaviors, which
an adaptation process can manipulate. They are provided as sets of single- or multimodal
robot behaviors, relying on spoken language for verbal output and keyframe animations
for non-verbal behaviors. The used robot hardware is relatively cheap, which makes it
very affordable for the community replicating the proposed models. Since most social
robots offer speech, gaze, and facial expressions, the proposed models for generating
variable and socially-intelligent behaviors are also transferrable to many other social
robots.

The models are grounded in the psychology literature from chapter 4. Several ap-
proaches for behavior generation were presented after thoroughly analyzing the litera-
ture in chapter 5, including rule-based dynamic generation approaches. Findings from
human-human interaction were transferred to the robot. Their implementation enriches
the research landscape with new techniques for robot behavior generation. Given the
context of domestic companion robots, the thesis focused on the expression of robot
personality, persona, politeness, and humor:

• In chapter 7, the dynamically generated expression of extraversion/introversion
relied on a knowledge base and a traditional NLG pipeline approach with content
planning, sentence planning, and surface realization. It allows the robot to generate
descriptions of characters and the plot of a book with a configurable degree of
extraversion/introversion.
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• Chapter 8 generated different types of persona and politeness in the context of
recommendations, information retrieval, and entertainment.

• Chapter 9 realized the generation of robot humor for the German and English
languages. A particular contribution is the systematic multimodal augmentation of
dynamically generated verbal humor with corresponding prosody and non-verbal
robot behaviors.

• In addition, chapter 10 introduced a rule-based approach for dynamically gen-
erating multimodal robot irony based on NLP and NLG. It equips the robot with
socially-intelligent behavior by reacting to the user’s input and augmenting the
spoken words with appropriate paralinguistic and non-verbal, irony-specific cues.

All models have been implemented successfully for the robot hardware at hand in
Part III. These implementations provided a solid basis for the proposed non-functional
adaptation approaches, allowing fine-grained manipulation during the interaction.

Real-Time Non-Functional Adaptation
The heart of the thesis is a structured overview and conceptual framework for real-time
non-functional social robot behavior adaptation with RL in chapter 12. It describes
and illustrates in detail a holistic view of the overall problem. It covers the general
procedure of modeling, simulating, and evaluating user-adaptive robot behaviors based
on the RL theory from chapter 2, the literature on user-adaptive interaction, and the
analyzed related works from chapter 6. The conceptual overview provides researchers
with guidance and an analysis tool for the design and implementation of user-adaptive
and socially-aware social robot behaviors by pointing out key considerations:

• In the context of problem modeling, this thesis breaks down the connections be-
tween general and theoretic properties of RL problems, environments, algorithms,
and their implications on models for real-world HRI scenarios. Moreover, this
thesis presents and illustrates the mapping between the core aspects of RL models
(state space, action space, reward, and learning algorithm) and non-functional
robot adaptation, and dependencies and interrelations between these aspects. In
that regard, a noteworthy contribution is the Adaptation Triad, which allows for
getting an overview of the most important parts of the adaptation model at a glance
by visualizing them in a circular diagram.

• Advantages and disadvantages, as well as specific challenges of simulations and
human evaluations of adaptation models, are presented with their use and implica-
tions on the resulting experiment design. Different measures and their applications
are listed in the different stages of simulating and evaluating a model.

• Apart from the general systematic breakdown of non-functional behavior adapta-
tion with RL, the conceptual framework also provides details on the inclusion of the
user in the adaptation process. In this context, another noteworthy contribution
is the overview on socially-aware RL, which covers the inclusion of human social
signals from chapter 3, related interaction dynamics, explicit and implicit feedback
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in the RL loop. Potential design approaches are illustrated for use in state space
and reward, as well as associated types of noise, including resulting algorithmic
considerations.

Four adaptation models with explicit and implicit feedback implemented the con-
ceptual framework in chapter 13 and chapter 14. These models also rely on the pre-
viously presented behavior generation approaches. The interaction scenarios are not
goal-oriented, i.e., the robot cannot rely on measurable, task-related information for
adaptation. Instead, it relies on explicit and implicit human feedback. Simulations, lab,
and in-situ studies evaluated the following models with different complexity of behavior
generation and adaptation:

• A stateless approach was chosen for estimating the user’s preferences of the robot’s
expressed politeness and persona in chapter 13. The robot investigated different
politeness strategies and sets of persona in different assistive and entertainment
application contexts. The user provided explicit feedback via button presses on a
hardware control panel.

• The adaptation of the robot’s expressed extraversion/introversion in section 14.1
was realized based on implicit human feedback derived from sensed user engage-
ment. The model combines user engagement and the robot’s configuration of
extraversion/introversion in the RL state space. The reward signal is based on the
relative temporal progression of user engagement.

• In the first model for robot humor adaptation in section 14.3, the robot’s multimodal
configuration for behavior generation is part of the state space and manipulated by
the learning agent’s actions. It uses implicit feedback based on measured human
amusement as the reward signal.

• The second model for robot humor in section 14.3 deviated from the first in the
sense that only the user’s amusement is part of the state space. The learning agent’s
actions trigger different randomized multimodal behaviors. Implicit feedback is
based on measured human amusement and used as the reward signal.

The models illustrate the various implementations of the conceptual framework and
its applicability for different use cases. The structured overview and models illustrate im-
portant considerations and implementation options. They serve as systematic guidance
and inspiration for the research field.

15.2. Technical Contributions
Several technical contributions complement this thesis. All behavior generation and
non-functional adaptation models were implemented for the robot at hand, resulting
in conceptual and theoretic contributions and complete proofs of concept. Their im-
plementations included verbal and non-verbal behaviors, technical simulations of the
adaptation approaches, and real-time interactive research prototypes for conducting lab
and in-situ studies.
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Besides the technical implementation of the presented behavior generation and non-
functional adaptation approaches, there were additional technical challenges whose
resolutions are worth listing as standalone contributions. Listing all of them would go
beyond the scope of this thesis, but the following overview briefly summarizes the most
important ones:

• All proposed behavior generation approaches from Part III and non-functional
adaptation approaches from Part IV were implemented for the robot hardware at
hand. These implementations were the basis for the experiments, simulations, and
user studies.

• Chapter 8 introduced an assistive robotic companion. It served as an autonomous
evaluation platform for the in-situ study in chapter 13. It provides various as-
sistance, entertainment, information retrieval, and communication applications.
They were inspired by features of assistive robots in domestic environments as
reported in the literature in chapter 5. The implementation targeted the in-situ
evaluation of user-adaptive social robot behaviors in elderly users’ domestic en-
vironments. Thus, it needed to cope with specific difficulties which arose from
the participants’ concerns about privacy, internet access, and more. The resulting
platform is entirely autonomous and configurable to the individual participants’
needs and wishes. It does not need any supervision or operator.

• The development of the reeti-rest software and API from chapter 11 was essential
for realizing the proposed dynamically generated robot behavior approaches.
Specifically, the software allows for dynamically generated keyframe animation
with the parallel movement of all actuators and parallel playback of speech and
sounds. Besides the robot’s internal TTS software, the integration of additional third-
party TTS software allows for more control over the robot’s prosody. Moreover, the
software also provides additional handy tools, such as a virtual robot for testing,
pose and animation editors for authoring content, and remote access to essential
robot settings, such as volume, audio playback, and more. The reeti-rest software
was an essential contribution and a core technical component for all conducted
experiments.

15.3. Empirical Contributions
The proposed behavior generation and non-functional adaptation approaches were
evaluated in several experiments in Part III and Part IV. Results demonstrated that the
implementations of the presented models work as expected and that a robot can adapt
its behaviors to individual users. Moreover, the thesis reported insights into the user
experience. Even though not all proposed adaptation approaches were evaluated in the
lab or in-situ studies, working research prototypes and simulations constituted proof of
concept for further investigation in future research.

A study in chapter 10 revealed that generated multimodal robot irony improved per-
ceived social intelligence. Results have clearly shown that the irony generation approach
worked well: participants were able to correctly identify their robotic conversation
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partner’s use of irony and experienced associated humor, they associated a better user
experience with the ironic robot, and overall, more participants preferred the ironic
robot. Thus, the generation of robot humor has much potential for shaping the user’s
impressions of the robot since humor contributes to the expressed personality profile
and perceived social intelligence.

This thesis conducted simulations for the proposed adaptation approaches from Part IV.
Due to their nature, they do not provide insights into human user preferences or resulting
impacts on user experience. However, they reveal the dependence of the learning
agents’ performance on different types of noise. A nondeterministic and nonstationary
environment resulted from replacing the human with a simulated user of reduced
complexity while introducing noise to the system. It allowed for parameter tuning and
investigating the influence of different degrees of noise.

Afterward, user studies provided valuable insights into the proposed non-functional
adaptation approaches and the underlying models. Chapter 13 presented an in-situ study
with several elderly participants in their homes for one week. The evaluation results
indicated that there is not one best or worst communication style for all users. Instead, a
learning approach can be used to adapt the robot’s politeness and persona to the users’
liking. In addition, the lab study in chapter 14 evaluated the robot using adaptive humor.
The results showed that the proposed socially-aware RL process with implicit feedback
achieved significantly higher levels of user amusement than one that did not learn from
the user’s implicit feedback.

These insights indicate that socially-aware and non-functional adaptation of social
robot behaviors is a promising direction for future research. The thesis illustrated that RL
can be used for adapting generated verbal and non-verbal robot behaviors to individual
users and that such adaptation can even result in improved user experience.
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16. Future Work
The non-functional adaptation of social robot behaviors during interaction is still chal-
lenging in HRI. With robot hardware becoming more powerful and affordable, the time
when social robots are part of our everyday life is getting closer and closer. Equipping
robots with technology that makes them more expressive and appear more socially
intelligent and understanding is a long-term goal for the future. This thesis suggested
different approaches for multimodal behavior generation and corresponding adaptation
based on RL. The following sections outline some limitations and perspectives for future
research.

16.1. Non-Verbal Sounds

This thesis relied on verbal and non-verbal robot communication with speech, facial
expression, and gaze since the Reeti robot has a limited set of actuators. The robot does
not have extremities, and thus it cannot move or perform gestures. Of course, future
work should also investigate the adaptation of the remaining modalities (see section 5.1.2).
Besides using typical non-verbal communication channels, such as gestures, posture,
movement, and proxemics (which often rely on mimicking human behaviors), many
robots also have LED lights, displays, and sound playback as additional communication
channels.

While lights and displays rely on visual contact, auditive communication with sounds
is of specific interest for the future. It allows the machine to communicate complex
information in a very short time without visual contact. In particular, robots can play
back any sound: recorded samples (e.g., sounds from nature, human or animal sounds,
and more), synthetic sounds (such as beeps), music, and much more. The state-of-the-art
technology also allows for manipulating sounds on the fly with real-time effects for mod-
ifying pitch, adding reverb, distortion, and more. The same applies to polyphonic music,
which can be created and played back with instruments and synthesizers. Unfortunately,
the HRI literature has not extensively studied the use of non-verbal sounds (i.e., sounds
that express messages in a short time independently of any particular language).

So far, the HRI literature primarily investigated the use of specific sound and music
parameters (such as intonation, pitch, and timbre). For example, a typical use case is
expressing the robot’s internal state (e.g., different emotions, such as sadness, anger, fear,
or joy) or intentions (e.g., affirmation or denial). One of the few works addressing the
adaptation of robot sounds is Ritschel et al. (2019a), which presents an approach for shap-
ing the robot’s timbre based on an evolution strategy and explicit human comparative
feedback. A set of musical themes with up to four voices is played back with a synthesizer.
The evolution strategy manipulates the synthesizers’ parameters (sawtooth and sine
wave oscillator amplitude, sustain level, release time, high pass and low pass filter) of
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each voice and the tempo. The user listens to two variants of the same music theme with
different parameters and selects the preferred one. This process repeats several times.
The authors found that almost all participants preferred the personalized robot sounds,
which indicates that adapting a robot’s sonic interaction design is a promising field for
future research.

16.2. Neural Networks and Deep Learning

This thesis focused on rule-based approaches for dynamically generating multimodal
social robot behaviors. For future work, it is essential to look at data-driven generation
paradigms, where neural networks are trained on large data corpora to synthesize
stylistic variants of verbal and non-verbal behaviors automatically. These techniques
are of specific interest for producing various dynamically generated verbal and non-
verbal robot behaviors for expressing personality, persona, politeness, and humor. The
literature uses neural network techniques for generating texts and animations that
portray certain personality aspects.

Modern dialog systems use neural networks to generate an answer to arbitrary user
input. For example, Nguyen, Morales, and Chin (2018) train a chatbot on TV show
transcripts and movie dialogs to learn how to map user utterances on chatbot responses.
They use an encoder to process user utterances and a decoder to produce the chatbot
answer. Results of the evaluation show that the chatbot can generate answers that portray
certain aspects of personality. Oraby et al. (2018) investigate how to train a neural model
for task-based dialog that ensures not only stylistic variation but also semantic fidelity.
The PERSONAGE NLG system by Mairesse and Walker (2010) generates a sufficient
amount of training material, which consists of semantic representations of dialog acts and
matching language output with different personality profiles. Experiments with various
encoder-decoder setups illustrate the benefit of neural architectures for controlling
stylistic variants in a task-based dialog.

For non-verbal behaviors, neural network approaches generate stylistic variants for
character animations. A particular motion style modulates how a character is perceived
and which emotion, mood, and personality are ascribed to it. Neural animation genera-
tion approaches have become popular for virtual agents, e.g., for animating a virtual
violinist’s hand (Kim, Cordier, and Magnenat-Thalmann, 2000), synthesizing emotional
expressions of 3D faces (Hong, Wen, and Huang, 2002), or for producing appropriate
gestures for a 3D skeleton for a given text (Kucherenko et al., 2020). Smith et al. (2019)
train three separate networks for pose, timing, and foot contact to enable real-time style
transfer. Style transfer helps reduce the amount of data, including combinations of
heterogeneous actions and motion variants required to achieve character animations
of sufficient quality that enhance the character’s expressivity. Even though the work
by Smith et al. focuses on a broader range of affective and non-affective components,
the approach bears great promise for generating motion style variants that portray a
character’s personality. In the context of social robots, neural animation allows, e.g., for
generating co-speech gestures for the NAO robot (Yoon et al., 2019) and the generation of
affective robot movements (Suguitan, Bretan, and Hoffman, 2019).

Beyond the generation of robot behaviors, neural networks and deep learning are
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essential technologies for state-of-the-art SSP. Estimating different interaction dynamics
(see section 12.3.4) allows for acquiring information about the user, which, in turn, serves
as input to the adaptation process. Automated approaches for sensing and interpreting
multimodal human social signals made massive improvements in recent years. For exam-
ple, Lee et al. (2018) present a deep learning framework in the context of robot-assisted
autism therapy with the NAO robot. It uses social signals with video (facial expressions,
head movements, body movements, pose, and gestures), audio, and biosignals (heart
rate, electrodermal activity, and body temperature) for estimating children’s affective
state (valence and arousal) and engagement. The trained framework allows the robot
to adapt its perception of the multimodal input to different cultures (Asia and Europe)
and individuals (based on the children’s demographics, behavioral assessment scores,
and individual characteristics), which allows for personalizing the interaction during
the robot-assisted therapy process.

Apart from the use of RL for real-time adaptation during the interaction (as done in
this thesis), the literature furthermore combines RL with deep learning approaches for
automated training and optimization, e.g., in the context of SSP. For example, Zhang et al.
(2018) present an approach for the automated design of machine learning architectures
without manual feature-engineering and refinement in the context of infant vocalization
analysis. Instead, an RL agent controls the design of different deep recurrent neural
network structures, which are automatically instantiated, trained, and evaluated, thus
automating the search for the best architecture without human interaction. In the context
of speech recognition, Rajapakshe et al. (2022) introduce a RL policy for emotion recogni-
tion. The presented “Zeta policy” is based on deep RL for recognizing the emotions happy,
sad, angry, and neutral in speech audio. Such technologies are essential for implementing
SSP and adaptation, as speech is a central communication channel, and deep learning
techniques open up more and more opportunities for acquiring information about the
user.

This thesis focused on model-free and value-based RL with tabular learning and linear
function approximation algorithms. Deep RL is a promising direction for the implemen-
tation of adaptation of social robots and virtual agents in the future. For example, in
the context of dialog systems, Galland, Pelachaud, and Pecune (2022) adapt a socially
interactive agent’s conversational strategy with deep RL in a simulated environment.
Each simulated user has preferences regarding different dialog acts and engagement,
which impact non-verbal behaviors and turn-taking status. The estimated engagement
contributes to the reward signal: the reward signal contains task-based information and
the social goal of maintaining user engagement to ensure a high-quality user experience.
Other RL techniques, such as batch RL (Lange, Gabel, and Riedmiller, 2012) can also
be combined with deep learning (Fujimoto et al., 2019). They allow for efficient use of
collected training samples from online learning.

16.3. Long-Term Adaptation and Lifelong Learning

This thesis used lab and in-situ studies to evaluate the proposed adaptation approaches.
One week was the longest for evaluating the adaptive domestic companion with polite-
ness and persona in section 13.3. The long-term evaluation of autonomous adaptive
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social robots is an open research question (Martins, Santos, and Dias, 2019). Continuous
adaptation over an extended period is important for exploring the long-term viability
of adaptation approaches for social robots and building a relationship with the user.
So far, social robots have been used for exploring long-term HRI (Leite, Martinho, and
Paiva, 2013) and adaptivity in HRI (Ahmad, Mubin, and Orlando, 2017) in the context
of health care and therapy, education, work environments, public spaces and domestic
environments for several weeks or months, but rarely for more than a year. Social robot
adaptation will ideally be a process that accompanies the user for the rest of their life so
that the robot can evolve with the user. In this context, the term long-term focuses on
evaluating and adapting robot behaviors over an extended period.

There is also another, more algorithmic perspective. When using machine learning
for adaptation, algorithms and approaches are needed that learn continuously and, at
best, can transfer their knowledge to new and unknown tasks that they did not learn
to solve yet. Instead of learning each task in isolation, a learning agent should utilize
experience from past similar problems. The term lifelong machine learning describes
the general idea of improving the agent’s knowledge and effectiveness by accumulating
and retaining knowledge from previous learning tasks and applying it to future tasks
(Chen and Liu, 2018). While there are related approaches, such as hierarchical RL, which
decomposes the overall MDP in sub-tasks (e.g., Dietterich (2000) and Sutton et al. (2011)),
there is a conceptual difference to lifelong machine learning. Traditional RL is limited
to solving one problem in one environment. An agent trained for one problem cannot
share its knowledge with another agent for another problem. Different problems must
be solved separately. For example, the RL agents from Part IV are distinct agents. The
agent learning about persona cannot apply its knowledge in the context of politeness,
extraversion, or joke-telling, nor can the other agents apply their knowledge in the other
contexts. In contrast, lifelong RL (Chen and Liu, 2018) approaches investigate the use of
previous knowledge on similar tasks, e.g., for an optimal exploration strategy (Garcia
and Thomas, 2019), state abstractions (Abel et al., 2018a) and policy and value transfer
(Abel et al., 2018b). Recent work has also investigated the integration of human expert
feedback in lifelong RL (Jacquin, Perez, and Boulard Masson, 2022).

In general, lifelong learning and personalization in long-term HRI (Irfan et al., 2022) is
a promising field of research for the future. Using lifelong learning techniques for social
robot behavior adaptation seems obvious since humans also adapt and learn based on
knowledge transfer. For example, a piano player does not learn every finger movement
from scratch when practicing a new piece – the dexterity and musical appreciation from
already played pieces are applied and transferred to the new piece. Nevertheless, of
course, both can be refined and extended. Similar applies to human social behaviors
and is supposed to be the case for adaptive robots: while solving the problem of telling a
joke is an achievement, the intelligent use and transfer of this ability in more complex
social contexts would be the next step. Lifelong learning is also of relevance for SSP. For
example, Ren et al. (2020) demonstrate that lifelong learning saves more memory space
than conventional multi-task learning for multi-task sequential learning in the context
of deep speech emotion recognition.
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16.4. Entrainment

This thesis aimed to adapt the robot’s behaviors to the user. It did not consider the
potential effects of such an adaptation process. For example, the user may notice the
robot’s adaptation and, thus, react by changing their behaviors, which could interfere
with the robot’s goal.

Entrainment (Benus, 2014) is “the tendency of interlocutors to become similar to each
other in various aspects of their verbal and non-verbal behavi[o]r”. According to Be-
nus, several studies report this phenomenon across many languages and cultures in
human-human spoken interaction. Speakers adapt their linguistic and paralinguistic
behaviors to the behaviors of their dialog partners1. Human verbal and non-verbal be-
haviors are reported to be adapted, including overall structural linguistic features (e.g.,
syntactic structures or rules, lexical choice), acoustic-prosodic features (e.g., pitch, energy,
speech rate), conversational patterns in turn-taking management (e.g., the duration for
coordination of conversation partners) and other non-verbal behaviors (e.g., posture,
mannerisms, facial expressions) (Benus, 2014).

Benus points out that entrainment is highly relevant in social robotics since – in human-
human interaction – people who entrain their communication style to their interlocutors
are perceived as more socially attractive, competent, likable, and intimate. Positive
effects of entrainment have also been observed in HCI and HRI in both directions (user
entrains to the machine and machine entrains to the user) (Benus, 2014). Thus, the
adaptation of the robot’s communication style has great potential.

The machine learning approaches in this thesis do not aim to implement robot en-
trainment, but robot entrainment might be a result of these adaptation processes. For
example, the motivation for manipulating the robot’s expressed extraversion was the
variety of findings for preferred personality profiles in different contexts and scenarios
in the literature with no consensus on similarity or complementarity attraction. However,
adapting the robot’s expressed personality could result in the robot entraining to the
user if the robot learns to express a similar personality profile to the user.

An important question for future experiments is whether human entrainment may
counteract or interfere with adaptation approaches similar to those presented in this
thesis and how human entrainment should be taken into account from the machine
learning and algorithmic perspective. As soon as the robot manipulates its behaviors,
this could result in the human entraining to the robot. In turn, the robot may adapt to the
already entrained user, and so on. The RL approaches in this thesis do not aim to entrain to
the user (e.g., by mirroring), and the reward signal focuses on other interaction dynamics
(e.g., the robot aims to maximize engagement or amusement). Thus, the approaches
should be rather independent of human entrainment. However, a closer examination
is necessary to investigate human entrainment and its impact on social robot behavior
adaptation approaches based on RL.

1This is an essential distinction to the thesis at hand, where adaptation is not meant in terms of coordina-
tion, convergence, mirroring, synchrony and the like.
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16.5. Ethical and Privacy Considerations
Using human data for adaptation raises ethical and privacy questions. Thus, this section
outlines points of contact with ethical machine learning (Quadrianto, Schuller, and
Lattimore, 2021) and the need for good practices regarding an automated adaptation of
social robot behaviors.

First, an important question is whether the user is informed about the process of
machine learning and behavior adaptation being applied by the robot. One might argue
that many everyday technologies adapt to their users. For example, virtual keyboards
on smartphone displays optimize the touch point to the individual user’s fingers and
typing. They also learn vocabulary and sentence fragments based on the user’s input to
reduce errors and increase efficiency. However, the device may also upload such data to
cloud services – with the declaration of consent being deeply hidden in lengthy terms
and conditions. For “social” robots, which already suggest by their embodiment and
humanoid behaviors that they aim to represent social entities, it should be a matter of
course to be transparent to their users on how they process the user’s data.

From the perspective of adaptation, this thesis includes human data primarily in two
ways in the adaptation process:

1. the acquisition of human feedback to train the machine, and

2. the use of collected feedback for decision making, which impacts subsequent robot
behaviors and, consequently, the resulting user experience.

Especially in domestic environments, the former raises privacy concerns depending
on the feedback modality. Section 6.3 introduced explicit and implicit feedback, differ-
entiating whether the user is aware of giving feedback. Of course, relying on implicit
feedback may be convenient but invasive when cameras or microphones need to record
the interaction for SSP. Today’s commercial voice assistants address this problem, e.g.,
by streaming data to the cloud only after being activated with a specific wake word
and lighting up LEDs to communicate to the user that they are “listening”. Such signals
will also be needed in the context of social robot adaptation, even though the robot’s
embodiment might already suggest that the machine can “understand” the user. Nev-
ertheless, transparency should be first priority, making clear when SSP is applied, how,
where, and why it is processed. Hiding this information from the user will damage the
user’s privacy and be ethically questionable. Thus, this thesis processed all data locally
on the machine connected to the robot, without sharing any data with third-party cloud
services and giving participants control over which of the robot’s applications they want
to use and which not. Ethical guidelines and good practices for processing sensitive data
for machine learning exist, e.g., in Batliner, Hantke, and Schuller (2022), who focus on
speech data.

The latter is also worthy of discussion. Using human data for decision-making might
sound straightforward, as long as the user is informed and agrees to this process. How-
ever, such an adaptation process might also result in manipulation. First, a RL agent
always pursues an objective encoded in the system designer’s reward function. Only by
optimizing its behavior, the agent reaches the goal most efficiently. However, is the en-
coded goal also crucial for the specific user and their expectations about the interaction?
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Moreover, RL is an online adaptation mechanism. It is the nature of RL that one never
knows how the user would have reacted if the robot performed another action. Online
learning during interaction includes the risk of missing a better opportunity or negatively
impacting user experience due to suboptimal action selection, such as when performing
exploration. Even small behavioral mistakes may permanently damage the relationship
between the user and the robot.

In contrast to a RL agent, human behaviors often rely on cooperation and a degree
of “give and take”: humans defer their own needs or interest to do some good to their
friends or partner. However, the nature of RL is greedy behavior: the agent optimizes its
behavior to achieve a single goal – maximize long-term rewards. Thus, a careful design of
the reward signal is needed, as are additional mechanisms to make the learning process
a bit “more human”.

Finally, Sharkey and Sharkey (2010) point out that social robots can relieve the feeling
of loneliness for the elderly, stimulate interactions with other people and increase their
quality of life. Adaptation processes will possibly be helpful for this by further optimiz-
ing the user experience and addressing people’s needs and preferences. Nevertheless,
André (2015) points out that an emotional binding to the machine could also result in
emotional manipulation, exploitation, or dependency. She mentions that robots will
professionalize their ability to empathize and thus give a human counterpart the illusion
of compassionate individuals in the future. However, it is also questionable whether
this is desirable. This process could be amplified by robots expressing social intelligence,
such as conversational humor, and their adaptation to the user, though communicating
only an illusion of real “intelligence”.

Despite these mixed perceptions, socially-aware adaptation allows the user to actively
shape and participate in the concrete characteristics of their robot’s behaviors. Such
mechanisms allow future improvement of user experience without deeper technical
knowledge and effort, but – maybe – with a twinkle in the user’s eye.
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