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How to Build a Supervised Autonomous
System for Robot-Enhanced Therapy for
Children with Autism Spectrum Disorder
Abstract: Robot-Assisted Therapy (RAT) has
successfully been used to improve social skills in children
with autism spectrum disorders (ASD) through remote
control of the robot in so-called Wizard of Oz (WoZ)
paradigms. However, there is a need to increase the
autonomy of the robot both to lighten the burden
on human therapists (who have to remain in control
and, importantly, supervise the robot) and to provide
a consistent therapeutic experience. This paper seeks
to provide insight into increasing the autonomy level
of social robots in therapy to move beyond WoZ.
With the final aim of improved human-human social
interaction for the children, this multidisciplinary
research seeks to facilitate the use of social robots as
tools in clinical situations by addressing the challenge
of increasing robot autonomy. We introduce the clinical
framework in which the developments are tested,
alongside initial data obtained from patients in a first
phase of the project using a WoZ set-up mimicking the
targeted supervised-autonomy behaviour. We further
describe the implemented system architecture capable
of providing the robot with supervised autonomy.
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1 Introduction
Autism Spectrum Disorder (ASD) is characterised by
impairments in social interactions and communication,
usually accompanied by restricted interests and
repetitive behaviour [1]. Most individuals with ASD
require professional care throughout their lives [2, 3],
entailing a significant financial and time (at least 15
hours per week) commitment [4, 5].

Evidence-based psychotherapy necessitates both
clinical expertise and expertise in applying the
results of scientific studies. For ASD, one of the
most efficient ways of improving individuals’ abilities
and reducing their symptoms is through early
(cognitive-) behavioural intervention programs [6].
Studies testing the effectiveness of such interventions
report significant results in terms of language and social
skill improvement, decreased stereotypical behaviours,
and acceleration of developmental rates [7].
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Although behavioural approaches have
demonstrated effectiveness in reducing ASD symptoms,
there is more to be done in this field. It is important to
improve the efficiency of early behavioural interventions
to ensure progress at a later stage, allowing adults with
ASD to lead independent (or near-independent) lives
[8]. Taking into account that individuals with ASD
tend to be more responsive to feedback coming from
an interaction with technology rather than from an
interaction with human beings [9], and given the need
for reducing costs while increasing the effectiveness
of standard (cognitive-) behavioural therapies, studies
have shown that robots may be beneficial in ASD
therapies as mediators between human models and ASD
children, see [9–11]. In the Robo-Mediator approach
[12], a social robot is used as a means of delivering
the standard treatment, elucidating faster and greater
gains from the therapeutic intervention when compared
to classical treatment. Several robots have already
been used in Robot-Assisted Therapy (RAT) with
children with ASD: the NAO robot, see [13–15] among
others; low-cost robots like AiSOY1 [16] or CHARLIE
[17]; robots that use their touchscreens as part of the
interaction like CARO and iRobiQ [18]; or the robot
Probo which has been used for social story telling [19],
to improve play skills [20], and to mediate social play
skills of children with ASD with their sibling (brother or
sister) [21]. See [22] for a complete survey detailing how
RAT robots are mapped to therapeutic and educational
objectives.

1.1 Increasing autonomy in RAT

Typical work in RAT is performed using remote
controlled robots; a technique called Wizard of Oz
(WoZ) [23, 24]. The robot is usually controlled,
unbeknownst to the child, by another human operator.
This permits the therapists to focus on achieving a
higher level of social interaction without requiring
sophisticated systems reliant on high levels of artificial
intelligence. However, WoZ is not a sustainable
technique in the long term, see [25]. It is a costly
procedure as it requires the robot to be operated by
an additional person and as the robot is not recording
the performance during the therapy, additional time
resources are needed after the intervention.

It has been proposed that robots in future
therapeutic scenarios should be capable of operating
autonomously (while remaining under the supervision
of the therapist) for at least some of the time [26].

Providing the robots with autonomy in this sense
has the potential to lighten the therapist’s burden,
not only in the therapeutic session itself but also
in longer-term diagnostic tasks. Indeed, as this will
paper will illustrate, the technical solutions required
to deliver adequate autonomous abilities can also be
used to improve diagnostic tools, for example by
collecting quantitative data from the interaction, or
automatically annotating videos of interactions with
the children (currently a manual process involving
significant time and effort by multiple therapists
[25]). Diagnosis might further be improved through
automated behaviour evaluation systems (required to
allow the robot to choose appropriate actions during
autonomous behaviour).

A system capable of such data processing can help
therapists to administer personalised interventions for
each child, as the robot could infer intentions, needs,
or even the mood of the child based on previous
interactions [26]. A fully autonomous robot might be
able to infer and interpret a child’s intentions in order
to understand their behaviour and provide real-time
adaptive behaviour given that child’s individual needs.
An autonomous robot could attempt to (re-)engage the
child should they lose interest in the therapeutic task.
Robots also need to respond to high level commands
from therapists, enabling the latter to overrule the robot
behaviour at any time. Such a degree of autonomy would
enable the development of less structured interaction
environments which may help to keep the child engaged
[27], e.g., by providing the child with ASD the ability
to make choices during the interaction with the robot
[28]. A high level of engagement would be reinforced
by explicit positive feedback as it has been proven
that children find rewards particularly encouraging, see
[29, 30]. This encouragement can be given in the form
of sensory rewards, such as the robot clapping hands or
playing some music.

In building more autonomous robots capable
of flexible social behaviour, the development of a
basic “intentional stance” [31] is important. In ideal
circumstances, this means that the robot should be able
to take a perspective on the mental state of the child
with whom it is interacting, i.e., it should be able to
develop a Theory of Mind (ToM) and be able to learn
from normal social signals in a manner that is similar
to the way humans learn to infer the mental states
of others. Full autonomy (in the sense that the robot
can adapt to any event during the therapeutic sessions)
is currently unrealistic and not desired as the robot’s
action policy will not be perfect and in a therapeutic
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scenario, every single action executed by the robot
should be appropriate to the therapeutic goals, context
of the interaction, and state of the child. However it is
feasible to aim for a “supervised autonomy”, where the
robot user (the therapist, psychologist or teacher) gives
the robot particular goals and the robot autonomously
works towards achieving these goals whilst allowing the
supervisor to override every action prior to execution
to ensure that only therapeutically valid actions are
executed.

Increasing the autonomy of robots will also bring
about a new set of challenges. In particular, there will
be a need to answer new ethical questions regarding the
use of robots with vulnerable children, as well as a need
to ensure ethically-compliant robot behaviour (e.g., to
avoid persisting with certain behaviour should the child
refuse to collaborate).

Architectures for controlling autonomous social
robots commonly utilise behaviour-based architectures,
as these systems are capable of mixing different
behaviours and being responsive to external sensory
information [32]. However, these approaches operate
in-the-moment and are not capable of anticipating
upcoming events, which might be desirable when
interacting with ASD children. Few of the existing
control architectures are tailored to social robotics for
therapeutic purposes. B3IA [33] is a control architecture
for autonomous robot-assisted behavioural intervention
for children with ASD. The architecture is organised
with different modules to sense the environment and
interaction, to make decisions based on the history of
human-robot interaction over time, and to generate
the robot’s actions. This architecture has many merits
but it has never been tested in a realistic, complex
scenario. It could also be improved through support of
non-reactive behaviours and behavioural adaptation to
that of the young user. In another approach, Cao et al.
propose a social behaviour control architecture capable
of adapting to different therapeutic scenarios to achieve
the goal of the interaction [34].

1.2 First steps towards Robot-Enhanced
Therapy

As has been argued above, there is a need for the next
generation of RAT – which we term Robot-Enhanced
Therapy (RET) – to go beyond current WoZ paradigms.
This approach is grounded in the ability to infer a child’s
psychological disposition and to assess their behaviour.
The robot is then provided with the information

necessary to select its next actions within well-defined
constraints under supervision of a therapist. The latter
aspect is key, as from an ethical perspective, there are
strong indications that a fully autonomous system is
not actually desirable in the context of interaction with
vulnerable children [35, 36].

Consequently, RET robots should adopt a
compatible, yet pragmatic approach concerning the
desired level of autonomy. This entails restricting the
modelling of psychological disposition to relatively
simple emotions, immediate intentions, and goals, and
assessing the child’s behaviour based on cues given
through body movement, facial expression, and vocal
intonation. This will allow the robot to react to the
child’s requests in a contingent manner, to record, and
to give specific feedback to the child. All elements would
be conducted in a manner consistent with the level of
attention and competence of the child. Such RET would
not be entirely unlike Animal-Assisted Therapy (AAT),
but possesses the added benefit that the robot can be
instructed to behave in a specific manner and can be
programmed to recognise situations where the therapist
must resume control of the therapeutic intervention.
The robot’s autonomy therefore remains supervised in
the sense that the therapist provides either high-level
instructions for the robot or is called upon by the
robot to interpret situations or data which it cannot
reliably interpret itself. Thus, the aim of RET is not to
replace the therapist but rather to provide them with
an effective tool and mediator, embedded in a smart
environment of which they remain in full control.

There are some additional desiderata for RET. For
example, since RET will be an applied field where a
number of therapists might be working independently,
it is desirable to ensure that robot controllers developed
for such an application be as platform-independent as
possible. Also, children require therapy tailored to their
individual needs, and RET robots must be able provide
this. To achieve this, research in a clinical framework
should investigate how children with ASD behave and
perform during interactions with a therapeutic robot
compared to a human partner, with respect to different
social behaviours.

The EC-FP7 funded DREAM project [37]
(Development of Robot-Enhanced therapy for children
with AutisM spectrum disorders) is making progress
in this direction. The aim is to reduce the workload
of the therapist by letting parts of the intervention be
taken over by the robot. This includes, for example,
monitoring and recording the behaviour of the child,
engaging the child when they are disinterested, and
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adapting between levels of intervention. This enables
the therapist to oversee different children and plan the
required intervention for every child on an individual
basis.

The purpose of this paper is to highlight the
steps completed in developing DREAM, the first robot-
enhanced therapy project. Section 2 describes the
clinical context where the project is to be tested, defines
the measured variables, children and environmental
conditions, and reveals first results. We deepen the
concept of supervised autonomy in Section 3, detailing
the control architecture. Finally, we conclude with a
synthesis of the lessons learned and take-home messages
in Section 4.

2 Clinical framework
In order to evaluate the effectiveness of RET robots
for improving social skills in children with ASD,
several specific behaviours were observed during therapy
sessions. These include: reciprocal turn-taking, shared
attention, social reciprocity, sustained interaction, eye-
gaze, spontaneous interaction, imitation of novel acts,
and more. These behaviours are core problems in autism,
representing both potential pathogenetic mechanisms
and clinical symptoms/signs (e.g., deficit in social
communication). In particular, we primarily target
the following behaviours: imitation, turn taking, and
joint attention, because we consider these to be the
mechanisms that underlie other clinical symptoms, such
as social and communication deficits.

From a clinical point of view, we aim to teach
the aforementioned behaviours during repeated sessions
of interactive games using social robots. This training
is expected to lay a foundation for developing a set
of implicit rules about communication; rules that will
be transferred to interactions with human agents. The
clinical goal behind this project is to determine the
degree to which RET can improve joint attention,
imitation and turn-taking skills, and whether or not this
type of intervention provides similar, or greater, gains
compared to standard interventions. For this purpose,
the project was divided into two phases. During the
first phase we employed RAT robots under a WoZ
system, while in the second phase we will employ RET
using a supervised autonomous system. The results
from the first phase can be used as a baseline to
compare the results of the second phase. Both phases

will be compared to Standard Human Treatment (SHT)
conditions.

In order to assess the effectiveness of both RET for
children with ASD, we use single case experiments, more
specifically, classic single-case alternative treatment
design. In both RET and SHT conditions, children have
6 to 8 baseline sessions (in which we measure their initial
performance on the variables under investigation), 8
standard therapy sessions and 8 RET sessions. Children
participate in SHT sessions and RET sessions in a
randomised manner to avoid ordering effects. In order
to confirm children’s diagnosis of autism and to assess
their social and communication abilities we have used
the ADOS instrument [38]. Apart from using ADOS as
a diagnosis instrument we also use it as a measurement
tool, in order to quantify differences in the obtained
scores before and after interventions. After the initial
ADOS application and baseline sessions considering
the therapeutic setting, children interact directly with
either a robot or human, with another person mediating
the interaction between the child and the interaction
partner in either condition.

Fig. 1. The intervention table and location of different cameras
and Kinects.

All three tasks to be tested are implemented
following the discrete trial format, a commonly used
approach in early intervention programs for autism [39].
The elements that characterise this approach are: the
teaching environment is highly structured; behaviours
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Fig. 2. Cohen’s d effect sizes for each comparison between the baseline, RET and SHT conditions. “*” indicates a statistically
significant difference. “NS” indicates a comparison that is not statistically significant.

are broken into discrete sub-skills, which are presented
over multiple, successive trials; and the child is taught to
respond to a partner’s discriminative stimulus (e.g., “Do
like me!”) through explicit prompting, prompt fading
and contingent reinforcement [39].

To test our hypothesis, we use the humanoid
robot NAO which acts as a social partner in each
task, initiating behaviours like arm movements (for
imitation purposes), taking turns and triggering joint
attention episodes. An additional technological tool
integrated in this research is the electronic “Sandtray”
[40]. The platform uses a touchscreen and allows for
social engagement through a collaborative interaction
platform. The hardware consists of a 26-inch capacitive
touchscreen and an associated control server, upon
which a series of pictures can be manipulated by
dragging (on the part of the human partner), or
simulated dragging (on the part of the robot partner).

In order to capture sensory information, we use
an intervention table (shown in Figure 1), which
accommodates ASD children interacting with the robot
NAO. It employs five individual sensors, including three
RGB cameras and two Microsoft Kinects, to capture
the data. The cameras are used for face detection
and gaze estimation. One Kinect has two functions:
to capture both RGB and depth images for 3D facial
feature extraction and 3D gaze estimation, and to
detect skeleton joints for action recognition and hand
tracking. The second Kinect is used to capture both
RGB and depth images for robot and objects detection
and tracking, see section 3.1 for additional details. In
order to keep the environment as close as possible to

the standard intervention setting, we have used a small
table and small chairs, also the distance between the
robot and the child or between the therapist and the
child was about 30 centimetres.

To assess the children’s performance in the task, we
measure two types of variables: primary and secondary.
Primary variables comprise the performance of the child
on the three tasks, based on task solving accuracy
(e.g., movement accuracy in the imitation task, following
instructions to wait for his/her turn on the turn taking
task, and gazing in the joint attention task). Secondary
variables involve outcomes such as:
a) social engagement: eye-contact and verbal

utterances;
b) emotional level: positive and negative emotions;
c) behavioural level: stereotypical behaviours,

adaptive and maladaptive behaviours;
d) cognitive level: rational and irrational beliefs.

For each of the measured variables, we provide an
operational definition to be used as a basis for the
learning process that maps child behaviours. This set
of behaviours describes the child’s actions during the
intervention tasks in perceptual terms. This will provide
the robot with the necessary input to react congruently
and autonomously towards the child. Most of the
variables are to be measured in frequency (e.g., eye
contact – how many times the child looked at the upper
part of the robot) except the beliefs where we would
analyse the speech of the child and decide whether
the phrase implies a rational or irrational statement



6 Pablo G. Esteban et al.

(according to the definition of rational statement used
in cognitive therapy).

Although several studies have been conducted in
this field, our studies use a rigorous methodology,
utilising an evidence-based paradigm, leading to the
use of standard designs that involve several baseline
measurements (e.g., single-case alternative treatments
design), standard instruments for diagnosis (e.g.,
ADOS), and structuring the tasks developed based
on empirical validated intervention techniques (e.g.,
discrete trial).

We now present the results obtained after
completing the first phase of the project. Overall,
the results of the experiments conducted in the WoZ
paradigm show mixed results for the efficacy of RET,
especially for primary outcomes (task performance,
based on solving accuracy). The results differ from
one task to another, such that in the turn-taking task
RET seems to be as good as or even better than SHT,
especially for children with lower levels of prior skills.
This means that some of the participants exhibit better
performance when interacting with the robot compared
to standard treatment. Regarding joint attention, the
children’s performance was similar in both conditions
for the majority of the participants. However, for the
imitation task, RET seems less effective than SHT.
These results are important because they can help us
to understand the conditions under which robots can
be implemented in ASD therapy, and where the human
therapist should be the main actor.

In the case of secondary variables, some differences
are observed. In the imitation task, children looked more
at the robot compared to the human partner, meaning
that the children were interested in the robot partner
during the entire intervention period. Regarding the
emotional level, positive emotions appeared more in the
imitation and joint attention tasks, where the robot
was the interaction partner. As for the behavioural
level, the presence of the robot in the task acts as
a behavioural activator, so that both adaptive and
maladaptive behaviours seem to appear more often
in the RET condition compared to SHT condition
(Figure 2).

The outcomes of these studies can serve as a
basis for developing computational models capable
of detecting inter-patient differences as well as
tracking individual progress throughout the therapy.
These models represent the foundation for developing
a cognitive architecture with supervised autonomy
(Section 3.3).

3 Supervised Autonomy
Effective child-robot social interactions in supervised
autonomy RET requires the robot to be able to
infer the psychological disposition of the child and
use it to select actions appropriate to the current
state of the interaction. How does the child feel?
Are they happy, sad, disinterested or frustrated?
Do they pay attention to the robot? What does
their body language communicate and what are their
expectations? Will they get bored in the therapy? The
disposition can be inferred from gaze behaviours, body
behaviours, and speech behaviours, see Section 3.1.
Another important consideration is so-called “testing
behaviour”, which is described as a systematic variation
of activity of the child while closely watching the
other partner. This is related to perceiving intentions
of others and to dynamics of imitation: role-reversal
behaviours, turn taking, initiation of new behaviours,
etc. Research towards supervised autonomy must
develop computational models that can assess the
behaviour of a child and infer their psychological
disposition (Section 3.2). As noted already, we view
these goals as a more pragmatic and less ambitious
version of the well-known Theory of Mind problem, a
problem for which a complete solution is not a realistic
proposition in the near future.

The core of supervised autonomy, as described
above, is a cognitive model which interprets sensory
data (e.g., body movement and facial expression cues),
uses these percepts to assess the child’s behaviour by
learning to map them to therapist-specified behavioural
classes, and learns to map these child behaviours to
appropriate therapist-specified robot actions. Thus, the
DREAM system architecture has three major functional
subsystems:
1. Sensing and Interpretation,
2. Child Behaviour Classification, and
3. Social Cognitive Controller.

The functional specifications of these three subsystems
are derived from the different types of intervention
targeted in Section 2. These interventions are described
as a sequence of actions, each action comprising a
number of constituent movements and sensory cues
linked to a particular sensory-motor process. The motor
aspect of these processes provides the basis for the
robot behaviour specification to be implemented in
the social cognitive control subsystem. The sensory
aspect provides the basis for the sensory interpretation
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Fig. 3. Graphical illustration of the DREAM software architecture. Arrows represent communication between components through
one or more ports. Port names have been omitted for clarity. The three subsystems shown are: sensory interpretation (blue), child
behaviour classification (green), and social cognitive controller (orange).

subsystems and also the child behaviour classification
subsystem. The functional specification of the three
subsystem components are described in detail in
Sections 3.1, 3.2, and 3.3, respectively. The overall
system architecture is shown in Figure 3.

In addition to the three subsystem components
identified above, there is a Graphical User Interface
(GUI) component to facilitate external control of the
robot by a user (either a therapist or a software
developer) and to provide the user with an easy-to-
understand view on the current status of the robot
control (Figure 4). It also provides a graphic rendering
of the child’s behavioural state, degree of engagement,
and degree of performance in the current intervention.

3.1 Sensing and interpretation

In pursuing the goal of multi-sensory data fusion,
analysis, and interpretation, RET cognitive controllers
should target the features that are required by the
three scenarios described in Section 2 (joint attention,

imitation, and turn-taking), at different levels of
interaction complexity. These include:
1 Gaze analysis, including frequency and time of

fixation on different parts of the robot, on other
agents, on objects that are in front of the robot
(for joint attention behaviours), and on faces in the
peripheral field of view during a social interaction
or play.

2 Frequency and duration of movements (the distance
between the child and the robot, the position of
the child in the space, interaction gestures, contact
between objects and parts of the robot, and level of
general activity, i.e., how much the child moves).

3 Vocal prosody, to identify statistics on congruent
prosodic utterances between the child and the robot,
such as the number of words, the frequency of
verbal initiations and the length of the verbal
speech during an interaction sessions (individuals
with autism have difficulties in recognising and
producing prosody and intonation [41]) and speech
recognition in order to respond to the children’s
responses during the scenarios.
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Fig. 4. Graphical User Interface (GUI) component used by the therapist to control the robot. On the left side, the script of the
intervention protocol is listed. On the right side, a set of robot actions available to overrule the autonomous behaviour.

4 Vocal analysis of early speech measurement for key
acoustic parameters [42].

5 Emotional appearance cues, in order to make
explicit the dynamic processes that create, and are
created by, the relationships with others [43].

6 Stereotypical behaviours, including the level of
behavioural repetitiveness (such as shaking head,
waving hand).

Multi-sensory data is used to provide quantitative
support for the diagnosis and care/treatment of ASD
children. This section shows the conclusions obtained
after investigating methods and solutions for multi-
sensory data perception and interpretation, with a focus
on the complexity of extracting meaningful information
about the ASD children. Specifically, techniques of
gaze estimation, skeleton joint-based action recognition,
object tracking, face and facial expression recognition,
and audio data processing are presented.

3.1.1 Gaze estimation

The main challenges of gaze estimation involved in RET
for ASD children are large head movement, illumination
variation and eyelid occlusion. Although the designed

multi-sensor system can successfully capture the child’s
face with large head movement, it is also a challenge to
determine which camera can obtain the best view of the
frontal face. To remedy this, we have proposed a multi-
sensor selection strategy to adaptively select the optimal
camera, see [44]. In the proposed strategy, all sensors
are calibrated and used to capture the sensory data in
parallel. In order to perform optimal camera selection,
a face confidence score of each camera is defined. This
score is acquired by measuring the variation of facial
landmarks of a detected face with respect to facial
landmarks of a predefined frontal face. The camera with
the highest face confidence score will be selected as the
optimal camera.

Once the face is detected, a Supervised Descent
Method (SDM) trained with a database as described in
[45] is employed to locate the feature points in the face
and an object pose estimation method (POSIT) [46] is
utilised to calculate the head pose. Then we propose an
improved convolution based integro-differential method
to localise the iris centres of the child [47, 48]. Compared
with the conventional integro-differential method [49],
the improved method is computationally much faster
and it also achieves higher accuracy even in challenging
cases of partial eyelid occlusion occurs or illumination
varies (as shown in Figure 5).
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Fig. 5. Images obtained from the intervention table localising the
iris centres of the child.

Based on the obtained head pose and iris centres,
we have proposed a two-eye model based method to
estimate the final point of gaze of the ASD child. The
proposed method averages the gazes of both eyes for
a final gaze estimation. Moreover, we calculate the
personal eye parameters by approximating the visual
axis as a line from the iris centre to the gaze point.
Experimental results show good performance of the
proposed gaze estimation method (as in Figure 6).

3.1.2 Human action recognition

In the intervention task of imitation, either the
ASD child’s actions or the therapist’s actions should
be recognised when the child interacts either with
the therapist or with the robot. Early proposed
approaches mainly recognise human action from 2D
sequences captured by RGB cameras [50–52]. However,
the sensitivity to illumination changes and subject
texture variations often degrades the recognition
accuracy. These problems can be solved by using depth
information acquired from a depth sensor since images

(a)

(b)

(c)

Fig. 6. Gaze estimation results on an ASD child recorded from
intervention table. The white line denotes the gaze direction.
(a) Estimation with camera0. (b) Estimation with camera1. (c)
Estimation with camera2.

from depth channel can provide another dimensional
information.

The main idea is to represent the movement of
the body using the pairwise relative positions of the
skeleton joint features that can be extracted by a Kinect.
We have utilised the Kinect SDK for acquiring the
skeleton data (as shown in Figure 7). For each child,
ten joint positions are tracked by the skeleton tracker.
The position coordinates are then normalised so that
the motion is invariant to the initial body orientation
and the body size. We have also presented a novel
skeleton joint descriptor based on 3D Moving Trend
and Geometry (3DMTG) property for human action
recognition, see [53]. Specifically, a histogram of 3D
moving directions between consecutive frames for each
joint is constructed to represent the 3D moving trend
feature in the spatial domain. The geometry information
of joints in each frame is modelled by the relative motion
with the initial status. After creating the descriptor,
a linear Support Vector Machine (SVM) classification
algorithm [54] is used for action recognition. We have
evaluated the proposed method on a publicly available
dataset MSR-Action3D [55] and the results demonstrate
that our method can achieve high recognition rates on
both similar actions and complex actions.
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Based on the detected skeletal joints, we can also
track the 3D position of a hand, frame by frame. Hand
tracking can assist in estimating the location of object to
grasp and is a key step for gesture recognition [56]. This
will be used to analyse which object is grasped by the
ASD child and to help with the activity classification.

Fig. 7. Skeleton joints detection for ASD children.

3.1.3 Facial expression recognition

We have used the Local Binary Patterns feature
extraction method on Three Orthogonal Planes (LBP-
TOP) to represent facial appearance cues and applied
the SVM for identity and facial expression classification
[57].

Local Binary Patterns (LBP) is a non-parametric
method and has proven to be a powerful descriptor
in representing the local textural structure [58]. The
main advantages of LBP are the strong tolerance
against illumination variations and the computational
simplicity. This method has successfully been used
in both spatial and spatio-temporal domains in face
recognition and facial expression recognition.

The LBP-TOP has been validated as effective for
facial expression recognition as well as dynamic texture
analysis, see [59]. The challenges in LBP-TOP are face
registration and identity bias. LBP-TOP needs each
frame in an image sequence to be in the same size, or
at least the subregions of each frame to be in the same
size. Any in-plane or out-plane rotation will degrade its
performance. An effective LBP-TOP operator is highly
dependent on face registration. The problem of identity
bias generally exists in low-level features, which means
that the extracted features reserve more information
about identity rather than expressions.

To solve the above mentioned problems, we have
proposed an approach to automatically recognise
emotions using local patch extraction and LBP-
TOP representation. We first detect point-based facial
landmark by means of SDM and then extract local
patches according to fiducial points. By doing so, the

effect of identity bias can be better mitigated since the
regions around fiducial points preserve more expression-
related cues. Moreover, within all the frames in a
sequence, the location of subjects (e.g., eyes, nose)
are more stable and facial texture movements are
more smooth. In each patch of sequence, block-based
approach is exploited where LBP-TOP features are
extracted in each block and connected to represent facial
motions.

3.1.4 Object tracking

Numerous object detection and tracking algorithms
have been proposed in the literature. This functionality
is necessary to detect and track the objects (toys) on
the intervention table and finally to judge whether the
objects are picked up by an ASD child or not. The
main challenges are object variety, illumination and
occlusion. To effectively detect and track objects in
real time, a blob based Otsu object detection method
[60] is firstly employed to detect the objects. Then the
GM-PHD tracker [61] is employed to track the objects
over time due to its good performance in multi-object
tracking. In the object detection stage, we have used
the Otsu algorithm for adaptively image binarisation
and employed the blob algorithm to detect the regions
of the objects. The centre of each blob is regarded as
the position of each object.

Object detection can find all the locations of objects
on the table at each frame. To correctly associate
the objects in consecutive frames, an efficient GM-
PHD tracker is utilised for object tracking. In the
object tracking stage, we have utilised an entropy
distribution based method [62] to estimate the birth
intensity of the new objects. Moreover, we have handled
the partial occlusion caused by hand grasping based
on a game theoretical method [63]. By doing so,
objects in consecutive frames can be successfully and
accurately tracked with correct identities. Figure 8
shows the results of object detection and tracking
when a ASD child is interacting with a therapist. The
results illustrate that our method can successfully detect
and track objects even when they are occluded by
hands. To obtain the 3D locations of the objects, a
2D-3D correspondence method [64] according to the
depth information captured by the Kinect has been
incorporated.



Supervised Autonomy Towards Robot-Enhanced Therapy for ASD Children 11

Fig. 8. Object detection and tracking results.

3.1.5 Audio processing

The audio processing in RET must include speech
recognition, sound direction recognition and voice
identification. The speech recognition method is based
on Microsoft Kinect SDK. We have utilised the trained
model provided by the SDK to recognise the speech. To
make the speech recognition individually independent,
a dictionary is designed to store the predefined key
words and related short sentences. The dictionary is
fully customisable, which provides the convenience of
recognising what sentences the subject has said by key
words. The system starts to recognise the speech and
returns a textual representation on the screen when the
subject speaks.

The direction of a sound is identified based on
the different locations of microphones in the Kinect.
Generally, the sound arrives at each of the microphones
in a chronological order as the distances are different
between microphones and the sound source [65, 66]. A
signal with higher-quality sound will be produced by
processing the audio signals of all microphones after
calculating the source and position of the sound. Two
significant properties, which are the sound angle and
the confidence of the sound angle, are identified and
then the system outputs the direction of the most
crucial sound. We use a confidence score to represent the
strength of the sound from the output direction. The
larger the score is, the more confidence in accurately
locating the sound.

Identity recognition remains a critical premise of
autonomous perception in diagnostic support aimed at
children with ASD. Among various off-body sensory
modules for identity recognition, voice identification
differentiates the subjects according to their acoustic
data, which provides reliable identification without

suffering from constraints of varying posture or
behaviour. The identity logs of the child and the
therapist are checked against the task specification
and expectation, so that the response order matching
or mis-matching will be further used for evaluation
and diagnosis. Classifiers like Gaussian Mixture Model
(GMM) and Vector Quantification (VQ) in combination
with Mel Frequency Cepstrum Coefficients (MFCC) and
Linear Predictive Coding (LPC) features are adopted in
this project [67] to label the voice signal generated by
the therapist and children with ASD.

3.1.6 Remaining challenges in sensing and
interpretation

The proposed methods from Sections 3.1.1 to 3.1.5
are not without limitations. Below we describe some
practical challenges which do not currently inhibit the
performance of the therapy but would ideally be solved
in future developments:
– Regarding the methods developed for gaze

estimation, subjects are required to face the
intervention table, described in Section 2, within
the ranges of 120 degrees vertically.

– For human action recognition mechanisms in
Section 3.1.2, large-scale body overlap would cause
error in body joints tracking, and further lead to
inaccurate human action recognition.

– In the case of facial expression recognition, large
head post causing face distortion would influence
the facial expression recognition accuracy. Moreover,
face expression recognition works better for ‘happy’
detection compared to others, due to similarities in
facial appearances for these expressions.

– The integrated object-tracking algorithm is limited
to track objects in the context of a clear background
(i.e., a white table).

– For audio processing (Section 3.1.5), speech
recognition only supports English, and sound
direction is limited from -50 degrees to 50 degrees
horizontally (this is an assumption about where the
sound would be expected).

3.2 Child behaviour classification

To operate in a supervised-autonomy mode, it is
necessary to appraise the current behaviour of the child.
This brings together the strands previously discussed
in Sections 2 and 3.1. This appraisal happens in two
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stages (Figure 9). In the first stage, the data collected
from the sensory interpretation setup (Section 3.1) is
mapped onto the behaviours identified as relevant by
the therapists (Section 2). This mapping draws on
process knowledge from therapists, used to create and
annotate training and validation sets of example child-
robot interactions. The outcome of this process is not
a winner-takes-all; rather, the classifiers – here, we
use support vector machines trained on trajectories of
the child’s skeleton joints (Section 3.1) – identify the
probability that a given behaviour is currently observed,
for all behaviours.

Fig. 9. Child behaviour analysis flow.

This set of behaviours and probabilities are fed
into the second stage. Here, the system attempts
to derive the child’s level of engagement, motivation,
and performance on the current task, based on
the interaction history (as derived from the first
stage classifications). This is a challenging task,
drawing heavily on therapists’ semantic interaction
knowledge, which provides insights into expected
patterns given certain levels of engagement, motivation,
and performance.

At both stages, the classifiers can be understood as
generating real-time annotations of a therapy session of
a similar type that therapists would normally create by
recording such a session and annotating the files using
ratings from multiple therapists. It follows from this

insight how classifiers can be validated: auto-generated
annotation files from (recorded) sessions that function
as training data can both be submitted to therapists
for verification. They can also be compared to existing
annotations from therapists using standard inter-rater
agreement measures.

Overall, it is worth noting that access to the
therapists’ knowledge is crucial for the success of this
part of the work. It also clearly scopes the ambitions.
There have been previous attempts at deriving general
models of engagement (for a review, see [68]). However,
we seek to build a system that operates to the specific
requirements of the therapists.

The classifiers are explicitly allowed to report
failures (in the sense that no defined behaviour could be
defined and/or assessed). In any event, the outputs are
fed into the cognitive controller of the robot (see next
section), which decides future actions of the robot based
on the classifier outputs (including the possibility that
the classifiers failed to provide useful information). In
addition to allowing supervised-autonomous operation
of the robot, the developed classifiers offer other
benefits:
– It allows a quantified evaluation of the evolution of

a child’s performance both within a single therapy
session and over longer durations covering multiple
sessions. Such quantifications might provide useful
in future evaluation of therapeutic, as well as for
assisting therapists in diagnostic tasks.

– The availability of such automated identification
of psychological disposition can relieve therapists
of some of their burden since it could be used,
for instance, to automatically annotate videos of
interactions with the children. To date, therapists
are required to do this manually. As noted above,
this reverse process forms, in fact, part of the
validation exercise for the classifiers.

3.3 Social cognitive controller

Traditionally, cognition has been organised in three
levels [69, 70]: the reactive, the deliberative and the
reflective. In this section, we describe how these levels
map onto our social cognitive controller.

The aim of the cognitive controller is to provide
social robots with a behaviour underlying social
interaction, which permits the robot to be used in
RET in a supervised autonomous manner. This involves
both autonomous behaviour and behaviour created in
supervised autonomy, whereby an operator requests
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certain interventions, which are then autonomously
executed by the robot. The cognitive controller is
platform independent: rather than controlling actuators
and modules specific for a robot platform, the
cognitive controller sets parameters in descriptions
and representations that are common across all
platforms. This platform independence and high level
representation of action allow this cognitive controller
to operate with different robots in multiple therapy
scenarios, see [34], entertaining or educating the child
for limited periods.

The autonomous controller is composed of a number
of subsystems which interact (Figure 10) and combine
their suggested actions to produce a coherent robot
behaviour, in the context of constraints laid down by the
therapist (for example, the script to be followed, types
of behaviour not permissible for this particular child
because of individual sensitivities, etc). The cognitive
controller architecture further defines the control that
the supervising therapist can exert over the behaviour
of the robot (effectively a limited ‘remote control’
functionality).

Fig. 10. Description of the cognitive controller subsystems and
how information flows from one subsystem to another.

3.3.1 Socially reactive subsystem

The reactive level constitutes low-level processes which
are genetically determined and not sensitive to learning
in natural systems. This level is essential in social
robots as it creates the illusion of the robot being
alive, acting as a catalyst for acceptance [71]. The role
that the reactive subsystem plays in generating the
executed robot behaviour depends on the processing
within the deliberative subsystem, and the oversight of

the therapist (through the self-monitoring subsystem
as interacted with through the system GUI). This
means that, as with other layered control architectures
(e.g., subsumption), the reactive subsystem contributes
to, rather than completely specifies, the overall robot
behaviour.

A general high level description of the reactive
subsystem is shown in Figure 11. This describes how,
given the sensory information and the inputs from the
deliberative subsystem, the robot reacts to the current
situation.

Fig. 11. High level description of the reactive subsystem.

The reactive subsystem is composed of a number of
modules as follows (see [72] for further details). Changes
in balance may end up in a fall. In such cases, all active
behaviours are interrupted, and a damage avoidance
behaviour that fits the situation is triggered, see [73]
for a case of minimising damage to a humanoid robot,
and [74] for a case of a NAO robot that modifies its
falling trajectory to avoid causing injuries in people in
front of it.

In social situations, multiple verbal and non-verbal
interactive encounters may occur. The child may or
may not behave favourably towards the robot. These
situations may be conflicting and special attention is
required given the potential audience of this project.
If it would be the case of a regular social robot, for
both situations the robot may appropriately react, but
under these circumstances, the reaction is simplified to
facial expressions and speech acts, always under the
supervision of the therapist.

The acceptability of the robot can be further
increased if the robot mimics human blinking behaviour.
Simulating blinking behaviour requires a human-
level blinking model that should be derived from
real human data. Several works have considered the
dependencies of human eye blinking behaviour on
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different physiological and psychological factors. Ford
et al. proposed the “blink model” for Human-Robot
Interaction (HRI), which integrates blinking as a
function of communicative behaviours [75]. For this
reason, we adopt Ford et al.’s model to cover our needs
and to provide accurate data for implementing the
model.

Along with social reactions, the cognitive controller
includes an attention subsystem to allow the robot
to know the relevant stimulus in the scene [76]. This
subsystem is a combination of perceptual attention,
in which perceptual stimuli (reported by, for example,
sound localisation; Section 3.1) that are particularly
salient in the current context have to be selected, and
attention emulation (from the deliberative subsystem)
directs the robot’s attention and gaze. These inputs
provide the robot with a locus of attention that it can
use to organise its behaviour.

Given the context in which this subsystem is
implemented, attention behaviour has been divided
between scripted (where the attention is determined by
the requested scenario) and non-scripted interactions.
Within scripted interactions, the highest priority is
given to the deliberative subsystem outputs. Therefore,
each time attention emulation is triggered, the point
of interest is where the robot will look at, unless the
therapist decides to override such behaviour.

Within non-scripted interactions, the attention
model seeks the next point of interest to look at. For
this purpose we have built a target selection algorithm
adapted from [77] where the authors present a bottom-
up attention model based on social features. Some
simplifications of the model were applied to adapt
it for our context. Other approaches like [78] were
taken into account. This approach merges top-down and
perceptual attention in an efficient manner. However, for
the sake of simplicity we opted for adapting Zaraki et
al.’s model due to implementation ease.

3.3.2 Deliberative subsystem

The deliberative subsystem is the primary locus of
autonomous action selection in the cognitive controller
(Figure 10). This subsystem takes as input sensory
data: child behaviour information, information on what
step should be next executed from the therapy script,
and higher-level direction from the therapist. It then
proposes what action should be taken next by the
robot. A central aspect of the cognitive controller is
its ability to follow intervention scripts as defined by

the clinicians for both diagnosis and therapy. These
scripts describe the high-level desired behaviour of
the robot, and the expected reactions and behaviours
of the child, in a defined order. In a normal script
execution context, the deliberative subsystem is the
primary driver of behaviour, which would typically
propose the next script step. There are however a
number of circumstances in which this is not the most
appropriate action to perform. For example, if the child
is detected to have very low engagement with the
task (as determined from the child behaviour analysis,
and/or information from the sensory system saying the
child is looking away for example), then it would be
appropriate to attempt to re-engage the child with the
robot/task prior to executing the next stage in the
therapy script. In this case, the deliberative subsystem
can choose to depart from the behaviour defined in the
script, and instead propose a different behaviour.

The script manager itself, see Figure 10, separates
the logic necessary to manage progression through the
script (by taking into account the available sensory
feedback after actions for example) from the script
itself. This makes it straightforward to add new scripts
or modify existing scripts as required. This logic
management has in the first instance been achieved
using a Finite State Machine (FSM).

There is currently no algorithm in the literature
completing all the desiderata for our Action Selection
Mechanism: keeping a supervisor in control whilst
providing autonomy and adaptivity to the robot.
Classical learning algorithms (such as classical
Reinforcement Learning [79]) rely on exploration which
could end with the robot executing actions that have
a negative impact on the child. Algorithms such as
Deep Learning [80] require large datasets to be able to
learn (which do not currently exist for this application
domain). An alternative for RET is to use the knowledge
of the therapist to teach the robot appropriate actions
using Interactive Machine Learning [81, 82] by allowing
the human to provide input at run time to guide the
robot action selection and learning.

Algorithms used in Interactive Machine Learning
frameworks often only use the human to provide
feedback on the robot actions to bootstrap the
learning. Whilst allowing the robot to learn faster,
these approaches do not use the human inputs to
their maximum. We take stronger inspiration from the
Learning from Demonstration community [83, 84] and
give control of every action executed by the robot to the
therapist. Following this approach, a new method was
developed, termed SPARC (Supervised Progressively
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Autonomous Robot Competencies) [85, 86]. As shown
in Figure 12, the goal of SPARC is to provide the
robot with online learning, reducing the workload
on the therapist whilst maintaining high performance
throughout the interaction.

Wizard of Oz Autonomous Learning SPARC

Workload Performance Autonomy

Constant High Performance 

Reduced Workload

Constant High Performance 

Reduced Workload

Constant High Performance 

Reduced Workload

Fig. 12. Comparison of expected ideal behaviours for three
control approaches for RET on the robot’s autonomy, robot
performance, and workload on the therapist. The aim is to
maintain high performance throughout the interaction while
keeping the workload on the therapist as low as possible.
By using Interactive Machine Learning and providing the
therapist with control, SPARC is expected to meet these two
key considerations.

SPARC relies on a suggestions/correction
mechanism, by which the robot proposes actions to
the supervisor who can passively accept the action or
actively correct it. The resulting action is executed
by the robot and the supervisor decision is fed back
to the learning algorithm to improve the suggestion
for the future (Figure 13). The states used for the
learning are comprised of internal states of the robot and
external states in the social and physical environment,
including the child. Using the therapist’s commands and
correction, SPARC gradually builds up a state-action
model, and as the interaction progresses, suggests more
appropriate actions to the therapist.

SPARC is agnostic of the algorithm used; studies
have been conducted using a neural network [85]
and reinforcement learning [87] but there is no
indication that it could not be used with other world
representations or learning algorithms. In the first study,
the results show that when the robot is learning, the
workload on the supervisor is lower. This supports the
idea that using learning algorithms to learn from a
therapist controlling a robot in RET could lead to a
reduction of workload. The therapist could subsequently
focus more on the child behaviour, rather than having
to focus only on controlling the robot. The second
study compared a SPARC based reinforcement learning

Learning algorithm selects an action 
based on the current state of the 

interaction.

Action proposed to the supervisor

Supervisor 
selects an other 
action in a short 

time window

Execution of the action proposed Execution of the action selected

Decision fed back to the 
learning algorithm

Update of the action policy

Yes

No

Fig. 13. High-level action selection and learning flow used in
SPARC.

to Interactive Reinforcement Learning [88], a more
classical approach where rewards from the human are
simply combined to environment rewards. Results have
shown that SPARC allows faster and safer learning and
that the control given to the supervisor prevents the
robot from executing undesired actions whilst providing
enough inputs to learn an efficient action policy.

3.3.3 Self-monitoring subsystem

As explained above, the social robot will always be
under the supervision of a therapist or teacher. However,
the controller should aim to act autonomously for as
long as possible. A self-monitoring system plays the
role of the reflexive level of the robot and has been
designed as an alarm system [89]. An internal one is
used when the robot detects that it cannot act because
of a technical limitation or an ethical issue. An external
alarm is one where the therapist overrules the robot
behaviour selection.

This subsystem is always on and normally does
nothing but monitor processes. When the alarm system
switches on, an appropriate behaviour of the robot is
initiated as it is undesired that the robot simply freezes
its motions, which may look unnatural to the child. If
an internal process creates the event, the robot switches
to neutral interaction and asks for therapist help.

Through the reflexive level, the social cognitive
controller manages possible ethical limitations.
DREAM is concerned about the ethics of robotics
and specifically, with how exactly the supervision or
overruling will be implemented. Discussions include
whether any overruling of the robot’s behaviour by the
therapist needs to be explicit (so that the child can
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understand that the behaviour of the robot is overruled
by the therapist; it can also make errors just like any
other social agent) or needs to be hidden (for instance,
through previously defined code words, so the child
does not recognise that the robot’s behaviour is being
modified).

The ethics of technology draws on fields in the social
studies of science and technology and the philosophy
and anthropology of technology [90, 91]. Moreover, in
the last decade a specialised field entirely dedicated
to ethics in machines and robots has grown out of
philosophy [92].

We have conducted a survey [35] to understand
the opinions of parents and therapists about social
robots, and whether they believe robots can and
should be used for ASD therapy for children, in order
to inform roboticists, therapists, and policy makers
about the ethical and social issues involved in RAT.
One important finding in the survey was the positive
acceptability of robots for helping children with autism
compared with the negative feedback given in the
Eurobarometer [93]. The survey included responses from
parents of children with ASD (22%), and therapists
or teachers of children with ASD (16%), the rest of
the cohort was made up of students of psychology or
people involved in organisations. Questions presented
to the stakeholders were wide-ranging and included the
following “Is it ethically acceptable that social robots
are used in therapy for children with autism?" Of which
the majority of interview respondents agree (48%) and
strongly agree (37%). “Is it ethically acceptable to
use social robots that replace therapists for teaching
skills to children with autism?" With only 18% (agree)
and 08% (strongly agree). This survey indicated the
importance of stakeholder involvement in the process,
focused around specific health care issues.

3.3.4 Platform independent flavour

The cognitive controller outputs the social actions of the
robot, including non-verbal (facial and body) and verbal
expressions. Such a controller needs to be independent
of the robotic platform, as generic methods are required
to control the robot’s expressions, gestures and mobility.
The goal of the actuation subsystem is to translate
the actions of the social behaviour into readable social
verbal and non-verbal cues, especially for our particular
audience of young users with ASD. This subsystem
determines which combination of low-level actions the
robot should execute next, and how these actions

are to be performed. Suggestions for actions to take
come from the other subsystems. Along with this, it
is assumed that the supervising therapist, through the
GUI, will determine (either beforehand or in real-time)
the aspects of robot behaviour that should be executed,
from which relative priorities will be determined for the
three subsystems.

A number of robots capable of gesturing have been
developed to study different aspects in HRI. Gestures
implemented in robots are however, until now, subject
to two important limitations. Firstly, the gestures
implemented in a robot are always limited to a set of
gestures necessary for the current research, and often
limited to one type of gestures, see [94] for an example.
The reason for this can be found in the second limitation:
gestures are mostly preprogrammed off-line for the
current robot configuration. The resulting postures are
stored in a database and are replayed during interaction.
This is the case for, among others, Robovie [95],
HRP-2 [96] and Kobian [97]. Since the postures are
dependent on the morphology, they cannot be used for
other robots with other configurations. The result is
that, when working with a new robot platform, new
joint trajectories to reach the desired postures need
to be implemented, which can be time consuming. It
would however be much more efficient to make the
implementation of gestures more flexible and to design a
general method that allows easily implementing gestures
in different robots.

Our method divides the robot embodiment in three
areas: the face expression, developed to provide the
behaviours with natural and emotional features; the
overall pose, developed to calculate gestures whereby
the position of the main parts of the body is crucial;
and the end effector, developed for pointing and
manipulation purposes.

Different robots use the Facial Action Coding
System (FACS) by Ekman [98] to abstract away from
the physical implementation of the robot face. FACS
decomposes different human facial expressions in the
activation of a series of Action Units (AU), which are
the contraction or relaxation of one or more muscles.
We have already implemented the FACS methodology
in Probo to express emotions [99]. The NAO robot does
not possess the facial expressibility that Probo has, as
it has 0 DOF in the face and the only mechanism
that it has to express facial gestures is through the
change of colors in its eyes. For such reason, an eyebrows
system that will help to understand better emotional
expressions on NAO’s face has been developed, see [100]
for further details.
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In a similar way, Body Action Units (BAU) have
been defined together with a Body Action Coding
System (BACS), where the different gestures are
decomposed in the activation of BAUs. This system
avoids pre-programming of robot-dependent body poses
and actions, which is relevant since humans are able to
recognise actions and emotions from point light displays
(so without body shape) [101]. The physical actuation
of AUs will depend on the morphology of the robot: a
mapping will be needed between AUs and the degrees
of freedom, and thus to the joints of the robot, this
mapping will be specific to a robot platform. To ensure
a realistic and readable overall posture, it is necessary to
take into account the relative orientations of every joint
complex the robot has in common with a human. A
base human model was defined, and the target postures
were quantitatively described by the orientation of the
different joint complexes in the model using the BACS.
While the Facial AUs are defined as a muscle or a
muscle group, our BAUs are based on the human terms
of motion. The units are grouped into different blocks,
corresponding to one human joint complex, such as the
shoulder or the wrist. These blocks can subsequently
be grouped into three body parts, namely the head,
body and arm, which we refer to as chains. In that
way, a base human model was defined, consisting of
four chains; the head, the body, the left arm and the
right arm. Although the leg movements also contribute
to the overall performance of the gesture, for a first
validation of the method we decided to focus only on
the upper body movements. This method has been
successfully validated on the virtual model of different
robots through a survey. See [102] for further details on
the method and validation.

To calculate pointing and manipulation gestures,
another strategy is used. In some situations, for example
when reaching for an object, the position of the end-
effector is important and specified by the user. For
pointing towards an object, several end-effector poses
are possible to achieve a pointing gesture to the specified
target. In that case, an optimal pose of the end-effector
is chosen, according to a cost-function minimising the
deviation from a defined set of minimum posture
angles. This specified end-effector pose then serves
as input to calculated the corresponding joint angles,
using the same inverse kinematics algorithm as used
for the calculation of emotional expressions. Figure
14 shows the calculated end posture for a reaching
gesture at (34,−34, 38) for three different configurations.
The first column shows the joint configuration, while
the second column shows the calculated posture for

that configuration. The desired end-effector position
is visualised by a sphere. In the top row, a 9 DOF
human arm is shown, consisting of a two DOF clavicle,
3 DOF shoulder, 1 DOF elbow and 3 DOF wrist
(virtual model comes from the RocketBox libraries
[103]). Configuration 2 shows the ASIMO robot [104].
As for the human model, the targeted end-effector
position was reachable, and a suitable end posture could
be calculated, as shown in the second row. Configuration
3 is that of the NAO robot. NAO is considerably smaller
than the previous models, and as a result, the maximum
reachable distance is smaller. The desired position is
located out of the range of the robot. Therefore, the
pointing condition is activated, and a suitable posture
for a pointing gesture towards the specified point is
calculated. See [105] for further information.

Fig. 14. Results of the method for different arm configurations.
The first column shows the joint configuration, while the
second column shows the end posture for a place-at gesture
at (34,−34, 38).

4 Conclusion
Robot-Assisted Therapy is increasingly being used
to improve social skills in children with ASD [106].
However, as discussed at the outset, there is a need for
robots to move beyond the reliance on WoZ control of
robots in therapeutic settings in a new paradigm that we
term Robot-Enhanced Therapy. Section 1.1 discussed
some of the challenges that researchers in RAT will
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face in these forthcoming developments. In particular,
we highlighted the need for increasing the autonomy of
the robot to improve therapeutic experiences.

To tackle these challenges, we recast them as
practically solvable problems under a certain clinical
framework in which therapeutic interventions are to be
conducted. In Section 2, we described the measured
variables and the clinical framework itself, providing
us with a baseline to compare the performance of
RET robots with RAT robots and to SHT conditions.
Moreover, this framework functions as the starting point
in the development of supervised autonomy systems.

As an insight into our first clinical study, we consider
this work to provide a baseline to conduct second phase
clinical studies with RET robots, although the results
from this first phase showed mixed outcomes. There
are still some limitations of using robots in clinical
frameworks, such as delays due to the slow reaction time
of the robot or connectivity problems between the robot
and the therapist’s computer. While we do not think
they could have a strong impact on the performance
of the child, they should be addressed in forthcoming
projects. Overall, work such as that described here has
the potential to impact clinical practices in therapy
for children with ASD. The use of technology in the
diagnosis process and interventions for individuals with
ASD will ease the workload of the therapist and lead to
more objective measurements of therapy outcomes.

Based on ethical studies concerning the acceptance
of autonomous robots in therapies with children with
autism, we suggest that a fully autonomous robot is not
desirable, and aiming to achieve it is unrealistic. For this
reason, a supervised autonomy approach is preferred.
In Section 3, the supervised autonomy architecture is
divided into three blocks: sensory information, child
behaviour classification and social cognitive controller.

Sensory information collects, analyses and
interprets data targeting the required features described
in the clinical framework. We have successfully
developed mechanisms for gaze estimation, human
action recognition, facial expression recognition,
object detection and tracking, speech recognition,
voice identification and sound direction recognition,
although constrained to specific application areas.
These limitations are described in Section 3.1.6.

Realising that a full Theory of Mind is currently
not realistic in RAT or RET scenarios, we reduced the
problem to the identification of well-defined indicators
of the child’s level of engagement, motivation and
performance on the current task. This classification
is then used by the social cognitive controller, which

allows the robot to act appropriately, given both its
own autonomous behaviour, and behaviour defined
by therapists. Given the conditions in which this
architecture has been implemented, the robot behaviour
has been divided between scripted and non-scripted
interactions. Within scripted interactions, there is
no room for the robot to be socially reactive and
its behaviour is limited by the intervention protocol.
However, the deliberative subsystem proposes actions
to the supervisor and learns from the therapist’s choices
building a state-action model. In non-scripted scenarios,
the robot is being responsive to verbal and non-verbal
interactive cues and suggests possible actions to re-
engage the child in the intervention protocol. Robot
actions must be expressed independently of the robotic
platform therapists decide to use. Therefore, a platform
independent method to implement these actions in
robots with different sets of DOF is described.

To summarise, this paper described the insights
gained from progress in the DREAM project so far,
highlighting how the many elements involved in the
solution of this complex problem come together. In
particular, we have tackled some of the challenges
underlying supervised autonomy in RET and described
possible approaches to overcome them.
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