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Abstract

Human-Robot Interaction (HRI) is an important but challenging field focused on improving

the interaction between humans and robots such to make the interaction more intelligent and

effective. However, building a natural conversational HRI is an interdisciplinary challenge

for scholars, engineers, and designers. It is generally assumed that the pinnacle of human-

robot interaction will be having fluid naturalistic conversational interaction that in important

ways mimics that of how humans interact with each other. This of course is challenging

at a number of levels, and in particular there are considerable difficulties when it comes to

naturally monitoring and responding to the user’s mental state.

On the topic of mental states, one field that has received little attention to date is moni-

toring the user for possible confusion states. Confusion is a non-trivial mental state which

can be seen as having at least two substates. There two confusion states can be thought of

as being associated with either negative or positive emotions. In the former, when people

are productively confused, they have a passion to solve any current difficulties. Meanwhile,

people who are in unproductive confusion may lose their engagement and motivation to

overcome those difficulties, which in turn may even lead them to drop the current conversa-

tion. While there has been some research on confusion monitoring and detection, it has been

limited with the most focused on evaluating confusion states in online learning tasks.

The central hypothesis of this research is that the monitoring and detection of confusion

states in users is essential to fluid task-centric HRI and that it should be possible to detect

such confusion and adjust policies to mitigate the confusion in users. In this report, I expand
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on this hypothesis and set out several research questions. I also provide a comprehensive

literature review before outlining work done to date towards my research hypothesis, I also

set out plans for future experimental work.
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Chapter 1

Introduction

Human-Robot Interaction (HRI) is an interdisciplinary field. It is related to various disciplines,

including human-computer interaction (HCI), robotics, artificial intelligence, design, and

philosophy. HRI is also considered its own unique discipline concerned with building

concepts, methods, and HRI frameworks (Bartneck et al., 2020; Sharkawy, 2021; Cantrell

et al., 2010). Therefore, it is beneficial to study HRI when scholars, engineers, and designers

work together in different task environments such as digital learning environments (Pachman

et al., 2016), domestic environments (Kontogiorgos et al., 2020), laboratory environments

(Morales et al., 2019), and even noisy and unpredictable environments (Kontogiorgos et al.,

2020), etc..

HRI has been the subject of great interest since the 1940s. Isaac Asimov (2 January

1920–6 April 1992) coined the term “robotics”. Asimov also raised three questions within

his stories to emphasise the relationship between humans and robots (Bartneck et al., 2020):

“How much will people trust robots?”, “What kind of relationship can a person have with

a robot?” and “How do our ideas of what is human change when I have machines doing

human-like things in our midst?”. These questions are still relevant to our research today.

In 1978, the term “social robot” was first mentioned in the context of robotics in an

article called the “social robot” in the Interface Age magazine. It was mentioned that the
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“social robot” has the social skills to handle human conversations in a domestic setting. Since

then, some social robots have been created to play different roles in the human world. For

example, the Kismet robot played the role of a “infant” in that it was assisted and taught by a

human caretaker (Breazeal and Velásquez, 1999). Subsequently, there was, for example, the

playful Keepon robot that was designed to interact with children (Kozima et al., 2009b); In

the last decade, robots such as Nao and Pepper, humanoid robots from the Softbank Robotics

company 1, have commonly been seen in customer assistance roles such as greeting robots in

banking, healthcare 2, education, and retail (Abbas et al., 2020; Ikeuchi et al., 2018; Lehmann

and Svarny, 2021; Song and Kim, 2022).

HRI is distinguished from the field of pure robotics, wherein physical robots are designed

to manipulate physical tasks – also called physical interaction (Bartneck et al., 2020). For

instance, food-serving robots were used in the Beijing Winter Olympics 2022, these robots

can cook food, make coffee, serve cocktails and deliver these items to the customers who

need them. Thanks to these physical interventions, people were able to effectively reduce the

chance of social contact to avoid the possibility of COVID-19 transmission.

In contrast, social robots interact with humans across diverse domains. In general, the

trend, driven by technology, has moved researchers from the case of the embedded robotics

system to the robotics enabled through a spoken-dialogue system. Examples of this include

tutors for children’s study and online learning, tour guides in a museum, and health assistants

(Gordon et al., 2016; Doherty and Doherty, 2018a; Duchetto et al., 2019; Esterwood and

Robert, 2020). Thus, HRI is an activity by which social robots interact with people in a

human world through natural mechanisms. These robots should be designed such that they

follow social rules in physical environments to make people feel safe and comfortable, and

even help users develop a strong enthusiasm for interaction with the robot.

1https://www.softbankrobotics.com/emea/en
2https://www.softbankrobotics.com/emea/en/pepper-healthcare-ga
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Conversation, including verbal and nonverbal interaction, is a straightforward and es-

sential way of communicating in our daily social lives. Susan Brennan defined the term

conversation as “A joint activity in which two or more participants use linguistic forms and

nonverbal signals to communicate interactively” (Brennan, 2010). Appropriately, then, in

human-to-social robot interaction, the conversational capabilities of social robots are often

considered the principal functionalities for designing effective natural interaction.

To ensure that users continue to engage in the interaction process, a smooth and fluid

conversation is necessary in HRI. Conversational HRI should be designed to include ap-

propriate responses to the words, mental states, and related emotions of the interlocutor.

People’s emotions, undoubtedly, can stimulate and modulate their behaviour during ongoing

experiences (Bartneck et al., 2020). Due to the fact that emotions play such an important

role in human social cognition, it is useful to design emotional communication in situated

HRI environments. However, existing research in this area still faces many challenges.

First, some research has only considered facial expression for the recognition of emotions

(Barrett et al., 2019; Roy and Etemad, 2021). However, from a single facial expression, it is

hard to recognise the exact emotion without also seeing a body’s behaviours. Aviezer et al.

(2012) argued that different body behaviours with the same facial expression can convey

different information and emotions in real life. Second, it frequently happens that training

data for modelling emotion recognition have been collected from actors; therefore, it loses the

natural behaviour condition (e.g., Busso et al. (2008); Celiktutan et al. (2017)). Third, only a

small range of emotion categories have been used for emotion recognition. For example, the

six most popular emotions classes: anger, disgust, fear, happiness, sadness, and surprise have

been modelled (Barrett et al., 2019), as have two additional classes of neutral and contempt

(Greco et al., 2019a), but yet there are many other nuanced emotions and mental states that

have not been modelled. Finally, there is a lack of research on user engagement estimation in

situated conversational HRI. Some studies have attempted to detect people’s behaviours in
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spontaneous conversation under a specific situation (e.g. Ben Youssef et al. (2017)), or to

detect a certain group of people’s behaviours (e.g., Tapus et al. (2012)), or instead focus on

online learning systems that are a kind of human-computer interaction that is quite different

to human-robot interaction (Doherty and Doherty, 2018a).

Moving beyond emotion in general, confusion is a unique mental state that can either

precede a high degree of positive engagement in a task, or can also be correlated with negative

states such as boredom and subsequent disengagement from a conversation (D’Mello et al.,

2014). Estimating confusion states of a user can hence be a very important step in improving

the pragmatics modelling properties of an interactive system. By checking for confusion, or

indeed precursors of confusion, we can in principle adjust the dialogue policy or information

being presented to the user in order to assist them in the specific task being undertaken. Such

monitoring can be seen as a specific form of engagement detection (Sidner et al., 2004;

Dewan et al., 2018). In mainstream Human-Computer Interaction (HCI) studies, there have

to this point been a number of studies that have investigated the modelling and detection of

confusion (Kumar et al., 2019; Grafsgaard et al., 2011; Zhou et al., 2019). However, the

majority of studies in this area have concerned online learning. Little work has focused on

general engagement or task-oriented dialogue in HRI.

To enhance conversational HRI in situated spoken-dialogue interaction, we propose that

detecting an interlocutor’s different states of confusion in a situated interaction may be

an impactful strategy for enhancing long-term user-system engagement. In general terms,

confusion can occur at any time in social interaction when people want to express information

and thoughts to each other. Similarly, when people interact with a computer, whether it is an

online agent or a real robot, people may be confused whenever they encounter some obstacles

to communication or task completion, e.g., complex information, inconsistent information,

contradictory information, or incongruous feedback (Lehman et al., 2012) etc.. Therefore,

through observing and recording people’s natural behaviours when they are confused or not
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confused in our situated HRI, we can model the different states of confusion of the user, and

hence attempt to mitigate this confusion.

This report aims to comprehensively present my overall research goal, research questions,

and experiments that I have designed to help address these. A review of the state-of-the-art in

conversational HRI is first presented in Chapter 2, Chapter 3 then outlines my main research

question along with 6 sub-research questions with explanations around these studies. The

work I have done to date is presented in Chapter 4, and what follows is a discussion of

ongoing studies and future work in Chapter 5. Then, a discussion including the current

research progress and my achievements are presented in conclusion in Chapter 6.



Chapter 2

Literature Review

To understand conversational HRI and related studies of confusion, in the review, I jointly

present the different aspects that are relevant to conversational HRI and confusion modelling.

Figure 2.1 shows an overview of the connections between the areas of my work. The first

of these is a high-level overview of conversational HRI in terms of verbal and nonverbal

interaction in HRI, and also the novel applications of HRI. Next, I focus on affective

computing in HRI. In this part, I examine the general concept of affective HRI computing.

Engagement detection and emotion estimation are two foundational areas in HRI, which are

closely associated with confusion detection studies in HRI; this is thus the next area that I

examine. Given its importance to my work here, the following section looks at the topic of

confusion in HRI across four aspects: definitions of confusion in specific study environments,

states of confusion, confusion induction, and confusion detection models. Finally, given

the fact that my work aims to verify situated HRI, I then examine some of the similarities

and contrasts between two of the most well-known embodiments of HCI, i.e., human avatar

interaction, and human-robot interaction in the final section.
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Fig. 2.1 Relationships between the areas that are related to my work

2.1 Conversational HRI

Increasing numbers of scientists, engineers, and designers are interested in developing

multiple capabilities for human-like conversational interaction on social robots (Bartneck

et al., 2020; Breazeal, 2004). In social communication, a conversation is a significant but a

complex way of conveying information. In particular, a face-to-face conversation between

two humans is composed of multiple modalities of communication that include human

voice, speech, facial expression, articulated gestures, and body posture (Breazeal, 2004;

Cassell, 2001; Mavridis, 2015). Embodied conversational agents are one of the important

mediums in Human-Computer Interaction (HCI), such that the agent can interpret the social

behaviours of a human from a set of verbal and nonverbal behaviours by using multiple
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devices (e.g., cameras, microphones, sensors). Therefore, when a social robot has a face-to-

face conversation with a human, it needs to have the same social signals as a human, such as

time control to provide feedback or appropriate responds to the interlocutor (Hoffman et al.,

2014; Skantze, 2021). Meanwhile, a social robot should have the ability to recognise affect,

emotion, or involvement by observing the behaviour of the interlocutor, such as tracking

the gaze of the eye, the pose of the head, facial expressions, deictic gestures, or biological

behaviours (e.g., heartbeat, electroencephalography activity (EEG), and body temperature)

(Admoni and Scassellati, 2017; Ginevra Castellano and W.Schuller, 2004; Busso et al., 2008;

Fischer et al., 2019).

2.1.1 Verbal Interaction

Talking/Speech is the most common form of communication between humans, as it is explicit

and straightforward to share information. It should thus also be a basic functionality of the

robot to interact with people. But, of course, understanding language or speech is more

complex than producing robot speech. Bartneck et al. (2020), for example, emphasised that

a robot should be capable of transcribing speech into texts and understand words to generate

speech by presenting appropriate responses. In light of its importance, over the last number

of decades, many language and speech-based technologies have been developed in both the

context of human-computer interaction (e.g., avatar, chatbot) (Crovari et al., 2021) and HRI.

The development of smooth and natural communication is a crucial technology in, of course,

HRI and HCI (Mubin et al., 2014; Forsberg, 2003).

Automated speech recognition (ASR) is a well-known technology in which a transcription

process converts a digital recording of human speech to words/texts (Novoa et al., 2021,

2018). Technically speaking, recorded speech is in the time domain, making it difficult to

transcribe the speech into words, so the speech must first be converted into the frequency

domain. Thereafter, a classical speech recognition system would use Gaussian Mixture
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Models (GMMS) based on hidden Markov models (HMM) to extract features (phonemes,

words, and sentences) from these data that have different strong phonemes (Bartneck et al.,

2020; Pranto et al., 2021). In the traditional architecture, these raw inputs would be processed

by probabilistic models to string phonemes and words together into words and sentences. In

recent years, researchers have instead been using deep neural networks (DNN) instead of

those probabilistic models for speech processing, e.g., feature transformation and dimensional

reduction (Singh et al., 2018; Nassif et al., 2019) as well as for speech recognition itself.

As a result, not only has speech recognition performance improved dramatically, leading

to a higher rate of correct recognition, but speech recognition systems can also manage

background noise, incorrect speech, etc.. Many software companies e.g., Google, IBM,

and Microsoft provide cloud-based speech recognition and services to integrate speech

recognition functionality into varied applications, including robotics (Nassif et al., 2019;

Bartneck et al., 2020).

Voice-activity detection (VAD) is a related field to ASR that is beneficial for all speech

and audio processing applications, as it can distinguish effective speech from non-speech,

e.g., background noise, echo speech, or silence, in order to robustly constrain the capacity

and coverage of communication bandwidth (Chang et al., 2006). When contrasted with

traditional VAD systems, advanced VAD systems have been developed using deep learning

to enhance VAD performance, e.g., the NAS-VAD framework which uses neural architecture

search (NAS) to optimise the VAD task (Rho et al., 2022). Indeed, the VAD needs not to

be only audio based; Visual Voice Activity Detection provides visual input from a robot’s

camera, and can detect whether an interlocutor is speaking (Lubitz et al., 2021). Thus, VAD

systems are advantageous in implementing robotic dialogue systems (e.g., Robotics Dialogue

System (RDS)) as the verbal capacities of robots, such as speaking language, turn-taking

without understanding the interlocutor’s speech, localising and identifying users and users’

gender, or recognising voice emotion (Alonso-Martin et al., 2013) can be enhanced.



2.1 Conversational HRI 11

Moving beyond speech, Language understanding is a subfield of Natural Language Pro-

cessing (NLP) (Bates, 1995) that focuses on the understanding of the content itself. Semantic

analysis is a substudy field of NLP closely related to national language understanding that

aims to extract context from spoken language or text data (Bartneck et al., 2020; Salloum

et al., 2020). It is used to detect specific topics and related features from the sentiment of

people (Hussen Maulud et al., 2021). In conversational HRI, NLP and semantic analysis

can also be involved in classifying the emotional state of speakers. Incremental NLU and

semantic analysis is an advanced framework in conversational systems and HRI, in that it

allows robots to respond quickly when they do not understand the speaker’s expression, and

quickly detect and react to the main syntactic, semantic or pragmatic ambiguities (Cantrell

et al., 2010; Braun et al., 2017).

National language understanding (NLU) in the true sense is a fundamental task in

the construction of task-oriented dialogue systems (Tseng et al., 2020). It can extract

keywords (e.g., commands, location, person, event, and date) from a message (Hirschman

and Gaizauskas, 2001) to properly respond to a person’s contribution. In spoken language,

audio signals from a conversation also need to be transcribed into text to be explained at

different linguistic levels in a robot system (Bastianelli et al., 2014). Indeed, many methods

of NLP for robots focus on sequential signals/messages, but may ignore context, task

knowledge, and the physical aspects of spoken users. To establish robust spoken language

understanding, Cantrell et al. (2010) presented an integrated architecture that assembles

speech recognition, incremental parsing, incremental semantic analysis, disfluency analysis,

and situated reference resolution. Bastianelli et al. (2014), meanwhile, combined contextual

knowledge (e.g., the human’s position and gaze) and NLU to transfer the human’s message

and intents to a robot system.

Dialogue management (DM) is the primary process for controlling a dialogue between

a user and a computer. Dialogues state tracking (DST) and dialogue policy learning (DPL)
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are two main functions of dialogue management (Zhao et al., 2019). DST, as a function,

determines how the dialogue state is based on the diversity of conversations between the

system and the user (Zhao et al., 2019; Brabra et al., 2021). The core of dialogue management

is a framework for managing several rounds of interactions, such as booking a flight or

ordering a pizza, and is not commonly studied when applied to simple tasks such as playing

music or opening the washing machine (Williams and Young, 2007; Bartneck et al., 2020).

The dialogue system explores users’ requirements through the way of the DM to keep track

of the state of conversations, particularly unknown states from users’ spoken utterances,

and the dialogue system will in turn ask specific questions for those unknown states before

moving forward to the user’s next utterance. There are generally three main approaches to

implementing DM models (Brabra et al., 2021): First, handcrafted approaches are specific

and implemented by developers who develop programmes or models to track the state of

conversations and define their policy. For example, QiChat 1 is programmable dialogue

management software for Nao and Pepper robots developed by the SoftBank Robotics

company. Robots have the ability to detect sentences from users and then give a specific

response from the programme. Second, data-driven approaches learn the dialogue state and

policy from data mainly through the application of supervised machine learning and data

collection from a corpus. The third type of DM model is commonly based on a variant of

reinforcement learning, in particular, deep reinforcement learning. The idea is that agents

use their self-learning experience and environmental feedback to interact with users and the

environment (Zhao et al., 2019); Hybrid approaches meanwhile to combine multiple methods

(handcrafted or data-driven) to take advantage of the benefits of each approach.

1http://doc.aldebaran.com/2-5/naoqi/interaction/dialog/dialog.html
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2.1.2 Nonverbal Interaction

Although verbal interaction is a central means of communication in HRI, it cannot be

isolated from nonverbal cues (Mavridis, 2015). The role of nonverbal communication in the

interaction between people cannot be ignored, as the interaction is enhanced by nonverbal

communication (e.g., eye gaze, facial expressions, gestures, posture, tone of voice, etc.), and

also it improves people’s understanding of the interaction. Not only is it important to design

robots’ nonverbal behaviours (e.g., sounds, lights, eye colours, physical gestures with body

parts) to communicate effectively with humans, but robots should also have capabilities to

observe people’s behaviours, interpret those behaviours, and respond to these nonverbal cues

from humans appropriately. It can be said that the nonverbal channels are more meaningful

for robots than for avatars/computers, as robots have more nonverbal communication potential

such as through touch and spatial relations.

We also need to consider the specific context of the application that may be related to

social and cultural norms. Bartneck et al. (2020), for example, notes that nodding heads mean

“yes” or “agree” in western societies, while an “agree” expression of the same meaning in

India is expressed by head shaking; similarly, for example greeting customs between western

culture and Japanese culture are very different. Therefore, in recent HRI research, social and

cultural differences have been studied in the context of culturally sensitive interactions and

cross-cultural development in nursing robots (Bruno et al., 2017).

Social eye-gazing, as a specific example, is a remarkable nonverbal signal. As Emery

(2000) explained, the eyes are unique “hard-wired” pathways in the brain that focus on their

interpretation; cognitively, the eyes are also special stimuli from their brain. The human-

centred approach is that a robot or an agent is designed to understand the characteristics

of human behaviours in the situated spoken dialogue of HRI. Therefore, the HRI design

observes the features and limits of human behaviours and perception, whereas the robot is to

stimulate different situations to provoke a measurable response. Design-focused approaches
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to social robot creation focus on designing a robot, particularly the humanoid robot, with

multiple behaviours, e.g., head movements, and gaze to align with human attention. As an

example, a minimal social robot, Keepon, can express its attention and affect using gaze

and reactive motion (Kozima et al., 2009a). Unfortunately, building computational tools for

robot’s eye gaze generation in HRI tends to be a technology-focused approach, which focuses

on mathematical or technical contributions, but does not tend to focus on the measurement of

the interaction effects in a robotics system.

Gesturing is an expressive way to convey information in an interaction; it can also

emphasise moments during speech or to persuade people. Again, taking the Pepper robot

as an example, it has beat gestures such that its arms, body, and head can move following

the rhythm of speech. Moreover, the Pepper robot has vivid gestures automatically and

flexibly so that Pepper can do a certain number of human-like body language actions, such

as waving a hand when he says “Bye-bye”, shaking a hand when he says “Hello”/“Nice

to meet you”, or different gesture when he says “No”/“Yes” or “You”/“I” etc.. Pepper can

also be developed to demonstrate advanced body language, such as hugging or dancing,

by programming using the animation library for both gesture and animated speech, which

includes a list of predefined animations that can be used in an application.

There are of course many classifications of gesture in the literature. As an example,

Nehaniv et al. (2005) presented five classifications of gestures: “irrelevant/manipulative

gesture”,“side effect of expressive behaviour”, “symbolic gesture”,“international gestures"

and "referential/pointing gesture”. They explained that robots can achieve limited recognition

of situated human gestural motion through the five classifications of gestures in order to the

robots will be able to respond appropriately.

Posture and Facial expression are a central research theme in nonverbal affect recognition

(Kleinsmith and Bianchi-Berthouze, 2013). Body posture with facial expression can reflect

and interpret mental states. Developing postures can enable robots to provide more expressive
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information, as body expressions can be a primary way of expressing emotions if there is a

lack of facial features (Bartneck et al., 2020). Design-focused approaches focus on designing

robots’ body language and facial expressions to express robots’ emotions in HRI, so that

interlocutors can interpret the robots’ emotions and even adopt their emotions from the robots’

body language (Xu et al., 2014). In contrast, human-centred approaches focus on designing

an affect recognition system or model for a robot that is designed to observe user behaviour.

Sanghvi et al. (2011) pointed out that affect-sensitive robots are more able to engage with

people, in order to maintain interaction with people and even to extend interaction time.

2.1.3 Application of Conversational HRI

HRI applications are widely applied in different industries, such as service industries, agri-

culture, education for assistance, collaboration, or entertainment (Sharkawy, 2021). As

a starting point, a novel robot always attracts people’s attention in public spaces, e.g., a

shopping centre. As a service robot, the robot can also be a tour guide in a museum (Duchetto

et al., 2019). In such an application, when a tour is requested, the robot can lead visitors

on the tour and give a brief explanation of each part of the exhibition. Reflecting on such

applications, some HRI researchers mention that the design of different emotions in the robot

can enrich the educational experience and that visitors have a great experience in HRI in

such as a case (Nourbakhsh et al., 1999). Meanwhile, receptionist robots are applied in

various areas, for example, the Pepper robot has been set up at HSBC in the United States

to enhance customer engagement and to educate customers about product information etc..

When robots are used for learning, Omar Mubin et al. (2016) noted that social robots have

shown particular benefits for learning and education. When designed as a peer, such that the

robot has a level of knowledge similar to that of a learner, the learner and the robot spend

their time acquiring new knowledge together (Bartneck et al., 2020). Meanwhile, as a tutor

for online learning (Doherty and Doherty, 2018a), a robot can take over specific tasks from
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human teachers, for example, the tutor robot can offer personalised and one-to-one tutoring

experiences (VanLEHN, 2011). At the same time, when robots are used for entertainment, as

a “toy”, robots can be used to model joint attention with autistic children in autism therapy

and education (Robins et al., 2004). Finally, turning to the case where robots are also used in

healthcare and therapy, a healthcare assistant robot can help workers obtain health results on

their screens promptly (Esterwood and Robert, 2020); More recently, as a COVID-19 test

robot, robots have been shown to be useful in delivering medicines to patients (Esterwood and

Robert, 2020) while robots also help to ensure pipetting safety before COVID-19 laboratory

staff load samples taken from COVID-19 patients tested on a tray (Sharkawy, 2021).

2.2 Affective Computing in HRI

To study affective computing in HRI, the differences between mood, emotion, and affect in a

human should first be clarified. Affect consists of emotion and mood, as a comprehensive

term, representing the entire spectrum of emotionally charged responses from rapid and

subconscious responses to external events and complex emotions (Bartneck et al., 2020);

while the term emotion is related to changes in internal feelings from external incentives and

thoughts (Picard, 2003). Moreover, emotions can motivate and regulate people’s behaviour

and are an integral part of human social cognition and behaviours (Jarvela, 2011). Moods,

however, are diffuse and internal, and are usually not attributable to a specific stimuli, and

are typically low intensity, although moods can continue for a longer duration.

In human-human interaction, we rely on multimodal information more than unimodal

to get a better understanding of each speaker’s intention from their facial expressions or

speaking etc. In general, this shows that combining aural and visual mediums conveys more

information than they convey individually (Poria et al., 2017). Thus, to build a natural and

smooth conversation in either HRI or HCI, the collection of multimodal data on human social

behaviours is a vital first step for researchers. For example, Ben Youssef et al. (2017) studied
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HRI with a fully autonomous robot, the Pepper robot, to recognise user engagement in

spontaneous conversations between users and the robot. However, in traditional HCI, virtual

agents such as avatars or chatbots for affective computing study have been used for online

learning on special platforms such as AutoTutor, ITS (Intelligent Tutoring Systems), MOOCs

(Massive Open Online Courses), or other forms of serious games. However, unfortunately,

these studies (HCI) usually lack multiple modalities, e.g., touch, posture, or spatial interaction

etc., which are essential interactive parts of interaction between a physical robot and a human.

While capturing data from multiple modalities is very important, in practise, the realities

of data collection with real operationalised systems can be very challenging. For this

reason, the Wizard of Oz (WoZ) methodology in HRI is a frequently used as it is a flexible

mechanism for researchers to easily manipulate the robot for their specific research purpose

and data collection, which also has the advantage of being safer for participants (Riek, 2012).

Nowadays, many researchers have designed WoZ HRI experiments to collect multimodal

datasets for their specific studies, e.g., emotion estimation (Jo et al., 2020) or engagement

recognition (Tapus et al., 2012; Ben Youssef et al., 2017).

2.2.1 Emotion Estimation

Emotion is a fundamental factor in human-human interaction (HHI), which affects people’s

attitudes and influences their decisions, actions, learning, communication, and situation

awareness in human-centre environments (Poria et al., 2017). If a person has a strong ability

to observe others’ emotions and manage their own emotions, they are likely to contribute

more successfully to interaction with others (Poria et al., 2017). Similarly, a social robot is

arguably expected to have human-like capabilities for observing and subsequently predicting

human emotions. Building on this idea, Spezialetti et al. (2020) identified three broad sets of

tasks that are required to equip robots with emotional capabilities: (a) designing emotional

states of robots in existing cognitive architectures or emotional models; (b) formulating
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rich emotional expressions for robots through facial expression, gesture, voice, etc.; and (c)

detecting and predicting human emotions. The first two areas are in robots-oriented research,

while the last area is in human-centred research that is related to this work. However, Cohn

(2007) indicated that human emotions cannot be observable because emotion is a cognition, a

feeling, or a physiological and neuromuscular change. Therefore, he points out that emotion

must be explained through an interaction context, a user survey, behaviours or physiological

indicators (Tran et al., 2020), such as EEG, heat flux, near-infrared spectroscopy (fNIRS),

and facial electromyography, etc..

Thus, to build emotion models, it is important to design a special experiment from a

multimodal learning perspective. To do this, the facial expression is often the most natural

emotional expression for a human being. The Facial Action Coding System (FACS) with AUs

(facial action units) (Cohn, 2007; Menne and Lugrin, 2017) is a part-based method that is

well-known in facial behaviours research for the analysis of facial expressions. Convolutional

neural networks (CNNs) have also been shown to provide highly accurate results for analysing

images in emotion recognition (Refat and Azlan, 2019). Similarly, various recurrent and

ensemble network architectures have been built to analyse multimodal datasets including

speech (audio) data, text-based data and video data and to estimate emotional states (Tripathi

and Beigi, 2018; Hazarika et al., 2018). Furthermore, to improve emotion recognition

performance, the "Dialogue Emotion Correction Network (DECN)" (Lian et al., 2021) was

proposed as a new correction model for emotion recognition in a conversation. This network

has two modules: an utterance-based emotion recognition engine and a conversation-based

correction model. DECN applies the grated graph neural network (GGNN) as a structure

for modelling self-influences and inter-speaker influences. The DECN model was trained

on two popular benchmark datasets: IEMOCAP (Tripathi and Beigi, 2018) and the MELD

datasets (Poria et al., 2019). Additionally, head pose, eye tracking, and eye-gazing are typical

nonverbal signals for people’s emotional expression. In particular, Emery (2000) explained
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that the eye gaze is a component of facial expressions that is used as a cue to demonstrate

people’s attention to another individual, an event, or an object. They have shown that eye

gaze as a special cognitive stimuli is a "head-wired" approach in the human brain.

From a slightly different perspective, in advanced driving assistance systems (ADAS)

research (Khan and Lee, 2019), tracking drivers’ eyes and gazes is one of the most interesting

topics in the road safety research community. Researchers set up cameras or devices (e.g.,

wearable eye-tracking systems, google glasses) (Mavridis, 2015) in a specific environment,

and then the devices are used to track the participants’ eye gaze when participants perform

the designed tasks (Zhang et al., 2020). Head-pose estimation is also a form of face-related

visual research and is inherently related to visual eye-gaze estimation. Murphy-Chutorian

and Trivedi (2009) provided the example of the Wollaston illusion, where while eyes are

in the same pose, the direction of eye gaze is decided by two differently orientated heads

(see Figure 2.2). They also indicated that people with different head poses can reflect more

emotional information such as dissent, confusion, consideration, and agreement. Meanwhile,

methods for training models of eye-gaze and head-pose estimation are generally consistent

with facial expression analysis.

Fig. 2.2 Wollaston illusion: different eye-gazing with head poses (Murphy-Chutorian and
Trivedi, 2009)
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2.2.2 Engagement Detection

Although challenging in itself, the complexity of engagement detection is small but more

controlled in comparison to the more general challenges of the emotion estimation in social

interactions. How the robot can explore the interacting context and environment so that

users are motivated to continuously engage and communicate with the robot is a crucial

issue in HRI study. The definition of engagement in social and cognitive psychology can be

expressed through three aspects: a social connection, a mental state, and a motivated and

captivated phenomena (Doherty and Doherty, 2018a; Sidner et al., 2004; Jaimes et al., 2011).

For the social connection, engagement is a process in which participants start establishing a

connection, try to maintain this connection, and eventually finish their connection (Doherty

and Doherty, 2018a; Sidner et al., 2004). With respect to the mental state, engagement can be

behavioural while the engaged interaction is persistent; engagement can be emotional when

the engaged interaction could be interesting, valuable, and valent; and engagement can also

be cognitive when the interaction is motivated, effective, and strategic (Sidner et al., 2004).

Concerning the motivated and captivated phenomena, engagement may not apply to a single

interaction but may instead measure a long-term relationship; this is particularly true where

engagement is with a social platform, although interacting with robotic platforms across

time is certainly the desire in the long run (Jaimes et al., 2011). Various other more concrete

definitions of engagement have been proposed in the literature. O’Brien and Toms (2008) for

example defined “Engagement is a category of user experience characterised by attributes

of challenge, positive affect, endurability, aesthetic and sensory appeal, attention, feedback,

variety/novelty, interactivity, and perceived user control.”, with Sidner et al. (2005) also

defined engagement as “the process by which individuals in an interaction start, maintain

and end their perceived connection to one another”.

The engagement detection methods in HRI and HCI have three basic methods, which

are manual, automatic, and semi-automatic categories (See Figure 2.3) (Dewan et al., 2018).
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The manual category refers to self-tasks for participants, including self-reporting and obser-

vational checklists. Self-reporting entails a real-time feedback of the participant at each task

during the engagement detection process, which is useful for researchers to administer and

collect more information directly for engagement detection. The observational checklist is to

collect participants’ questionnaires at the end of processing of the experiment. However, the

observational checklist has some limitations, as participants may not provide exact correct

answers for the experiment, and it can take a long time for participants to complete this

questionnaire. Semi-automatic methods utilise the timing and accuracy of responses, such as

the reaction time at each interaction, the judgement of user responses, and the tracking of

this experiment to estimate the engagement. The automatic category meanwhile indicates the

computational observation of participants’ behaviours and the extraction of features from

computer vision-based analysis images, videos, and audios to observe facial expressions,

gestures or postures, eye movement, and voice pitch tracking. In these automated methods,

sensor data may also be extracted from physiological and neurological sensors such as heart

rate, electrocardiogram (ECG), EEG, and blood pressure monitors. Moving away from the

case of truly situated interaction to online learning systems, the engagement can also be

automatically estimated by taking advantage of online activity metrics such as time spent on

pages or in a learning process.

Studying and building engagement detection models requires careful attention to design.

As an example study, Ben Youssef et al. (2017) studied the spontaneous conversation in

HRI through the use of the Pepper robot in a public place for 54 days. All participants were

students, teachers, researchers, or visitors who did not know the purpose of the study. Firstly,

a participant is detected by the robot when the participant was oriented toward Pepper and

the straight line distance from her/his was 1.5 metres. Following this an initial verification

of criteria, questionnaire, and introductory dialogue took place. This was followed by a

spontaneous dialogue session, which in turn was followed by a session in which the robot
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Fig. 2.3 Learners’ Engagement Detection Methods (Dewan et al., 2018)

outlined the difference between a cucumber and a human. While this study was highly

designed, the full autonomous robot did interact with participants in public. Unfortunately,

the interaction between these participants and the Pepper robot lacked social conversations

and was more akin to a question-and-answer dialogue.

As another experimental example consider the four single-subject experiments about the

social engagement between children with autism and the Nao robot which was presented

by Tapus et al. (2012). The four children were boys with a range of age from 2 years and

8 months to 6 years. The experimental design was such that the Nao robot imitated each

child’s arms movements and each child’s behaviours were collected by video data during an

interaction with the robot or a human charged with the same imitation task. Employing the

WoZ technique (Riek, 2012), two rooms were set up, one for the child and the robot, and one

for the operator who controlled the robot’s movements.

In the context of the experiment design, the data measurement is a key component for

deciding and collecting those types of data that can be used for the engagement detection.

Ben Youssef et al. (2017) presented self-reports, monitoring participants’ responses, tracking
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postures and facial expressions during the interaction, and recording behavioural responses

as measurements for their user engagement experiment. Tran et al. (2020), meanwhile,

illustrated the accuracy, the reaction time, perceived mental workload, and perceived com-

municative effectiveness as measures. The accuracy recorded the correct rate for whether

participants clicked on the objects correctly from the robot’s request. The reaction time was

the time recorded when the participant interacted with virtual objects. The free initiation in

children and the robot experiment (Tapus et al., 2012) concerned the gross motor actions that

the child performed without prompt while looking at the robot or human interaction. Gaze

shifting then referred to the occasions spent moving gaze between the robot and the human.

Finally, the smile or laughter was a measurement that reflects how children engaged in HRI

or HHI (Human-Human Interaction).

Data processing and statistical analysis are necessary to understand the data sets, e.g.,

video data, sensor data including physiological and neurological sensors (Doherty and

Doherty, 2018b), or log files that includes self-reporting, questionnaires, or basic user

information (Ben Youssef et al., 2017). Tapus et al. (2012) analysed the frequency of

different target behaviours (e.g., gaze of the eye, children’s smiling/laughter, etc.) following

the timeline of the experiment. They calculated a statistical test using Mann-Whitney for data

variables to compare the results of all phases (e.g. the Nao-interaction, the human-interaction)

(Tapus et al., 2012). Ben Youssef et al. (2017) also analysed the average distance between

the user and the robot, the average variance in head angles, or an average direction of the eye

gaze as a statistic to detect the breakdown of the engagement.

In the context of engagement detection modelling, Ben Youssef et al. (2019) employed

recurrent and deep neural networks to predict SED (Sign of Engagement Decrease) using

their annotated multimodal dataset. Long-short-term memory (LSTM) and gated recurrent

unit (GUR) were used for modelling temporal sequences, and in particular, re-establishing a

baseline against a more basic logistic regression style analysis. Perhaps unsurprisingly, their
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results showed that deep learning techniques are better than the traditional machine learning

technique (e.g., Logistic Regression) (see Figure 2.4).

Fig. 2.4 Performance comparison between classifiers (Ben Youssef et al., 2019)

2.2.3 Confusion Detection

Confusion unfortunately is not a term that is always simple to define. Confusion may be

described as a bonafide emotion, a knowledge emotion, an epistemic emotion, an affective

state, or a mere cognitive state (D’Mello and Graesser, 2014). When confusion is considered

an effective response, confusion occurs in people who are enthusiastic to know or understand

something. When confusion is defined as an epistemic emotion (Lodge et al., 2018), it

is associated with blockages or impasses in the learning process while trying to learn
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something new or trying to clarify problems or issues. Confusion is also triggered by

cognitive disequilibrium. Yang et al. (2015) explained that cognitive disequilibrium is

defined as the state in which a participant learns when obstacles to the normal flow of

the learning process are encountered, such that the participant may feel confused when

encountering contradictory information leading to uncertainties and results in cognitive

disequilibrium.

There have been several partial or full formalisation of confusion states in the literature.

Arguel and Lane (2015) presented two thresholds (T _a and T _b) of levels of confusion in

learning (see Figure 2.5). When the level of confusion is over T _b, it is said that confusion is

persistent. At this stage, students might be frustrated or even bored. If the level of confusion

is less than T _a, then the learners should be fully engaged (or have the potential to fully

engage) in their learning. Between these two thresholds (T _a and T _b) is the confusion

stage. In this range, the confusion state is such that learning may actually be encouraged.

Fig. 2.5 The boundaries of the zone of optimal confusion (Arguel and Lane, 2015)

Lodge et al. (2018) meanwhile designed a learning event in which the learner was in

cognitive disequilibrium, the disequilibrium being created by an impasse in the learning

process (see Figure 2.6). in this model, when learners are in the zone of optimal confusion
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(ZOC) which is productive confusion, they are engaged to overcome a confusing state; and

as a result, the disequilibrium may be effectively resolved. However, if the confusion is

persistent, such that learners cannot resolve the disequilibrium, then they may be in a zone of

sub-optimal confusion (ZOSOC). At this stage, confusion becomes unproductive, leading

to possible frustration or boredom. Finally, learners may lose engagement altogether and

end the learning process. The state of confusion can also be said to be a part of emotional

transitions between three emotions (engagement/flow, frustration, and boredom), and the

concept is similar to ZOC.

Fig. 2.6 Conceptual framework of ZOC and sub-optimal confusion (Lodge et al., 2018)

Moreover, D’Mello et al. (2014) presented three bi-directional transitions to model con-

fusion dynamics, i.e., confusion-engagement, confusion-frustration and frustration-boredom

transitions (see Figure 2.7). The confusion-engagement transition indicates an impasse that

has been detected, then the user’s state from engagement change to confusion and if the
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user successfully resolved the confusion, then the user state can transition from confusion to

engagement; The confusion-frustration transition likely occurs when a learner cannot resolve

an impasse after trying different solutions, thus the learner’s state transitions to frustration

from confusion. Meanwhile, if the learner continually experiences another impasse(s), the

learner’s state would transition back to confusion. If the failure continues to persist, the

transition involves frustration and boredom and can lead to disengaging (frustration to bore-

dom). However, if the learner has to be forced to persist in their tasks, then the transition will

change in this case from boredom to frustration. D’Mello et al. (2014) also noted that it is

possible to transition to anxiety and hopelessness.

Fig. 2.7 Observed Emotion transition (D’Mello et al., 2014)
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Four patterns of confusion induction and non-confusion induction as strategies for the

confusion stimuli have been proposed (Lehman et al., 2012; Silvia, 2010). The first such

pattern is complex information and simple information. Lehman et al. (2012) explained that

complex learning is an experience full of emotions that occurs when learners are exposed to

complex material, difficult issues, or indecisive decisions, such that their confusion may be

triggered between positive and negative emotions (Arguel et al., 2017). The second pattern

is contradictory information and consistent information; here people may enter into a state

of uncertainty and confusion when they are exposed to contradictory information (Lehman

et al., 2013). The third pattern of confusion is insufficient and sufficient information; here

people do not receive enough information to respond to an interlocutor, as a result, they may

get confused (Silvia, 2010). The final pattern of confusion is based on feedback. Lehman

et al. (2012) designed a feedback matrix of feedback states to investigate feedback types

and the confusion. This matrix essentially distinguishes between correct feedback which

comprises correct-positive conditions and incorrect-negative conditions, and false feedback

including correct-negative and incorrect-positive conditions. From their experiment, it was

witnessed that the presentation of correct-negative feedback, i.e., when learners responded

correctly but got inaccurate or negative feedback, was an effective manipulation to stimulate

confusion.

Exploring the best algorithm for confusion detection is a challenging task. Within the

area of online learning, there have been a number of studies to this end, but there have been

far fewer in HRI or related interaction fields. Ibrahim et al. (2021) proposed that the detection

of confusion requires an artificial intelligence methodology. Traditional machine learning

classification algorithms, e.g., Naïve Bayes, Multi-Layer Perceptron (MLP), Feedforward

neural network Decision Trees, or Random Forest Algorithm (Samani and Goyal, 2021a;

Kavita Kelkar, 2021) can be trained on multiple e-learning datasets to detect the levels

of confusion in real-time or offline. A comparison of performance in predicting levels of
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confusion has shown that the MLP and Decision Tree algorithms perform better than Naïve

Bayes for the estimation of the levels of confusion for quiz data submitted by students

online on a MOOC (Samani and Goyal, 2021a). Meanwhile, the result of training the

confusion detection model with the Random Forest algorithm achieved above 90% accuracy

by capturing students’ interacting behaviours (Kavita Kelkar, 2021).

In a similar style, Geller et al. (2021) compared the performance results of six classifiers

training on data from online course forums. A pre-trained language model based on the

bidirectional encoder representation from transformers (BERT) outperformed traditional

machine learning for classifying confusion. Interesting, in this work, students posted hashtags

that include confusion that reflected their affective states as a new label, which was better

than manual labelling that is time-consuming and costly. Finally, it should be noted that fuzzy

logic is a method that has also been used to detect the levels of confusion in clickstream data

when learners answer online quiz types assessments (Samani and Goyal, 2021b).

Furthermore, EEG data as input and the facial expression data as output that was collected

from users who played 3D games, and used to train Support Vector Machine (SVM), K-

Nearest Neighbors algorithm (KNN), or Long Short-Term Memory (LSTM) based models

for four levels of confusion detection (Benlamine and Frasson, 2021). In this study, the

KNN and LSTM algorithms achieved the best accuracy. Turing instead to driver detection

in a safe driving study, sensor data was collected and used for training a driver confusion

states prediction model using typical neural network methods (i.e., the logistic regression,

feedforward neural networks, and recurrent neural networks (RNNs and LSTM RNN). In the

case of this study, LSTM also outperformed the other models (Hori et al., 2016). Moreover,

we must also mention that the deep reinforcement learning (RL) has been also applied in

HCI and HRI (see details Appendix C)
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2.3 Embodied Interactions: From HCI to HRI

Due to the relative ubiquity of computer-mediated communication across different application

domains, e.g., online learning system (Doherty and Doherty, 2018a), healthcare assistants

(Esterwood and Robert, 2020), virtual reality (VR) games (Lukosch et al., 2019), and social

VR (Baker et al., 2021)), the expectations for multimodal interactive systems have grown

in diversity and sophistication in the last decade. This is true for virtual online agents, but

also extends to expectations for interaction with physical, or more precisely social, robots

(Doherty and Doherty, 2018a; Pustejovsky and Krishnaswamy, 2021). A key trend in the

development of communicative systems has been an assumption of multi-modality, i.e., that

our artificial interlocutors should have access to multiple modalities. However, the research

community is well aware that the multimodal communicative skills of even state-of-the-art

systems are still very limited.

Whether our interaction partner is a social robot, a 3D avatar, or even just a chat window,

it is assumed that our interaction partners share similar conversational skills and abilities

across these embodiments. This has benefits in terms of acclimatisation of technology across

interaction partner types, but can also lead to frustration and disappointment when such

alignment is not present in practise. This though is not just true in terms of users expecting

systems to behave in uniform ways across device types, but may also be present in the

expectations that systems – and their designers – make in terms of the behaviour and reaction

of users to systems across different embodiment types.

This potential for mismatched expectations is, in some cases, exacerbated by the needs

of researchers and industrial developers. Collecting real-world data in HRI studies for the

investigation of particular phenomena is extremely challenging. Experimental hardware

systems suffer malfunctions, recruiting participants or users is challenging and often expen-

sive, and even finding appropriate real-world spaces to perform tasks can be difficult. These
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problems were significantly heightened during the COVID-19 pandemic when it became in

many ways unfeasible to perform human-robot interaction studies. For reasons such as these,

numerous researchers have over the last four decades frequently turned to human-computer

interaction studies, and particularly the use of avatars and chat systems, to conduct studies in

the hope of bootstrapping studies of HRI. Invariably, these efforts have been based on the

assumption that such data is as ecologically valid in one embodiment type as in another so

long as the same basic interaction modalities are being used, e.g., speech and cameras. While

this assumption may have been true at one point, due to the relative novelty of all interactive

systems interfaces, the ubiquitous nature of avatars and basic conversational systems in

contrast with everyday social robotics has arguably laid waste to this assumption.

HCI has a strong relationship with HRI, as they are both studies of user interaction with

computing systems although applied in different manifestations (Wei, 2016). As a field of

study, HCI with computer-based technologies makes more contributions and insights into

understanding context communication in order to improve interactions with users. On the

other hand, HCI necessities can be part of a robotic system, and inspire HRI techniques such

as an artificial conversation engine. Ultimately, combining physical characteristics, including

autonomy, physical proximity, and decision-making capabilities from HCI makes HRI a

distinct area of study (Singh et al., 2021).

While HCI covers a vast number of physical system types as well as different goals of

interaction, we are particularly interested in situated interaction where a user communicates

with an embodied agent, which is typically a physical robot, but can also be embodied

virtually in our study. In recent years, avatars have begun to become a prominent mechanism

in virtual intelligent environments (Pan and Steed, 2016). Compared to other means of

interaction, the avatar is presumed to be a more natural communication mechanism that can

evoke strong agent-as-partner-style interactions through the use of human-like facial features

and expression (Heyselaar et al., 2017), vivid body language, and even specific personalities.
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Moreover, the avatar has remarkable benefits over a speech-to-text-only interaction (Heyselaar

et al., 2017).

Multiple studies have commented on the relative properties of communication with

physical robots versus other types of agents. Generally, it has been observed that people have

more interactions with physical robots than with virtual agents or telecommunication agents

in a number of different application areas (Wainer et al., 2006; Lee et al., 2006). Meanwhile,

McNamara and Kirakowski (2006) revealed that customers or users can be affected to varying

degrees in their overall user experience, due to the perception of different levels of social

presence across both HCI and HRI. In the study of social presence by Herath et al. (2020)’s,

the authors approached both HCI and HRI experiments with the same conversational engine

but with a keyboard and monitor used for the HCI studies, and the Nao robot used for

the HRI studies. In a post-questionnaire, in particular, the “UTAUT” (Unified Theory of

Acceptance and Use of Technology Questionnaire (Heerink et al., 2010)), it was shown that

HRI trended more strongly with measures of animacy and likeability than with HCI, while

on the measure of usefulness and trust, the experience of HCI was rated higher than in the

HRI case. The authors believed that the HCI performance is better than the HRI performance

in specific tasks or domains, but that the HRI performance was better than the HCI study

for the exploratory and open-ended conversation domains. Also of note, in a cooperative

HRI or HCI task, participants were found to be more engaged and enjoyed playing with a

physically embodied robot in comparison to playing with a virtual embodied animated avatar

as the physical robot was viewed as being informative and credible (Kidd and Breazeal, 2004;

Hoffmann and Krämer, 2013). In contrast, Kidd and Breazeal (2004) also found that, such as

verbal and role-playing tasks, there was no significant difference in attitudes between users

who interact directly with a robot and those who play with the robot via video-displayed

remotely in different rooms.
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2.4 Summary

In this literature, I have systematically introduced the three mian components that are

closely relevant to my study: conversational HRI, affective computing in HRI, and the

different embodied interactions between HCI and HRI in terms of the diversity of aspects and

applications. While there has been useful research in the field, none of the above research

focuses on detecting interlocutor confusion in the multimodal situated dialogue of both HRI

and HAI. While it is clear that smooth communication and task performance between a user

and a system will require a level of situated awareness of confusion, the achievements to date

in this field have been limited; this brings us to the main research question to be addressed in

this work.
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Research Questions

As described in the previous chapter, to date a small level of research on confusion detection

and modelling has been conducted; however, most of it is in the field of online learning

with different human-computer interaction platforms. Particularly in terms of task-oriented

dialogue between human and robot interaction, very little research concerning confusion

detection or modelling has been published.

Given the need for systematic modelling and mitigation of confusion in task-oriented

interactions, I consider the lack of systematic research on this topic in the HRI field to date

to be a serious limitation. With this in mind, in this research work, the research question that

I am aiming to address is as follows:

How can we detect, model and mitigate user confusion states in situated Human-

Robot Interaction?

This, of course, is a brief description and addressing it in its total form would, unfortu-

nately, be beyond the scope of a single PhD dissertation. However, it should be possible to

make some significant progress on this question. As such, the following subquestions have

been identified to allow a systematic study of the issues.
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• RQ1: How can we define what interlocutor confusion is in the context of situated

spoken Human-Robot Interaction?

There are many definitions of confusion in different domains (D’Mello and Graesser,

2014; Lodge et al., 2018; Yang et al., 2015) in the field of online learning, but none

in the HRI area. Thus, it is necessary to clearly define what I mean by “confusion”

in conversational HRI. This will be a guide that helps me frame my study scope and

design experiments.

• RQ2: Are participants aware that they are confused if we give them a specific confusing

situation?

As I will outline later, it is difficult to clearly know specifically when participants

are confused or when other emotions might instead manifest during a conversation.

Therefore, looking at the relationship between assumed confusion states and partici-

pants’ self-estimation of their confused state is very useful. Addressing this question

also helps me to learn different nonverbal and verbal human behaviours in confusion

states and to verify whether participants are successfully stimulated during more subtle

interactions.

• RQ3: Do participants express different physical or verbal/nonverbal behaviours when

they are confused that we can detect?

Although it is quite likely that subtleties in physical expression that could manifest

confusion in HRI are possible, it is equally likely that different people might have

slightly different behavioural or physical responses when confused. Therefore, these

differences between participants across confused and nonconfused states should be

monitored and modelled wherever possible.

• RQ4: Are there differences between embodiments when it comes to confusion expres-

sion and detection?
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HRI studies are expensive and difficult to control when compared to HCI studies,

and researchers sometimes have to turn to HCI studies, which are easier to conduct

and collect data faster than is the case for true robotics studies. Thus, if I rely on

human-avatar studies as a proxy for human-robot studies, I must ask whether the avatar

interaction can substitute for robot interaction studies or whether the two forms of

interaction are, in practise, too distinct to be useful.

• RQ5: How can we effectively detect the different states of confusion including non-

confusion, productive confusion, and unproductive confusion using multimodal data?

Ultimately, the goal of studying confusion in HRI should be to allow us to effectively

detect confusion and mitigate that confusion in interaction. In HRI studies, we typically

have access to a range of data types, and some of these are already well tuned to

detect confusion. However, in practise, this detection is likely to be non-trivial when

taking into account real-world circumstances and individual differences. Nevertheless,

detecting different confusion states can help us to learn the exact confusion state in HRI

dialogues in order to adjust the accuracy of policies to mitigate factors of confusion.

• RQ6: How can we use confusion state detection to help the participant overcome their

confusion in conversational HRI?

Confusion can happen any time whenever we communicate with a robot in a dynamic

environment in real-time. However, how the system might deal with a confused state

is not a trivial question. We must consider what policies would be most useful in

addressing the confused state. Ideally, these policy decisions should be suited for

integration into an Artificial Intelligence (AI) planning policy for the automated HRI.

To answer these research questions, I first present a definition of confusion and specifically

three states of confusion. Following this, WoZ experiments are applied for HAI and HRI

studies. The first study is an online situated conversation between an avatar and a participant
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using a developed online chat web application. This study involved a series of situated

conversations that aim to trigger confused states in participants. Meanwhile, participants’

performances including verbal or nonverbal responses and facial expressions are analysed.

The second study applies similar stimuli methods from the first study but uses the Pepper

robot, where participants must physically attend a lab and have a situated face-to-face

conversation with a robot.

Furthermore, these studies allow for a comparison of HRI and HAI to be considered to

learn from different perspectives on my HAI and HRI studies. The confusion states detection

model can be trained using deep learning techniques on multimodal interactive data from

my HRI experiments. Finally, the pre-trained model will be generalised and evaluated in

real-time conversational HRI to examine whether my human-robot interaction system can

detect exactly when a participant is confused.

Conversational HRI is a broad topic of research. There are many methods for the

design of HRI experiments that I have found. Then, to frame the scope of my study, there

are limitations to my research study that need to be clarified. First, the dialogues that I

design are semi-automatic and task-oriented spoken dialogues. These are targeted at my

research purpose so I hope to precisely stimulate different states of confusion through these

experiments. Second, it can happen that technical issues on the devices (avatars and robots)

lead the participant to confusion or other states and there are outside the scope of my study.

Third, one-to-one and face-to-face conversations between a robot and a participant will only

be designed for this study. Thus, there will be no multi-party interactions considered. Fourth,

for the experimental systems, these are not fully autonomous. Instead, a researcher controls

those systems (i.e., avatar and robot) for all interaction with participants. Finally, biological

data, such as EEG, body temperatures etc., will not be considered, but it is notable that they

are likely to be useful indicators of mental state.



Chapter 4

Work Done To Date

In this section, I set out the work that has been done to date to address the research questions

raised in the proceeding section. I begin with a brief summary of the perspective I take on

the definition of confusion as this directly influenced subsequent study design.

4.1 Defining Confusion

Generally speaking, confusion as a psychological state has been defined in different studies;

mostly to date within the context of pedagogy and related applied fields of learning. In terms

of bonafide emotion to an epistemological state, confusion can be considered an effective re-

sponse that occurs in people who are enthusiastic to know or understand something (D’Mello

and Graesser, 2014). In contrast, confusion can be defined as an epistemic emotion, that is,

learners have impasses or blockages during the learning process. In addition, many studies

have shown that confusion can transition between the engagement state and the frustration

state under certain conditions. I noticed that there was no well-established definition of con-

fusion that can assist my further studies in modelling and mitigating confusion in interaction.

In light of this and for use in the context of dialogue-centric human-machine interaction, I

offer the following working definition of confusion:
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Confusion is a mental state where under certain circumstances, a human experiences

obstacles in the flow of interaction. A series of behaviour responses (which may be nonverbal,

verbal, and, or non-linguistic vocal expression) may be triggered, and the human who is

confused will typically want to solve the state of cognitive disequilibrium in a reasonable

duration. However, if the confusion state is maintained for longer periods, the interlocutor

may become frustrated or even drop out of the ongoing interaction.

This definition of confusion explains, in general interaction scenarios, that confusion can

be inducted from obstacles, as a mental state, confusion can be kept for a certain duration,

and transition to other states depending on whether this confusion state can be solved. This

definition also mentions that people’s behaviours including nonverbal/verbal behaviours in

the state of confusion may be stimulated to represent their confusion states. This definition

of confusion, as a guideline, drives the rest of my studies on detecting confusion in situated

conversational interaction, starting with confusion detection in human-avatar interaction.

4.2 HAI Study: Detecting Interlocutor Confusion in Situ-

ated Human-Avatar Interaction

To validate my study designs for research purposes, I conducted a series of initial pilot studies

with small groups; it allowed us to improve the design of my scenario and its applicability to

my ultimate conversational HRI goals. The first two pilot studies have been completed to

cover the first three research questions, namely: RQ1, RQ2, and RQ3, which were mentioned

in Chapter 3.

According to the definition of confusion introduced in the previous section, I designed a

WoZ study to explore: the effectiveness of confusion induction methods in HAI interactions;

as well as the relative performance of a series of manual; semi-automatic and automatic

methods to estimate confusion from the data collected.
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4.2.1 Study Design

This pilot human-avatar study was designed to account for some challenges introduced by

the COVID-19 pandemic of 2020-2021. Also, while it was a pilot study and the avatar did

not provide a fully situated experiment, the avatar style interaction has been shown to have

remarkable benefits in speech- and text-based interaction (Heyselaar et al., 2017).

This study was based on a semi-spontaneous one-to-one conversation between a wizard-

controlled avatar and a human participant. Those participants were recruited from universities

and study programs around the world. They remained in their own locations, and the wizard

was also located in their own work environment. Meanwhile, all participants were requested

to use their own laptop with a connected camera and audio with a stable internet connection.

Figure 4.1 shows the detailed experiment process for this study. The experiment time

for each participant was less than 15 minutes in total, including 5 minutes for the central

conversational task. At the beginning of the experiment, participants received instructions on

this experiment, such as how to use a real-time HAI chat web application (described later),

how to register, sign up and enter the chat room to meet the avatar, and for the purpose of

the study, as well as for user consent. After the conversation task between the avatar and a

participant, the participant was required to complete a survey. At the end of the experiment,

a 3-minute interview was used to collect feedback from the participants.

Fig. 4.1 HAI Experiment Process for Confusion Detection
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The web application framework was developed and built with two main components: a

real-time chat application 1 and an avatar application 2 that were embedded in a real-time

communication application. The avatar application was based on the framework developed

by Sloan et al. (2020), which provided a sandbox with modules of an e-learning platform with

an animated avatar. This avatar integrates animation, speech recognition and synthesis, along

with full control of: (a) the avatar’s facial expressions to express happiness, sadness, surprise,

etc.; (b) voices including pitch, speed, emotions, emphasis, and accents; and (c) body pose

including leans, rotation, tilt, and blink The real-time chat application 3 meanwhile was a web

application for online interaction between an agent/avatar and a participant that I developed

to execute the entire experiment process, including user enrolment, communication, all

survey presentations, as well as the user consent steps. Furthermore, this application was

implemented such to enable full data recording of both the avatar and the participant’s audio,

text, and camera stream. Figure 4.2 depicts the complete framework. As for the technical

architecture of this web application, the front-end was developed with ReactJS which is an

open-source JavaScript library for UI (User Interface) components; NodeJS and Socket.IO

which are back-end API services for a web server that allow data transmission between the

front-end and database; WebRTC (Web Real-Time Communication) which is a technology

to capture video media without requiring an intermediary, and which presented a simple

mechanism to implement Real-Time online communication. Finally, I chose MongoDB,

which is a document-oriented database, to store user registration information. To publish

the web application, the back-end was deployed on the Heroku service platform, and the

front-end was deployed on a cloud platform.

There were 23 participants from six countries who participated in this study. Three of the

participants were unable to complete this study due to Internet connectivity or equipment

problems. All participants were over 18 years of age and were at least capable of having
1https://rt-webchatapp-v5.netlify.app
2https://avatarv2.herokuapp.com
3https://github.com/lindalibjchn/WoZ_WebChat
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Fig. 4.2 HAI Real-Time Chat Web Application

a simple conversation in English. Ultimately, there were video data, user surveys, and

demographic information from 19 participants (8 males, 11 females), and I acquired their

permission to use their data for this study.

4.2.2 Dialogue Design

I aimed to stimulate confusion and non-confusion during a short conversation. Here, I defined

two conditions with appropriate stimuli. In condition A, the stimuli were designed to trigger

confusion in the participants; in condition B, the stimuli were designed so that the participants

should straightforwardly complete a similar task without entering confusion states. Three

tasks were executed by each participant. Task 1 was a simple logical problem; task 2 was a

word problem; while task 3 was a math question.

As for the designation of situated dialogues, there were three patterns of confusion for

the two conditions (see Table 4.1): the first pattern was complex information and simple

information, the second pattern was insufficient information and simple information, and the

third pattern was of correct-negative feedback and correct-positive feedback. What follows
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is a sample of a word problem question, for the insufficient information case in condition

A: “There are 66 people in the playground including 28 girls, boys and teachers. How many

teachers were there in total?”, while for the sufficient information case in condition B we

have: “There are 5 groups of 4 students, how many students are there in the class?” (for all

dialogue designs, see Table A.1). In practise, I prepared two questions (also as two dialogues)

for each condition in each task. To balance the number of conditions between participants

for data analysis, the sequence of the experiment with all conditions shown in Table 4.2

was used. For the first participant, the sequence of conditions was Task 1 with condition

A, Task 2 with condition B, and Task 3 with condition A (called: ABA). Then, the second

participant’s sequence of conditions was BAB, i.e., Task 1 with condition B, Task 2 with

condition A, and Task 3 with condition B.

Table 4.1 A matrix of tasks and causes of confusion is divided by conditions.

Condition A Condition B Tasks *
Complex information Simple information Task 1, Task 2, Task 3
Contradictory information Consistency information Task 1, Task 2, Task 3
Insufficient information Sufficient Information Task 1, Task 2, Task 3
Correct-negative feedback Correct-positive feedback Task 1, Task 2, Task 3

* Task 1: Logic problem; Task 2: Word problem; Task 3 Math question

Table 4.2 Example of the experiment sequence for sample participants

Participant 1
Stimulus Task Condition
1st Task 1 A
2nd Task 2 B
3rd Task 3 A
Participant 2
Stimulus Task Condition
1st Task 1 B
2nd Task 2 A
3rd Task 3 B
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Additionally, I also considered that the individual stimuli should include verbal and

non-verbal features of interactions. It should be noted though that avatar responses needed

to be mapped to visible behaviours (Cassell and Vilhjálmsson, 2004). Figure 4.3 shows an

example of the mappings of avatar facial expressions and body gestures for the conversational

responses and conversational behaviours that reflect positive reaction and negative reaction.

Fig. 4.3 The mapping of the reaction status and visible traits for the avatar

4.2.3 Data Preparation

Frame data was extracted from 19 participants’ videos, and each video was labelled for one

of the sequences of conditions (e.g., ABA or BAB). Thus, each frame was labelled as either

condition A or condition B. Ultimately, I collected 4084 frames for condition A as well as
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3273 frames for condition B. As I focus on facial frames, facial recognition and alignment

were necessary before analysis of the data was possible. I applied a Multitask Cascaded

Convolutional Neural Networks (MTCNN)-based face detection algorithm to detect the face

without frame margins (Savchenko, 2021) and centre cropped a region of 224×224 for all

frames. For illustration, in Figure 4.4, a comparison is shown between the original frame on

the left and the aligned face image on the right.

Fig. 4.4 The mapping of response status and behaviours of participant B

In addition, for the user study I designed 10 post-interaction questions using a 5-level

Likert scale. There was one question to be passed to each task (logical questions, word

problems, and math questions) (see Table B.1).

4.2.4 Data Analysis

Frame Data Measurement My primary data analysis focused on the automated processing

of video data with three analysis aspects, which were emotion detection, head position

estimation, and eye gaze estimation; based on this I then analysed whether there was a

significant correlation with the confusion state. Firstly, for emotion detection, I used a

visual emotion detection algorithm based on a Mobile Net architecture as a backbone face
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recognition network (Savchenko, 2021; Howard et al., 2017), which was trained on the

AffectNet dataset (Mollahosseini et al., 2017) for 8 target classes i.e., 8 facial expressions,

which are: the 7 primary emotions: neutral, happy, sad, surprise, fear, anger, disgust, and

an 8th: contempt. The result shows the 7 primary emotion classes grouped by the two

conditions (see Table 4.3). For condition A, the predicted results of the negative emotions

classes (anger, disgust, fear, and sadness) were higher than the predicted results for the

positive emotions classes (happiness and surprise). On the contrary, the predicted results

for the positive emotions class in condition B were greater than for condition A. As for the

neutral emotion, the results for condition A were more than for condition B. Meanwhile,

Figure 4.5 illustrates a comparison of the results for the prediction of emotions for the three

categories (negative, positive and neutral) grouped by conditions.

Furthermore, I investigated the correlation relationships between the three categories

of emotions and the conditions with statistical analysis. The result of an independent-

sample t-test was that there was a significant difference in the three emotion categories

(negative, positive, and neutral) with the two conditions, (M = 0.77,SD = 0.94 for condition

A, M = 0.48,SD = 0.60 for condition B), t(715) = 5.05,ρ − value < 0.05.

Table 4.3 Result of emotion estimation by condition A and condition B

Condition Anger Disgust Fear Sadness Happiness Surprise Neutral Overall
A 262 282 136 677 702 65 1799 3923
B 77 165 57 480 858 95 1502 3234

Regarding head-pose estimation, I applied a CNN model with dropout and adaptive

gradient methods (Patacchiola and Cangelosi, 2017), which was trained on three datasets:

Prima head-pose dataset (Gourier et al., 2004), the Annotated Facial Landmarks in the Wild

(AFLW) dataset (Köstinger et al., 2011), and the Annotated Face in the Wild (AFW) dataset

(Zhu and Ramanan, 2012). The predicted results combined the angles of pitch, yaw, and

roll for each frame. I note that the values of angles were positive and negative numbers as a

person has different angles of direction. To mitigate the case that the sum of these angles was
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Fig. 4.5 Comparison of three emotional categories grouped by condition A and condition B

0, I calculated the sum of absolute values of the three angles as a new feature for analysis. The

research question here was whether there is a statistically significant relationship between

the sum of the absolute values of these three angles and the two conditions. The result

of an independent sample t-test showed that there is a significant difference in the sum of

the absolute values of these three angles and the two conditions (M = 21.96,SD = 9.46 for

condition A, M = 27.40,SD = 12.21 for condition B), t(703) =−6.61,ρ − value < 0.05.

Moreover, to intuitively analyse the predicted results of the head-pose estimation, I

compared two of these results with respect to condition A and condition B. Firstly, I plotted

the sum of angles for conditions A and B. In Figure 4.6, the values of condition A (red

bubble spots) form a less discrete distribution than condition B (green bubble spots). Second,

I plotted the specific yaw, roll, and pitch angles for individuals on the timeline of my

experiment. Figure 4.7 shows the fluctuations of the pitch angle, yaw angle and roll angle

in the time series for the labelled time of condition A (red line) and the labelled time of

condition B. From this, we can see that the angle of a head pose in condition A is generally

smaller than the angle of the same participant’s head pose angle in condition B.
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Fig. 4.6 Head-pose estimation: plot the sum of angles values for condition A and condition B

Regarding gaze estimation, I applied a state-of-the-art eye gaze estimation model that

was trained on the ETH-XGaze dataset (Zhang et al., 2020). This dataset collects more than

one million high-resolution images of diverse human natural gazes in extreme head poses

from 11 participants. The estimated values are angles of pitch and yaw that correspond

to different directions of the eyes. Similarly to head-pose estimation, I calculated the sum

of absolute angles of pitch and yaw and analysed whether there is a significant difference

between the estimates and the conditions. Using an independent sample t-test, the result was

that there is a significant difference in the sum of absolute values of pitch and yaw and the

two conditions (M = 0.44,SD = 0.26 for condition A, M = 0.49,SD = 0.22 for condition

B), t(728) =−2.58,ρ − value < 0.05.

I also applied the same methods as for head-pose estimation to plot the two groups of

data features with labelled conditions for eye gaze estimation. Figure 4.8 indicates that

the eye-gaze values of condition A form a more discrete distribution than these values of

condition B. Figure 4.7 shows the fluctuations of the same individual participant’s angles of

pitch and yaw. Comparing the pitches and yaw angles in the timeline with the two conditions,
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Fig. 4.7 Head-pose estimation: plot the change of one person’s pitch, yaw and roll angles at
an experiment

I can see that the eye-gazing angle of this participant in condition A is greater than that of

this participant in condition B.

4.2.5 Subjective Measurement

I analysed the survey scores from user feedback with the two conditions, and proposed a

number of sub-questions with respect to RQ2. The first sub-question is whether there is a

statistically significant relationship between the average of self-reported confusion scores

for each of the three executed tasks and the two conditions. The second three sub-questions

are whether there is a statistically significant relationship between confusion scores for

each of the three executed tasks and the two conditions. The statistical results are from

an independent-samples t-test. I found that there is no significant difference between the

average confusion scores of the three tasks and the two conditions (M = 3.50,SD = 1.40

for condition A, M = 2.97,SD = 1.12 for condition B), t(36) = 1.28, ρ − value = 0.21.

For the second sub-questions with three pre-made tasks, first, there was no significant

difference in the confusion scores for task 1 with the two conditions (M = 3.00,SD = 1.07

for condition A, M = 2.44,SD = 1.33 for condition B), t(15) = 0.94,ρ − value = 0.36;
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Fig. 4.8 Eye-gaze estimation: plot the sum of angles values for condition A and condition B

second, there was no significant difference in the confusion scores for task 2 with two

conditions (M = 3.09,SD = 1.22 for condition A, M = 3.10,SD = 1.29 for condition B),

t(19) = −0.02,ρ − value = 0.99; finally, the results did however indicated that there is a

significant difference in the confusion scores for task 3 (M = 4.38,SD = 0.74 for condition

A, M = 3.00, SD = 1.12 for condition B), t(15) = 2.94, ρ − value < 0.05.

4.2.6 Discussion

With respect to RQ2 and RQ3 identified earlier, there are a number of direct observations I

can make on this data:

• Participants were not always aware they are confused if I gave them a specific confusing

situation.

• When the participants answered the complex questions that seemed to trigger con-

fusion states, the participants’ emotion was more negative than when they answered

straightforward questions that should avoid confusion stimuli.
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Fig. 4.9 Eye-gaze estimation: plot the change of one person’s pitch and yaw angles at an
experiment

• When the participants answered the complex questions that seemed to trigger confusion

states, the range of angles of eye gaze was greater than when they answered the

straightforward questions that should avoid confusion stimuli.

• Finally, when the participants answered the complex questions that seemed to trigger

confusion states, the range of head-shaking angles was less than when they answered

the straightforward questions that should avoid confusion stimuli.

While there are interesting observations, it should of course be noted that this was a pilot

study of confusion induction and detection with a limited sample size and scopes. Moreover,

there were also some limitations in the study execution that I identified. First, the quality

of the videos of the participants was varied due to the different properties of the network,

camera specification and camera position; the sample size and the range of participants’

backgrounds were major limitations leading to a kerb on the conclusions of this study. Third,

as noted earlier, confusion can transition to the productive confusion state or the unproductive

confusion state; in my study, there are no clear time and dialogue boundaries to clarify

whether participants are in a productive or unproductive confusion state. Finally, in the

3-minute post-interaction interview, many participants expressed that they expected more
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natural and casual conversation with the avatar; however, this experiment lacked flexible and

free conversations between participants and the avatar.

Despite these limitations, the study results reflect that the method for data collection and

analysis was worthy and meaningful as an important initial step down the path to conducting

further studies in human and real robot interaction. This work was presented in the following

paper at Semdial 2021:

• Li, N., Kelleher, J.D. and Ross, R. (2021) Detecting interlocutor confusion in situ-

ated human-avatar dialogue: A pilot study in: 25th Workshop on the Semantics and

Pragmatics of Dialogue (SemDial 2021) University of Potsdam, Germany

4.3 HRI Study 1: Detecting Interlocutor Confusion in Situ-

ated Human-Robot Interaction

In Study 1, I was limited by the challenge of having users interact remotely over uncontrolled

hardware (e.g., microphone and camera challenges on user laptops) and the more general

challenge of managing interactions remotely. Nevertheless, the work did identify certain

indicators of participant confusion, and hence in a second study, I wished to broaden the

investigation to provide a complete interaction scenario with a dataset that can, subject to

privacy concerns, be made available for general study in language-based HRI.

For this study, I made use of a Pepper robot. Of its many features, those that are relevant

here are its onboard 2D cameras, ability to articulate arms and head for gesticulation, and

on-chest touch screen. Pepper has speech recognition and dialogue available in 15 languages.

For this study, the Pepper was configured for English. The Pepper backend is a fully open

and programmable platform built on the Naoqi framework with comprehensive animated

speech, motion, and vision modules, which were used to support my WoZ experiment.
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4.3.1 Study Design

This study used a semi-spontaneous one-by-one physical face-to-face conversation between

the Pepper robot and a participant. The Pepper robot was controlled by a wizard. All

participants were required to be able to walk into our physical laboratory. Two rooms were

set up (see Figure 4.10): the experiment room was set up for the participants with the Pepper

and some additional recording equipment. Participants were asked to stay standing in Zone 1

which is around 80 cm in front of the robot to ensure that they were close enough to Pepper

for practical interaction. A high-definition (HD) webcam (Webcam 1) was placed behind

the Pepper robot and aimed toward the participants’ faces to collect their facial expressions.

A second HD webcam (Webcam 2) was placed on the right side of the Pepper to record

the body gestures of the participants. Figure 4.10 shows the actual scene of the laboratory

setting.

Fig. 4.10 WoZ HRI Experiment Laboratory
(left: the real experiment room; right: a mock experiment room and a mock wizard room)

The wizard room was designed for the researcher to monitor the real-time interaction

between the participant and the Pepper robot in the experiment, as well as to control the
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Pepper robot using a WoZ4U independent platform (Rietz et al., 2021) (see Figure 4.11). The

WoZ4U platform is an open-source WoZ interface that provides a graphical user interface

(GUI) for the wizard to control Pepper movements, speech utterances, animated speech,

gestures, autonomous mode, etc.. I also integrated conversation scripts and developed

more specific behaviours for the Pepper robot in WoZ4U. These included a QR code for

feedback that was made available on the Pepper tablet, the Pepper’s animated speaking

with anthropomorphic body language (happy, embarrassed, wave, etc.), and the use of the

Pepper robot’s lively colourful eyes. In addition, I also collected users’ video data from the

Pepper robot’s forehead camera by using the camera viewer in a monitor application from

the SoftBank Robotics company.

Fig. 4.11 WoZ4U Platform (Rietz et al., 2021)

Figure 4.12 shows the procedure for this HRI experiment. All participants registered

first for this walk-in experiment, including their email address, basic information, and the

date and time to attend this experiment. Consistent instructions and consent forms were

provided and signed before participants attended the experiment as well. Live participation

was designed around two interaction sessions lasting more than 15 minutes. The first session
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Fig. 4.12 HRI Experiment Process

was a casual talk because most of the participants had no experience of interaction with the

Pepper robot prior to participating in this experiment. To help participants adapt to the mode

of human-robot dialogue, I prepared 11 interactive topics that the participant could engage

in (e.g., “What is your name?”, “Raising your arms”, etc.) as a reference so that they could

feel more comfortable and confident entering the second session. The second session was a

5-8 minute task-oriented conversation between the participant and Pepper (detailed later).

The behaviours and speech of the participants were recorded in this session. The participant

completed a post-study questionnaire, which was then followed by a 3-minute interview

discussing this interaction.

The conversations were the same as the conversations from Study 1, namely that the

Pepper robot asked three types of tasks (logical questions, word questions, and maths

questions) to stimulate non-confusion and confusion states from each participant. The

behaviour and speech of the participants were recorded. Also, as before, session 3 was

a survey in which the participant had to answer 10 questions, which were similar to the

questions used previously. The last session (session 4) was an interview session in which the

researcher could interview the participant about the HRI experience. This was beneficial in

improving the setup and design of the experiments.
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Fig. 4.13 The mapping of response status and behaviours of Pepper robot

4.3.2 Dialogue Design

The conversational HRI dialogue design includes four patterns of confusion stimuli. Mean-

while, to build a more natural interaction with participants, it is vital that the robot possess

interactive nonverbal behaviours (Prasad et al., 2020). Therefore, I designed a mapping of

physical behaviours on the robot’s head, eye colours, and body gestures to align with positive

and negative responses (see Figure 4.13).
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4.3.3 Data Analysis

30 individuals participated in this study. Among them, one participant helped to first dry run

this study, so this participant’s data was not analysed for research purposes. All participants

were over 18 years of age, i.e., 5 people in the 18 - 24 age group; 23 people were in the 25 -

44 age group; and 2 people are in the 45 - 59 age group. What’s more, they were from at

least six countries and were in university programmes, or were in industries, such that they

were able to have a social conversation in English. Data from 29 participants (16 males, 12

females, and one was not stated) were made available for data analysis.

Data collection, for each participant, included speech data, facial video, postures and

gestures. The data labelling strategy was the same as had already been applied in study 1

HAI (see table 4.2), namely three tasks with the two conditions (ABA or BAB) were used

to stimulate participants’ confusion and non-confusion states. I applied the same feature

extraction algorithms as in Study 1 for emotion estimation, eye-gazing estimation, and head-

pose estimation on the labelled facial frame data from 29 participants. The image data that I

extracted had 5715 frames (3441 frames for Condition A, and 2274 frames for Condition

B). Although that image data was from facial videos, it is necessary to recognise and align

faces in a preprocessing data step. I applied a general approach for each frame from the

centre crop in a region of 224×224 pixels which was then used to detect the face and remove

the frame margins using the Multi-task Cascaded Convolutional Network (MTCNN)-based

face detection algorithm (Savchenko, 2021). As facial video data also included high-quality

audio in this study, I applied the FFmpeg framework, which is an effective video and audio

converter, to extract audio tracks for analysis. The audio data had 85 audio files (45 waveform

audio (wav) files for condition A and 40 wav files for condition B). The post-questionnaire

with 10 questions on a Likert scale of 1-5 levels was completed by each participant after

interacting with the robot. The 29 post-study questionnaires were split by the conditions

independently such that I have prearranged sequences of conditions for each participant.
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Table 4.4 The result of emotion estimation grouped by Condition A and Condition B

Condition Anger Disgust Fear Sadness Happiness Surprise Neutral Overall
A 40 62 1511 59 91 67 92 1922
B 19 46 1503 57 151 48 102 1926

I then combined the two independent files (one for condition A, another for condition B)

into one file with the new “Condition” feature to mark the specific condition for subjective

analysis. As there were two scores under the same conditions for each questionnaire, I

calculated the average of the two scores as a new parameter.

Frame Data Analysis

For frame data analysis, I again applied the facial emotion detection algorithm to my prepro-

cessed frame data, this algorithm used the MobileNet architecture and was trained on the

AffectNet dataset (Savchenko, 2021; Howard et al., 2017; Mollahosseini et al., 2017). This

resulted in estimates of the each of seven primary emotion categories (neutral, happy, sad,

surprise, fear, anger, and disgust) for each frame. This estimation resulted in 2945 labelled

frames for Condition A and 1941 frames for condition B. Table 4.4 showed the number of

each of the seven emotion categories grouped by condition and normalised by total detection.

I noticed that the number of fear emotions was much higher than the other six emotions. On

investigation, I see this as a limit or bias in the algorithm, and subsequently removed the

count of fear labels from further analysis.

For analysis, I grouped the 3 negative emotions (anger, disgust, and sadness), and note that

the number of negative emotions in condition A is considerably greater than in condition B.

Correspondingly, the number of predicted positive emotions (happiness) results for condition

A is less than that for condition B. Similarly, surprise (either a negative or positive emotion

in different contexts (Vrtika et al., 2014)) was higher in condition A than in condition B.

Finally, the predicted results of the neutral results for condition A are less than those for

condition B (see Figure 4.14 for a summary of these aggregated results).
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Fig. 4.14 The four emotion categories grouped by Condition A and Condition B

As a case study, I also applied the Facial Expression Recognition (FER) open-source

framework to the preprocessed videos for exploratory purposes. The FER framework is built

with MTCNN for facial recognition (Zhang et al., 2016) and an emotion classifier (Arriaga

et al., 2017) that has been trained on the FER-2013 emotion dataset (Goodfellow et al., 2013).

To illustrate, I plotted the seven changes in emotions following the sequence of conditions

for the three tasks (see Figure 4.15). It shows that emotion “happy” dominated most of the

time in the two instances of condition B, with scores of “happy” approaching 1. Whereas

the proportion of “happy” decreased, while each of “sad”, “fear”, “surprise”, and “neutral”

became dominant in periods of condition A.

Turning to eye gaze, I again applied a state-of-the-art eye gaze estimator, trained on

the ETH-XGaze dataset (Zhang et al., 2020), to predict pitch and yaw angles for each

preprocessed frame. I summed the absolute two angles as a new feature for statistical

analysis as a human has different angles of direction corresponding to positive or negative

values of pitch and yaw, leading to the sum of values being 0. An independent-samples

t-test was conducted to compare the angles of pitch and yaw for eye gaze under the two
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Fig. 4.15 The emotional changes for one participant during the three task with the two
conditions

experimental conditions. A significant difference was found in the angles of pitch and yaw

for eye gaze (M = 0.44,SD = 0.15 for condition A, M = 0.46,SD = 0.15 and condition B),

t(2587) =−2.27,ρ − value < 0.05).

To illustrate the overall trend, Figure 4.16 shows the fluctuations of the pitch angle and

the yaw angle with the two time periods labelled condition B and the one time period of

condition A for an example user. I can see that the average area of two angles in condition A

is greater than the average area of two angles in each of the two conditions B instances.
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Fig. 4.16 Changes of one person’s pitch and yaw angles of eye-gazing in timeline

For head-pose estimation, the model that I applied was designed using CNNs, dropout,

and adaptive gradient methods (Patacchiola and Cangelosi, 2017), and trained on three

popular datasets (i.e, the Prima head-pose dataset, the Annotated Facial Landmarks in the

Wild (AFLW) dataset, and the Annotated face in the Wild (AFW) dataset) (Gourier et al.,

2004; Köstinger et al., 2011; Zhu and Ramanan, 2012). The estimated metrics were the

three angles of pitch, yaw and roll. Again, I calculated an aggregate value of the three

absolute angles as a new variable. The result of an independent-samples t-test showed that

there was, however, no significant difference in the angles of roll, pitch and yaw for head

pose (M = 24.52,SD = 11.72 for Condition A, M = 24.55,SD = 11.35 for Condition B),

t(5713) =−0.08,ρ − value = 0.94).

4.3.4 Audio Data Analysis

The phenomenon of silence during conversations has been analysed previously in pragmatic

studies (Ohshima et al., 2015). There are two types of silence for the specific state of

the interlocutor: intentional silence in which the interlocutor refuses to respond to the

speakers; and unintentional silence when the interlocutor psychologically cannot respond to
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the speakers (Kurzon, 1998; Ohshima et al., 2015). This can then be taken as a potential proxy

or indicator of confusion. Given this, I calculated the silence duration time for each audio

stream labelled with the specific condition. An independent-samples t-test was then conducted

to compare the silence duration time between the two conditions. There was a significant

difference between the silence duration time for the two conditions (M = 36.22,SD = 13.52

for condition A, M = 25.68,SD = 10.82 for condition B), t(83) = 3.94,ρ − value < 0.05).

Fig. 4.17 Plotted silence duration time grouped by Condition A and Condition B

To illustrate, I plotted the silence duration time for the two conditions (see Figure 4.17).

It shows that the silence duration values of condition A form a more discrete distribution

than those of condition B. Meanwhile, for an individual observation, Figure 4.18 presents

two changes in silence duration time for two participants in the three tasks performed with

different sequences of conditions (i.e., the blue chart is the “BAB” conditions, while the other

is the “ABA” conditions). Here, I can see that the silence duration time for condition A is

obviously longer than for each of the two condition B instances, either within a participant or

between the two participants.
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Fig. 4.18 Changes of silence duration time for an individual (BAB) and another individual
(ABA) with different sequences of conditions

4.3.5 Subjective Analysis

I analysed the post-study questionnaire scores against the two independent groups divided

by two controlled conditions for the stimuli. Two statistical questions were investigated:

The first question investigated the relationship between the three task-centric confusion

sub-question scores and the two conditions (A and B). The second question investigated

whether there was a significant relationship between the average self-reported confusion

scores for the three tasks and the two conditions.

An independent-samples t-test was conducted for each question. The results of the first

question with the three sub-questions were: (1) There was an almost significant difference

(trend) between the confusion score for task 3 (a Maths question) (M = 2.27,SD = 0.99 for

condition A, M = 2.31,SD = 1.28 for condition B), t(24) = 2.00,ρ − value = 0.056). (2)

There was no significant difference in the score of confusion for task 1 (a logic problem)

(M = 2.71,SD = 1.20 for Condition A, M = 2.50,SD = 1.61 for Condition B), t(24) =

0,ρ − value = 1.00). And (3) there was no significant difference in the confusion score
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for task 2 (a word problem) (M = 2.46,SD = 1.30 for Condition A, M = 2.47,SD = 1.36

for Condition B), t(24) = −1.047,ρ − value = 0.31). The result of the second question

showed that there was no significant difference in the average of confusion scores for

the three tasks performed and the two conditions (M = 2.26,SD = 0.99 for condition A,

M = 2.31,SD = 1.28 for condition B), t(50) =−0.12,ρ − value = 0.90).

4.3.6 Discussion

Reflecting on the results presented in the previous section, I can identify the following six

observations of note:

• Participants were not necessarily aware of being confused when presented with the

confusion stimuli.

• Participant’s emotions were more negative and more surprised in confusion conditions

than in non-confusion condition states.

• Participant’s ranges of eye gaze angles were greater in confusion than in non-confusion

states.

• Generally, the silence duration time was longer in confusion than in non-confusion

states.

• There was no strong correlation of their ranges of the angle of the head pose with

confusion or non-confusion states.

Compared to existing human-like avatar interaction work (Study 4.2), in this HRI study,

although the Pepper robot lacks anthropomorphic facial expression, the Pepper robot has

advanced body language and appropriate automatic animated speech. Meanwhile, the

quality of the data is guaranteed as I controlled the variables in the setup of the experiment

environment. In a 3-minute interview, most participants are surprised that the Pepper robot
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Table 4.5 The Result of emotion estimation grouped by two conditions in HAI and HRI

Modality Condition Anger Disgust Fear Sadness Happiness Surprise Neutral Overall

HAI
A 262 282 136 677 702 65 1799 3923
B 77 165 57 480 858 95 1502 3234

HRI
A 40 62 1511 59 91 67 92 1922
B 19 46 1503 57 151 48 102 1926

has high-tech social interaction skills and friendly behaviours, which is better than the

feedback from our earlier study.

In the case of emotions detected, in the HAI experiment, the estimations in Condition

A corresponding to the four classes of negative emotions (anger, disgust, fear, and sadness)

are stronger than in the case for these classes in Condition B. In contrast, the number of

predicted results for the two positive emotions (happiness and surprise) in Condition A was

less than in Condition B. In the HRI experiment, I can see that the results of the five main

predicted emotions are slightly similar to the HAI experiments, except for the two special

surprise and neutral emotions (see Table 4.5).

However, some limitations must be mentioned. First, 25 out of 29 participants had a

technical background in computer science. Thus, the sample size and range of background

may influence my interaction results compared with real-world HRI work. Second, given the

estimations for facial emotion estimation, the pre-trained feature algorithms were not possible

to apply reliably for the HRI studies. Third, most participants’ voices were not loud enough

(i.e., the amplitude of those participants’ voices was far lower than the amplitude of the

Pepper robot voice). Figure 4.19 shows the amplitude difference between a participant and

the Pepper robot for an audio conversation. The small bits labelled the participant was when

the participant is talking, and the big bits correspond to when the robot is talking. Therefore,

it is very challenging to separate the two speakers’ speeches in the same video file for only

analysing participants’ speech data. Third, there was no control of conversation boundaries

to reflect the different confusion states (i.e., positive confusion or negative confusion) in

these 5-minute confusion stimuli conversations.
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Fig. 4.19 A amplitude of one audio conversation between a participant and the Pepper robot

Despite these limitations, this study illustrated that even when users are not aware of

being in a confused state, they present different interaction behaviours which may in principle

be detected by automated systems such as social robots. This has the potential to increase

the social task-oriented capabilities of dialogue-equipped robots in the medium to long term.

This is my first study on modelling confusion states in a situated HRI task-oriented dialogue

setting. Nevertheless, I see it as a firm foundation for further situated dialogue investigation

for HRI, and in particular, where I focus on enhancing engagement through preemptive

anticipation of disengagements.

This work is currently being prepared for submission to 18th Annual ACM/IEEE Interna-

tional Conference on Human Robot Interaction (HRI) 2023.

4.4 Comparing Two Embodied Interactions

Given the two studies just presented, it allows us to begin to answer the following two

sub-questions for RQ4: (1) To what extent can we rely on human-avatar interaction (HAI)

studies as a substitute for human-robot interaction (HRI) data collection efforts? (2) Does the

choice of embodiment type (HAI vs. HRI) have a significant effect on users’ perceptions and
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mental state with respect to my central challenge of confusion detection? In the following, I

present some specific analyses of the two studies to help to answer these questions.

4.4.1 Data Analysis

The HRI study (Section 4.3) analysis mirrors the approach taken with the earlier HAI study

(Section 4.2) that includes emotion detection, eye gaze estimation, and head pose estimation

for both facial frame data. Generally, I found that there were minimal data collection issues

in the HRI study compared to the HAI study, since the researcher controlled all variables in

the HRI setup.

Considering gaze estimation, through an independent-samples t-test of results from the

HAI and HRI studies, a significant difference was found in the sum of absolute values of pitch

and yaw across the two conditions for HAI and HRI experiments, respectively. In the case of

head pose, the independent-samples t-test result shows a significant relationship between the

sum of absolute values of the three angles (pitch, yaw, and roll) and two conditions for the

HAI study; while there is no significant difference between the sum of absolute values of

these three angles and two conditions for the HRI study.

Regarding the subjective self-reporting scores for the 48 participants, I analysed the self-

estimated confusion scores of each participant and the user attitude towards the embodiment

option (avatar vs. social robot). For both HAI and HRI options, a significant difference

was found between confusing and non-confusing tasks only in the case of task 3 (maths

problems). There was no significant correlation in the confusion scores for task 1 (logic

problems) and task 2 (word problems) for conditions A and B in the HAI or HRI studies.

However, what is more interesting is the analysis of the user experience questions: this

included an examination of whether there is a significant difference between the average

scores of negative feedback of the user’s experiences in the two studies; an examination of

whether there is a significant relationship between the average scores of positive feedback
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of the users’ experiences in the two studies; and finally, an examination of whether there is

a statistically significant relationship between the score of participants wanting to abandon

these conversations and these two studies.

I also found that there was a significant difference between the average negative feedback

scores in the two studies (M = 2.77,SD = 0.85 avatar, M = 1.91,SD = 0.62 robot), t(88) =

5.5547,ρ − value < 0.05. Regarding the second question, there was a significant difference

between the average positive feedback scores of user experiences and the two modalities

(M = 3.33,SD = 0.92 avatar, M = 4.09,SD = 0.54 robot), t(88) =−4.72, ρ −value < 0.05.

Lastly, the result indicated that there was also a significant difference between the scores for

which participants want to abandon the conversations with the two studies (M = 3.21,SD =

1.34 avatar, M = 1.34,SD = 0.62 robot), t(88) = 8.35, ρ − value < 0.05.

4.4.2 Discussion

Based on these results, I observed that when participants are confused, the changes in their

emotions and gaze movements after stimuli from the different conditions of the HAI study

are similar to those of the HRI study, but that the changes in the range of head pose angles

with different stimuli from the different conditions of the HAI study are different from those

of the HRI study. Furthermore, participants prefer to engage in interaction with the robot

platform rather than with the avatar in this research study and are more willing to continue to

interact with the robot platform than with the avatar in this research study.

While these basic observations can be made, it is very notable that, while I attempted

to unify my studies across embodiment types, it is hard in practise to achieve this. At a

very technical level, my human-avatar studies were less controlled as users could participate

from home – unlike in the case of my human-robot studies. Generally, there was a very low

abandonment rate for the HRI study, and I can also ensure the same quality of the dataset

that I collected.
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Meanwhile, it should be mentioned that during the 3-Minute post-task interview, in the

HAI experiment, the expectation of interaction from many participants was found to be much

higher relative to the actual capabilities of the avatar. However, from the feedback of the

participants in the HRI experiments, they felt fresh and curious talking to the robot, so most

of them enjoyed and engaged in this HRI experiment. Also, they were surprised that the

Pepper robot has high-tech social interaction skills when the Pepper robot vividly interacts

with them.

This work was presented in the following paper at the MMAI2022 Workshop 2022:

• Li, N. and Ross, R. (2022) Transferring studies across embodiments: A case study in

confusion detection in: 1st workshop (MMAI2022) that is a part of the conference on

Hybrid Human-Artificial Intelligence 2022, Amsterdam, Netherlands



Chapter 5

Planned Work

The main objective of the next phase of my research is to iterate and extend my HRI studies

to further investigate my work in situated conversational interaction. I begin by illustrating

the planning before outlining work on potential dialogue policy modelling.

5.1 HRI Study 2: Detecting Interlocutor Confusion in Situ-

ated HRI

The first proposed study is an iteration of HRI Study 1 (Section 4.3). In the last HRI study,

there were still some areas for improvement and increased control, for example, improving

the methods of multimodal data collection, and enriching the interactive information on the

Pepper robot, and so forth. In the second proposed study, I plan to focus on designing and

launching new dialogues for investigating different states of confusion stimuli.
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5.1.1 HRI Study 2.1: Iteration Study: Quality Improvement for Confu-

sion Detection in Situated HRI

In HRI Study 1 (Section 4.3), some limitations were mentioned in terms of experiment design

(e.g. low-quality recordings for participants’ voices) and no significant differences result

between conditions for certain measurements (e.g. user survey and head post estimation).

Therefore, the goal of this iteration study, this study is to iterate HRI Study 1 in order to

improve the quality of experiment design, data collection and dialogue design.

Study Design

As the HRI dialogue design for my study is a task-oriented one-to-one conversation, each

participant in the new study will be assigned three tasks (i.e., word problems, logic problems,

and maths questions) that are the same as in the earlier study, but in order to enhance the

interactivity between a participant and the Pepper robot, one more task will be introduced

(see Figure 5.1). This task will be centred around a tabletop pick-and-place task. A table

will be set up between a participant and Pepper, Pepper will be placed behind the experiment

table, and the participant stands at the front of the table. On the table, there will be three

coloured square boxes with numbers (i.e., the red box is number 1, the blue box is number 2,

and the yellow box is number 3) as well as four coloured blocks at the front of the three boxes

(i.e., two red and the green cubic blocks on the left, a blue cone block in the middle, and a

yellow cylinder block on the right) toward to the participant’s side. Following the Pepper

robot’s oral request, the participant should look for a particular block to put on a particular

square box. One webcam will be used by the researcher to obverse the participant’s operation

result in each time. Each pick-and-place task has one condition (condition A or condition B)

to trigger the participant’s confusion or non-confusion. Therefore, each participant in this
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study will have four tasks in total to complete, and the sequence of conditions in the four

tasks will be designed as either condition-ABAB or condition-BABA.

Fig. 5.1 Pick-and-place task setup

In order to improve control and reduce the chance of “leakage” across tasks, before

the next task commences, the participant will be given a 1-minute break to reset their

emotion from the previous interaction. Moreover, in the first 30 seconds of the break

time, the participant will be required to rate their confusion scores in the post-study survey

immediately. This should also help to ensure that users self report more accurately on their

confusion scores, as in the earlier design, there was much long of a gap between stimuli and

the reporting phase. Furthermore, from the early HRI study, I noticed it was very difficult to

separate the two speakers’ speech in the same video file for analysis of emotion estimation in

speech. In the experiment room, the third webcam with a high-quality microphone will thus

be set up on the left (see Figure 5.2) in this study.

Comparing to the avatar behaviours in the HAI study, the avatar has human-like facial

expressions, but the Pepper robot does not pretend to be a human as it is without facial
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Fig. 5.2 Improved Experiment setup

expressions. To provide more multimodal output for the Pepper robot in order to improve

interaction (Applewhite et al., 2021; Fadhil et al., 2018; Jam et al., 2021), I will enable

five facial emojis with five typical emotions (satisfied, cheerful, doubtful, surprised, and

frustrated) to show on the Pepper robot screen during interactions with participants (see

Figure 5.3). During the interaction between the Pepper robot and the participant, One cartoon

emoji will be shown on the Pepper’s tablet to provide an accurate response or feedback for

each time to the participant’s response.

Fig. 5.3 Facial emojis with different emotions
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5.1.2 HRI Study 2.2: Different States of Confusion Detection in Situated

HRI

Although the study just introduced does aim to refine my experimental setup to allow testing

of a number of RQ from Chapter 3, it does not in itself say anything about confusion except

that there exist confused and non-confused states. Furthermore, it can also be seen that

some papers in Chapter 2 only mentioned that confusion can, in fact, be a phenomenon with

multiple levels, and in some cases even having four classes from very high to very low. In

particular, Lodge et al. (2018) proposed two states of confusion i.e., productive confusion and

unproductive confusion through the ZOC and ZOSOC (Lodge et al., 2018). It is reasonable

to expect that the interpretation of the specific state of confusion based on an interlocutor’s

behaviours can potentially improve engagement in conversational HRI. However, these works

do not have any constraints on the level of confusion belonging to either productive confusion

or unproductive confusion, and also do not have definitions for the two states of confusion.

Therefore, as a starting point for teasing these issues apart, we can define the two terms of

productive confusion and unproductive confusion as follows:

• Productive confusion is the first stage of confusion: An impasse in the flow of interac-

tion is generated as a disequilibrium state; the human has meta-cognitive awareness

of the confusion and will be engaged in solving this disequilibrium effectively.

• Unproductive confusion is the second stage of confusion: the disequilibrium state

of the first stage of confusion is persistent and the impasse still cannot be solved

during the interaction; then the interlocutor may become disengaged and may cease

interacting with others and may enter negative emotions states (for example, frustration

and boredom).

In addition, the key difference between productive and unproductive confusion is that

some attempts to overcome the confusion states failed. The action taken to overcome the
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confusion state might be interaction, but it could also be taking time to reflect on the problem,

looking for additional information or help etc..

Study Design

This study is based around a semi-spontaneous one-to-one conversation between the Pepper

robot and a user, based on my previous two HRI studies (HRI study 1 and further iterating

study 2.2), I will explore different confusion states in this HRI study, that is, state A1 is

intended to produce productive confusion, while state A1 is intended to produce unproductive

confusion, while state B is non-confusion).

Table 5.1 Example of sequences of confusion stimuli in participants

Participant 1
Dialogues Confusion Cause (CC) States

1st CC1* State B & State A1
2nd CC2* State B & State A1
3rd CC3* State B & State A1
4th CC4* State B & State A1

Participant 2
Dialogues Confusion Cause (CC) States

1st CC1* State B & State A2
2nd CC2* State B & State A2
3rd CC3* State B & State A2
4th CC4* State B & State A2

* CC1: Complex information * CC2: Insufficient information
* CC3: Contradictory Information * CC4: False feedback

Unlike the previous studies, this study will focus on one task only (i.e., a word problem);

therefore, each participant will have four word problems that are designed, and each par-

ticipant will be stimulated into two states (i.e., non-confusion and productive confusion, or

non-confusion and unproductive confusion) (see Table 5.1 ) by the four confusion causes.

Figure 5.2 shows the mapping of the three confusion states with the four partitions of confu-

sion causes, that is, complex information, insufficient information, contradictory information,
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Table 5.2 A matrix of confusion causes and states of confusion for each task

Productive Confu-
sion (State A1)

Unproductive con-
fusion (State A2)

Non-confusion (State B)

Complex information Simple information
Insufficient information Sufficient information

Contradictory Information Consistent Information
False feedback* Correct-positive feedback

* False feedback includes false feedback and correct-negative feedback

and false feedback; Simple information, sufficient information, consistent information and

correct-positive feedback are used for the non-confusion state.

Two post-questionnaires will be required for participants after interacting with the Pepper

robot; the first questionnaire will be an 11 part-post interaction survey with a 5-level Likert

scale questions; while the second questionnaire will be based on the standard survey “Your

Thoughts About the Research” (Rubin, 2016), where there are four questions to measure the

potential influence of demand behaviours in this study’s situations (see Table B.4).

5.2 Mitigating User Confusion in Situated Human-Robot

Interaction

Mitigating user confusion by addressing the last two sub-research questions (i.e., RQ5

and RQ6), is a final goal for my PhD study. As I have collected the HRI data from those

confusion detection experiments, applying generic feature models are the first step for

confusion detection classification, and then modelling this classification is the second study

against validating and evaluating the confusion detection classification as the final study. I

begin by introducing the generic feature models.
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5.2.1 Generic Feature Models

I have applied the pre-trained feature algorithms to analyse each unimodal data, e.g., facial

emotion estimation, head pose estimation, eye gazing estimation, etc.. There are a few

limitations that I noticed: (a) the number of fear emotion has been detected is much more

than other numbers of emotions in Study 4.3; and (b) There is no significant difference

between the angles of pitch, yaw and roll of head pose and the two conditions in Study 4.3,

etc.. Obviously, these existing algorithms are not satisfied for HRI study, specific confusion

detection in HRI, it is necessary to retrain feature extraction models on each unimodal data.

The unimodal data are from our multimodal HRI dataset and these public feature dataset. I

plan to use self-supervised learning’s pre-training to learn representations in the presence of

variations and features on visual data for facial expression, eye gaze, and head pose from

visual data (Spurr et al., 2021; Roy and Etemad, 2021; Mahmud et al., 2021), and on audio

data for emotion speech recognition (Revathi et al., 2022).

5.2.2 Confusion Detection Classification

The confusion detection classifier is a significant contribution that should detect three states

of confusion in real-time human-robot interaction. Currently, most researchers have trained

confusion level detection models with different types of classifiers (e.g., decision tree, SVM,

KNN, a random forest algorithm, logistic regression, a feed-forward neural network, recurrent

neural networks and long short-term memory (LSTM)-based recurrent neural network (Hori

et al., 2016; Kavita Kelkar, 2021; Benlamine and Frasson, 2021)). Training data that they

used was from online learning and driving systems without using a multimodal dataset.

Despite the fact that the confusion level detection model that they trained with had four levels

(i.e., very low, low, medium, high, very high), they did not analyse and constrain which levels

are productive confusion, unproductive confusion or even non-confusion.
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This piece of work is intended to model confusion detection on the multimodal dataset

(including audio data and visual data) from HRI Study 1, two future studies (i.e., HRI Study

2.1 (Section 5.1.1) and HRI Study 2.2 (Section 5.1.2). Deep learning-based late fusion is

one modelling strategy that may be of interest (Pandeya and Lee, 2021). All frame data and

audio data will be labelled with confusion states. Two training phases will be approached: (1)

feature extraction from mulitmodal data in the HRI studies; and (2) learning the integrative

feature representation (see Section 5.2.1) to make the final prediction by integrating to

synchronise the feature vectors and concatenate these synchronised unimodal feature vectors

to build a confusion detection classification (Lee et al., 2019).

5.2.3 Validated Confusion Mitigation in WoZ Study

To validate the final performance of confusion detection and explore the opportunities for

mitigation, the situated conversations between the Pepper robot and a participant will be

further explored. The study design will be based on two dialogues for two states of confusion

stimulus that are either non-confusion and productive confusion, or non-confusion and

unproductive confusion using the four confusion causes. It is worth mentioning that a

key contribution of this work will be that different strategies of confusion mitigation will

be designed to mitigate the confusion from each confusion cause, and I will apply these

strategies to the Pepper dialogues and behaviours.

Figure 5.4 depicts the WoZ experiment laboratory setup. In the wizard room, I plan to

equip a state-of-the-art device such as the NVIDIA Jetson TX2 device (Greco et al., 2019b;

Amert et al., 2017) to receive images from the camera on the robot and the webcam. The

confusion detection classifier will be integrated into the NVIDIA Jetson TX2 device as an

example, using an HTTP protocol to monitor the confusion detection score in real-time.

The researcher also controls the Pepper robot by using the WoZ4U interface which is an

open-source WoZ interface for the wizard to control the Pepper movements, animated speech,
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Fig. 5.4 Validation confusion mitigation in WoZ experiment

gestures etc. (Rietz et al., 2021); Meanwhile, the researcher will monitor the experiment

room. In the experiment room, three cameras are setup: Camera 1 is behind the Pepper robot

and aimed toward the participant’s face to collect the participant’s facial expression; Camera

2 with a microphone is left next to the Pepper robot for the participant’s speech and gesture

collection; Camera 3 is for the researcher to monitor the interaction between the Pepper and

the participant. The video data from Camera 1 and Camera 2 will be transferred to predict the

confusion states online with pre-trained confusion detection classifier. Therefore, according

to the confusion score and a specific confusion cause for one confusion stimuli, the researcher

can adjust the Pepper robot’s behaviours including body language and dialogues (more detail

later) to validate whether the participant’s confusion will be mitigated by the different states

of confusion stimuli through observing the fluctuations of the confusion score. Finally, I will

also apply the user survey and user feedback to evaluate the confusion mitigation approaches.

In addition, a linguistic design of dialogue policies is will be developed to allow me to

design a dialogue framework for alleviating interlocutor confusion. I propose seven dialogue

act types with a detailed general dialogue policy. Moreover, two sub-policies for the different
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confusion states mitigation are designed respectively. Therefore, the seven dialogue act types

are defined with relevance to the mitigation as follows:

1. Restatement: The agent repeats the information or question.

2. Feedback request: The agent asks for the participant’s feedback and response.

3. Information extension: The agent provides more information to expand on the

information or question already raised.

4. Information supplement: The agent provides comprehensive information or questions

in different ways for participants to quickly understand easily.

5. Response correction: The agent provides the appropriate response in order to avoid

confusion states on the participant.

6. Confirmation: The agent admits that the information or question has one or more

issues leading to the participant being confused.

7. Subject change: The agent changes straightforward questions or other topics.

Following these dialogue act types, a general dialogue policy is designed based on a

number of communicative rules (see Table 5.3). Figure 5.5 illustrates the operating dialogue

policy as a control flow process, with each step corresponding to one of the detailed elements

of the outline rules in Table 1. In this control flow policy, each step makes it possible to help

users who are confused transfer to a non-confusion state. If after any one step, the user’s

confusion still cannot be mitigated, then the agent will move to the next step.

Based on this general framework policy, I am developing a set of sub-policies to apply

in the specific cases of productive and unproductive confusion in the case of the four

confusion induction types mentioned earlier. Table 5.4 outlines the first of these dialogue

sub-policies that includes the dialogue act types and corresponding communication rules
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Table 5.3 General dialogue policy for mitigating productive confusion

General dialogue policy of confusion mitigation
Dialogue Acts Communication Rules
Restatement Repeat the information/question either at the same speed or more slowly.
Feedback request Option 1: Ask the participant whether they can follow what the agent has said.

Option 2: Ask the participant whether they want to continue to answer this question or
complete the task with the agent’s help.

Confirmation Acknowledge that the information/question is difficult and that this has likely led to the
participant being confused.

Information exten-
sion

Provide more explanations or information to fix the issued questions/information.

Information supple-
ment

Provide the full information/question in different ways to easily understand without confusion.

Response correction Provide a positive and correct response to remove the participant’s source of confusion.
Subject change Option 1: Raise a simple question that the participant can answer without confusion.

Option 2: Raise another interesting topic arising the participant’s engagement.

to reduce productive confusion according to the induction of a specific confusion method.

The second sub-policy (shown in Table 5.5) addresses the case where the participant has

reached an unproductive confusion state, where they may be frustrated or even want to drop

the conversation. Therefore, this sub-policy helps the participant reengages in interacting

with the agent from their unproductive confusion state.

Finally, I am building on this sketch to implement a physical test for those policies based

on the WoZ experiment for validation confusion mitigation. I expect that this work can drive

a true formalisation and evaluation of these policies. This proposal was presented in the

following short paper at SemDial conference 2022:

• Li, N. and Ross, R. (2022) Dialogue Policies for Confusion Mitigation in Situated

HRI in: 26th Workshop on the Semantics and Pragmatics of Dialogue (SemDial 2022)

Technological University Dublin, Ireland



5.2 Mitigating User Confusion in Situated Human-Robot Interaction 83

Table 5.4 Dialogue policy for mitigating productive confusion

Confusion Inductions Policy of confusion mitigation
Dialogue Acts Communicative Detail

Complex infor*
Restatement The agent will reintroduce the complex information step by step.
Feedback request The agent will ask whether the participant is clear on the issue or

question.
Information supple-
ment

The more and extra information will be told to the participant.

Insufficient infor Information extension The agent will provide the lost part of the question/information.
Information supple-
ment

The more and extra information will be told to the participant.

Contradictory infor

Response correction The agent will show positive feedback.
Confirmation The agent will confirm the question/information is contradicted.
Information extension The agent will correct the question/information to consistent informa-

tion.
Information supple-
ment

The more and extra information will be told to the participant.

False Feedback Response correction The agent will show positive and correct response or feedback.
Subject change The agent will talk about a simple question/information with positive

feedback.
* Infor: Information

Table 5.5 Dialogue policy to mitigate unproductive confusion

Confusion Inductions Policy of confusion mitigation
Dialogue Acts Communicative Detail

Complex infor*
Insufficient infor
Contradictory infor
False Feedback

Confirmation With a positive response, the agent will confirm that the ques-
tion/information is difficult which has led to the participant being con-
fused.

Feedback request The agent will ask whether participants want to continue to answer this
question or to continue the task with the agent’s help.

Subject change The agent will ask straightforward questions to avoid confusion states.
The agent will talk about another interesting topic e.g., favourite food,
movie etc.

* Infor: Information
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Fig. 5.5 General policy process of confusion mitigation



Chapter 6

Conclusion

This report illustrated the three studies conducted to date, and the studies planned to further

explore the research topic of confusion detection in conversational HRI. First, I defined what

confusion is in situated dialogue HRI as a guideline for designing the first two HAI and HRI

studies based on four confusion causes. Meanwhile, feature analysis algorithms were used

to explore different nonverbal and verbal human behaviours in confusion or non-confusion

states. Next, a contrastive analysis of the reactions of users across the avatar and the physical

robot embodiment types was conducted to investigate whether it remains feasible to leverage

human-avatar data for human-robot interaction when the focus of these early two studies is

on communication rather than, for example, physical cooperation.

As for the future study planning, two main further studies have been designed: To continue

exploring confusion in HRI against limitations that were identified from the work-done-to-

date, an improved confusion detection study based on HRI Study 1 was outlined, a new

experimental study for detection of different states of confusion in HRI was also proposed.

Another piece of future work is modelling and validating confusion detection classification

along with generic feature algorithms to evaluate whether my study can ultimately improve

the conversational interaction between a human and a robot.
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The expected contributions of this research to the HRI community as a whole are as

follows:

• A definition of confusion and two sub-definitions of states of confusion (i.e., productive

confusion and unproductive confusion).

• A Real-Time Online Chat platform is an open-source WoZ interface that integrates

an avatar and provides a graphical user interface (GUI) for the wizard to control the

avatar’s interactive behaviours.

• Designs of interactive experimental scripts for confusion stimuli in HAI and HRI

studies, respectively.

• Open-source interactive and animated speech code on the Pepper robot for stimuli

confusion and non-confusion.

• Methods of multimodal data collection for human confusion analysis in two embodied

modalities.

• Multimodal Datasets in HAI and HRI studies.

• A reference for comparison of two embodiments in the approach of confusion detection

study.

• Unimodal data analysis for generic feature models.

• Mulitmodal deep learning model for confusion states detection.

• Application of confusion states mitigation in real-time HRI.

• Dialogue policies for confusion mitigation in conversational HRI.

The achievements of this research to date, with my supervisor, have one long paper and

two round-table workshop position papers, which have been introduced in previous chapters.
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In summary, the long paper was presented in an oral presentation format at the SemDial2021

venue, a short paper was presented orally at the MMAI2022 Workshop, and a short paper

was posted at the SemDial2022 venue.

• Li, N., Kelleher, J.D. and Ross, R. (2021) Detecting interlocutor confusion in situ-

ated human-avatar dialogue: A pilot study in: 25th Workshop on the Semantics and

Pragmatics of Dialogue (SemDial 2021) University of Potsdam, Germany

• Li, N. and Ross, R. (2022) Transferring studies across embodiments: A case study in

confusion detection in: 1st workshop (MMAI2022) that is a part of the conference on

Hybrid Human-Artificial Intelligence 2022, Amsterdam, Netherlands

• Li, N. and Ross, R. (2022) Dialogue Policies for Confusion Mitigation in Situated

HRI in: 26th Workshop on the Semantics and Pragmatics of Dialogue (SemDial 2022)

Technological University Dublin, Ireland

Finally, Figure 6.1 shows my study planning of this work including the future works, the

submission planning of the paper, and the final Ph.D. thesis planning.
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Fig. 6.1 A study planing until to the year of 2023
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Appendix A

Dialogue Design

A.1 Dialogue scripts for confusion A and confusion B stim-

uli

This table shows detail dialogues scripts for the agent (Avatar / Pepper) for HAI Study and

HRI Study 1.
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Table A.1 Conversation scripts for confusion stimuli

Tasks* Condition A Condition B
1 A*: Suppose Anna’s mother admires

Anna, Anna admires her mother, everyone
admires her mother, so everyone admires
Anna, right?
B*: <user-response>
A: Does it make sense Anna’s friend ad-
mires Anna but her mother, doesn’t it?
B: <user-response>
A: Thank you for your answer.

A: Suppose everyone over the age of 30
is a liar, William is a liar, so the question
is, is William over 30?
B: <user-response>
A: Do you agree that not everyone under
30 is not a liar?
B: <user-response>
A: Great, you are correct.

2 A: There are 66 people in the playground
including 28 girls, boys and teachers.
How many teachers were there in total?
B: <user-response>
A: Please try again.
B: <user-response>
A: Thank you for your answer.

A: There are 5 groups of 4 students, how
many students are there in the class?
B: <user-response>
A: You are correct.
A: Each group has 2 pairs of scissors, how
many pairs of scissors are there in total?
B: <user-response>
A: Well done, you are so smart.

3 A: If x = 4 and x + b + log(1) = 10, the
question is, is b = 6 or b = 12?
B: <user-response>
A: Please try again.
B: <user-response>
A: Sorry, maybe this question is too diffi-
cult.

A: If x = 4 and x+ b = 10, the question
is, is b equal 12?
B: <user-response>
A: Great, you are correct.

* A: Agent; B: Participant
* Task 1: logic problem, Task 2: word problem, Task 3: math question



Appendix B

User survey

B.1 A user survey for HAI Study (see Table B.1)

Table B.1 User Survey for HAI Study

No. Questions
1 Did you enjoy talking to Julia overall?
2 Was the conversation with Julia fluent?
3 Was the conversation with Julia easy?
4 Was the conversation with Julia frustrating?
5 Was the conversation with Julia boring?
6 Did you feel confused most of the time talking with Julia?
7 Did you feel confused most of the time when you answered logical ques-

tions to Julia?
8 Did you feel confused most of the time when you answered word problems

to Julia (Including Julia’s responses may make you confused)?
9 Did you feel confused most of the time when you answered Mathematics

questions to Julia?
10 Did you want to drop this conversation with Julia when you were confused

continually?

B.1.1 User Surveys for HRI Studies
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Table B.2 User Survey for HRI Study 1

No. Questions
1 Did you enjoy talking to Pepper overall?
2 Was the conversation with Pepper fluent?
3 Was the conversation with Pepper easy?
4 Was the conversation with Pepper frustrating?
5 Was the conversation with Pepper boring?
6 Did you feel confused most of the time talking with Pepper?
7 Did you feel confused when you answered logical questions to Pepper?
8 Did you feel confused when you answered word problems to Pepper

(Including Pepper’s responses may make you confused)?
9 Did you feel confused when you answered Mathematics questions to

Pepper?
10 Did you want to give up this conversation with Pepper?

Table B.3 User Survey for HRI Study 2.2

No. Questions
1 Did you enjoy interacting to Pepper overall?
2 Was the conversation with Pepper fluent?
3 Was the conversation with Pepper easy to understand?
4 Was the conversation with Pepper boring?
5 Did you feel confused most of the time talking with Pepper?
6 Did you feel confused when you talked about the logic problem to Pepper?
7 Did you feel confused when you talked about the word problem (Including

Pepper’s responses may make you confused)?
8 Did your confusion mitigate finally talking about the word problem (In-

cluding Pepper’s responses)?
9 Were you still confused at last talking about the logic problem (Including

Pepper’s responses).
10 Were you frustrated this conversation with the Pepper at last?
11 Did you want to give up this conversation with the Pepper at last?

Table B.4 Your Thoughts About the Research for HRI Study 2

No. Questions
1 I knew what the researchers were investigating in this research.
2 I wasn’t sure what the researchers were trying to demonstrate in this

research.
3 I had a good idea about what the hypotheses were in this research.
4 I was unclear about exactly what the researchers were aiming to prove in

this research.



Appendix C

Applying Deep Reinforcement Learning

in HCI and HRI

A pre-trained model in deep reinforcement learning (RL) has been used for automatic speech

recognition in HCI. Rajapakshe et al. (2019) show that a pre-training in Deep RL can

reduce the training time of speech classification and improve speech recognition performance.

The deep neural network is a speech command recognition model (see Figure C.1) that

is integrated into Deep RL as a deep neural network in the agent module (see Figure

C.2. Convolutional Neural Networks (CNNs), LSTM RNNs combined into the speech

command recognition model as CNNs can diminish frequency variations effectively as the

top layer, and LSTM RNNs are strong to learn the temporal structure of a feature map. To

approve how beneficial the pre-trained model is, they compared performance and standard

deviation scores (see Figure C.3 and Figure C.4) between the “with pre-training” model

and the “without pre-training” model. The performance scores with the pre-trained model

are higher than the without pre-training, which means the training time is decreased by

using pre-training. Meanwhile, the scores of standard deviation decreased dramatically with

pre-training compared without pre-training, which means the pre-training accelerated the

training processing (see Figure C.4). Similarly, Romeo et al. (2018) also involves the deep
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Fig. C.1 A Speech command recognition model architecture (Rajapakshe et al., 2019)

Q-network framework using the Q-Learning algorithm, which is part of an algorithm in Deep

RL and CNN to predict the probability of actions (waiting, calling for attention, and stating

the interaction) in HRI.
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Fig. C.2 A Deep RL Framework
(Rajapakshe et al., 2020)

Fig. C.3 A Performance comparison in three scenarios

Fig. C.4 Standard deviation of the score in three scenarios
(Rajapakshe et al., 2019)
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