195 research outputs found

    Model free real-time optimization for vapor compression systems

    Get PDF
    A vapor compression system's optimal input settings vary according to changes in environmental conditions. Tracking these optimal input trajectories can be challenging when insufficient information for a reliable system model is available. An alternative set of optimization approaches use system measurements. This thesis focuses on one such approach, extremum seeking control, which uses performance index measurements to determine optimal system settings. Forgoing system model knowledge and relying exclusively on data allows an optimization approach to function well on many different plants. However, this added adaptivity comes at a performance cost. Using prior system model knowledge can be helpful for ensuring that a controller design works from the start of operation and inputs can be changed as soon as information about environmental conditions is updated. By contrast, data based methods may require the control designer to spend a time generating data in order to obtain enough information about the system to make good decisions online. A central theme of this work is addressing the trade off between using prior system model knowledge and ensuring sufficient adaptability of the extremum seeking optimization approach. Two main factors in the extremum seeking design are considered: the choice of extremum seeking control law and the choice of extremum seeking control input. Extremum seeking control laws come from the field of mathematical optimization; this thesis considers the pros and cons of choosing between gradient descent and Newton descent. Both simulations and experimental results show that while Newton descent extremum seeking is less reliant on model knowledge, but slower to find optimal inputs than gradient descent extremum seeking. Because of extremum seeking's adaptability to different plants, many different inputs can be chosen for implementation. However, using an approach known as self-optimizing control, knowledge about the plant's behavior can help choose set points with optimal values that are insensitive to changes in environmental conditions. Finding these special inputs turns the input tracking problem into a regulation problem. Both simulation and experimental results confirm that combining self-optimizing control and extremum seeking control can help improve tracking even as environmental conditions change

    Modélisation dynamique et commande optimale d'un systÚme de réfrigération à base d'éjecteur

    Get PDF
    Recently, the ejector-based refrigeration system (ERS) has been widely used in the cooling industry as an appropriate alternative to the compressor-based cooling systems. However, the advantages of ERS such as the reliable operation and low operation and maintenance costs are overshadowed by its low efficiency and design complexity. In this context, this thesis presents the efforts to develop a control model enabling the ERS to operate in its optimal operational conditions. The extensive experimental studies of ERS revealed that at a fixed condenser inlet condition, there exists an optimal primary stream mass flow rate (generating pressure) that simultaneously maximizes the compression ratio (Cr) and exergy efficiency and minimizes the evaporating pressure. Then, the steady state models of the heat exchangers were developed and used to investigate the influence of the increase in generating pressure on the coefficient of performance (COP) of the system and it showed that increasing the generating pressure reduces the COP, linearly. In order to predict the choking regime of the ejector and explain the reasons of observed physical phenomenon, the 1D model of a fixed geometry ejector installed within an R245fa ERS was developed. The developed model demonstrated that the ejector operates in the subcritical mode when the generating pressure is below the Cr optimum point, while it operates in critical mode at or above the optimum generating pressure. Next, a dynamic model of the ERS was built to evaluate the ERS transient response to an increase in the primary stream mass flow rate. Since the ERS dynamics is mainly dominated by the thermal dynamics of the heat exchangers, the dynamic models of the heat exchangers were developed using the moving boundary approach and connected to the developed models of the ejector and steady state models of the pump and expansion valve to build a single dynamic model of the system. The built dynamic model of an ERS was used to estimate the time response of the system in the absence of accurate experimental data of the system’s dynamics. Finally, a control model was designed to drive an ERS towards its optimal operation condition. A self-optimizing, model-free control strategy known as Extremum seeking control (ESC) was adopted to minimize evaporating pressure in a fixed condenser thermal fluid inlet condition. The innovative ESC model named batch phasor ESC (BPESC) was proposed based on estimating the gradient by evaluating the phasor of the output, in batch time. The simulation results indicated that the designed BPESC model can seek and find the optimum evaporating pressure with good performance in terms of predicting the steady state optimal values and the convergence rates.RĂ©cemment, le systĂšme de rĂ©frigĂ©ration Ă  Ă©jecteur (SRE) a Ă©tĂ© largement utilisĂ© dans l'industrie du refroidissement en tant que solution de remplacement appropriĂ©e aux systĂšmes de refroidissement Ă  compresseur. Cependant, les avantages du SRE, tels que le fonctionnement fiable et les faibles couts d'exploitation et de maintenance, sont Ă©clipsĂ©s par son faible rendement et sa complexitĂ© de conception. Dans ce contexte, ce projet de recherche de doctorat a dĂ©taillĂ© les efforts dĂ©ployĂ©s pour dĂ©velopper une stratĂ©gie de commande permettant au systĂšme de fonctionner dans ses conditions opĂ©rationnelles optimales. Les Ă©tudes expĂ©rimentales approfondies du SRE ont rĂ©vĂ©lĂ© que, dans une condition d'entrĂ©e de condensateur constante, il existe un dĂ©bit massique optimal du flux primaire (gĂ©nĂ©rant une pression) qui maximise simultanĂ©ment le taux de compression (Cr) et l'efficacitĂ© exergĂ©tique, et minimise la pression d’évaporation. Ensuite, les modĂšles Ă  l’état d’équilibre des Ă©changeurs de chaleur ont Ă©tĂ© dĂ©veloppĂ©s et utilisĂ©s pour Ă©tudier l’influence de l’augmentation de la pression gĂ©nĂ©rĂ©e sur le coefficient de performance (COP) du systĂšme et il en ressort que l'augmentation de la pression gĂ©nĂ©ratrice rĂ©duit le COP de maniĂšre linĂ©aire. Afin de prĂ©dire le rĂ©gime d'Ă©touffement de l'Ă©jecteur et d'expliquer les raisons du phĂ©nomĂšne physique observĂ©, le modĂšle 1D d'un Ă©jecteur Ă  gĂ©omĂ©trie fixe installĂ© dans un systĂšme SRE R245fa a Ă©tĂ© dĂ©veloppĂ©. Le modĂšle dĂ©veloppĂ© a dĂ©montrĂ© que l'Ă©jecteur fonctionne en mode sous-critique lorsque la pression gĂ©nĂ©ratrice est infĂ©rieure au point optimal de Cr, alors qu'il fonctionne en mode critique Ă  une pression Ă©gale ou supĂ©rieure Ă  la pression gĂ©nĂ©ratrice optimale. Ensuite, un modĂšle dynamique du SRE a Ă©tĂ© dĂ©veloppĂ© pour Ă©tudier la rĂ©ponse transitoire du SRE lors d’une augmentation du dĂ©bit massique du flux primaire. Puisque la dynamique du SRE est principalement dominĂ©e par la dynamique thermique des Ă©changeurs de chaleur, les modĂšles dynamiques des Ă©changeurs de chaleur ont Ă©tĂ© dĂ©veloppĂ©s Ă  l'aide de l'approche des limites mobiles et connectĂ©s aux modĂšles dĂ©veloppĂ©s de l'Ă©jecteur et des modĂšles Ă  l'Ă©tat stationnaire de la pompe et de la vanne un seul modĂšle dynamique du systĂšme. En l’absence de donnĂ©es expĂ©rimentales prĂ©cises sur la dynamique d’un systĂšme SRE, le modĂšle dynamique dĂ©veloppĂ© du SRE a Ă©tĂ© simulĂ© numĂ©riquement pour Ă©tudier sa rĂ©ponse temporelle. Enfin, une stratĂ©gie de commande extrĂȘmale (ESC) a Ă©tĂ© Ă©laborĂ© pour rĂ©gler automatiquement le SRE Ă  ses conditions de fonctionnement optimales, c’est-Ă -dire pour trouver la vitesse de la pompe qui minimise la pression dans des conditions d'entrĂ©e de condenseur fixes. Afin de proposer une ESC implĂ©mentable en temps discret sur une installation rĂ©elle sujette Ă  un bruit de mesure important et un traitement hors-ligne par trame, une nouvelle commande extrĂ©male basĂ©e sur une approche par phaseur avec une procĂ©dure de traitement de signal par trame (BPESC) a Ă©tĂ© dĂ©veloppĂ©e et simulĂ©e avec le modĂšle numĂ©rique. Les rĂ©sultats de la simulation ont indiquĂ© que le modĂšle BPESC peut trouver la vitesse optimale de la pompe avec de bonnes performances en termes de prĂ©cision et de vitesse de convergence

    Investigation of Some Self-Optimizing Control Problems for Net-Zero Energy Buildings

    Get PDF
    Green buildings are sustainable buildings designed to be environmentally responsible and resource efficient. The Net-Zero Energy Building (NZEB) concept is anchored on two pillars: reducing the energy consumption and enhancing the local energy generation. In other words, efficient operation of the existing building equipment and efficient power generation of building integrated renewable energy sources are two important factors of NZEB development. The heating, ventilation and air conditioning (HVAC) systems are an important class of building equipment that is responsible for large portion of building energy usage, while the building integrated photovoltaic (BIPV) system is well received as the key technology for local generation of clean power. Building system operation is a low-investment practice that aims low operation and maintenance cost. However, building HVAC and BIPV are systems subject to complicated intrinsic processes and highly variable environmental conditions and occupant behavior. Control, optimization and monitoring of such systems desire simple and effective approaches that require the least amount of model information and the use of smallest number but most robust sensor measurements. Self-optimizing control strategies promise a competitive platform for control, optimization and control integrated monitoring for building systems, and especially for the development of cost-effective NZEB. This dissertation study endorses this statement with three aspects of work relevant to building HVAC and BIPV, which could contribute several small steps towards the ramification of the self-optimizing control paradigm. This dissertation study applies self-optimizing control techniques to improve the energy efficiency of NZEB from two aspects. First, regarding the building HVAC efficiency, the dither based extremum seeking control (DESC) scheme is proposed for energy efficient operation of the chilled-water system typically used in the commercial building ventilation and air conditioning (VAC) systems. To evaluate the effectiveness of the proposed control strategy, Modelica based dynamic simulation model of chilled water chiller-tower plant is developed, which consists of a screw chiller and a mechanical-draft counter-flow wet cooling tower. The steady-state performance of the cooling tower model is validated with the experimental data in a classic paper and good agreement is observed. The DESC scheme takes the total power consumption of the chiller compressor and the tower fan as feedback, and uses the fan speed setting as the control input. The inner loop controllers for the chiller operation include two proportional-integral (PI) control loops for regulating the evaporator superheat and the chilled water temperature. Simulation was conducted on the whole dynamic simulation model with different environment conditions. The simulation results demonstrated the effectiveness of the proposed ESC strategy under abrupt changes of ambient conditions and load changes. The potential for energy savings of these cases are also evaluated. The back-calculation based anti-windup ESC is also simulated for handling the integral windup problem due to actuator saturation. Second, both maximum power point tracking (MPPT) and control integrated diagnostics are investigated for BIPV with two different extremum seeking control strategies, which both would contribute to the reduction of the cost of energy (COE). In particular, the Adaptive Extremum Seeking Control (AESC) is applied for PV MPPT, which is based on a PV model with known model structure but unknown nonlinear characteristics for the current-voltage relation. The nonlinear uncertainty is approximated by a radial basis function neural network (RBFNN). A Lyapunov based inverse optimal design technique is applied to achieve parameter estimation and gradient based extremum seeking. Simulation study is performed for scenarios of temperature change, irradiance change and combined change of temperature and irradiance. Successful results are observed for all cases. Furthermore, the AESC simulation is compared to the DESC simulation, and AESC demonstrates much faster transient responses under various scenarios of ambient changes. Many of the PV degradation mechanisms are reflected as the change of the internal resistance. A scheme of detecting the change of PV internal shunt resistance is proposed using the available signals in the DESC based MPPT with square-wave dither. The impact of the internal resistance on the transient characteristics of step responses is justified by using the small-signal transfer function analysis. Simulation study is performed for both the single-string and multi-string PV examples, and both cases have demonstrated successful results. Monotonic relationship between integral error indices and the shunt internal resistance is clearly observed. In particular, for the multi-string, the inter-channel coupling is weak, which indicates consistent monitoring for multi-string operation. The proposed scheme provides the online monitoring ability of the internal resistance condition without any additional sensor, which benefits further development of PV degradation detection techniques

    Energy Management Considering Unknown Dynamics Based on Extremum Seeking Control and Particle Swarm Optimization

    Get PDF

    Safe Zeroth-Order Optimization Using Quadratic Local Approximations

    Full text link
    This paper addresses black-box smooth optimization problems, where the objective and constraint functions are not explicitly known but can be queried. The main goal of this work is to generate a sequence of feasible points converging towards a KKT primal-dual pair. Assuming to have prior knowledge on the smoothness of the unknown objective and constraints, we propose a novel zeroth-order method that iteratively computes quadratic approximations of the constraint functions, constructs local feasible sets and optimizes over them. Under some mild assumptions, we prove that this method returns an η\eta-KKT pair (a property reflecting how close a primal-dual pair is to the exact KKT condition) within O(1/η2)O({1}/{\eta^{2}}) iterations. Moreover, we numerically show that our method can achieve faster convergence compared with some state-of-the-art zeroth-order approaches. The effectiveness of the proposed approach is also illustrated by applying it to nonconvex optimization problems in optimal control and power system operation.Comment: arXiv admin note: text overlap with arXiv:2211.0264

    Data-Driven Control of Refrigeration System

    Get PDF

    Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges

    Get PDF
    Organic Rankine cycle systems are suitable technologies for utilization of low/medium-temperature heat sources, especially for small-scale systems. Waste heat from engines in the transportation sector, solar energy, and intermittent industrial waste heat are by nature transient heat sources, making it a challenging task to design and operate the organic Rankine cycle system safely and efficiently for these heat sources. Therefore, it is of crucial importance to investigate the dynamic behavior of the organic Rankine cycle system and develop suitable control strategies. This paper provides a comprehensive review of the previous studies in the area of dynamic modeling and control of the organic Rankine cycle system. The most common dynamic modeling approaches, typical issues during dynamic simulations, and different control strategies are discussed in detail. The most suitable dynamic modeling approaches of each component, solutions to common problems, and optimal control approaches are identified. Directions for future research are provided. The review indicates that the dynamics of the organic Rankine cycle system is mainly governed by the heat exchangers. Depending on the level of accuracy and computational effort, a moving boundary approach, a finite volume method or a two-volume simplification can be used for the modeling of the heat exchangers. From the control perspective, the model predictive controllers, especially improved model predictive controllers (e.g. the multiple model predictive control, switching model predictive control, and non-linear model predictive control approach), provide excellent control performance compared to conventional control strategies (e.g. proportional–integral controller, proportional–derivative controller, and proportional–integral–derivative controllers). We recommend that future research focuses on the integrated design and optimization, especially considering the design of the heat exchangers, the dynamic response of the system and its controllability

    Fuel Cell Renewable Hybrid Power Systems

    Get PDF
    Climate change is becoming visible today, and so this book—through including innovative solutions and experimental research as well as state-of-the-art studies in challenging areas related to sustainable energy development based on hybrid energy systems that combine renewable energy systems with fuel cells—represents a useful resource for researchers in these fields. In this context, hydrogen fuel cell technology is one of the alternative solutions for the development of future clean energy systems. As this book presents the latest solutions, readers working in research areas related to the above are invited to read it

    Economic Model Predictive Control for Spray Drying Plants

    Get PDF

    Zwei-Freiheitsgrade-Struktur zur robusten Radschlupfregelung fĂŒr Antiblockiersysteme

    Get PDF
    Die Regelung des gebremsten Rades eines gummibereiften Fahrzeugs stellt seit vier Jahrzehnten Generationen von Ingenieuren vor schwierige Herausforderungen und es wurden bereits zahlreiche AnsĂ€tze dazu erdacht und implementiert. Eine wesentliche Herausforderung der Regelstrecke ist die mit der Fahrzeuggeschwindigkeit skalierte Dynamik, wenn der Radschlupf als relative Geschwindigkeitsdifferenz zwischen Fahrzeug und Radaufstandspunkt geregelt werden soll, sowie die hohe NichtlinearitĂ€t der Reifenkraftschlusskennlinie in AbhĂ€ngigkeit des Schlupfes. In der tatsĂ€chlichen Implementierung kommt darĂŒber hinaus noch der Abtastcharakter der Regelung auf einem digitalen Mikrocontroller hinzu, der im Rahmen dieser Arbeit systematisch in den Entwurf mit einbezogen werden soll. Dazu wird zuerst ein physikalisches Modell des Fahrzeugs einschließlich der Bremsenaktorik aufgestellt und dieses anschließend mittels Strukturmaßen untersucht sowie SchlĂŒsse fĂŒr die notwendige Reglerstruktur aus dieser Untersuchung abgeleitet. In dieser Arbeit wird ein modellbasierter Ansatz zur Regelung des Radschlupfes vorgeschlagen, der aus einer Zwei-Freiheitsgrade-Struktur mit nichtlinearer modellbasierter Vorsteuerung und einer robust entworfenen RĂŒckfĂŒhrung mittels Gain-Scheduling besteht. FĂŒr die Vorsteuerung wird ein Ansatz ĂŒber die exakte Eingangs-/Ausgangslinearisierung gewĂ€hlt, mit dem sich das nichtlineare System bezogen auf das Ein-/Ausgangsverhalten wie ein lineares System regeln lĂ€sst. FĂŒr die RĂŒckfĂŒhrung wird ein Gain-Scheduling ĂŒber die Schedulingparameter Fahrzeuggeschwindigkeit und Radschlupf durchgefĂŒhrt, um den durch die hohe Parameterunsicherheit in der Reifenkennline und die reziproke AbhĂ€ngigkeit der Systemdynamik von der Geschwindigkeit variablen Parameterbereich in kleinere Unsicherheitsbereiche zu unterteilen, fĂŒr die anschließend ein linearer Regler mit fester Struktur ĂŒber die Methode der robusten Polbereichsvorgabe entworfen wird. Basierend auf diesem Schlupfregler wird in einem zweiten Schritt ein Algorithmus verwendet, der in der Lage ist, das Maximum der Reibwertkennlinie einzuregeln, um den verfĂŒgbaren Kraftschluss bestmöglich auszunutzen, das sog. Extremum Seeking. Der gesamte Reglerentwurf erfolgt dabei rein zeitdiskret, um die charakteristischen Effekte der Diskretisierung bei einer digitalen Regelung behandeln zu können. Die vorgeschlagene Reglerstruktur wird dabei in Simulationen fĂŒr unterschiedliche Reibwerte der modellbasierten Vorsteuerung und der realen Strecke untersucht und dabei gezeigt, dass die Regelung mit Extremwertsuche auch in der Lage ist, das Maximum zu finden, wenn die Reibwertkurve ihr Maximum verĂ€ndert
    • 

    corecore