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ABSTRACT

A vapor compression system’s optimal input settings vary according to changes

in environmental conditions. Tracking these optimal input trajectories can

be challenging when insufficient information for a reliable system model is

available. An alternative set of optimization approaches use system measure-

ments. This thesis focuses on one such approach, extremum seeking control,

which uses performance index measurements to determine optimal system

settings.

Forgoing system model knowledge and relying exclusively on data allows

an optimization approach to function well on many different plants. However,

this added adaptivity comes at a performance cost. Using prior system model

knowledge can be helpful for ensuring that a controller design works from the

start of operation and inputs can be changed as soon as information about

environmental conditions is updated. By contrast, data based methods may

require the control designer to spend a time generating data in order to

obtain enough information about the system to make good decisions online.

A central theme of this work is addressing the trade off between using prior

system model knowledge and ensuring sufficient adaptability of the extremum

seeking optimization approach.

Two main factors in the extremum seeking design are considered: the

choice of extremum seeking control law and the choice of extremum seeking

control input. Extremum seeking control laws come from the field of math-

ematical optimization; this thesis considers the pros and cons of choosing

between gradient descent and Newton descent. Both simulations and ex-

perimental results show that while Newton descent extremum seeking is less

reliant on model knowledge, but slower to find optimal inputs than gradi-

ent descent extremum seeking. Because of extremum seeking’s adaptability

to different plants, many different inputs can be chosen for implementation.

However, using an approach known as self-optimizing control, knowledge
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about the plant’s behavior can help choose set points with optimal values that

are insensitive to changes in environmental conditions. Finding these special

inputs turns the input tracking problem into a regulation problem. Both

simulation and experimental results confirm that combining self-optimizing

control and extremum seeking control can help improve tracking even as

environmental conditions change.
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CHAPTER 1

INTRODUCTION

Vapor compression systems (VCSs) are machines that exploit the principles

of thermodynamics to achieve efficient energy transfer using a repeated cy-

cle of evaporation, compression, condensation, and expansion. They act as

crucial subsystems in many practical applications that involve some form of

temperature regulation, from room air conditioning to natural gas liquefac-

tion. Moving energy from low to high temperature comes at a cost which

can determine the return on investment for an air conditioning system or

affect the amount of profit extracted from an industrial process. Several

studies in the literature have shown that finding efficient operation settings

of subsystems such as fans, pumps, and compressors can minimize the cost

of system operation. This thesis addresses “real-time optimization”, where

measurements are used to determine the system’s optimal settings.

Real-time optimization (RTO) is often synonymous with optimization

near steady state conditions. Choosing RTO input values requires some

system knowledge. Just how much system knowledge is used depends on

confidence in the model and how much effort the control designer is willing

to spend. Developing and tuning a physics based model often requires hand

tuning effort to achieve an acceptable match between physical outputs and

simulation outputs. Poor tuning can create situations where the model’s

optimal inputs are not the true ones. Furthermore, the real-time optimizer

may not have full knowledge of the system’s operating conditions due to a

lack of measurements. This is unavoidable for aging systems that experience

changes in the true model parameters. However, one advantage of using

a physics based model is that it does not require much time to select new

optimal inputs.

Model free optimization is a form of RTO that does not rely on a system’s

governing equations to find the optimal inputs. Extremum seeking control

(ESC) is one such model free approach. Inherently a feedback based adaptive
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control algorithm, it estimates derivatives from plant measurements and uses

these derivatives in an optimization algorithm to reach extremum points of a

system’s steady state performance index. A key assumption is that the sys-

tem can be described by a nonlinear program with a local extremum point.

One of the most attractive features of extremum seeking control is its ability

to optimize complicated systems with minimal knowledge of system dynam-

ics. This makes extremum seeking a promising tool for vapor compression

systems when optimization using a system model might fail to match the true

optimal inputs over the entire operating envelope. However, ignorance of the

system model comes at a price; a drawback of extremum seeking control is

that it inherently exchanges prior model knowledge for a slow convergence

time and optimality guarantees. This is because it must experiment with

the system’s performance index and operate slowly enough to make correct

decisions about the optimal value.

Given the advantages of using a system model to obtain knowledge about

system behavior and the guarantee that ESC is capable of finding optimal

inputs without this knowledge, a main feature of this work is the exploration

of how physics based modeling and extremum seeking control can comple-

ment one another. This aspect is explored in two ways: using a physical

system model to assist extremum seeking control design and using model

based optimization in parallel with extremum seeking control.

1.1 Literature

The idea of ESC has been traced to the work of Leblanc back in 1922, but

ESC only became popular as a research topic near the turn of the millennium

when [4] published a proof of stability for the classical extremum seeking

algorithm. Since then, many ESC algorithms have emerged as solutions

for handling real-time optimization problems across a range of applications

from formation flight to photovoltaic maximum power point tracking. A

comprehensive review of recent ESC publications, applications, and basic

theoretical principles can be found in [1].

[5] gives an overview of a unifying framework for the development of black

box and gray box extremum seeking algorithms. Black box extremum seeking

algorithms (used exclusively in this thesis) rely on steady state input to
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output relationships, while grey box algorithms exploit knowledge of system

dynamics. Whether black box or gray box, all extremum seeking algorithms

are meant to estimate derivatives of a steady state performance index.

A key theme in the theoretical study of extremum seeking algorithms

is assessing stability of the feedback interconnection of the plant, derivative

estimation algorithm, and the control law. In terms of black box algorithm

development, where the system’s parameterization is assumed to be static,

major contributions to ESC theory have been from novel parameterizations

for derivative estimation, the corresponding estimation scheme, and the proof

of closed loop system stability [4, 2, 3, 6]. An interesting hybrid black/gray

box approach that has emerged in the literature is from [7, 8]. It uses an

input affine parameterization of the plant and uses the ESC algorithm to

estimate a Lie derivative for gradient descent.

In the last 10 years, the HVAC control systems community has become

interested in ESC as a RTO solution following the publication of [9], which

discussed the role of controls and optimization in energy efficient HVAC sys-

tems. Several high fidelity simulations and experiments have validated ESC’s

ability to optimize the operation of a variety of thermal management systems

including airside economizers, chillers, thermoacoustic coolers, and home air

conditioners [10, 11, 12, 13, 14, 15, 9, 16, 17, 18, 19, 8]. Because extremum

seeking is used to exploit the trade offs inherent in the movement of mass and

energy, almost all of the cost functions presented in these works are convex.

Either some form of the classical perturbation based algorithm [4], its new-

ton update extension [6], time varying extremum seeking [3], or proportional

integral extremum seeking [7] have been applied to these thermal systems.

One lingering question about application of ESC to thermal systems is

how model information should be incorporated into the controller design.

Forgoing model knowledge requires a more conservative, but less system spe-

cific approach to optimization. Another aspect of these works is the method

of ESC implementation. Up until now, many authors have implemented ESC

using intuition for what constitutes a good input; there has been no justifica-

tion for input choice in any of the following works: In [11, 17, 10, 19, 16, 14].

The method of choosing this input can be formalized by self-optimizing

control (SOC), an approach to choosing optimal controlled variables for real-

time optimization. When these special self-optimizing variables are regulated

to constant set points, the plant stays close to its optimal operating condi-
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tions [20]. In this sense, SOC is an optimization strategy that compensates

for disturbances that are modeled, but are not measured online. Such an

approach can be valuable when disturbances not economically measurable or

the disturbance measurement is unreliable. Of the various methods available

for choosing these controlled variables, this work focuses on the null space

method [21].

While originally model based, SOC has recently been extended to be a

data based technique. The original implementation of SOC involved using

a time invariant linearized steady state model with a cost function approxi-

mated by a convex quadratic to select an optimal measurement combination

[22, 21]. Where a sufficiently accurate system model is unavailable, a self-

optimizing measurement combination can be extracted from process data

[23, 24]. An advantage of using process data is that the information from

governing physics informs the data analysis, but the resulting measurement

combination is specific to the physical system that generated the data.

SOC has been applied to vapor compression cycles on a handful of occa-

sions in the literature. [25] first applied SOC to static models of an Ammonia

cycle and a CO2 cycle to analyze the best controlled variables for steady state

efficiency. [26] built on this study by implementing null space method SOC

on the same Ammonia cycle model. In [27], the authors used model based

SOC combined with MPC.

An alternative implementation of ESC is to choose an extremum seeking

controlled variable using SOC. Because SOC uses set point regulation tools, it

operates at the time scale of the closed loop system. In [28], the authors used

a continuously stirred tank reactor simulation model to test the combined

ESC and SOC against RTO controllers that used either ESC or SOC. The

combined ESC and SOC showed superior performance in terms of operational

profit.

1.2 Organization of Thesis

The thesis is organized in the following way: Chapter 2 discusses the opera-

tion, modeling, and optimization of the four component vapor compression

cycle used for cooling. To build intuition for the real-time optimization tools

in this thesis, Chapter 3 reviews formulations for both extremum seeking

4



and self optimizing control and applies them to example systems. Chapter 4

discusses the choice between Newton descent and gradient descent extremum

seeking algorithms for application to a vapor compression system and how

system model knowledge can affect this choice. Chapter 5 illustrates the value

of using self-optimizing control combined with extremum seeking control to

provide fast optimization for a vapor compression system. Both Chapter 4

and Chapter 5 emphasize comparisons between simulation and experiment.

Finally, Chapter 6 presents the contributions of this work and provides ideas

for future exploration.
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CHAPTER 2

OPERATION, MODELING, AND
REAL-TIME OPTIMIZATION OF VAPOR

COMPRESSION SYSTEMS

Before applying any kind of control or optimization to a system, the following

questions arise:

1. What are the basic principles of the system’s operation? What does it

mean for the system to operate under normal circumstances?

2. How can the system be modeled and analyzed?

3. What is a sensible index for scoring the system’s performance?

This chapter answers the questions above for a specific type of vapor

compression system: the four component cycle consisting of an evaporator, a

compressor, a condenser, and a valve. The same basic answers can often be

applied to vapor cycle systems with additional components. The interested

reader is referred to studies that support this premise [10, 29, 25].

The questions posed above are answered in order: Section 2.1 introduces

the four component cycle’s operational principles and the physical system

used as a test case; Section 2.2 shows the steps taken to build a physical

system model of the test rig described in Section 2.1; Section 2.3 describes a

general way to index vapor compression system performance and applies it

to a special case for the system in Section 2.1; finally, Section 2.4 presents

concluding remarks. Section 2.5 provides full details of the vapor compression

system optimization problem considered in this work.

2.1 Operation

2.1.1 Four Component Cycle

Vapor compression systems (VCSs) can be used for heating, cooling, or both.

This section focuses on cooling mode, which is relevant to room air condi-
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tioners, building chillers, and natural gas liquefaction cycles [30, 13, 29].

Cooling arises from a heat exchange between the low temperature re-

frigerant such as ammonia, carbon dioxide, or a hydro-fluorocarbon, and a

relatively higher temperature secondary fluid such as air or water (Points 4-1

in Figure 2.1). Compressing the refrigerant to a high enough temperature

(Points 1-2) allows a rejection of heat to a relatively lower temperature sec-

ondary fluid stream (Points 2-3). As the refrigerant passes through a valve,

both refrigerant temperature and pressure drop and the cycle repeats (Points

3-4).

Figure 2.1: Schematic of a vapor compression system that cools air at Tesfi
using a compressor, a valve, and two heat exchangers to drive the
refrigerant cycle. While the secondary fluid shown is air, it could also be
pumped water or refrigerant from another VCS stage.

Broadly speaking, the four component VCS’s operational principles have

been highlighted, but not in precise terms of inputs and measurements, which

enable system monitoring and feedback control. Commercial VCSs are typ-

ically outfitted with thermocouples and pressure transducers to capture a

subset of these available measurements, while the inputs can either be fixed

speed or variable speed.
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In addition to the measurements and inputs, the system’s design (geom-

etry and material) plays a key role in determining the “normal” operation

regime. While worth mentioning, system design involves considerations of

heat transfer and fluid dynamics, which are outside of this thesis’s scope.

Given this fact, the steps below define variables of the cycle’s component

subsystems, the evaporator, compressor, condenser, and valve.

4-1 (Evaporation):

-Refrigerant evaporates at low pressure and temperature, P1 and T4,

and exchanges heat with the secondary fluid, which has inlet tempera-

ture, Tesfi, and outlet temperature, Tesfo.

-Refrigerant exits the evaporator with a positive superheat, defined as

TSH ≡ T1 − T4. Maintaining this temperature difference protects the

compressor from ingesting liquid refrigerant. Compression of liquid re-

frigerant is not catastrophic, but it is known to cause premature failure

[31].

-A fan or pump, with a constrained input command, uef , and input

power, Ẇef , enhances the heat exchange process.

1-2 (Compression):

-The compressor, with a constrained input command, ukp, and input

power, Ẇkp, increases the refrigerant pressure and temperature from

P1 and T1 to P2 and T2 respectively.

2-3 (Condensation):

-Gaseous refrigerant emerging from the compressor at temperature,

T2, and pressure, P2, is cooled by the secondary fluid at inlet tempera-

ture, Tcsfi, and exit temperature, Tcsfo. Temperature T2−3 represents a

constant temperature section where the refrigerant undergoes a phase

change by condensation. The refrigerant temperature at the condenser

exit is T3 < T2−3, which corresponds to a subcooled liquid. While a

positive evaporator superheat is not always achieved, T2 > T2−3 is al-

most guaranteed by the system design.

-A fan or pump, with a constrained input command, ucf , and input

power, Ẇcf , enhances the heat exchange process.

-Refrigerant exits the condenser with a positive subcooling tempera-

ture, TSC ≡ T2−3 − T3.
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3-4 (Expansion):

-The electronic expansion valve, with input uv, and input power, Ẇv,

decreases the temperature and pressure of the liquid refrigerant exiting

the condenser from T3 to T4 and P2 to P1 respectively.

Although the cycle’s steps are distinct, some of the measurements de-

scribed above are coupled by thermodynamic laws and/or system assump-

tions. For instance, pressure losses in the evaporator and condenser pipes are

negligible. Thus, P2 ≈ P3 and P1 ≈ P4. Table 2.1 defines the measurements

in Figure 2.1 and the relationships between them.
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Table 2.1: Description of VCS temperature, pressure, and power
consumption measurements.

Measurement Coupling Description

Refrigerant Pressures

P1 P1 ≈ P4 ≈ Psat(T4) Evaporator outlet

P2 P2 ≈ P3 ≈ Psat(T2−3) Condenser inlet

P3 See P2 Condenser outlet

P4 See P1 Evaporator inlet

Refrigerant Temperatures

T1 − Evaporator outlet

T2 − Condenser inlet

T3 − Condenser outlet

T4 See P1 Evaporator inlet

Secondary Fluid Temperatures

Tesfi − Evaporator inlet

Tesfo − Evaporator outlet

Tcsfi − Condenser inlet

Tcsfo − Condenser outlet

Flow Rate

V̇ − Refrigerant volume flow rate

Power Consumption

Ẇkp See Ẇsys Compressor

Ẇcf See Ẇsys Condenser Fan

Ẇv Ẇv ≈ 0 Valve

Ẇef See Ẇsys Evaporator Fan

Ẇsys Ẇsys ≈ Ẇkp + Ẇcf + Ẇef Total system power

In total, there are up to 14 unique measurements available on the simple

cycle: 2 pressures, 3 refrigerant temperatures, 1 volume flow rate, 4 secondary

fluid temperatures, and up to 4 power consumption measurements. Choos-

ing which measurements are implemented on an actual system depends on

the operational goals and the cost of sensors. Fortunately, the experimental

test stand used by this study is equipped with all of the pressure, temper-

ature, and flow rate measurements above as well as the total system power
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measurement.

2.1.2 Experimental Test Stand

The HVAC test stand in Figure 2.2 has many components and possible con-

figurations [32]. This study selected the four component cycle corresponding

to Figure 2.1.

Figure 2.2: Experimental vapor compression system running a simple cycle
refrigerant loop. The numbered points on the photograph correspond to the
cycle points in Figure 2.1.

Some system details follow: the refrigerant is R134a and the secondary

fluid is the room air; the room’s HVAC system maintains an air tempera-

ture set point around 22◦C; temperatures, pressures, the flow measurement,

and the power measurement come from immersion thermocouples, pressure

transducers, a volume flow sensor, and a power meter, respectively. Data

collection and control are coordinated by a DAQ and MATLAB’s Real-Time

Windows Target.

Earlier, it was stated that the VCS’s goal was to achieve a set amount

of cooling. Because the testbed is situated in a room with recirculating air,

there is little control over the room air temperature. Instead, the refrigerant

side cooling capacity, Q̇evap, is a stand-in for the indicator of achieved cooling.

The cooling capacity can be expressed as a function of system measurements.

Table 2.2 gives the experimental system measurements in use, as well as the

11



formulas for calculating mass flow, ṁ, cooling capacity, Q̇evap, superheat,

TSH , and refrigerant boiling temperatures, T4 and T2−3. Instances of h and ρ

represent specific enthalpy and density respectively. Instances of P represent

pressures and instances of T represent temperatures.

Table 2.2: Formulas for VCS experimental measurements.

Direct Measurements Calculated Outputs

Pressures [kPa] P1, P2 ṁ[kg/s] V̇ ρ(P2, T3)

Temperatures [◦C] T1, T2, T3 Q̇evap[kW ] ṁ(h1(P1, T1)− h4(P2, T3))

Volume Flow Rate [m3/s] V̇ TSH [◦C] T1 − Tsat(P1)

Power [kW] Ẇsys T4[◦C] Tsat(P1)

T2−3[◦C] Tsat(P2)

Some of the measurements in Table 2.2 may be unavailable in practice.

For example, volume flow rate sensors are costly and seldom used on com-

mercial products. However, this wealth of measurements available on the

experimental testbed makes the system suitable for testing various modeling

and control strategies. The next section will review and give results from the

modeling study undertaken.

2.2 Modeling

2.2.1 Physics Based Simulation in Thermosys

Access to a diverse set of system measurements provided all of the necessary

details for calibration of a physics based VCS simulation model. Such mod-

els are useful because they help explain fundamental system behavior and

execute case studies up to 1400 times faster than real time.

This study employed Thermosys [33], a vapor compression system dy-

namic modeling toolbox. Thermosys uses a switched moving boundary ap-

proach, which models the distinct fluid zones in Figure 2.1 as control volumes.

Subjecting the control volumes to mass and energy balances gives a system

of low order nonlinear dynamic equations that have proven useful for vapor
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compression system modeling. For details on the moving boundary approach,

consult [34].

To achieve some level of accuracy between a real system and the Ther-

mosys model, a calibration procedure consisting of the following two steps

should be performed using an experimental system. First, collect data from

an experiment where the VCS’s inputs are perturbed. Next, enter steady

state system measurements and hand tune Thermosys parameters to match

the dynamic response and steady-state behavior of the experimental data.

Figure 2.3 shows input perturbations centered about the nominal values.

Figure 2.4 shows that air inlet temperatures, which are uncontrollable system

inputs, are nearly constant throughout the test.

Figure 2.3: Controllable inputs were perturbed using pseudo random binary
sequences generated by MATLAB’s system identification toolbox.
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Figure 2.4: Uncontrollable air inlet temperatures remained close to
constant throughout the test.

To evaluate the Thermosys model’s predictive capability, Figures 2.5

through 2.8 compare the dynamic responses of the variables shown in Figure

2.1 from simulation and experiment. Apart from the discrepancy between T2

responses in Figure 2.7, many of the simulation’s outputs show trends that

move in the same direction as the experimental outputs. Although the Ther-

mosys model may not be suitable for precisely predicting the experimental

system’s output, the dynamic similarity between the data below suggests

that the Thermosys model might be able to gage the success of control ap-

proaches. The criteria for an acceptable Thermosys model is ambiguous;

experience should be used to determine the physical model’s acceptability.
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Figure 2.5: Comparison between simulated and experimental responses of
the vapor compression cycle’s key control outputs, Q̇evap and TSH .

Figure 2.6: Comparison between refrigerant fluid dynamic responses
observed in experiment and in Thermosys, respectively. The cycle’s
fundamental fluid dynamic variables are the refrigerant mass flow, ṁref ,
low side pressure, P1, and high side pressure, P2.

15



Figure 2.7: Comparison between refrigerant temperatures observed in
experiment and in Thermosys, respectively. T4 is not included because it is
thermodynamically coupled to P1.

Figure 2.8: Comparison between heat exchanger air outlet temperatures
observed in experiment and in Thermosys, respectively.
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Building a dynamic model that is both high fidelity and accuracy can be

useful for implementing intelligent control strategies. Although the subject

of this thesis is model-free optimization, using a physics based system model

helps build intuition which can (in theory) be applied to a wide range of

systems with similar transient behavior, but dissimilar steady state values.

Therefore, the main goal of the vapor compression system modeling effort

was to generally capture important dynamic trends in the system without

emphasis on prediction quality.

2.2.2 Power Consumption Modeling

The introduction to this chapter discussed “scoring” a system’s performance

using an index. While the previous section gave details about the modeling

process for a VCS’s characteristic pressures, mass flow, and temperatures,

power consumption was conspicuously missing. In terms of scoring a VCSs

efficiency, power consumption is required because it constitutes a significant

operational cost and it can be measured. This section illustrates a procedure

for modeling power consumption of the VCS’s fans and compressor shown

in Figure 2.2. Since these are generic components, the power consumption

modeling procedure discussed here could likely be applied to other VCSs.

Building a model for the system’s total power consumption, given by Ta-

ble 2.2, involves assuming a relationship between system inputs and measure-

ments and the component power consumption outputs. The simplest com-

ponents to model are the fans; evaporator fan power, Ẇef , and condenser fan

power, Ẇcf , are assumed to be quadratic functions of their respective speed

commands, uef and ucf , given by (2.1).

Ẇef = fef (uef ) = ke,0 + ke,1uef + ke,2u
2
ef

Ẇcf = fcf (uef ) = kc,0 + kc,1ucf + kc,2u
2
cf

(2.1)

While Ẇef and Ẇcf depend exclusively on the fan input signal, the com-

pressor power consumption, Ẇkp is a function of its input signal, ukp, and

the pressures at the refrigerant inlet and outlet pipes, P1 and P2. Extend-

ing the approach to modeling fan power consumption, the compressor power

consumption is modeled using a second order polynomial function of ukp, P1,
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and P2 given in (2.2) [?].

Ẇkp = fef (ukp, P1, P2) = kkp,0 + kkp,1ukp + kkp,2P1 + kkp,3P2

+ kkp,4ukpP1 + kkp,5ukpP2 + kkp,6P1P2

+ kkp,7u
2
kp + kkp,8P

2
1 + kkp,9P

2
2

(2.2)

The fast electromechanical dynamics of the fans and compressor can be

neglected. Figure 2.9 shows the decomposition of the power model into evap-

orator fan, condenser fan, and compressor component subsystems. While the

power consumption of the fans is assumed to depend on the current input, the

compressor power model relies on a combination of the current compressor

input and P1 and P2 outputs generated by the Thermosys model.

Figure 2.9: Power modeling framework implemented in Thermosys. Adding
the power consumed by the fans and compressor gives the total power
consumption. The electronic expansion valve’s contribution is ignored.

On the system in Figure 2.2, the fan and compressor inputs each range

from 0 − 100%, or a command that produces between 0% and 100% of the

maximum capable speed. The data in in Figure 2.11 were collected by indi-

vidually ramping the fan speed inputs over their full ranges. Likewise, exper-

imental data generated for the compressor model was obtained by sweeping

over a region of compressor and valve commands shown in Figure 2.10. Co-

efficients in (2.1) and (2.2) were found using a least-squares regression.
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Figure 2.10: Sweep of valve and compressor inputs used to generate rich
ukp, P1, and P2 data for estimation of coefficients in (2.2).

Figure 2.11: Fan power consumption fitting results. The top plot shows a
second order polynomial relationship between ucf and Ẇcf , while the
bottom plot shows a similar relationship between uef and Ẇef .
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Figure 2.12: Compressor power consumption modeling results. The top
plot shows a comparison between compressor power data and a polynomial
fit consisting of P1, P2, and ukp terms. The bottom plot shows a
comparison between experimental data and power consumption dynamics
predicted in Thermosys.

The results from Figure 2.11 and Figure 2.12 show that the experimen-

tal data validates the simulation power consumption model in two ways:

the static fan models capture the quadratic trend in the experimental fan

power data and the simulation captures the fundamental compressor power

consumption dynamic trends observed in the pseudo random binary input

perturbation experiment.

The input-output relationships in this section help “score” system oper-

ation according to a performance index, the topic of the next section.

2.3 Vapor Compression System Performance

Quantification and Optimization

The process of scoring, or quantifying performance of any system requires

knowledge about its operational goals and its operating environment. Start-

ing with a general optimization problem formulation for dynamic systems,
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this section shows how to simplify the problem and classify optimization of

a vapor compression system’s operation. Section 2.3.1 gives an optimization

problem formulation that could describe a large class of dynamic systems.

Section 2.3.2 shows how to reduce an optimization problem for an expo-

nentially stable dynamic system into a corresponding steady state approx-

imation. Finally, Section 2.3.3 applies the methodology from Section 2.3.2

to derive minimization of a vapor compression system’s power consumption

and compares the resulting performance index data from simulation and ex-

periment.

2.3.1 Dynamic Optimization

Optimization problems such as the one shown below are convenient tools for

determining the ways a dynamic system’s performance could be quantified.

Eq. (2.3) gives a formulation where a performance index, S, should be min-

imized using a controllable input, v. Converting to a maximization problem

is simple; multiply S by -1; there is no loss of generality.

min
v

S(x, v, w)

s.t. ẋ = f(x, v, w), x(0) = x0

y = h(x)

φ(v, y) ≤ 0

ψ(v, y) = 0

(2.3)

S maps the nx dimensional state vector, x, the nv vector of controllable

inputs, v, and the nw vector of disturbances, w, to a scalar value that quan-

tifies performance. This fact can be expressed using the following notation:

S : Rnx × Rnv × Rnw 7→ R. The functions below S are constraints on the

optimization problem, which define relationships that must be met in order

for the performance score, S, to make sense. Below, the definitions of these

constraints are given:

f : Rnx×Rnv×Rnw 7→ Rnx represents a dynamic map. It is included here

because optimization of any physical system obeys these dynamics. In

simulation, f is a known function that must be solved numerically. In

experiment, f represents the system’s behavior.
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h : Rnx 7→ Rny represents a map from the state vector to measured system

outputs, y. A VCS’s y vector could include temperatures, pressures,

and power consumption.

φ : Rnv × Rny 7→ Rnφ φ represents a combination of measurements and

outputs that should not exceed an upper bound. As an example, φ can

be constructed to restrict feasible system inputs between their lower

and upper bound values.

ψ : Rnv × Rny 7→ Rnψ ψ represents an invariant combination of inputs

and outputs that must hold during operation. As an example, ψ can

be used to represent fixed speed inputs.

Optimization problems of the form in (2.3) can be difficult to solve, partic-

ularly if little is known about the f mapping. The next section focuses on

a simplification technique that is valid when f is governed by fast, exponen-

tially stable dynamics.

2.3.2 Steady State Optimization

This section converts the dynamic optimization problem from (2.3) into a

static one where the performance index is a function of v and w only. When

the dynamic equations in (2.3) are both fast and exponentially stable to

equilibrium point, x∗, the following steady state approximation can be made:

f(x∗, v, w) = 0. (2.4)

This approximation converts (2.3) from a problem of finding a function, v

over an indefinite range of time, t, to finding an optimal v at a single time

instant. Further assuming that x∗ is unique for a given pair of (v, w), x∗ can

be expressed as a function of the system inputs as in (2.5).

x∗ = l(v, w) (2.5)

Substituting (2.5) into S permits a new definition: J(v, w) ≡ S(x∗, v, w) =

S(l(v, w), v, w), where J : Rnv × Rnw 7→ R. A new equation can also be

defined as a map for y: g(v, w) ≡ h(x∗) = h(l(v, w)), where g : Rnv ×Rnw 7→
R. The resulting static objective function, J , and the output function, g,
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are now functions of the current controllable input and disturbance vectors

only. Because the constraints in (2.3) are functions of v and y, the φ and

ψ functions remain unchanged. Given these new definitions, the resulting

steady state optimization can be written according to (2.3.2). The dynamic

map, always equal to zero at steady state, is omitted.

min
v

J(v, w)

s.t. y = g(v, w)

φ(v, y) ≤ 0

ψ(v, y) = 0

(2.6)

In the next section, (2.6) is a reference for illustrating an optimization prob-

lem for the system in Figure 2.2.

2.3.3 Steady State Vapor Compression System Optimization

Typical goals of VCS operation include meeting a cooling demand, protecting

equipment, and minimizing total energy consumption. Optimizing operation

involves tradeoffs: cooling provided versus total energy consumption [35] or

regulating to a set point versus minimizing component wear [34].

This thesis focuses on minimization of total power consumption Ẇsys

as the steady state VCS performance index. This optimization is subject

to meeting a cooling capacity demand, Q̇evap,ref , and a minimum superheat,

TSH,ref , value for compressor protection [17, 12]. Because reducing superheat

to its minimum allowable value is optimal [29], the optimization problems in

this section will be subject to a constant superheat at the minimum value.

The performance index, J , the variables that constitute vectors, v, w,

y, the constraint functions φ and ψ, and the full optimization problem are

defined in Section 2.5.

To summarize, the four free inputs, ukp, ucf , uv, and uef , are divided

into separate tasks: ukp and uv are used to maintain Q̇evap = Q̇evap,ref and

TSH = TSH,ref , while up to 2 remaining fan speed inputs, ucf and uef , are used

for minimization of Ẇsys. Two optimization cases were studied to compare

the Thermosys simulation and with the experimental system:

Case 1 : uef is fixed at its maximum value and a single input, ucf , is allowed to
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change. Figure 2.13 shows the performance indexes generated in simu-

lation and experiment by testing different values of ucf . Using feedback

control, the cooling capacity and superheat set points were fixed at

Q̇evap,ref = 1kW and TSH,ref = 15◦C. The other uncontrollable inputs,

Tesfi and Tcsfi were also unchanged. This case helps visualize a funda-

mental tradeoff shown in Figure 2.14: if constant Q̇evap,ref and TSH,ref

are maintained, increasing the condenser fan’s power consumption de-

creases the compressor’s power consumption. The fact that a range

of ucf values can be chosen while meeting the performance objective

enables the formulation of an optimization problem.

Case 2 : Both uef and ucf can change. Figure 2.15 shows the performance

indexes generated in simulation and experiment by testing different

values of ucf and uef under the same conditions used in Case 1.

Figure 2.13 and Figure 2.15 exhibit 2 noticeable trends: both functions ap-

pear to be convex and can be approximately described by 2nd order polyno-

mials; and while there is disagreement on the minimum value of Ẇsys, the

functions have similar curvature. These trends give further confirmation that

success of optimization approaches in simulation might translate to similar

experimental results.

Figure 2.13: Performance index Ẇsys when uef is fixed at 100% and ucf can
change.
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Figure 2.14: Performance index Ẇsys is broken into its components: Ẇkp

and Ẇcf . As fan power increases with ucf , the amount of work required by
the compressor to meet a given load and superheat decreases. This same
relationship holds true for Case 2, where the total power varies as a
function of two fan speeds.

Figure 2.15: Performance index, Ẇsys, when both uef and ucf can change.
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2.4 Conclusion

Similarities between the dynamics and performance indexes of the Thermosys

model and experimental system indicate that the basic principles of VCS op-

eration are understood, a sensible normal operation regime has been defined,

and any analysis using the system model will be useful for confirmation of

experimental results. In addition, total power consumption establishes a

convex optimization problem where the unconstrained and global minimiz-

ing inputs are the same. Now that the optimization problems have been set

up, we turn to a discussion of the model free optimization techniques studied

in this thesis.

2.5 Supplemental Material

This section gives full details of the optimization problem that generates Fig-

ure 2.13 and Figure 2.15 in simulation and experiment. This study considers

only unconstrained optimization, leaving the constrained case of nontrivial

φ and ψ functions for future work. Below, the components of (2.3.2) are

described for the VCS optimization problem that is a focus of this study.

J : Total system power, Ẇsys.

v: Optimization inputs. In this study, the fan speed commands perform

optimization, giving v ≡ [ucf uef ]
T .

w: -Commanded output values, Q̇evap,ref and TSH,ref .

-Uncontrollable environmental conditions, Tesfi, Tcsfi, and relative hu-

midity, RH (not shown in Figure 2.1).

-Unknown changes to the system.

-In terms of known variables, w ≡ [Q̇evap,ref TSH,ref Tesfi Tcsfi RH]T .

y: -Performance objectives, temperatures, pressures, and flow rate. The

measurements used for this purpose are Q̇evap, TSH , T4, and T2−3.

-Inputs used in closed loop feedback. In this study, ukp and uv are used

to meet the commanded Q̇evap,ref and TSH,ref .

-To summarize, y = [ukp uv Q̇evap TSH T4 T2−3]T .
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φ: -Constraints on lower and upper bounds of the system’s inputs. This

study focuses exclusively on unconstrained optimization, which means

that φ can be eliminated.

ψ: -Invariant combinations of inputs and outputs. Case 1 requires using

ψ to set the following constraint: uef − uef,max = 0. In Case 2, ψ is

ignored.

It may seem counter-intuitive that inputs, ukp and uv, are system out-

puts. When governed by a control law to meet Q̇evap,ref and TSH , ukp and uv

no longer take arbitrary values. However, unlike the temperature or cooling

capacity outputs, which are system measurements by definition, any combi-

nation of nu system inputs can be used to meet nr commanded output values

provided that nr ≤ nu. In order to achieve equality between system outputs

and commanded outputs at steady state, the feedback control of ukp and uv

should include integral action.

min
v

Ẇsys(v, w)

s.t.



ukp

uv

Q̇evap

TSH

T4

T2−3


=



g1(v, w)

g2(v, w)

g3(v, w)

g4(v, w)

g5(v, w)

g6(v, w)


, g3(v, w) = Q̇evap,ref , g4(v, w) = TSH,ref

(2.7)

Although optimization is unconstrained, the equality constraint repre-

senting y = g(v, w) arises from the steady state approximation seen in Sec-

tion 2.3.2 and invoking the assumption that Q̇evap,ref and TSH,ref are always

within a feasible, but unknown range. For the single input optimization in

Figure 2.13, an additional constraint, uef − uef,max = 0 should be included

to show that the evaporator fan is always at max speed.
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CHAPTER 3

REAL-TIME OPTIMIZATION
STRATEGIES

Synonymous with steady state optimization, real-time optimization (RTO) is

a term frequently used to describe a control problem for a stable system that

operates near steady state for extended periods of time [20]. The previous

chapter showed that reducing dynamic optimization to RTO converted the

problem of finding an input function over time in (2.3) into a problem of

finding a single optimal input value in (2.6). This chapter addresses the

RTO problem by introducing the following techniques: extremum seeking

control, self-optimizing control, and their combination.

Figure 3.1 represents a system that could be reduced to its steady state

approximation if its dynamics are fast enough. The system has a performance

index, J , process measurements, y, disturbances, w, and controllable inputs,

v.

Figure 3.1: Nonlinear system with inputs and outputs that allow
application of real-time optimization.

This performance index often involves some trade-off between low and

high input values, which lead to a bowl-shaped steady-state optimization
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problem represented by Figure 3.2, which is similar to the performance in-

dex calibrations in Figure 2.13 and Figure 2.15. While RTO problems are

restricted to a steady state operation regime, the optimal input values can

still be shifted by low frequency components of w. Figure 3.2 represents a

typical effect of disturbances on a system’s optimal inputs and performance

index; the optimal v and the minimum or maximum J value are determined

by w.

Figure 3.2: Illustration of the effect of controllable inputs and disturbances
on a performance index.

Physical system models can be used to predict the optimal v for a given

w. But when w is not measurable because of cost, inputs, system aging, and

faults, there may be mismatch between the true optimal input and the one

chosen.

Where the effects of w are challenging to capture with system model

knowledge, extremum seeking control (ESC) is a possible solution. ESC

works in a “model free” fashion using the process described below and de-

picted in Figure 3.3.

- Perturbing v

- Numerically finding derivatives of J with respect to v

- Using the derivatives to find one of the plant’s local optima
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Figure 3.3: Summary of fundamental components of many extremum
seeking algorithms in the literature [1].

Once the ESC reaches achieves the necessary conditions for a local, uncon-

strained optimum in (3.1), it hovers around the optimal input for as long as

its perturbation signal continues.

∂J

∂v
= 0

∂2J

∂v2
� 0

(3.1)

When a disturbance changes the optimal input, the ESC reacts by adjusting

its gradient estimate until it again produces a v that achieves (3.1). In the

sections that follow, further details about the basic idea of extremum seeking

will be given and the algorithms used in future chapters will be developed.

In contrast to ESC, self-optimizing control (SOC) is a model-based opti-

mization method that exploits an equivalence between RTO and regulation

of a combination of process outputs to a constant set-point [20]. SOC is

implemented using a physical system model to perform an offline analysis of

mappings between disturbances and the optimal input. Once these mappings

are known, they can be related to changes in the process outputs.

A central focus of this chapter is testing unconstrained RTO approaches

using simple example systems. Because the previous chapter’s simulation

and experimental results revealed an approximately convex and quadratic

vapor compression system performance index, all of the example systems in
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this chapter are convex RTO problems and most are quadratic functions.

The chapter has the following organization: Section 3.1 introduces ex-

tremum seeking in the context of optimization and estimation, discusses

challenges to ESC performance, details relevant algorithms and tuning rules,

and evaluates ESC performance using example systems; Section 3.2 shows

how disturbances affect a system’s optimal input, introduces self-optimizing

control from [21], explains how a self-optimizing controller can be designed

using optimal process data and combined with extremum seeking, and eval-

uates SOC approaches using example systems. In all sections, simulation

parameters will be provided by tables preceding the plotted results. Section

3.3 offers concluding remarks.

For interested readers, all of the MATLAB code and simulation models

from this chapter can be accessed using the following URL:

https://uofi.app.box.com/s/nyehk5mj927vs2qa0um1006oxpydryuh

3.1 Extremum Seeking Fundamentals

The “control” in ESC is synonymous with optimization; ESC attempts to

regulate the system to zero gradient (3.1). Section 3.1.1 will develop the

control aspect of ESC and focus on convergence. Section 3.1.2 will give

details of a simple finite difference derivative estimation algorithm and then

develop the equations and tuning rules for the two algorithms considered

in this study: extremum seeking using LTI filters with demodulation and

extremum seeking using time-varying filters.

3.1.1 Control

3.1.1.1 Gradient Descent

Suppose that a system with performance index, J , and vector input, v ∈ Rnv ,

gives a vector output, z ∈ Rnv , such that z = ∂J
∂v

as in the figure below. In

implementing control, it is desired to achieve a local minimum of J(v).
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Figure 3.4: System that gives its gradient as an output.

Working in discrete-time, the input can be controlled to a local minimum

point by multiplying ẑ by a scaling matrix, Kg, and subtracting the product

from the current input, vk, to create a new input, vk+1. In continuous time,

the time derivative, v̇ is set equal to the scaled gradient. Both discrete and

continuous time cases are given by (3.2). The gain matrix, Kg, is a positive

definite matrix. Often, Kg is a diagonal matrix, which means that vk will

decrease by some amount proportional to the steepest direction of decrease

in J .
Discrete T ime : vk+1 = vk −Kgzk

Continuous T ime : v̇ = −Kgz
(3.2)

Suppose further that J can be represented by a quadratic function with

optimal input, v∗, such that J(v) = J0 + bTv+ 1
2
vTQv, where vT denotes the

transpose of the multidimensional vector, v, and v∗ = Q−1b. When Q = QT

and all of its eigenvalues are greater than zero, Q is positive definite (denoted

by Q � 0) and v∗ is a global minimum point.

A quadratic J(v) allows fairly straightforward convergence analyses using

the fact that z = Qv + b. In discrete time, starting with (3.2), and setting

ṽk ≡ vk−v∗, the convergence of the algorithm can be derived using the steps

in (3.3).

vk+1 = vk −Kg(Qvk + b)

rearranging...

vk+1 = (I −KgQ)vk −Kgb

Kgb = KgQQ
−1b = KgQv

∗

vk+1 − v∗ = (I −KgQ)vk −KgQv
∗ − v∗

⇒ ṽk+1 = (I −KgQ)ṽk

(3.3)
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The main result is the last line, which predicts that the error between the

current input, vk, and the optimal input, v∗, converges according to the

eigenvalues of (I −KgQ). This fact illustrates that when implementing gra-

dient descent, knowing the convergence rate requires an approximation of

Q. A similar analysis shows that the continuous time algorithm converges

according to (3.4), where ṽ ≡ v − v∗.

˙̃v(t) = −KgQv (3.4)

It is convenient to decompose Kg into a product of the Hessian inverse esti-

mate, Q̂−1, and a diagonal matrix, W , such that Kg = WQ̂−1. If Q̂−1 = Q−1,

then the convergence rates in (3.3) and (3.4) can be fixed by choosing W [28],

as shown in (3.5) for the discrete and continuous time cases. Below, Wd rep-

resents the discrete time version of W , while Wc represents the continuous

time version of W .

Discrete T ime : ṽk+1 = (I −WdQ̂
−1Q)ṽk ≈ (I −Wd)ṽk

Continuous T ime : ˙̃v = −WcQ̂
−1Qv ≈ −Wcṽ

(3.5)

The convergence rate of all inputs are governed by a single time constant,

τ , when Wc = 1
τ
I. In discrete time, choosing Wd = T

τ
I will have the same

effect, where T is the sample time of the discrete-time system.

3.1.1.2 Newton Descent

The previous section showed that Q must be approximately known in order

to design the matrix, Kg, while achieving a desired time constant, τ , for the

closed loop system’s convergence. Now suppose that a system similar to the

one in Figure 3.4 is given, with one major difference: the system outputs

both the gradient, z = ∂J
∂v

and the Hessian inverse, Γ = (∂
2J
∂v2

)−1 as in Figure

3.5.
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Figure 3.5: System that gives its first derivative and the inverse of its
matrix of second derivatives as outputs.

Using the analysis in (3.5) from Section 3.2, including the Γ output in the

control law allows specification of a convergence rate. Setting Kg = WdΓ in

the discrete-time case or Kg = WcΓ in the continuous time case gives (3.6).

The only difference between the analysis in this section and the analysis in

Section 3.1.1.1 is that here the Hessian inverse is assumed to be perfectly

known.
Discrete T ime : vk+1 = vk − TWdΓzk

Continuous T ime : v̇ = −WcΓz
(3.6)

Making the same assumption as in the previous section that f(v) = f0+bTv+
1
2
vTQu means that Γ = Q−1 is time-invariant, while zk = Qvk + b and z =

Qv+ b. Again using the definition of ṽ from the previous section, performing

convergence analyses on the systems in (3.6) shows that convergence can be

determined entirely by choice of the W matrix as in (3.7).

ṽk+1 = (I −Wd)ṽk

˙̃v(t) = −Wcṽ(t)
(3.7)

Using the Hessian inverse in the optimization law is known as Newton de-

scent, which the same as applying Newton-Raphson root finding to a function

defined by J ’s gradient vector, ∂J
∂v

. To show this, (3.8) applies the Newton-

Raphson method to finding zeros of f : Rn 7→ Rn, where x ∈ Rn.

xk+1 = xk −
∂f

∂x

−1

f(xk) (3.8)
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Substituting vk for xk and ∂J
∂v

for f(x) recovers the Newton descent algorithm.

While Newton descent can improve convergence properties, these im-

provements come with the expense of using a matrix inverse. For systems

where Γ is close to singular, Newton descent can lead to poor optimization

performance.

The guidelines for choosing a convergence rate given in Section 3.1.1.1 are

informative for choosing an extremum seeking control law. However, the sys-

tems in Figure 3.4 and Figure 3.5 are not physically realistic. The gradient,

z, and the Hessian inverse, Γ, are never available for direct measurement.

However, these variables can be estimated using output data. The design of

these estimators will be discussed in the next sections.

3.1.2 Including Estimation

The goal of extremum seeking estimation schemes is to effectively transform

the nonlinear plant equipped with a controllable input, v, and a performance

index output, J , into the plants in either Figure 3.4 or Figure 3.5, as shown

in Figure 3.6.

Figure 3.6: Combining the plant with an estimator creates a resulting
system similar to the ones in Figure 3.4 and Figure 3.5.
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Section 3.1.1 demonstrated that the minimum requirement for implemen-

tation of extremum seeking control is a system that has a gradient output.

Therefore, the first part of this discussion will focus on estimation of the

gradient using a simple approach.

Suppose J = f(v) is a scalar performance index output of a system with

scalar input, v. The gradient, ∂J
∂v

can be estimated by perturbing the system’s

input by a value, δ, and using the finite difference method [36] based on the

current output, Jk, and the previous output, Jk−1. Given a gradient estimate,

the control law from Section 3.1.1.1 can be applied. This process is described

by (3.9).

Perturbation step : vk−1 = vk−2 + δ

Estimator step :
∂J

∂v
≈ ẑ =

Jk−1 − Jk−2

δ

Gradient descent step : vk = vk−1 −Kgẑ

Set vk = vk−2 and repeat

(3.9)

In order to make the average perturbation value equal to zero over some

window of time, the sign of δ should be different from one time step to the

next. Figure 3.7 shows the finite difference algorithm applied to the function,

Jk = v2
k. While δ perturbation produces a square wave signal, the gradient

descent step drives the average value of the input to vk = 0.

Table 3.1: Parameters used to implement the finite difference based
extremum seeking algorithm in Figure 3.7.

Parameter Value

T 0.5

δ 0.05

Kg 0.1

v0 1
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Figure 3.7: Results of finite difference extremum seeking applied to a static
map, f(v) = v2. After an initial transient, the gradient estimate is able to
closely track the true value and find the global minimum input.

Eq. (3.10) shows that the algorithm in (3.9) can be extended to accom-

modate multiple inputs. For each input added, an additional perturbation

step is required. Here, δi changes the ith component of vk. A drawback of the

approach below is that the number of time steps required for the perturba-

tion procedure increases linearly with the number of inputs. Therefore, the

algorithm’s convergence speed decreases as the number of inputs increases.

vk ≡ [v1
k . . . vnk ]

Input 1 Perturbation step : vk−n = vk−(n+1) + δ1

Input 1 estimator step :
∂J

∂v1
≈ Jk − Jk−1

δ1

...

Input n Perturbation step : vk−1 = vk−2 + δn

Input n estimator step :
∂J

∂vn
≈ Jk − Jk−1

δn

ẑ =
[
∂J
∂v1

... ∂J
∂vn

]T

(3.10)
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Gradient descent step : vk = vk−1 −Kgẑ

Set vk = vk−(n+1) and repeat

The algorithm can also be modified to produce an estimate of both the

gradient, ẑ and the Hessian, Γ̂−1, at the cost of additional perturbations

before an input update. For the single input case, the algorithm is given by

(3.11).

First perturbation step : vk−2 = vk−3 + δ

Second perturbation step : vk−1 = vk−2 − δ

Gradient Estimator step :
∂J

∂v
≈ ẑ =

Jk−1 − 2Jk−2 + Jk−3

2δ

Hessian Estimator step :
∂2f

∂v2
≈ M̂ =

Jk−1 − 2Jk−2 + Jk−3

δ2

Newton descent step : vk = vk−1 −WdΓ̂ẑ

Set vk = vk−3 and repeat

(3.11)

For the general n input case, the number of terms in the Hessian matrix

is n(n+1)
2

, while the number of gradient terms is equal to n. For a Newton

update, the total number of terms required before a descent step increases

according to n + n(n+1)
2

. Simple reasoning has shown that increasing the

number of extremum seeking inputs can increase convergence time. The

next section will discuss other factors that can deteriorate extremum seeking

performance.

3.1.3 Effects of Noise, Dynamics, and Disturbances

The analyses of Section 3.1.2 disregarded complications to the derivative

estimation process arising from noise, dynamics, and disturbances that occur

in practice. If these factors are ignored in controller implementation, then

the extremum seeking algorithms may be acting on misleading information.

Noise

Noise on the performance index output is a result of random variations in

sensor readings and physical system behavior that obscure the true output

value (assuming that a true value exists). An issue with (3.9) is that Jk is

assumed to be a true representation of J ; using a single sample will place too

much weight on the measurement when J is noisy.
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Figure 3.8 shows that when the finite difference based extremum seeker

is applied to J = v2 with Gaussian noise added to the output, the controller

hovers around the minimizing input as the fluctuating gradient estimates

average to nearly zero.

Table 3.2: Parameters used to implement the finite difference based
extremum seeking algorithm in Figure 3.8.

Parameter Value

T 0.5

δ 0.05

Kg 0.03

v0 1

Figure 3.8: Finite difference extremum seeking applied to a static map with
noise added to the output. Compared to Figure 3.7, convergence is slower
and the optimal input is not always achieved.
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Comparing the parameters in Table 3.1 with Table 3.2, the gradient de-

scent gain has been reduced in Figure 3.8 in order to “average out” the effects

of measurement noise. While this strategy allows convergence to the optimal

input, there is a penalty on the convergence rate. One additional solution

that could be explored is to low pass filter J at the expense of using a larger

sampling time to wait for steady state before calculating a new gradient

estimate.

Nonlinear Dynamics

Up until this point, it has been assumed that extremum seeking acts on

static functions, i.e. the current output is a function of the current input.

In practice, extremum seeking is applied to systems that can generally be

described by (3.12). For such systems, the output’s time variation following

an input change must be accounted for in gradient estimation.

ẋ = f(x, v)

S = S(x, v)
(3.12)

For systems with exponentially stable dynamics, steady state is approached

as time goes to infinity. In practice, waiting for an infinite time to calculate

the derivatives means that the extremum seeking algorithm will never con-

verge. However, by defining an appropriate time-scale at which the system

converges close enough to steady state, (3.12) can be reduced to (3.13) using

the steady state approximation from the previous chapter.

0 = f(l(v), v)

J = S(l(v), v) = J(v)
(3.13)

Applying this strategy to the finite difference algorithm in (3.9) translates

to applying a step perturbation, δ, and waiting T seconds for the system to

settle, where the finite difference algorithm’s sample time, T , is long enough

for (3.12) to nearly reach steady state. As an example, consider the following

simple system given in (3.14).[
ẋ1

ẋ2

]
=

[
−10 0

0 −1

][
x1

x2

]
+

[
−10

−1

]
v

J = (e−x1 + ex2)− 2

(3.14)

The system’s slowest 2% settling time is approximately 4s. Setting T =
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5s and applying the finite difference extremum seeking method from the

previous section produces promising results shown in Figure 3.9.

Table 3.3: Parameters used to implement the finite difference based
extremum seeking algorithm in Figure 3.9.

Parameter Value

T 5

δ 0.05

Kg 0.2

v0 1

Figure 3.9: Finite difference extremum seeking applied to a dynamic system
with a well chosen sample time. Despite the presence of dynamics, the
optimizer is able to converge to the desired value.

Despite that the system is dynamic, waiting until the dynamics settle and

assuming static behavior allows the extremum seeking algorithm to reach
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the optimal input of v = 0. Figure 3.10 shows that when T is divided by

10, giving T = 0.5, the extremum seeking performance suffers because the

gradient is not accurately estimated.

Table 3.4: Parameters used to implement the finite difference based
extremum seeking algorithm in Figure 3.10.

Parameter Value

T 0.5

δ 0.05

Kg 0.2

v0 1

Figure 3.10: Finite difference extremum seeking applied to a dynamic
system with a poorly chosen sample time. The slow system dynamic does
not have sufficient time to settle, resulting in poor gradient estimates and
steady state error.
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Examining (3.14) shows why the ESC reached an incorrect steady state

value in Figure 3.10. The x1 component of the state vector settles after ap-

proximately 0.4s, meaning that the contribution of e−x1 will be accurately

estimated when T = 0.5. Meanwhile, the contribution of ex2 will be atten-

uated because the short sampling time means that there is insufficient time

for x2 to settle. Therefore, the finite difference algorithm believes that the

contribution of x2 is smaller than it is at true steady state and the conver-

gence is biased toward v > 0. By perturbing the system sufficiently slowly,

(3.12) behaves like (3.13) and the effects of dynamics can be circumvented

at the cost of slower convergence.

Disturbances

In this section, the plant’s derivatives have been assumed to be functions

of solely the system input, v. In practice (as shown in Figure 3.2), w exerts

influence on performance index as well. Consider the following system defined

by a quadratic function of v and w:

J = f(v, w) = v2 + vw +
1

2
w2

∂J

∂v
= 2v + w,

∂J

∂w
= v + w

(3.15)

Considering (3.15) in the context of (3.9), w may change between the

measurements and result in a change in J that is different from the one

produced by changing v alone, introducing model error. Figure 3.11 shows

that when w changes, the gradient estimate error at around 28s results in an

incorrect adjustment of the input. In addition to corrupting the gradient, the

action of w also changes the optimal value of v, meaning that the extremum

seeking algorithm must repeat its convergence to a new optimizing input.

Table 3.5: Parameters used to implement the finite difference based
extremum seeking algorithm in Figure 3.11.

Parameter Value

T 1

δ 0.05

Kg 0.2

v0 1
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Figure 3.11: Finite difference extremum seeking result for the system in
(3.15), where the action of a disturbance changes the optimal input. The
change in w results in a momentarily incorrect derivative estimate.

This section demonstrated that noise, dynamics, and disturbances can

trouble derivative estimation and place fundamental limitations on extremum

seeking performance. The effects of noise was reduced by decreasing Kg

and dynamics could be tolerated by increasing the perturbation period, T .

Reducing Kg can also mitigate model uncertainty arising from disturbances,

but reduces the speed of convergence to a new optimal input. The practical

challenges introduced by noise, dynamics, and disturbances are fundamental

limitations to extremum seeking performance that are easiest to see when

estimating the gradient using finite differences.

However, the finite difference based algorithm is a simplified version of

extremum seeking with a limited ability to handle measurement noise, as

seen in Figure 3.8. The fact that all practical systems have measurement

uncertainties motivates the exploration of more advanced extremum seeking

approaches.
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Relating Figure 3.3 to the discussions about gradient descent, Newton

descent, estimation of gradients, and handling of plant dynamics highlights

a three-part design process: first, determine a perturbation scheme that is

slow enough to allow the plant to settle to a steady state; next, perform the

gradient estimation at a speed slow enough to “average out” the effects of

noise; finally, design the gradient or Newton descent rate to be slower than

the combined perturbation and estimation scheme shown, for example, in

Figure 3.6. One of the most widely used gradient estimation algorithms in

the literature is based on classical LTI filter theory and signal processing [4].

A comparison between this approach, denoted gLTI and covered in (3.1.4.1),

and the finite difference algorithm, denoted FD, is given in Figure 3.12, where

both controllers are applied to the system, J = v2.

Table 3.6: Parameters for the finite difference (FD) and classical extremum
seeking (gLTI ) algorithms used in Figure 3.12.

FD gLTI

Parameter Value Parameter Value

T π/2 a1 0.1

δ 0.05 ω1 1

Kg 0.05 ωHPF 0.2

v0 1 ωLPF 0.2

Kg 0.025

η0 1

v̂0 1
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Figure 3.12: Using more advanced extremum seeking algorithms such as the
gLTI can improve the extremum seeking performance. While the finite
difference algorithm has noisy gradient estimates, the gLTI algorithm’s
estimate remains close to the true gradient.

While both the gLTI and FD algorithms converge at similar rates, gLTI ’s

input oscillates about the optimal value, indicating superior robustness to

noise and demonstrating the advantage of alternative gradient estimation

approaches. To understand why the gLTI improves on the FD ’s perfor-

mance, Section 3.1.4 explains the basics behind gLTI and its extension to

Newton descent, denoted nLTI. Section 3.1.5 will detail gradient, gTV, and

Newton, nTV, extremum seeking algorithms using time varying recursive

least squares filters that offer additional flexibility in the perturbation and

gradient estimation approaches.

46



3.1.4 Extremum Seeking Using LTI Filters and Demodulation

Using LTI filters with demodulation for derivative estimation is one of the

most recognizable and popular extremum seeking schemes in the literature

[1]. A central reason for its attractiveness is that the gLTI ’s basic principles

of operation are tractable using a combination of harmonic analysis and

frequency domain filter design.

Similar to the finite difference method in the previous sections, estimation

of first and second order derivatives requires the addition of a perturbation

signal, d(t), and a method for extracting gradient and Hessian information

from the output signal. Figure 3.13 shows a possible scheme for estimating

the first and second derivatives of a static map represented by J = f(v). As

the analysis based on [4] will show, the system below achieves (on average)

the properties of Figure 3.6 to which gradient or Newton descent from Section

3.1.1.1 and Section 3.1.1.2 apply. Only the gLTI approach will be described

in detail. For further information about estimation of the Hessian for Newton

descent, consult [6].

3.1.4.1 Algorithm Overview

Figure 3.13: Scheme based on LTI filters with demodulation for estimation
of the gradient, ẑ, and the Hessian inverse, Γ̂.
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In Figure 3.13, v̂ represents the nominal system input about which pertur-

bations are added. The total input, v = v̂ + d(t), is fed to the plant, which

produces an output signal, J . The signal, d(t) represents an Rn × R 7→ Rn

vector of sine waves such that d(t) = [a1sin(ω1t) . . . ansin(ωnt)]. A simpli-

fied explanation of the gradient estimation process involves assuming that

the static map can be locally represented by the first order Taylor series in

(3.16).

J = f(v) ≈ f(v̂) +
∂J

∂v

T

d(t) (3.16)

Eq. (3.16) shows that J is approximately the sum of a constant compo-

nent, f(v̂) and an oscillating component, ∂J
∂v

T
d(t). If the high pass filter’s cut-

off frequency satisfies ωHPF << ωi,min, where ωi,min represents the smallest

perturbation frequency, then the oscillating component of the plant output

will not be significantly attenuated. The high pass filter estimates η ≈ J(v̂),

the constant term in the output signal, and removes it before demodulation

by a vector of sine waves, M(t) = [ 2
a1
sin(ω1t) . . .

2
an
sin(ωnt)]

T . Multiplying

by M(t) produces a vector of harmonic terms carrying signals proportional

to the gradient components as shown in (3.17).

∂J

∂v

T

d(t)M(t) = (
n∑
i=1

aisin(ωit)
∂J

∂vi
)[

2

a1

sin(ω1t) . . .
2

an
sin(ωnt)]

T (3.17)

Using the trigonometric identity, sin(ωit)sin(ωjt) = 1
2
[cos((ωi + ωj)t) +

cos((ωi−ωj)t)], a constant 1
2

term emerges from demodulation when ωi = ωj.

Multiplication by 2
ai

in M(t) produces a constant estimate of the gradient

vector, ∂J
∂v

. The remaining terms in (3.17) are oscillating as in (3.18).

∂J

∂v

T

d(t)M(t) ≈ ∂J

∂v
+ (oscillating terms) (3.18)

When ωLPF << {minimum frequency of oscillating terms}, low pass

filter attenuates the oscillating terms, producing ẑ ≈ ∂J
∂v

. The low pass filter

on the Hessian estimation side performs a similar function by accounting for

the Harmonics present in the N(t)(J − η) signal. Given the estimation of ẑ,

continuous time gradient descent can be implemented according to (3.2).

Understanding the operation of the Newton descent algorithm requires

beginning with a second order approximation to f(v). To estimate Γ̂, ad-
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ditional steps beyond demodulation, low pass filtering, and direct inver-

sion are required. The Hessian estimate, Q̂, produced by the scheme in

Figure 3.13 might be noisy and poorly conditioned. The authors in [37]

used regularization techniques, shown by Q̂r = proj{Q̂,∆} in Figure 3.13,

to address ill conditioned Hessians. Authors in [6] proposed a dynamic

Hessian inversion scheme to avoid direct inversion of a singular Q̂, where
˙̂
Γ = ωRICΓ̂− ωRICΓ̂Q̂Γ̂. Both approaches are discussed in the next section.

Given an introduction to the basic operational principles of the gLTI

algorithm, full controller equations and tuning rules are provided in Section

3.1.4.2.

3.1.4.2 Controller Equations and Tuning Rules

In this section, the equations and tuning rules for gradient descent, gLTI,

and Newton descent, nLTI, algorithms are presented for the general case of

n system inputs in (3.19) [4, 6]. These equations can be used to implement

the algorithms on an analog circuit or a computer program equipped with a

differential equation solver. A discrete time version of the algorithm is also

available, though this section considers the continuous time case only. The

variables with 0 subscripts denote initial conditions for the controller states.

Performance Index Output :

J = J(v)

Perturbation :

v = v̂ + d(t)

d =
[
a1sin(ω1t− φ1) . . . ansin(ωnt− φn)

]
Derivative Estimation :

ξ̇ = −ωLPF ξ + ωLPF (J − η)M

η̇ = −ωHPFη + ηJ

˙̂
Q = −ωLPF Q̂+ ωLPFN(J − η)

(3.19)
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Hessian Regularization :

Q̂r = proj{Q̂,∆},∆ ≡ {Q ∈ Sn : Q � δI}

proj{Q̂,∆} :

Q̂ = V ΛV ∗

Λi = max{Λi, δ}, i = {1, . . . , n}

Q̂r = V ΛV ∗

Dynamic Inversion :

˙̂
Γ = ωRICΓ̂− ωRICΓ̂Q̂rΓ̂

Demodulation :

M =
[

2
a1
sin(ω1t) . . . 2

an
sin(ωnt)

]
Ni,i =

16

a2
i

(sin2(ωit− φi)−
1

2
)

Ni,j =
4

aiaj
sin(ωit− φi)sin(ωjt− φj) i 6= j

Descent :

˙̂v = −WcΓ̂ẑ

Initialization :

v̂(0) = v̂0, ẑ(0) = ẑ0, η(0) = η0, Q̂(0) = Q̂0 � 0, Γ̂(0) = Q̂−1
0

In (3.19), φi are phase lags, Sn is the set of real symmetric matrices, and

� is a non strict matrix inequality.

The gLTI controller can be recovered from the equations above by setting

ωRIC = 0, Γ̂0 to a best guess of the Hessian inverse, and Wc to the desired

convergence rate. To see why, setting ωRIC means that
˙̂
Γ = 0 and Γ̂ will

not be changed from its initial value, which forms part of Kg. The following

tuning heuristics based on [38] and [17] can be used to design gLTI and nLTI

controllers. Because thenTV ’s tuning procedure is more restrictive than the

gTV ’s, tuning rules specific to the Newton algorithm will be indicated by

italics.

1. Perturbation and Demodulation: Dither frequencies should be as

high as possible while keeping the steady state approximation valid.

Let τCL from Section A.2 define the plant’s 2% settling time. A corre-

sponding estimate of the closed loop steady-state frequency threshold

is ωss = 2π/τCL. The ESC’s largest perturbation frequency, wmax, is
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separated from ωss by a small positive constant, 0 < σ ≤ 1, to en-

sure that the extremum seeking perturbation acts in a sufficiently low

frequency range.

wmax = σωss (3.20)

Next, dither frequencies should be distinct because each one carries a

component of the gradient vector. Upon choosing ωmax, the remaining

frequencies, indexed by distinct (i, j, k, l) should enhance identification

of the gradient estimates on each channel [17]. The conditions in (3.21)

can be derived by expanding the signal components in (3.17) and using

trigonometric identities to identify bias terms that would corrupt the

gradient estimate.

ωmax ≥ ωi

ωi 6= ωj

ωi 6= 2ωj

ωi 6= ωj + ωk

(3.21)

nLTI Restrictions
ωi 6= 3ωj

ωi 6=
1

2
(ωj + ωk)

ωi 6= ωj + ωk

ωi 6= ωj + ωk ± ωl

(3.22)

These conditions on the dither frequency selection lead to a constrained

optimization problem given in (3.23). In each case, the objective func-

tions are given by ΩgLTI(•) as in (3.24) and ΩnLTI(•) as in (3.25). The

goal is to maximize the minimum difference in conflicting harmonics of

the demodulated signal.

max[
ω1 . . . ωn

] Ω(
[
ω1 . . . ωn

]
)

s.t. ωi ≤ ωmax

− ωi ≤ 0

(3.23)

ΩgLTI = min{ωi, ωi − ωj, ωi − 2ωj, ωi − (ωj + ωk)} (3.24)
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ΩnLTI = min{ΩgLTI(
[
ω1 . . . ωn

]
), ωi − 3ωj, ωi −

1

2
(ωj + ωk),

ωi − (ωj + ωk ± ωl)}
(3.25)

For the case of single input extremum seeking, choosing ω1 = ωmax

is optimal. However, as the number of inputs increases, the dither

frequency selection process is not so easy. Once frequencies have been

selected, the resulting perturbation time scale is given by the slowest

harmonic that must be filtered from the performance index output

signal.

τPert =
2π

Ω(
[
ω∗1 . . . ω

∗
n

]
)

(3.26)

The perturbation amplitudes for each channel, ai, are intuitively chosen

large enough to produce a noticeable change in the output, J , but

small enough to converge to a reasonable neighborhood of the optimal

input. Delays in the perturbation signals, φ1, . . . , φn can be chosen to

compensate for known delays in the plant.

2. Estimation: The high-pass and low-pass filter cutoff frequencies are

chosen using a small positive constant, µ, and the optimal value of the

dither frequency objective function, Ω(
[
ω∗1 . . . ω

∗
n

]
), as in (3.27).

ωHPF = ωLPF = µΩ(
[
ω∗1 . . . ω

∗
n

]
) (3.27)

The resulting estimation time scale is given by (3.28).

τEST =
2π

µΩ(
[
ω∗1 . . . ω

∗
n)
]
)

(3.28)

nLTI Restrictions

The Newton based ESC algorithm requires selection of a Ricatti equa-

tion frequency, ωRIC , which must be separated from ωLPF by another

positive constant, 0 ≤ γ ≤ 1, as in (3.29).

ωRIC = γωLPF (3.29)

The convergence of the Hessian inverse estimation scheme is sensitive
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to the value of ωRIC . A small ωRIC results in an accurate Hessian

estimate, but slow convergence. Choosing ωRIC too large can cause

instability, especially when the measurement of J is noisy.

3. Regularization [37]: Regularization is a term for modifying a Hessian

that is known to have incorrect properties. For instance, if a Hessian

is supposed to be positive definite but the estimate is not, then regu-

larization can be used to convert the Hessian estimate into a positive

definite matrix. The regularization algorithm from (3.19) projects the

Hessian estimate onto the set of matrices with a minimum eigenvalue

greater than or equal to δ.

Thus, tuning the regularization involves choosing δ, the lower bound

eigenvalue of the Q̂ estimate. For systems where the Hessian is known

to be positive definite, δ ≥ 0 should hold. Information from a system

model can be exploited to choose a reasonable δ > 0 that places an

upper limit on the descent rate.

4. Descent: In (3.19), the gradient descent gain is presented using the

decomposition from (3.5): Kg = WcΓ̂. While Γ̂ = Γ̂0 for the gLTI

algorithm, the nLTI algorithm continuously provides a new estimate

of Γ̂.

5. Initialization: Reasonable values must be chosen for the initial input,

v̂0, according to the plant inputs. The high pass filter state, η0, should

be initialized to a guess of J . Setting ẑ0 = 0 is logical because the

controller should be initialized at the best guess of the optimal input.

nLTI Initialization

If there is significant uncertainty about the system’s Hessian, Q̂0 = Γ̂−1
0

can be initialized to an unrealistically large value to prevent the Newton

algorithm’s gain, Kg = WcΓ̂, from being too large once the controller

is activated. The nLTI algorithm compensates by correcting Γ̂.

Choosing appropriate dither frequencies affects the rest of the controller

design. Practical modifications to these algorithms have included using in-

dividual band pass filters in place of a high pass filter [14, 39, 40], different

low pass filter designs, and other ways of regularizing the Hessian [12].

Example System
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To visualize and compare the gLTI and nLTI algorithms, they are applied

to the static map, J(v) = v2. Setting Γ̂0 to a small initial value means

that the nLTI ’s convergence rate starts slow. However, nLTI can adjust its

Γ̂ estimate to achieve the desired convergence rate, Kg, used by the gLTI

algorithm.

Table 3.7: Parameters for the gradient descent (gLTI ) and Newton descent
nLTI classical extremum seeking algorithms used in Figure 3.14.

gLTI nLTI

Parameter Value Parameter Value

a1 0.1 a1 0.1

ω1 1 ω1 1

ωHPF 0.2 ωHPF 0.05

ωLPF 0.2 ωLPF 0.05

Kg 0.025 ωRIC 0.05

η0 1 η0 1

v̂0 1 v̂0 1

Wc 1/50

Γ̂0 0.05

δ 0
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Figure 3.14: Comparison between the gLTI and nLTI algorithms. While
the optimization gain must be known a-priori for the gLTI algorithm, the
nLTI algorithm chooses its gain automatically.

The results show that both controllers converge to the correct optimal

input value, but that the nLTI can do so without prior knowledge of the

performance index’s curvature. By contrast, the curvature must be known

in order to select Kg for the gradient based algorithm. The penalty paid

by the nLTI algorithm comes in convergence speed; nLTI is handicapped

by less prior knowledge of the system, illustrating a fundamental trade off

between the gradient based and Newton based approaches. To help address

this trade off and alleviate the burden of estimating additional parameters, a

time-varying derivative estimation approach is introduced in the next section.

3.1.5 Extremum Seeking with Time-Varying, Discrete Time
Filters

While the gLTI algorithm has been studied over the last 15 years [1], ex-

tremum seeking approaches using time-varying filters have emerged relatively

recently [3, 41, 2]. Unlike gLTI and nLTI, time-varying extremum seeking
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algorithms use regressions on the input/output data for derivative estima-

tion.

In this section, two regressions will be considered: a linear regression

and a quadratic regression. Linear regression involves fitting a plane to the

performance index output data. The planes’s slope parameters can be set

equal to ẑ and used for gradient descent. This approach is denoted gTV.

The quadratic regression involves fitting a second order polynomial to per-

formance index output data. An estimate of both the gradient, ẑ, and the

Hessian, Q̂, can be constructed using the coefficients of the first and second

order regression terms, respectively. This latter approach is denoted nTV.

Section 3.1.5.1 will explain the basics of gTV operation to give context for

the details of controller equations and tuning rules in Section 3.1.5.2.

3.1.5.1 Algorithm Overview

Figure 3.15: Schematic of the gTV estimation scheme. A linear regression
using scaled inputs, qk predicts the performance index output, Ĵk, at the
current time step. The algorithm presented above is essentially a hybrid of
the approaches from [2] and [3].
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Figure 3.15 depicts the gTV ’s perturbation, estimation, and descent pro-

cesses. While the gTV algorithm relies on the total change in the scaled

input, qk+1 = qk − Kgẑk + dk, for perturbation, the gLTI and nLTI esti-

mation algorithms depicted in Figure 3.13 implicitly assume that the input

change comes only from the dither signal. Coupling the descent and pertur-

bation means that input changes from the gradient descent, Kgẑk, can rival

input changes from the dither signal, dk, without affecting the algorithm’s

ability to perform estimation. Following the perturbation, qk undergoes an

affine transformation, vk = Auqk+bu, to a value suited for input to the plant.

The fundamental assumption of Figure 3.15 is that the plant’s sampled

outputs, [Jk, .., Jk−N ], can be described by a linear combination of monomial

basis functions representing a constant term and the input, 1, q1, ...qn. The

linear combination of these basis functions forms a plane with y intercept,

x0,k, and slope parameters, x1,k, ..., xn,k, leading to the linear regression in

(3.30).


Ĵk
...

Ĵk−N

 =


1 q1,k . . . qn,k
...

1 q1,k−N . . . qn,k−N



x0,k

x1,k

...

xn,k

 = Ŷk = Ckxk (3.30)

The input changes from dk and −Kgẑ lead to variation in the system’s

output data, [Jk, ..., Jk−N ]T = Yk. The parameters, x0,k...xn,k, can be es-

timated by collecting at least N > n + 1 samples of Jk, and solving the

optimization problem in (3.31).

min
x

1

2

N∑
i=k−N

(Ji − Ĵi)2 =
1

2
(Yk − Ckx)T (Yk − Ckx)

∂

∂x

1

2
(Yk − Ckx)T (Yk − Ckx) = CT

k Ckxk − CTYk = 0

→ xk = (CT
k Ck)

−1CTYk

(3.31)

A major issue with this approach is that Jk = J(vk) needs to satisfy
∂2J
∂v2

> 0 to achieve optimality, though clearly the linear model predicts that
∂2J
∂v2

= 0n×n, where 0n×n is an n× n matrix of zeros. This fact demonstrates

that (3.30) is a local fit rather than a global one. The fit can be modified to

emphasize local data by introducing a weighting parameter, 0 < λ ≤ 1, to
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the performance index in (3.31). In (3.32), ΛW = diag[1 λ . . . λN ].

min
x

1

2

N∑
i=k−N

λN−i(Ji − Ĵi)2 =
1

2
(Yk − Ckx)TΛW (Yk − Ckx)

∂

∂x

1

2
(Yk − Ckx)TΛW (Yk − Ckx) = CT

k ΛWCkxk − CTΛWYk = 0

→ xk = (CT
k ΛWCk)

−1CTΛWYk
(3.32)

Using (3.32), errors due to data from the distant past will be discounted

because of the N − i term, rendering the fit responsive to changes in the

components of xk. Choosing λ closer to 1 helps preserve information from

measurements in the past, while choosing λ closer to 0 emphasizes recent

measurements.

While applying a time-dependent weighting factor makes the parame-

ters more adaptable to time variations, one issue with (3.32) is that both

the amount of data and the number of mathematical operations required to

perform optimization grows with each time step. A solution is to use the

recursive least-squares algorithm from [42], given by (3.33) and Figure 3.15,

which preserves the memory of previous samples in the current state estimate

without having to explicitly store the data.

ek = Jk − Ckxk
Kk = PkC

T
k (λI(N+1) + CkPkC

T
k )−1

xk+1 = xk +Kkek

Pk+1 =
1

λ
(I(1+n+

n(n+1)
2

) −KkCk)Pk

(3.33)

In (3.33), Pk represents the covariance of xk and Kk represents a gain

matrix. Here, Ck can be limited to a finite number of rows, N , while data

older than k −N need not be stored.

As shown in Figure 3.15, the current estimate, xk, is used to determine

Ĵk, the current estimate of Jk. The prediction error, ek = Jk − Ĵk = Jk −
Ckxk is used in (3.33) to update xk. The gradient, ẑk, can be extracted

from the coefficients corresponding to the first order polynomial terms in the

regression.

The scaled input, qk, related to the current input, vk, by the affine trans-

formation in (3.34) mapping qk ∈ [−1, 1]n 7→ vk ∈ [v, v]n, where v ∈ Rn
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represents the anticipated lower of vk and v ∈ Rn represents an anticipated

upper bound for vk. The lower and upper bounds, v and v, are chosen using

intuition and are not necessarily representative of physical limits. The scal-

ing is meant to improve numerical conditioning of the estimate because the

monomials, {1, q1,k, ..., qn,k} are orthogonal over the interval [−1, 1].

vk = Aqqk + bq

Aq ≡ diag
[
v1−v1

2
. . .

vn−vn
2

]
]

bq ≡
[
v1+v1

2
. . .

vn+vn
2

]T (3.34)

Extending the gTV algorithm to its nTV counterpart involves adding

second order monomial basis functions to the regression. This extension will

be covered in the next section, which gives full controller formulations for

both the gTV and nTV and guidelines for choosing tuning parameters. A

simple simulation example using the static map, J = v2, is given to help the

reader reproduce both the gTV and nTV controllers.

3.1.5.2 Controller Equations and Tuning Rules

Leveraging the discussion from the previous section, the equations governing

the gTV controller are succinctly presented in (3.35).

gTV Formulation

Jk = f(vk)

vk = Aqqk + bq

Aq ≡ diag
[
v1−v1

2
. . .

vn−vn
2

]
]

bq ≡
[
v1+v1

2
. . .

vn+vn
2

]T
ek =


Jk
...

Jk−N

−

Ĵk
...

Ĵk−N



Ĵk
...

Ĵk−N

 =


1 q1,k . . . qn,k
...

1 q1,k−N . . . qn,k−N



x0,k

x1,k

...

xn,k

 = Ckxk

(3.35)
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Kk = PkC
T
k (λI(N+1) + CkPkC

T
k )−1

xk+1 = xk +Kkek

Pk+1 =
1

λ
(I(1+n+

n(n+1)
2

) −KkCk)Pk

ẑk =
[
x0,k x1,k . . . xn,k

]T
qk+1 = qk −Kgẑk + dk

dk =
[
a1sin(ω1kT ) . . . ansin(ωnkT )

]T
Initial Conditions : P0, x0, q0, C0, Ĵ0

The next section will give details about the persistence of excitation con-

dition that must be met by dk, which means that the components of dk should

vary enough to make the columns of Ck linearly independent.

nTV Formulation

Here, the nTV ’s governing equations will be developed. A natural exten-

sion of the gTV parameterization is to fit a quadratic function to the plant’s

output data.

J(vk) ≈ c+ bTvk +
1

2
vTkQvk (3.36)

The performance index parameters, c ∈ R, b ∈ Rn, and Q ∈ Sn+ (where Sn+ is

the space of positive definite matrices) lead to a monomial parameterization

with 1 + n + n(n+1)
2

unknowns. As in the previous section, the regression is

performed with the scaled input, qk, which results in a modified quadratic

equation given by (3.37).

Ĵ(qk) ≈ c̄+ b̄T qk +
1

2
qTk Q̄qk

c̄ ≡ c+ bT bq +
1

2
bTq bq

b̄ ≡ bTAq + cTQAq

Q̄ ≡ ATq QAq

(3.37)

Extending the parameterization from [2] to the quadratic case, the unknown

polynomial coefficients can be parameterized using a regression based on

monomials of qk as in (3.38), where φ creates a vector of regression polyno-
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mials and xk ∈ R1+n+
n(n+1)

2 represents the polynomial coefficients.

Ĵ(qk) = φ(qk)
Txk

φ(qk) =
[
1 q1,k... qn,k q

2
1,k q1,kq2,k... q

2
n,k

]T (3.38)

Following the work of [43, 44], the numerical properties of (3.38) can be

improved by applying a transformation, V ∈ R(1+n+
n(n+1)

2
)×(1+n+

n(n+1)
2

), to

φ(qk) that results in a family of orthogonal polynomials. As an example,

given the set of Chebyshev polynomials that are orthogonal over [−1, 1]n,

{1, qk,1, . . . qk,n, 2q2
k,1 − 1, qk,1qk,2, . . . , 2q

2
k,n − 1}, the regression in (3.38) can

be modified such that xk represents the estimate of the Chebyshev basis

function coefficients as in (3.39).

Ĵ(qk) = (V φ(qk))
Txk (3.39)

For the case where qk ∈ R2, the transformation V φ(qk) is given by (3.40)

.

V φ(qk) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 2 0 0

0 0 0 0 1 0

−1 0 0 0 0 2





1

q1,k

q2,k

q2
1,k

q1,kq2,k

q2
2,k


(3.40)

The choice of V can be modified to perform regression over other families

of polynomials such as Legendre or Hermite.

Using a strategy from [41], the regression in (3.39) can be further general-

ized to the case in (3.41) where multiple rows of delayed regression monomials

are stacked into a matrix, Ck ∈ R(N+1)×(1+n+
n(n+1)

2
) to enhance observability
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of the unknown parameters, xk, at each time step.

yk = CkV
Txk

yk ≡


Ĵ(qk)

...

Ĵ(qk−N)



Ck ≡


φ(qk)

T

...

φ(qk−N)T


(3.41)

The regression in (3.41) admits the application of TV estimation algo-

rithms. Eq. (3.42) gives a modified version of (3.33) where V represents the

choice of polynomial basis functions, and Im represents the m ×m identity

matrix.
ek = yk − CkV Txk

Kk = PkV C
T
k (λI(N+1) + CkV

TPkV C
T
k )−1

xk+1 = xk +Kkek

Pk+1 =
1

λ
(I(1+n+

n(n+1)
2

) −KkCkV
T )Pk

(3.42)

The current parameter estimate, xk, contains the coefficients for the or-

thogonal polynomial regressors, CkV
T . Because it is easier to work with

monomials when calculating gradients, the vector of monomial coefficients,

xmk , is recovered using (3.43).

xmk = V Txk (3.43)

Estimates of c̄, b̄, and Q̄ can be directly extracted from xmk ; the first element

of xmk corresponds to ˆ̄c, the estimate of c̄, elements {2 : n+ 1} correspond to
ˆ̄b, the estimate of b̄, and elements {n+ 2 : 1 + n+ n(n+1)

2
} correspond to the

unique elements of ˆ̄Q, the estimate of Q̄. Referring to (3.37), the estimated

gradient of Ĵ can be computed according to (3.44).

ẑ = ˆ̄Qkqk + ˆ̄bk (3.44)

Next, the eigenvalues of ˆ̄Qk are projected onto the set, ∆, defined in the

nLTI section, to give the regularized Hessian estimate, ˆ̄Qr,k. Implementing
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the Hessian inverse scheme from [6] in the discrete time case involves inverting

the difference equation, (3.45), for Ĥ, a low pass filtered estimate of ˆ̄Qr,

Ĥk+1 = αĤk + (1− α) ˆ̄Qr,k. (3.45)

Setting Γ̂k = Ĥ−1
k and using the Woodbury matrix identity [42] gives the

Riccati equation for the filtered matrix inverse in (3.46).

Γk+1 =

( ˆ̄Qr,k)
−1, α = 0

1
α

Γ̂k − 1
α

Γ̂kMk(I
n +Mk

1
α

Γ̂kMk)
−1Mk

1
α

Γ̂k, α 6= 0

Mk ≡
√

(1− α) ˆ̄Qr,k

(3.46)

Given Γ̂k, the resulting Newton update is given by (3.47), where Wd = TWc

connects the discrete time Newton descent law to the continuous time Newton

descent law in (3.19).

qk+1 = qk −WdΓ̂k(
ˆ̄Qqk + ˆ̄b) + dk

vk = Aqqk + bq
(3.47)

The perturbation signal, dk, must be chosen such that the persistence of

excitation condition on Ck in (3.48) is met [42].

∃T & γ s.t.
1

T

k+T−1∑
i=k

V CT
k CkV

T > γI1+n+
n(n+1)

2 (3.48)

As in the gTV case, the perturbation signal, dk, is chosen to be a vector of

sine waves. Tuning rules will now be given for the gTV and nTV algorithms.

Additional guidelines for the nTV parameters will be indicated by italics.

1. Dither Frequency Selection: The most fundamental requirement

on the dither signal is that the persistence of excitation condition in

(3.48) is met. To achieve this requirement, no two frequencies, ωi and

ωj, i 6= j should be the same. Because the time varying extremum

seeking algorithms do not rely on harmonics and LTI filters to estimate

derivatives, there is more flexibility in choosing dither signals.

2. Filter Design: The main tuning parameter for the recursive least

squares algorithm is the “forgetting factor,” λ. Choosing a λ closer to
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1 results in slower derivative estimates because there is less distinction

between prediction errors in the past and present. However, there will

also be less sensitivity to noise. By contrast, choosing λ closer to 0

helps the algorithm adapt to changing parameters, but can increase

sensitivity to noise.

A secondary tuning parameter is the number of rows in Ck, which may

increase the observability of monomial coefficients [41].

nLTI estimator for Γ̂k: The sole tuning parameter for the Hessian

inverse estimator is 0 ≤ α < 1, which has an effect similar to ωRIC

from the nLTI case. As α approaches 0, the Hessian inverse estimator

approaches direct inversion. By contrast, choosing α close to 1 adds

robustness.

Initialization: As in the LTI filter based ESC case, the nominal input

should be chosen according to what is suitable for the plant. A large

initial covariance, P0, can help reduce the parameter estimation gain

at the start of the recursive least squares algorithm; x0 should set the

initial gradient to zero; C0 should be initialized according to nominal

input guesses; and Ĵ0 should be a guess of the initial performance index

output. For initialization of Γ̂0, use the same rules presented for the

nLTI case.

Simulation Example

Figure 3.16 shows the gTV and nTV algorithms acting on the static map,

Jk = v2
k. Similar to the corresponding results for the gLTI and nLTI algo-

rithms, the nTV algorithm automatically discovers the gTV ’s optimization

gain, despite a conservative initial guess of the system’s Hessian.
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Table 3.8: Parameters for the gTV and nTV extremum seeking algorithms
used in Figure 3.16.

gTV nTV

Parameter Value Parameter Value

a1 0.01 a1 0.01

ω1 1 ω1 1

λ 0.5 λ 0.5

N 4 N 10

T 0.1 T 0.1

Au 1 Au 1

bu 0 bu 0

Kg 0.25 Wd
1
50

v0 1 v0 1

x0 [1 0]T x0 [1 0 0]T

P0 I(2×2) P0 I(3×3)

Basis Tchebyshev

α 0.995

δ 0

Γ̂0 0.05
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Figure 3.16: Comparison between the gTV and nTV algorithms. Similar
to the comparison in Figure 3.14, while the optimization gain must be
known a-priori for the gTV algorithm, the nTV algorithm chooses its gain
automatically according to its estimate of the Hessian.

3.1.6 Algorithm Testing

At the close of Section 3.1.3, gLTI extremum seeking was demonstrated to be

less affected by measurement noise than its finite difference extremum seeking

counterpart in Figure 3.12. The suggestion was that assuming proper tuning

rules for the gLTI approach are followed, it is a form of extremum seeking

that is almost always preferred over finite differences.

Given the presentation of nLTI, gTV, and nTV algorithms in the previous

sections, is there preferred approach? To find out, this section assesses the

response of each algorithm to measurement noise and disturbances using

simulation examples. Dynamics are ignored because it is assumed that their

effects could be neglected by choosing sufficiently slow perturbation signals.

To establish a fair comparison between approaches, the maximum dither

frequency is 1rad/s.
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The following test systems can be classified by number of inputs and

whether the Hessian is a function of disturbances.

1. Single Input: All single input tests use (3.49), which is a function of

scalars, v and w.

J = v2 + vw +
1

2
w2 (3.49)

2. Dual Input, Constant ∂2J
∂v2

: Defining v ≡ [v1 v2]T and w ≡ [w1 w2]T ,
∂2J
∂v2

of the two input system in (3.50) does not change when w changes.

J =
1

2


u1

u2

w1

w2


T 

2 0 0.55 0.84

0 2 0.15 0.62

0.55 0.15 0 0

0.84 0.62 0 0



u1

u2

w1

w2

 (3.50)

3. Dual Input, Changing ∂2J
∂v2

: The static map given by (3.51) is iden-

tical to (3.50) when [w1 w2]T = [0 0]T . However, nonzero w values

change the entries of Q = ∂2J
∂v2

.

J =
1

2


u1

u2

w1

w2


T 

2− 0.6w1 0.2w1 + 0.2w2 0.55 0.84

0.2w1 + 0.2w2 2 + 0.6w2 0.15 0.62

0.55 0.15 0 0

0.84 0.62 0 0



u1

u2

w1

w2


(3.51)

According to the analyses in Section 3.1.1.1, (3.51) should change the

gradient descent algorithm’s convergence rate. By contrast, Newton

descent algorithms could conceivably react to the changing ∂2J
∂v2

values

by adjusting their gains once a change in the Hessian is detected.

3.1.6.1 Single Input Comparison Between gLTI and gTV

A central observation of Section 3.1.5.1 was that time-varying extremum

seeking algorithms were capable of using both the change of input from gra-

dient descent and the dither signal to estimate the gradient parameters. By

contrast, the gLTI algorithm assumes that only the dither perturbation to

the nominal input is responsible for input changes.
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To evaluate these claims, this section compares gLTI and gTV using

the single input example system for cases with and without measurement

noise. In each case, the algorithms were hand tuned to converge as quickly

as possible to the correct average optimal input without any overshoot. The

disturbance, w, steps from 0 to 2 at 50s to assess how the controllers react

to a change in the optimal v brought about by an unknown input.

Figure 3.17 shows that the gLTI algorithm’s convergence rate is funda-

mentally limited by its perturbation frequency. By contrast, the gTV is

able to converge almost within one perturbation cycle. Table 3.9 gives the

parameters used for the case of no additive noise.

Table 3.9: Parameters for the (gLTI ) and gTV used in Figure 3.17.

gLTI gTV

Parameter Value Parameter Value

a1 0.1 a1 0.01

ω1 1 ω1 1

ωHPF 0.2 λ 0.5

ωLPF 0.2 N 4

Kg 0.05 T 0.1

η0 1 Au 1

v̂0 1 bu 0

Kg 0.25

v0 1

x0 [1 0]T

P0 I(2×2)
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Figure 3.17: Comparison between gTV and gLTI. Estimation of the
gradient can happen arbitrarily fast for the gTV algorithm because both
the sine wave perturbation and the gradient descent contribute to
excitation of the system.

The start up transient from 0 ≤ t ≤ 50 confirms that the gTV algorithm

can converge to the optimizing input, v∗, almost within a single perturba-

tion cycle. The slower gLTI algorithm takes multiple perturbation cycles to

converge in both the 0 ≤ t ≤ 50 and 50 ≤ t ≤ 100 transients. While the

gTV algorithm handles the change to the optimal input much better than

the gLTI, it is hard to make any general claims about algorithm performance

because both algorithms are time varying dynamic systems.

The test scenario in Figure 3.17 was repeated for the case where noise was

added to J in order to obscure its true value. While the gLTI ’s convergence

rate remains the same, increasing the gTV ’s forgetting factor leads to a

corresponding reduction of Kg and a decrease in convergence rate shown

in Figure 3.18. Uncertainty in the performance index value decreases the

convergence rate in both cases, reducing the gTV ’s advantage of being able

to use the gradient descent change to the input for estimation.
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Table 3.10: Parameters for the (gLTI ) and gTV used in Figure 3.18.

gLTI gTV

Parameter Value Parameter Value

a1 0.1 a1 0.01

ω1 1 ω1 1

ωHPF 0.2 λ 0.9

ωLPF 0.2 N 4

Kg 0.05 T 0.1

η0 1 Au 1

v̂0 1 bu 0

Kg 0.15

v0 1

x0 [1 0]T

P0 I(2×2)

Figure 3.18: Comparison between gTV and gLTI convergence rates in the
presence of output noise. The gTV ’s convergence rate decreases relative to
Figure 3.17 to compensate for the uncertainty in performance index
measurements.
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3.1.6.2 Multi-Input Comparison Between gLTI and gTV

This section compares the extremum seeking algorithms in a dual input opti-

mization setting using the systems from (3.50) and (3.51) and the disturbance

scenario depicted in both Figure 3.19 and Figure 3.21.

In each case, the algorithms were tuned such that they converged as

quickly as possible without significant overshoot. Figure 3.19 and Figure

3.20 show that the gTV algorithm outperforms the gLTI in the multi-input

test. Because the gTV has full knowledge of the system input, it is able to

achieve a better gradient estimate and direct convergence to the optimal value

in Figure 3.20. By contrast, the gLTI intentionally decouples frequencies on

each channel using LTI filter design, which results in less accurate estimates

and curved input trajectories in Figure 3.20.

Comparing Table 3.10 and Table 3.11 confirms that increasing the number

of inputs decreases the estimation and convergence rates. In the gLTI case,

increasing the number of inputs means that slower filters must be used to

isolate the harmonics in different input channels. Increasing the number of

inputs for the gTV means that there is a longer time period necessary for

persistent excitation, leading to a decrease in λ.

Table 3.11: Parameters for the gLTI and gTV used in Figure 3.19, Figure
3.20, Figure 3.21, and Figure 3.22.

gLTI gTV

Parameter Value Parameter Value

a1 0.1 a1 0.01

[ω1 ω2]T [1 0.66]T [ω1 ω2]T [1 0.66]T

ωHPF 0.2 λ 0.95

ωLPF 0.2 N 4

Kg 0.023I2×2 T 0.1

η0 1 Au I2×2

v̂0 [1 − 1]T bu [0 0]T

Kg 0.05I2×2

v0 [1 − 1]T

x0 [0 0 0]T

P0 I(3×3)
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Figure 3.19: Time based comparison between the performance of gTV and
gLTI using the dual input system with a disturbance-invariant Hessian.
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Figure 3.20: Comparison between the gTV and gLTI input trajectories.

The case of a changing Hessian poses another challenge for algorithm

convergence because the performance index from 3.51 introduces coupling

between channels following the disturbance step in Figure 3.21. While the

convergence rates during the first transient are identical to those in Figure

3.19, the gLTI struggles when the cross coupling terms are introduced. By

contrast, the gTV algorithm continues to converge on smooth gradient de-

scent trajectories shown in Figure 3.22.
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Figure 3.21: Time based comparison between the gLTI and gTV
convergence rates using the dual input, changing Hessian system. The
changing Hessian results in a slower descent rate and indirect convergence
to the optimal inputs in both cases, but less so for the gTV.
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Figure 3.22: Comparison between the gLTI and gTV input trajectories
using the dual input, changing Hessian system. The gTV takes close to the
steepest descent path, while the gLTI takes this path following an initial
transient.

The results show that the gTV follows a steepest descent trajectory more

closely than gLTI in both cases. A reason for this is that the gTV explicitly

accounts for the coupling in its regression; both components of the input are

present in the estimation of Ĵk. In addition, using the recursive least squares

algorithm gives some guarantee of an optimal estimate because it attempts

to minimize the sum of square errors, while using LTI filters does not.

3.1.6.3 Single-Input Comparison Between gTV, nLTI, and nTV

The tests from Section 3.1.6.1 and Section 3.1.6.2 show that when tuned

properly, the gTV algorithm may be preferable to the gLTI in terms of

achievable convergence rate. In the this section, the gTV will be compared

to the Newton algorithms, nLTI and nTV. Assuming that the gTV best

represents the advantages of gradient descent ESC, comparing it to New-
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ton based algorithms will highlight trade offs between gradient and Newton

descent.

Figure 3.23 shows that the gTV algorithm’s prior knowledge of the sys-

tem’s Hessian helps it converge faster than both Newton descent algorithms;

in this sense, the gTV approach represents an upper bound on Newton de-

scent performance. Comparing the Newton algorithms shows that time vary-

ing estimation helps the nTV converge faster than nLTI.

Table 3.12: Parameters for the gTV, nLTI, and nTV extremum seeking
algorithms used in Figure 3.23 and Figure 3.24.

gTV nLTI nTV

Parameter Value Parameter Value Parameter Value

a1 0.01 a1 0.1 a1 0.01

ω1 1 ω1 1 ω1 1

λ 0.5 ωHPF 0.05 λ 0.5

N 4 ωLPF 0.05 N 10

T 0.1 ωRIC 0.05 T 0.1

Au 1 η0 1 Au 1

bu 0 v̂0 1 bu 0

Kg 0.25 Wc 1/50 Wd
1
50

v0 1 Γ̂0 0.05 v0 1

x0 [1 0]T δ 0 x0 [1 0 0]T

P0 I(2×2) P0 I(3×3)

Basis Tchebyshev

α 0.995

δ 0

Γ̂0 0.05
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Figure 3.23: Comparison between the gTV, nLTI, and nTV applied to the
system described by (3.49) in the absence of measurement noise. As seen in
Figure 3.14 and 3.16, the nLTI and nTV algorithms are able to converge to
the gTV ’s optimization gain during the first transient from 0s ≤ t ≤ 50s.
The gTV ’s fixed gain allows it to converge quickly to the optimal input,
while the optimization gains of the Newton algorithms are forced to
recalibrate.

Figure 3.24 shows results similar to Figure 3.23 despite the addition of

measurement noise to the output, J . The exception is that the Kg estimates

are no longer smooth, suggesting that Newton algorithms are sensitive to

measurement noise. To smooth the fluctuations in Kg, decrease the nLTI ’s
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ωRIC value and increase the nTV ’s α. Both of these approaches prolong

convergence times, but place less weight on faulty individual estimates.

Figure 3.24: Comparison between the gTV, nLTI, and nTV responses to
the system described by (3.49) with measurement noise acting on the
performance index output. Because of the output noise, neither the nLTI
nor the nTV clearly converge to the gTV ’s Kg value.

3.1.6.4 Multi-Input Comparison Between gTV, nLTI, and nTV

The results from Section 3.1.6.2 indicated that adding additional inputs ad-

versely affected ESC convergence rates because of the increase in unknown
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parameters. While there are 1 + n unknown parameters in gradient descent,

where n is the number of inputs, there are an additional n(n+1)
2

unknown

parameters in Newton descent. This fact partly explains why gTV can con-

verge most quickly of the three algorithms in Figure 3.25. Comparing the

Newton descent algorithms shows that relative to the nTV ’s performance,

the nLTI converges both more slowly and with more overshoot.

Table 3.13: Parameters for the gTV, nLTI, and nTV extremum seeking
algorithms used in Figure 3.25, Figure 3.26, Figure 3.27, Figure 3.28, Figure
3.29, Figure 3.30.

gTV nLTI nTV

Param Value Param Value Param Value

a1 [0.01 0.006]T a1 [0.1 0.1]T a1 [0.01 0.006]T

[ω1 ω2]T [1 0.6]T [ω1 ω2]T [1 0.6]T [ω1 ω2]T [1 0.6]T

λ 0.95 ωHPF 0.01 λ 0.999

N 4 ωLPF 0.01 N 10

T 0.1 ωRIC 0.01 T 0.1

Au I2×2 η0 1 Au I2×2

bu [0 0]T v̂0 [1 − 1]T bu [0 0]T

Kg 0.05I2×2 Wc
1
20

Wd
1
20

v0 [1 − 1]T Γ̂0 0.05 v0 [1 − 1]T

x0 [0 0 0]T δ 0 x0 [0 0 0 20 0 20]T

P0 I3×3 P0 I6×6

Basis Tchebyshev

α 0.999

δ 0

Γ̂0 0.05I2×2
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Figure 3.25: Comparison between the gTV, nLTI, and nTV for the case of
the constant Hessian system in (3.50). Similar to the results in Section
3.1.6.3, the gradient algorithm’s prior knowledge of the Hessian helps it
surpass the Newton descent algorithms’ convergence rates. Meanwhile, the
nTV ’s time varying filter results in a performance improvement over the
nLTI case.
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Figure 3.26: Comparison between optimization gains of the gTV, nLTI, and
nTV for the case of the constant Hessian performance index in (3.50).
While in Figure 3.24 the desired gain of the Newton algorithms were set
equal to the gain of the gTV algorithm, the desired gains were lower here
to prevent overshoot.
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Figure 3.27: Comparison of input trajectories for the gTV, nLTI, and nTV.
The nLTI ’s trajectories tend to be curved, indicating overshoot. By
contrast, the gTV and nTV converge almost directly to their respective
optimal inputs.

While knowing the Hessian helps calibrate the gTV ’s convergence time,

Figure 3.21 shows that when the Hessian is changed by disturbances, the

gTV ’s convergence rate may be adversely affected. The next simulation

results, applied to the system in (3.51), evaluates Newton descent as an

approach for recalibrating the optimization gain after the Hessian is altered.

While the first transient from 0 ≤ t ≤ 500 yields results that are identical

to those in Figure 3.25, the disturbance change from 500 ≤ t ≤ 1000 changes

the Hessian, slowing gTV ’s convergence rate. In principle, convergence rates

of the nTV and nLTI algorithms should surpass the gTV ’s convergence rate

if the Hessian change is significant enough. Here, only the nTV is able to

adjust its Kg matrix to keep up with the gTV approach, while the nLTI is

outperformed.
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Figure 3.28: Comparison of dual input gTV, nLTI, and nTV algorithms for
the case where the Hessian changes with disturbances. The nTV ’s ability
to adjust its optimization gains helps it converge almost as quickly as the
gTV, while the nLTI is outperformed by both time varying extremum
seeking approaches.

Figure 3.29 shows that the nTV adapts to the changing Hessian soon

after the disturbances occur. Meanwhile, the nLTI ’s convergence rate lags

behind the algorithms equipped with time varying parameter estimators.
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Figure 3.29: Comparison between optimization gains of the gTV, nLTI, and
nTV for the case of the changing Hessian static map in (3.50). The nTV is
able to discover the presence of off-diagonal terms in the Hessian and adjust
its gain matrix accordingly. Meanwhile, the nLTI produces transient
oscillations in K

(1,2)
g and struggles to keep up with the nTV ’s Kg estimate.
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Figure 3.30: Comparison between the gTV, nLTI, and nTV input
trajectories. The gTV and nTV approaches show similar convergence
trends during the second transient. By contrast, the nLTI ’s convergence
lags behind and exhibits overshoot.

The results of this section offered further evidence that ESC using time

varying parameter estimators is generally favorable to the classical demod-

ulation and LTI filter based approach. It is recommended that when there

is reasonable knowledge of system’s Hessian available, the gTV approach is

favorable. If Newton descent is required, using the nTV approach can lead

to improvements in performance relative to the nLTI case.

3.2 Self-Optimizing Control

When unknown disturbances change the optimal input, the ESC experiments

with the optimizing input and adapts it using a descent law. Another RTO

approach is to use a system model that predicts the optimal input using the

system’s current disturbance condition.
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However, disturbances that cannot be directly measured pose an obsta-

cle to implementation of model based control. Self-optimizing control solves

this problem by regulating a combination of a sufficient number of measure-

ments to a constant value [20]. Instead of having to measure the disturbances

directly, the measurements are strategically chosen using H in Figure 3.31

to detect these disturbances and force the input to correct for them indi-

rectly through regulation to the constant set point. A major challenge to

implementation of self-optimizing control is obtaining a sufficiently accurate

system model that captures the effects of process disturbances on the system

outputs.

Figure 3.31: Self-optimizing control block diagram. A combination of
measurements is regulated to zero in order to choose the optimal v.

Recently, however, a method introduced by [23] has shown that the self-

optimizing measurement combination can be found from historical process

output data when it reflects optimal choices of v. Such data could be gen-

erated first by using ESC to control v and then analyzing the data to find

H.

The goal of Section 3.2.1 is to develop sufficient background in self-

optimizing control for understanding the results in Chapter 5. Section 3.2.1.1

explains the relationship between disturbances and the optimal input for

a system described by a quadratic performance index. Using the results

from Section 3.2.1.1, Section 3.2.1.2 explains the theory behind “null space

method” self-optimizing control, which is capable of achieving optimal op-

eration provided that certain assumptions are met [21, 26]. Section 3.2.1.3

leverages theory from Section 3.2.1.2 to describe the process for implement-
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ing self-optimizing control using optimal input-output data collected from a

system.

While self-optimizing control has often been considered independent from

extremum seeking control, [28] demonstrated that the two approaches were

complementary. Section 3.2.1.4 tests their combination using the single input

plant in (3.49). The results highlight benefits and drawbacks of combining the

two real-time optimization approaches against implementing them separately.

3.2.1 Self-Optimizing Control Background

3.2.1.1 Mappings From Disturbances to Optimal Inputs

The systems (3.49) and (3.50) represent instances of quadratic functions in

the controllable input, v, and uncontrollable disturbance, w. Suppose that

given an arbitrary performance index in (3.52),

J = J(v, w), (3.52)

a nominal disturbance w, and a corresponding nominally optimal input, v∗,

the local optimality conditions are satisfied: ∂J
∂v

(v∗, w) = 0 and ∂2J
∂v2

(v∗, w) >

0. The performance index, J , can be approximated by a second order Taylor

series about the nominal input condition given in (3.53).

J ' J0 +
[
Jv Jw

] [∆v

∆w

]
+

1

2

[
∆v

∆w

]T [
Jvv Jvw

Jwv Jww

][
∆v

∆w

]
(3.53)

The variables, ∆w = w − w, ∆v = v − v∗, and ∆y = y − y∗, are deviations

from nominal conditions. Subscripts of J denote partial derivatives. For

instance, Jvw = ∂2J
∂v∂w

. Given that Jv = 0 at (v∗, w), (3.53) can be solved for

the change in the optimal input, ∆v∗ = v∗ − v∗, as a function of ∆w, giving

the linear relationship in (3.54).

∆v∗(∆w) = −J−1
vv Jvw∆w (3.54)

For the case where reliable measurements of w are available, one possible

optimization strategy is to directly map disturbance measurements to the

system inputs using (3.54). However, when disturbances cannot be measured,
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linearity of the local disturbance to optimal input map in (3.54) can be

exploited to implement a control law that achieves the same result. Section

3.2.1.2 shows how this can be done using system measurements.

3.2.1.2 Self-Optimizing Control Using the Nullspace Method

The null space method from [21] performs optimization compensation for

disturbances that are not measurable. It works best for systems where a

quadratic approximation like the one in (3.53) is fairly accurate. Suppose

that in addition to the output J in (3.52), there are other outputs, y, unre-

lated to the performance index, but possibly used for fault detection. Suppose

that these outputs are given by the static map in (3.55).

Nonlinear Output Equation :

y = h(x)

After making a steady state approximation :

x∗ = l(v, w)

y = h(l(v, w)) = g(v, w)

(3.55)

The map of outputs, y = g(v, w), related to the reduced system in (3.52) can

be linearized about v∗ and w to find the linear and steady state approxima-

tions of the input-output gain in (3.56).

∆y = Gv∆v +Gw∆w

Gv ≡
∂g

∂v
(v∗, w)

Gw ≡
∂g

∂w
(v∗, w)

(3.56)

By substituting (3.54) into (3.56), the change in optimal value of the process

outputs, ∆y∗ = y∗ − y∗, becomes a linear function of the disturbance, ∆w.

∆y∗ = (Gw −GvJ
−1
vv Jvw)∆w (3.57)

Defining F = (Gw −GvJ
−1
vv Jvw), (3.57) can be set to zero by combining the

available outputs, ∆y, using a matrix, H, that is in the left null space such
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that (3.58) holds.

HF = 0 (3.58)

Eq. (3.58) indicates that there must be an H such that F ∈ ker(H) in

order to guarantee zero loss. This will always be the case provided that

ny ≥ nv + nw. Additional conditions for achieving zero loss apply: there is

no measurement noise, the linear and convex approximation of the system

is equivalent to its actual behavior, and perfect tracking of H∆y = 0 is

achieved. While these assumptions may not be fully met, achieving close to

zero loss is an attractive prospect. Section 3.2.1.3 will exploit this property

to show that a self-optimizing H can be extracted from optimal output data.

3.2.1.3 Combining Self-Optimizing Control with Extremum Seeking
Control

The previous section showed that steady state linear systems with quadratic

performance indices and no measurement noise could be operated with zero

loss if H was chosen properly. Suppose now that instead of knowing a sys-

tem’s linear gains, Gv and Gw, and Hessian components, Jvv and Jvw, a

wide matrix of sampled output data from an optimal operation policy is

known. This data is contained in a matrix, Y ∗, which represents the out-

puts corresponding to achieving the optimal steady state input, v∗, for all

data points. When centered about its mean, Y ∗ becomes ∆Y ∗ = F∆W ,

where F is defined in the previous section and the columns of ∆W are the

disturbance vectors at each sample time. Optimal operation data Suppose

further that ny ≥ nv + nw. Eq. (3.58) shows that for the self-optimizing

H, HF∆W = H∆Y ∗ = 0, indicating that H can be found from centered

optimal data [23].

Using the following procedure from [23], the approximation of H, HSV D

can be extracted from nearly optimal plant data, Y .

1. Use an extremum seeking controller algorithm to generate optimal plant

data.

2. Determine the most significant unmeasurable system disturbances.

3. Once disturbances are believed to have sufficiently excited the system,

gather output data into a wide matrix, Y ∈ Rny×ndata .
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4. Find the mean value from each column of Y and center Y about this

mean value.

5. If measurements are dissimilar in magnitude, scale the data to achieve

similar magnitude changes. The matrix of scaled, centered data is given

by Yscl,0.

6. HSV D can be determined by performing a singular value decomposition

on the centered and scaled data according to (3.59).

Yscl,0 = UΣV T (3.59)

In the single input case, HT
SV D is the last column of U , which corre-

sponds to the minimum singular value of Yscl,0.

After using the procedure above to approximate H, two options are avail-

able. In both options, H combines y and a regulator is designed to maintain

H∆y at its mean value in the data. The first option involves no more steps.

The second possibility is to modify the H∆y set point from 0 to a value

that is closer to optimal using ESC. This strategy could be useful to reject

optimal input changes caused my unmodeled disturbances. It could also be

useful if Y contains suboptimal output data, in which case H is not the true

self-optimizing measurement combination.

Using combined extremum seeking and self-optimizing control may re-

quire a redesign of the extremum seeking controller, including changing the

optimization gain and the perturbation amplitude. If the closed loop system

time constant changes significantly as a result of changing the ESC’s input

from v to the H∆y set point, then the perturbation frequencies should be

adjusted.

A natural question about implementing self-optimizing control using op-

timal operation data and its combination with extremum seeking is how well

it performs in comparison to a baseline strategy with perfect model knowl-

edge and the true optimal measurement combination, Htrue. The following

section addresses this question using simulation examples.
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3.2.1.4 Evaluation of Self-Optimizing Control, Extremum Seeking Control,
and Their Combination

Self-optimizing control with perfect model knowledge represents an upper

bound on RTO performance when disturbances are not measurable and the

performance index in question is quadratic. This section investigates how

close extremum seeking control, data based self-optimizing control, and their

combination can get to this upper bound.

The properties of each real-time optimization approach are investigated

using the system from (3.49) with one modification: v and w act on a linear

system with a measurable output, y from (3.60).[
y1

y2

]
= Gvv +Gww =

[
−1

1

]
v +

[
1

1

]
w (3.60)

For the system in (3.49), Jvv = 2 and Jvw = 1. Solving for the null space

of F = (Gw − GvJ
−1
vv Jvw) and setting the Euclidean norm of H to 1 gives

H = [−0.32 0.95]. This is the optimal H with full knowledge of the system

model.

Given the appropriate H for implementation of the baseline controller,

Figure 3.32 compares the results of three real-time optimization approaches:

a gLTI implementing extremum seeking using v, denoted “gLTI alone”, self-

optimizing control with an incorrect initial set point, “Incorrect SOC ”, and

the incorrect SOC combined with extremum seeking control to find the op-

timal set point, denoted “SOC and ESC ”. Starting at 0, w changes to 2

after the first 50 seconds of the simulation to induce a change in the optimal

input. The self-optimizing regulator (represented by K in Figure 3.31) is an

integral controller with a transfer function, ki/GvH
s

, where ki shown in Table

3.14.

The results show that gLTI alone and SOC and ESC converge at similar

rates, but SOC and ESC deviates less from the baseline input and cost, vSOC

and JSOC , respectively, after the disturbance change. While the SOC and

ESC input changes after the disturbance, it does so because the disturbance

change affects the gradient estimate, not because there is a change in the

optimal input. By comparison, the gLTI alone must rediscover the optimal

input after the disturbance, a process which results in a longer convergence

time. Without extremum seeking control, the Incorrect SOC gets neither the
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initial optimal input correct, nor the optimal input following the disturbance,

showing that error in choosing the initial set point incurs a performance index

loss, J − JSOC .

Table 3.14: Parameters for the gLTI alone, Incorrect SOC, and SOC and
gLTI used in Figure 3.32.

gLTI alone Incorrect SOC SOC and gLTI

Parameter Value Parameter Value Parameter Value

a1 0.1 a1 − a1 0.08

ω1 1 ω1 − ω1 1

ωHPF 0.2 ωHPF − ωHPF 0.2

ωLPF 0.2 ωLPF − ωLPF 0.2

Kg 0.05 Kg − Kg 0.08

η0 1 η0 - η0 1

v̂0 1 r̂0 1.27 r̂0 1.27

H − H [−0.32 0.95] H [−0.32 0.95]

ki − ki 10 ki 10
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Figure 3.32: Comparison between self-optimizing control, extremum
seeking, combined extremum seeking and self-optimizing control, and
self-optimizing control with model error.

The next test studies how close self-optimizing control using optimal pro-

cess data can get to achieving zero loss. Before the test can be done, process

data must be generated and analyzed to synthesize an approximation of the

optimal measurement combination, denoted HSV D. Figure 3.33 shows results

from three steps in w that generate variations in the outputs, y1 and y2. A

notable feature of the simulation is that the minimizing input is not always

achieved. However, Figure 3.34 shows that the values of HSV D converge close
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to their true values in Htrue following the final disturbance change back to

w = 0.

Figure 3.33: Training data used to estimate the best measurement
combination.
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Figure 3.34: Evolution of the Hest components based on output data from
Figure 3.33.

Figure 3.35 shows a comparison between the following strategies:

- Self-optimizing control implemented using the measurement combina-

tion from data, denoted by SOCest.

- ESC combined with the true optimal measurement combination, de-

noted SOCtrue and ESC.

- ESC combined with the measurement combination from data, denoted

SOCest and ESC.

The results show that the approximate measurement combination’s perfor-

mance is almost indistinguishable from the baseline performance of SOC

using the true measurement combination. Likewise, using the approximate

implementation of SOC combined with ESC has performance similar to the

combined true SOC and ESC. This similarity indicates that the performance

sacrifice from using data for SOC implementation may be small, even when

suboptimal process data is included in the analysis.
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Table 3.15: Parameters for the data based SOC, true SOC and ESC, and
data based SOC and ESC used in Figure 3.35.

SOCest SOCtrue and ESC SOCest and ESC

Parameter Value Parameter Value Parameter Value

a1 − a1 0.08 a1 0.08

ω1 − ω1 1 ω1 1

ωHPF − ωHPF 0.2 ωHPF 0.2

ωLPF − ωLPF 0.2 ωLPF 0.2

Kg − Kg 0.075 Kg 0.08

η0 - η0 1 η0 1

r̂0 0 r̂0 1.23 r̂0 1.27

H [−0.26 0.97] H [−0.26 0.97] H [−0.32 0.95]

ki 10 ki 10 ki 10
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Figure 3.35: Comparison between data based SOC, true SOC and ESC,
and data based SOC and ESC.

3.3 Conclusions

This chapter discussed the fundamentals of extremum seeking, a model free

RTO approach, and self-optimizing control, which has both model free and

model based forms. A finite difference approach was used to introduce the

concept of and challenges to derivative estimation for extremum seeking.

Once intuition for the finite difference approach was established, sophisti-
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cated estimation approaches were introduced: a scheme using LTI filters

with demodulation and a scheme using a time varying recursive least squares

algorithm. These estimation approaches were paired with gradient and New-

ton descent ESC algorithms.

Simulation results from 3.1.6 indicated that implementing ESC using time

varying parameter estimators was favorable to LTI filters with demodulation.

When sufficient information is known about the curvature of a quadratic per-

formance index, gradient descent should be used for optimization because it

tends to converge faster than Newton descent alternatives, where the curva-

ture must be estimated. However, if there is significant uncertainty about

the curvature, then Newton descent is a viable solution.

In 3.2.1, self-optimizing control was introduced as both an alternative and

complementary addition to ESC. Nullspace method self-optimizing control

from [21] was shown to achieve zero loss under the assumption of perfect

model knowledge, a linear system, a quadratic performance index, and zero

measurement noise. Using the results from the null space method analysis,

the model free, data based self-optimizing control implementation from [23]

was introduced as both an optimization strategy on its own and in combina-

tion with extremum seeking.

Simulation results in Section 3.2.1.4 showed that combining self-optimizing

control and extremum seeking reduced the sensitivity of the optimization

problem by creating an ESC input with an optimal value that was invari-

ant to disturbances. Extremum seeking was also shown to be a potentially

effective method for generating optimal process data used to choose an ap-

proximately self-optimizing measurement combination.

This chapter helped develop intuition for real-time optimization approaches

used in the chapters that follow. Because the systems considered in this chap-

ter are easy to analyze, they are useful for gaining experience with extremum

seeking and self-optimizing control before implementation on a vapor com-

pression system. Like the simple examples seen earlier, implementation of

RTO approaches on a vapor compression system is fundamentally challenged

by measurement noise, disturbances, and dynamics.
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CHAPTER 4

EXTREMUM SEEKING ALGORITHMS
APPLIED TO A VAPOR COMPRESSION

SYSTEM

This chapter builds on the previous chapter’s results by evaluating the per-

formance of extremum seeking algorithms applied to vapor compression sys-

tems. Two claims have been made for quadratic performance indices: using

a time-varying filter for estimating derivatives improved on the performance

attained using LTI filters and demodulation; Newton descent should be used

only when insufficient information is available to tune the convergence rate

for gradient descent. These considerations lead to the following questions:

1. What are the challenges involved in moving from example systems with

no dynamics to vapor compression systems, which have complicated

nonlinear dynamics?

2. Do time varying filters improve derivative estimation rates and ESC

convergence speed when applied to vapor compression systems?

3. Is there significant enough uncertainty in the performance indices to

warrant using Newton descent over gradient descent?

4. What are the pros and cons of using multiple optimization inputs?

Partial answers can be found by considering recent developments in the

literature. In [17], the authors use the nLTI algorithm to choose optimal

vapor compression fan speeds, but did not clearly show the algorithm’s ability

to adjust Kg. In [45], the authors use a form of the gTV algorithm to choose

an optimal set point for the compressor’s exit refrigerant temperature. In

[11], the authors used a Thermosys model to show that a form of the gTV

algorithm outperformed its gLTI counterpart. In [12], the nLTI algorithm

was shown to outperform the gLTI algorithm for optimization of a chiller

system’s cooling tower fan speed and condenser water pump speed inputs.

To summarize the unexplored work in the area of ESC applied to VCSs:
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Newton descent has not been combined with time varying estimation and

used for RTO; Newton descent has not been explicitly shown to adapt to a

target optimization gain; and a discussion about weighting the pros and cons

of Newton ESC against those of gradient ESC is missing.

This chapter addresses the issues above using both the Thermosys model

and the experimental test rig from Chapter 2 as testing grounds for the gTV,

nLTI, and nTV extremum seeking algorithms. Both single input and dual

input cases shown in Chapter 2 are considered, where the performance index

is the total power consumption, Ẇsys, and the optimizing inputs are the fan

speeds, ucf and uef . Before each plot of results, the corresponding controller

parameters are given in a table.

4.1 Comparison of Algorithms in Simulation

In this section, the Thermosys simulation model from Chapter 2 is used as a

testbed to evaluate the three candidate extremum seeking algorithms. The

extremum seeking problem is varied in two ways:

1. Single input and dual input: Comparing single input and dual

input results helps illustrate challenges that arise from increasing the

number of optimization variables.

2. No noise versus realistic noise meant to mimic experimen-

tal conditions: For the noise free case, the major challenge facing

extremum seeking arises from the system dynamics. This challenge

can largely be addressed by choosing the perturbation signal wisely.

When realistic levels of measurement noise are introduced, convergence

is slowed because filter parameters must be adjusted to place less em-

phasis on individual measurements.

Unlike the simulation results in Chapter 3, this section ignores the effects

of disturbances. Instead, the algorithms are tested only by converging to the

optimal input(s) from a suboptimal starting point.
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4.1.1 Single Input

In Chapter 2, the single input VCS performance index evaluation showed

that a range of condenser fan speeds changed the system’s total power con-

sumption while Q̇evap or TSH were kept at their desired set points. Figure

4.1 partly illustrates the control strategy that makes this possible. While

the value of ucf may change, the ukp and uv inputs are adapted by the con-

troller (LQR+I) to meet the Q̇evap,ref and TSH set points. The abbreviation,

LQR+I, represents “linear quadratic regulator with integral action”. While

the uef input could change as well, it is kept constant until the next section,

which is focused on the dual input scenario.

Figure 4.1: Controller architecture for the single input extremum seeking
tests.

Before implementing extremum seeking, the combined closed loop LQR+I

and VCS 2% settling time was determined to be 240s in Table B.2.1, corre-

sponding to a maximum dither frequency of 0.02rad/s. To ensure that the

ESC algorithms operated at steady state, a conservative dither frequency of

0.005rad/s was chosen. A perturbation amplitude of 5% balances sufficient

excitation with limited process disruption. To make sense of the other tuning

parameters in the sections that follow, consult the tuning rules in Chapter 3.

4.1.1.1 No Noise Results

First, the simplest case of single input ESC and no measurement noise was

tested. One of the first considerations in determining a successful ESC ap-

plication to a VCS is to check if the Q̇evap,ref and the TSH,ref set points were
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satisfied. The top two plots in Figure 4.2 showing the Q̇evap and TSH trajec-

tories confirm that the LQR+I is successful in maintaining the desired set

points throughout the simulation.

The next consideration is to determine whether the performance index

was minimized. As in Section 3.1.6, the gTV starts with a predetermined

optimization gain shown in the bottom plot, while the nLTI and nTV begin

with overly conservative optimization gains. All three algorithms are shown

to converge to the dashed lines indicating the minimum Ẇsys in the plot on

the left and the minimizing ucf in the plot on the right.

Table 4.1: Parameters for the gTV, nLTI, and nTV extremum seeking
algorithms used in Figure 4.2.

gTV nLTI nTV

Param Value Param Value Param Value

a1 0.0036 a1 5 a1 0.0036

ω1 0.005 ω1 0.005 ω1 0.005

λ 0.993 ωHPF 0.001 λ 0.997

N 10 ωLPF 0.001 N 15

T 4 ωRIC 0.001 T 4

Au 27.5 η0 1 Au 27.5

bu −2.5 v̂0 [1 − 1]T bu −2.5

Kg 0.003 Wc
1

3500
Wd

1
3500

v0 0.091 Γ̂0 2 v0 0.091

x0 [0.4 0]T δ 0 x0 [3.52 − 3.44 37.8]T

P0 100I2×2 P0 100I3×3

Basis Tchebyshev

α 0.995

δ 0

Γ̂0 0.0264
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Figure 4.2: Noise-free simulation results for a single input comparison
between the gTV, nLTI, and nTV extremum seeking algorithms. The
results show that while the gradient descent’s prior knowledge of the
Hessian allows it to converge most quickly of the three approaches, the
nLTI and nTV algorithms converge to reasonable Hessian estimates after
2.5 and 5 hours respectively.

The gTV ’s gradient descent gain was designed according to the local

quadratic fit shown in Figure 2.13. Table 4.1 shows that the desired conver-

gence time constant was 3500s. To confirm that the Newton descent algo-

rithms can adjust the descent rate, the bottom plot shows that the nLTI and

nTV converge to the gTV ’s preprogrammed gain. Similar to the previous

chapter’s results, nTV ’s optimization gain converges noticeably faster and

with less overshoot. Although the nTV converges roughly an hour later than

the gTV, the delay from estimating the Hessian may be tolerable. However,

the next section shows that adding noise to the performance index output

increases the Newton descent’s convergence time.
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4.1.1.2 Realistic Noise Scenario Results

The simulations in Section 3.1.6 showed that noise degraded extremum seek-

ing performance. This section shows that the same holds true for ESC applied

to VCSs. Comparing Table 4.1 and Table 4.2 shows that the perturbation

signals remain the same, but the Newton descent algorithms’ filter parame-

ters need to be made more conservative when noise is added. Meanwhile, the

gTV ’s parameters were not affected. Figure 4.3 confirms that measurement

noise decreases the convergence rate for the nLTI and nTV simulations,

while the gTV ’s convergence rate is not significantly altered. Noise leads

to an increase in the dynamic Hessian inverse filter parameters for both the

nLTI and nTV, slowing convergence to the desired optimization gain, Kg,

in the bottom plot. Even though these parameters have been chosen more

conservatively, there are still fluctuations of the optimization gains following

convergence of the input. These fluctuations indicate sensitivity to noise.
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Table 4.2: Parameters for the gTV, nLTI, and nTV extremum seeking
algorithms used in Figure 4.3. With the exception of the gTV ’s Kg value,
all of the same parameters are used in Figure 4.11.

gTV nLTI nTV

Param Value Param Value Param Value

a1 0.0036 a1 5 a1 0.003

ω1 0.005 ω1 0.005 ω1 0.005

λ 0.993 ωHPF 0.0006 λ 0.997

N 10 ωLPF 0.0006 N 15

T 4 ωRIC 0.0006 T 4

Au 27.5 η0 1 Au 27.5

bu −2.5 v̂0 [1 − 1]T bu −2.5

Kg 0.003 Wc
1

3500
Wd

1
3500

v0 0.091 Γ̂0 2 v0 0.091

x0 [0.4 0]T δ 0 x0 [3.52 − 3.44 37.8]T

P0 100I2×2 P0 100I3×3

Basis Tchebyshev

α 0.998

δ 0

Γ̂0 0.0264
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Figure 4.3: Realistic simulation results for a single input comparison
between the gTV, nLTI, and nTV extremum seeking algorithms. The noise
forces the nLTI and nTV controllers to be more conservatively tuned than
in the noise free case, resulting in slower convergence times. In addition,
the gain estimate does not clearly settle by the end of the simulation.

4.1.2 Dual Input

Section 4.1.1 showed that nearly steady state behavior could be achieved by

choosing the perturbation signals wisely, but that noise on the performance

index output required tuning the derivative estimation filters conservatively.

Chapter 3 suggested that adding inputs further decreases convergence speed

because of an increase in unknown derivative parameters.

To test whether these trends appear in the dual input case, the control

approach depicted by Figure 4.4 was implemented. Both the evaporator

and condenser fans are now available for minimization of the performance

index. The same (LQR+I) governs ukp and uv to achieve the nominal cooling

capacity and superheat set points from Chapter 2. Similar to the single input

case, there is a range of ucf and uef inputs that allows the set points to be
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met.

Figure 4.4: Controller architecture for the dual input extremum seeking
tests.

Compared to the single input case, the maximum dither frequency was

increased from 0.005rad/s to 0.006rad/s for the ucf input. Using the dither

frequency selection optimization problem from the nLTI tuning rules resulted

in a dither frequency of 0.004rad/s for the uef input. These dither frequencies

were used for all three ESC approaches. Although both inputs were initially

perturbed at 5% of the speed command, the results that follow highlighted

an advantage to changing this amplitude for the uef input.

4.1.2.1 No Noise Results

Similar to the single input case, Figure 4.5 shows that the Q̇evap,ref and

TSH,ref set points are maintained at their desired values, despite the ac-

tion of multiple fan speeds. Convergence of the Newton algorithms’ inputs

shows that adding an additional input does increase convergence time. By

contrast, the gradient descent algorithm’s convergence is not significantly af-

fected. This is because the number of unknown parameters in the Newton

descent case have doubled from 3 to 6, while the number of gradient descent

parameters have increased from 2 to 3.
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Table 4.3: Parameters for the gTV, nLTI, and nTV extremum seeking
algorithms used in Figure 4.5. Many of the same parameters are to be used
in Figure 4.9.

gTV nLTI nTV

Param Value Param Value Param Value[
a1

a2

] [
0.0044

0.0029

] [
a1

a2

] [
5

5

] [
a1

a2

] [
0.0044

0.0029

]
[
ω1

ω2

] [
0.006

0.004

] [
ω1

ω2

] [
0.006

0.004

] [
ω1

ω2

] [
0.006

0.004

]
λ 0.99 ωHPF 0.0004 λ 0.9995

N 10 ωLPF 0.0004 N 15

T 4 ωRIC 0.0004 T 4

Au

[
27.5 0

0 27.5

]
η0 0.45 Au

[
27.5 0

0 27.5

]

bu

[
−2.5

22.5

]
v̂0

[
0

0

]
bu

[
−2.5

22.5

]
Kg 0.003I2×2 Wc

1
4000

Wd
1

4000

v0

[
0.09

−0.82

]
Γ̂0 2I2×2 v0

[
0.09

−0.82

]

x0

0.45

0

0

 δ 0 x0



256.7

−34.4

309.4

378.1

0

378.1


P0 100I3×3 P0 100I6×6

Basis Tchebyshev

α 0.999

δ 0

Γ̂0 0.05I2×2
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Figure 4.5: Simulation results for the comparison between dual input gTV,
gLTI, and nTV approaches. Despite issues with Kg convergence shown in
Figure 4.6, the optimizing inputs reach their desired values for both the
nLTI and nTV.

Figure 4.6 shows thatKg’s (2, 2) element corresponding to uef causes large

oscillations in the estimated gain for both the nLTI and nTV approaches.

To address this, the uef perturbation amplitude was increased to determine

if enhancing the level of excitation from uef in Ẇsys quells the oscillations,

while allowing the set point regulation to remain intact.
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Figure 4.6: Kg trajectories for the noise free, dual input comparison of
algorithms. The optimization gains do not settle to steady-state oscillations
until 40 hours of simulation time has elapsed.

Figure 4.7 shows that increasing the uef perturbation amplitude has an

insignificant effect on both the convergence time and the ability to meet the

desired Q̇evap,ref and TSH,ref set points. Figure 4.8 shows a decrease in the

steady state oscillations ofKg’s (2, 2) value for both the nLTI and nTV cases.

The oscillations seen in Figure 4.6 could be a result of a numerical issue in

the model or perhaps it is normal behavior when one diagonal component of

the Hessian is smaller in magnitude than the other.
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In addition to increasing the uef ’s dither signal amplitude, the Hessian

inverse filter coefficient could be chosen more conservatively. However, such

a choice would sacrifice convergence time.

Figure 4.7: Comparison of the three algorithms after the Newton
approaches’ uef amplitudes have been changed from 5% to 10%. The
amplitude change does not affect convergence time.
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Figure 4.8: Kg trajectories for the noise free, dual input comparison of
algorithms for the case where the Newton descent approaches’ evaporator
fan speed perturbation amplitudes have been doubled to introduce a more
noticeable effect on the performance index output. Using larger evaporator
fan perturbation amplitudes results in smaller oscillations of the Hessian
component estimates at steady state and allows the controller to converge
to an average Hessian estimate faster than in the previous case.

4.1.2.2 Realistic Noise Scenario Results

To test the effect of noise on the dual input approaches, the simulations in

this section used the same noise level from Figure 4.3. For the simulation in

Figure 4.9, the perturbation signals were identical to those given in Table 4.3,

except that the Newton algorithms’ uef perturbation amplitudes are 10%.

Between Figure 4.5 and Figure 4.9, the nTV ’s α parameter was increased

from 0.996 to 0.998. This increase results in a longer convergence time to

the desired Kg, but increases robustness to noise.

Figure 4.9 shows that adding output noise further troubles convergence

speed for the multi-input Newton descent algorithms and leads to fluctuations
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in the Kg estimates, despite that the perturbation amplitude increase from

the previous section has been kept in place. Even the nTV algorithm takes

approximately 5 hours to converge to the desired gain. Meanwhile, the gTV ’s

convergence is not significantly affected by noise, supporting the idea that it

should be used for implementation on VCSs whenever possible.

Figure 4.9: Realistic simulation results for the dual input case.

The output noise causes fluctuations in the Kg value for the nLTI con-

troller even after the performance index has apparently converged. While

the nTV algorithm experiences similar transients, they appear to be less
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severe, providing further evidence that using time-varying estimation pro-

vides a more favorable trade off between convergence speed and robustness

to noise.

Figure 4.10: Controller gains for the realistic dual input controller
simulation.

The Thermosys simulation results confirmed many of the trends observed

in the case studies from Chapter 3 because the gTV outperformed both the

nLTI and nTV algorithms in terms of convergence time. Given a desired

convergence rate, the Newton descent algorithms were able to successfully re-

produce the approximate Kg matrix used by the gradient descent controller.

A result absent from Chapter 3 was that increasing the perturbation am-

plitude can lead to a smoother estimate of the target Kg. This fact could

provide an interesting direction for future work where the perturbation am-

plitudes are large until the target Kg is reached, at which point they reduce in

magnitude and the algorithm becomes a gradient descent extremum seeking

approach.
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4.2 Experimental Results

This section serves two purposes: first, it provides confirmation that trends

observed in simulation hold in experiment; second, it raises questions about

how to transition from tuning of an extremum seeking algorithm in simulation

to tuning extremum seeking parameters for a real system. The latter con-

sideration raises the following fundamental questions for practical extremum

seeking implementation:

When can the exact same parameters from a simulation study be used

in experiment?

How reliable is the Thermosys modeling procedure for choosing an

optimization gain?

The issues that give rise to these questions are system dynamics, mea-

surement noise, and uncertainty about the performance index’s curvature.

In previous sections, system dynamics influenced the perturbation signal de-

sign, measurement noise affected derivative estimator design, and curvature

affected the optimization/control law.

A dynamic simulation might give reliable knowledge of system dynamics

that could be used to design the perturbation signal and a realistic level

of measurement noise can be added to inform tuning of filter parameters.

However, the Thermosys model’s performance index curvature is affected by

two factors that are difficult to control: the accuracy of component power

consumption modeling and the accuracy of modeling steady state outputs.

The next two sections give experimental results to provide recommenda-

tions for the issues above. Section 4.2.1 gTV ’s convergence rate against the

nTV ’s from the test in Figure 4.3. Section 4.2.2 shows convergence of the

dual input gTV.

4.2.1 Single Input gTV vs. nTV

This section helps verify the simulation results from Figure 4.3 and gives

insight into the tuning of ESC algorithms applied to a VCS. With the ex-

ception of the gTV, where Kg was set to 0.003 in simulation and 0.0036 in

experiment, the gTV and nTV parameters were the exact same in simula-

tion (see Table 4.2) and experiment. The gTV ’s gain value was chosen using
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a desired convergence time constant of 3500s and a Hessian estimate from

the single input calibration in Chapter 2.

The results in Figure 4.11 verify the realistic simulation in Figure 4.3;

the nTV converged near the target Kg with some fluctuations in the gain

values and the gTV ’s prior knowledge of the system Hessian obtained from

a calibration experiment led to faster gTV convergence.

Figure 4.11: Experimental results comparing the performance of the single
input gTV and nTV algorithms. Similar to the simulation results, the gTV
algorithm’s prior knowledge of the Hessian allows it to converge to the
optimizing input much faster than the nTV algorithm can.

The middle plots show agreement between nTV ’s convergence time in the

realistic simulation, about 5 hours, and in the experiment, about 6 hours (see

Figure 4.3). One reason for the discrepancy could be that the nTV estimates

a larger Hessian value than what was found in the calibration during Chapter

2.

A nice result is that both simulation and experiment agree on the trade

off between obtaining prior knowledge and achieving good convergence time.
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This fact confirms that a good enough dynamic model and a realistic mea-

surement noise scenario can lead to a sound choice of tuning parameters. But

while simulation results are reliable enough to predict the nTV ’s efficacy, can

they also supply reliable information about the performance index’s Hessian?

The fact that Kg increases by just 20% suggests that the simulation is

reliable enough. To confirm this, the gTV simulation in Figure 4.3 was

repeated with all of the same parameters in Table 4.2 except for Kg, which

was changed to 0.0036 to match the value used in experiment.

Figure 4.12 shows that when the same gTV algorithm is implemented in

simulation and experiment, the results are not significantly different. This

confirms that tuning the gTV in simulation can be valuable for implementing

the approach on a real system and avoiding the added convergence time of

Newton descent. While initializing nTV with the correct Hessian value would

improve the convergence time, simulation results from Chapter 3 showed that

even when the Hessian changes with disturbances, Newton descent is not

always advantageous.

Figure 4.12: Comparison between the gTV algorithm in simulation and
experiment. The gTV parameters are not changed between the two tests.
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It is somewhat surprising to see that the simulation model predicted the

optimal input with high precision, especially given that the minimum Ẇsys

values are different between simulation and experiment. Accurately predict-

ing this optimal input could be a result of modeling effort and some coinci-

dence. In modeling a system from scratch, it is hard to know whether the

final result will match the experiment. It should be clear that a match be-

tween optimal input values is unimportant for successful gTV convergence.

Instead, the only properties that matter are performance index curvature,

dynamics, and noise.

A final consideration is the opportunity cost of calibrating a system

model. While calibrating Kg using localized perturbations at steady state

conditions takes about 4-5 hours, calibrating the model involves several hours

of system run time without attempting any kind of optimization. Before de-

ploying extremum seeking on a real system, this fact should be considered.

4.2.2 Dual Input gTV

The goal of the dual input gTV experiment was to see if the Thermosys

model would be useful for dual input ESC design. To find a Kg for the

gTV that would give a convergence time constant of 4000s, the calibration

from Chapter 2 was used to generate an estimate of the Hessian. It happens

that this calibrated Hessian was not drastically different from the Hessian

estimate predicted by the dual input, noise free Kg results in Figure 4.8.

This fact suggests that like the single input case, a single Kg value would

lead to successful extremum seeking performance in both simulation and

experiment. Apart from Kg, the initial inputs, and the desired convergence

time, where

Kg = ΓWd =

[
9.44 −0.5503

−0.5503 30.95

]
1

4000
=

[
0.0024 0

0 0.0077

]
, (4.1)

the filter parameters and perturbation amplitude are the same in both

simulation (Table 4.3) and experiment.

Figure 4.13 confirms that the Q̇evap,ref and TSH,ref setpoints are met in

both cases. However, the fan perturbations seem to have a more significant

118



effect on steady state Q̇evap and TSH values in experiment than in simulation,

where the perturbations are barely noticeable in these outputs. However, the

desired Q̇evap,ref and TSH,ref values are attained on average in each case.

Figure 4.13: Comparison of implementations of the same gTV algorithm in
simulation and experiment. Although the gTV parameters are not changed
between the two tests, the results are similar.

Figure 4.14 confirms that convergence is successful in both experiment

and simulation, despite the fact that identical parameters were used for each

and there was risk of mismatch between the system and the model. There-

fore, the simulation model is able to capture the experimental system’s curva-

tures in both the ucf and uef directions. While both the ucf and uef inputs

contribute to minimizing power consumption, comparing Figure 4.14 with

Figure 4.12 shows that changing uef from 100% to its optimal value at about

75% does not produce a significant increase in energy savings. The dual in-

put case’s minimum Ẇsys is 0.44 kW . By comparison, the single input case

achieves a minimum Ẇsys of 0.45kW , an increase of about 2%. Choosing

the single input or dual input approach depends on whether the potential in-
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crease in energy savings is worth decreasing the convergence rate. How much

energy savings can be achieved depends on an individual system’s properties.

Figure 4.14: Comparison between the implementations of a gTV algorithm
in simulation and experiment. The gTV parameters are not changed
between the two tests.

4.3 Conclusions

This chapter’s simulation and experimental results support the following con-

clusions from Chapter 3: time varying filters are preferable to LTI filters with

demodulation for derivative estimation; gTV is preferable to both Newton

descent algorithms when sufficient information about the VCS’s performance

index’s curvature is available. Interestingly, helpful curvature information

came not just from the experimental calibrations in Chapter 2, but also from

the Thermosys model. However, building a model to capture curvature takes

effort and system run time. When such an effort or wasted runtime is un-

desirable, Newton descent is an attractive option. Simulation results show
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that nTV offers improved convergence speed relative to the nLTI approach,

while an experiment confirms that nTV is an effective form of extremum

seeking. Table 4.4 summarizes the pros and cons of using gradient descent

versus Newton descent extremum seeking algorithms for application to VCSs.

Table 4.4: Pros and cons of gradeit.

Gradient Descent Newton Descent

Pros -Fewer parameters needed -Automatically discovers

for estimation performance index curvature

-Low sensitivity to noise -Achieves desired optimization gain

Cons -Requires identification -Hessian inverse estimate

when there is uncertainty is sensitive to noise

about the Hessian -Reaching the desired gain

requires a time investment

While studies in the literature such as [17, 12] indicated that Newton

descent outperformed gradient descent, the Newton ESC’s sensitivity to noise

was not examined. For VCSs that are different from the one considered in

this study, the advantages of Newton descent versus gradient descent should

be evaluated for the system in question. Any indication that the curvature

is highly sensitive to operating condition is a good reason to lean towards

using Newton descent [6].

The main purpose of this chapter was to consider the convergence of the

extremum seeking algorithm algorithms for a constant disturbance scenario.

While such case studies are helpful for understanding extremum seeking be-

havior, they likely do not frequently occur in practice. The next chapter

focuses on transient performance improvement for the case where changing

the cooling capacity set point alters the optimal input.

121



CHAPTER 5

COMBINING SELF-OPTIMIZING
CONTROL AND EXTREMUM SEEKING

CONTROL FOR REAL-TIME VAPOR
COMPRESSION SYSTEM OPTIMIZATION
While the previous chapter examined the challenges facing extremum seeking

convergence, this chapter shows how self-optimizing control can improve ex-

tremum seeking control performance when a disturbance changes the optimal

input settings. This work follows results from Section 3.2.1, which showed

that combining extremum seeking and self-optimizing control can reduce the

degree to which disturbances influence the optimal input.

Chapter 2 showed that there are a wealth of VCS measurements avail-

able for self-optimizing control implementation. By contrast, the previous

chapter’s implementation of extremum seeking was intuition based; no con-

siderations were made regarding the effect of disturbances on the optimal fan

inputs.

Using results from experiment and simulation, this chapter evaluates the

benefits of combined ESC and SOC from Figure 5.1. standard ESC is a

performance benchmark representing the intuition based extremum seeking

approach used in the previous chapter. Both approaches guarantee that

steady state inputs will be optimal, but the combined ESC and SOC is

designed to use the two algorithms in concert to perform optimization. In

the figure below, the combined ESC and SOC’s feedback controller is designed

to let the ESC use a reference input, rESC , rather than an actuator input, v.

To implement the SOC feedback, H combines the process measurements, y,

into a self optimizing controlled variable, ySOC . As in previous sections, the

disturbance input is w and the performance index output is J . The reference,

r, represents performance objectives that must be met for the optimization

to make sense.
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Figure 5.1: ESC acts as a RTO controller for the closed loop system. In
standard ESC, the optimizing input is chosen using intuition. In combined
ESC and SOC, the extremum seeking input is optimally chosen using SOC
methods.

Figure 5.1 shows that while ESC performs optimization with a slow set-

tling time, τRTO, SOC can achieve optimization at the plant’s settling time,

τCL. Chapter 3 showed that a well designed SOC can perform optimization

once the ESC has converged. Two of the SOC design methods from Chapter

3 are reviewed below:

Combined ESC and Local SOC: The local approach involves using

a system model. A numerical quadratic approximation of the cost func-

tion’s Hessian matrix and a numerical linear approximation of input to

output gains are used to find H.

Combined ESC and Data SOC: The data based approach relies on

optimal data generated by a standard ESC to find H. Using this data,

the singular value decomposition procedure from Section 3.2.1 finds

invariants in the process data that produce a self-optimizing measure-

ment combination.

In Section 5.1, the steady state optimization problems for standard ESC

and combined ESC and SOC will be presented and compared. Section 5.2.3

uses a simulation to evaluate the local SOC and ESC’s performance against

the standard ESC’s performance. Next, simulation results compare the local

and data based SOC methods. In Section 5.3, the data based combined ESC
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and SOC method will be evaluated against the standard ESC method in

experiment. Section 5.4 gives an overview of the chapter’s findings.

5.1 Problem Description

The combination of ESC and SOC in this chapter is restricted to the simple

case of a scalar ESC input, v ∈ R, and a scalar disturbance, w ∈ R. The

standard ESC depicted in Figure 5.1 is identical to the RTO approach shown

in Figure 4.1, where an LQR+I maintains Q̇evap and TSH at their desired

references. Eq. (5.1) represents the optimization problem from the standard

ESC case, where the single optimization input is v = ucf and the single

uncontrollable disturbance is Q̇evap,ref . The superheat set point, TSH,ref , is

not changed.

min
v

Ẇsys(v, w)

s.t.



ukp

uv

Q̇evap

TSH

T4

T2−3


=



g1(v, w)

g2(v, w)

g3(v, w)

g4(v, w)

g5(v, w)

g6(v, w)


, g3(v, w) = Q̇evap,ref , g4(v, w) = TSH,ref

uef − 100 = 0

(5.1)

Setting uef = uef,max = 100 simplifies the optimization problem, but it

could be included as an optimization input as well. As in Chapter 2, the

inputs, ucf , ukp, and uv are constrained to lie between 0% and 100% in

normal circumstances. When the inputs might reach their constraints, it is

necessary to account for these situations using anti-windup control or model

predictive control. However, the simulations and experiments in this section

are designed to avoid constraints, which change the self-optimizing control

problem.

The optimization problem in (5.1) can be reformulated for implementa-

tion of the combined ESC and SOC approach using the following steps.

1. Determine the self-optimizing measurement combination, H, using a
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system model or optimal process data.

2. Use H to combine the unregulated process measurements from (5.1),

yp. In this study yp = [ukp uv T4 T2−3]; of these variables, T4 and T2−3

will be used for SOC.

3. Redesign the LQR+I from Figure 4.1 to use both v and u from the

standard ESC in Figure 5.1 for regulation to rESC , the self-optimizing

reference input. In this study, u = [ukp uv] in the standard ESC case.

In the combined ESC and SOC case, u becomes u = [ukp ucf uv]. The

SOC’s reference input is a combination of T4 and T2−3. Therefore, H

can be written as a 2 dimensional row vector, [H1 H2].

Using the steps above, the combined ESC and SOC optimization prob-

lem becomes (5.2), where γ represents a new steady state output mapping

(formerly denoted by g).

min
rESC

Ẇsys(rESC , w)

s.t.



ukp

ucf

uv

Q̇evap

TSH

H1T4 +H2T2−3


=



γ1(v, w)

γ2(v, w)

γ3(v, w)

γ4(v, w)

γ5(v, w)

γ6(v, w)


γ4(v, w) = Q̇evap,ref

γ5(v, w) = TSH,ref

γ6(v, w) = rESC

uef − 100 = 0

(5.2)

Eqs. (5.1) and (5.2) show the unconstrained optimization problems that

are compared in this chapter. The theory from Chapter 3 predicts that SOC

will lead to a scenario where latter optimization problem is less sensitive

to disturbances. The next section tests this hypothesis using steps in the

commanded cooling capacity, Q̇evap,ref . To create a scenario where the heat

load is an unmeasured disturbance, Q̇evap,ref will not be directly measured

by the RTO scheme, necessitating the use of self-optimizing control to detect

unknown disturbance changes.
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5.2 Simulation Case Study

Figure 5.2 shows the simulated heat load profile that alters the VCS’s opti-

mal input settings. The other disturbances, Tcsfi and Tesfi shown in Figure

2.1 and mentioned in Chapter 2, remain constant throughout the simulation.

Section 5.2.1 details the extremum seeking controller parameters employed

in this section. Section 5.2.2 details the controlled variable selection calcu-

lations for both the combined ESC and local SOC and the combined ESC

and data SOC optimizers. Finally, Section 5.2.3 performs a head to head

comparison between the standard ESC, the combined ESC and local SOC,

and the combined ESC and data SOC approaches.

Figure 5.2: Heat load trajectory applied to each RTO controller.

5.2.1 Extremum Seeking Control

Because the focus of this chapter is how SOC can improve ESC performance,

the ESCs were designed to have similar convergence rates for each test case.

The gLTI algorithm from Section 3.1.4 was used here. Before designing the
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ESCs, LQR+I feedback controllers with state augmentation from Section

A.2 were used to meet the Q̇evap,ref and TSH,ref set points (and the rSOC

set point for the combined ESC and SOC approaches). To determine the

plant’s settling time, τCL, the closed loop system’s 2% settling time to a

step response was calculated using MATLAB’s stepinfo command. These

settling times are given by Table B.5, Table B.6, and Table B.7 respectively.

The ESCs were designed to with equal perturbation frequencies to ensure

a fair comparison. Likewise, the filter cutoff frequencies were chosen to be

identical in order to produce the same filtering speeds and avoid giving one

approach better ESC performance than the other. The optimization gains

were hand tuned to achieve similar convergence rates at a nominal cooling

capacity of Q̇evap = 1.0kW .

Table 5.1: Extremum seeking controller parameters.

Parameter Standard ESC Combined ESC and SOC

ω1[rad/s] 0.005 0.005

a1 5[%] 0.4 [◦C]

ωHPF [rad/s] 0.0005 0.0005

ωLPF [rad/s] 0.0005 0.0005

Kg 3.8[kW/%] 0.1[kW/◦C]

While the ucf ’s perturbation amplitude could be specified exactly for the

standard ESC, the it is hard to make a reference perturbation that produces

a precisely equivalent level of objective function excitation for the combined

ESC and SOC approaches. To strive for similar excitation, the a1 values

were hand tuned in each case. The optimization gain, Kg, values were chosen

somewhat arbitrarily by tuning the ESC convergence rates to be equal during

the first transient.

5.2.2 Controlled Variable Selection

This section presents the controlled variable selection procedures necessary

to implement the combined ESC and SOC approaches. Because the local

SOC approach is model based, its H is close to the optimal combination for
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minimizing loss. This fact is confirmed in Section 5.2.3, where the local SOC

data is evaluated using a SVD.

5.2.2.1 ESC and Local SOC

Using the simulation model to find the optimal measurement combination

involved first finding numerical approximations of the partitioned Hessian

components, Jvv, Jvw = JTwv, and Jww, about the optimal input value when

Q̇evap,ref = 1kW . Next, the steady gains, Gv and Gw, were calculated.

The measurement combination, H, is chosen to be in the nullspace of Gw −
GvJ

−1
vv Jvw. Table 5.2 gives the Hessian components, gains, and resulting

measurement combination, H.

Table 5.2: The simulation model was used to find Jvv, Jvw, Gv, and Gw

numerically, giving all the components necessary to find the locally optimal
measurement combination, H.

Variable Value

Jvv 1.9783e− 4

Jvw −0.0032

Jww 0.6111

Gv

[
0.0007

−0.0907

]

Gw

[
−7.5539

12.3287

]

H [1.44 1]

ySOC 1.44T4 + T2−3
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5.2.2.2 ESC and Data SOC

Recalling the procedure in Chapter 3, a standard ESC must be used to

generate a set of near optimal process data. Figure 5.3 shows this data

generated in simulation. Following the procedure from 3.2.1.3, the T4 and

T3−2 measurements were centered about their mean values, giving ∆T4 and

∆T2−3. Next, the centered data was stacked into two rows to form Yscl,0 and

analyzed using SVD. Scaling was not necessary because ∆T4 and ∆T2−3 have

the same units and showed similar changes in magnitude. Figure 5.3 shows

that the data based self-optimizing control analysis produced a combination

of measurements with an optimal value that is less sensitive to heat load

changes than the T4 and T2−3 measurements individually. Table 5.3 gives the

resulting U , Σ, and H.

Figure 5.3: The optimal self-optimizing combination shows less variation in
its optimal value following heat load changes than the T4 and T2−3 variables
alone.
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Table 5.3: Singular value decomposition of the process data,
Yscl,0 = [∆T4 ∆T2−3]T . The resulting measurement combination, H, is a
scaled and transposed version of U ’s second column.

Variable Value

U

[
−0.5295 0.8483

0.8483 0.5295

]

Σ

[
418.4724 0 0 ... 0

0 39.9242 0 ... 0

]

H [1.6019 1]

ySOC 1.6T4 + T2−3

5.2.3 Simulation Results

To evaluate the concept of combining ESC and SOC for vapor compression

systems, the standard ESC’s performance is compared to the ESC and local

SOC first. Next, the two SOC approaches are compared to evaluate the

performance loss associated with using near optimal data to choose the self-

optimizing measurement combination matrix.

A prerequisite for comparing optimization performance is to show that

the output constraints on TSH,ref and Q̇evap,ref were met. Figure 5.4 and

Figure 5.5 confirm that both combined ESC and SOC approaches and the

standard ESC approach meet the desired cooling capacity and superheat set

points on average, despite oscillations in the inputs. This shows that at a

minimum, using the combined ESC and SOC approach does not affect the

feedback controller’s ability to meet the desired equality constraints.

In each test, the ESCs converge to the optimal inputs and close to the

minimum power consumption following the heat load disturbances, illustrat-

ing that the RTO schemes act as they should.
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Figure 5.4: On average, the controllers are able to meet their desired
Q̇evap,ref and TSH,ref values for both the standard ESC and the combined
ESC and local SOC approach. Oscillations about reference values are the
result of ESC perturbations.
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Figure 5.5: On average, the controllers are able to meet their desired
Q̇evap,ref and TSH,ref values for both combined ESC and SOC approaches.
Oscillations about reference values are the result of ESC perturbations.

Figure 5.6 shows that the inclusion of SOC in the RTO framework im-

proves the transient performance of the optimizer. In the bottom plot, SOC

does not help during the first convergence transient when the ESC is finding

the optimal set point. Once the ESC has converged, it does not significantly

deviate from the optimal set point for the rest of the simulation. This behav-

ior is expected because the SOC measurement combination’s optimal value

was chosen to be invariant to the heat load disturbance.

The SOC’s contribution is especially apparent during the second heat

load step, where the standard ESC approach lags behind the step change in

the optimal fan speed. During this transient, the value of the self-optimizing

output spikes in the standard ESC simulation. There is a corresponding

spike in the power consumption that indicates suboptimality of the stan-

dard ESC’s input choice. Essentially, the standard ESC fails to regulate the

self-optimizing combination to its optimal value and pays a penalty in perfor-

mance loss. By contrast, the combined ESC and SOC turns the optimization
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problem into a regulation problem during the transient and as a result, its

performance loss is not noticeable.

Figure 5.6: The combined ESC and local SOC’s contribution to
optimization is apparent from the fact that its ucf signal leads the standard
ESC’s during the steps in Q̇evap,ref , despite that the initial convergence
rates are similar.

While the combined ESC and local SOC approach is promising, it may not

always be practical to use a model to choose a self-optimizing measurement

combination. This is the case when plant-model mismatch is a concern in

the design process.

The performance loss from using the data based SOC approach instead

of the local SOC approach is evaulated in Figure 5.7. As expected, both

SOCs make input adjustments to maintain the ESC’s set point, but the local
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SOC’s input adjustment is closer to optimal because of its superior system

knowledge. Comparing Figure 5.7 with Figure 5.6 indicates that the feed-

forward action of the combined ESC and data SOC still offers performance

improvement relative to the standard ESC approach.

Figure 5.7: When the combined ESC and SOC approach uses a SOC
measurement combination extracted from near optimal process data, the
feedforward SOC action is not as accurate as the case where a locally
optimal measurement combination is used.

The results for SOC designed using near optimal process data is encour-

aging for model free implementation of the approach; the performance im-

provement should be close to what could be achieved with a perfect system

model. In the next section, the combined ESC and data SOC is compared

to the standard ESC using a similar case study for the system in Figure 2.2.
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5.3 Experimental Case Study

To evaluate the transient performance of the combined ESC and data SOC

against the standard ESCin experiment, the controllers were subjected to

the heat load profile shown in Figure 5.8 and a constant TSH,ref = 15◦C.

Figure 5.8: Heat load trajectory applied to each RTO controller.

As in the previous section, a combination of at least two measurements

is sufficient to achieve zero loss when the null space method SOC assump-

tions are satisfied. Unlike the simulation case, the assumption of no noise is

violated and unmodeled disturbances, Tamb and RH, may change during the

experiment. Additionally, calibration results from C.3 show that the Hessian

of Ẇsys changes with Q̇evap,ref . However, the SOC implementation from Sec-

tion 5.3.2 confirms that the data based null space method can be a strong

practical tool in vapor compression system applications.
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5.3.1 Extremum Seeking Control

The closed loop system settling times, τCL, are given in Table C.4 and Table

C.5 from Section C.2.1 and Section C.2.2 respectively. As in the simulation

case, τCL was calculated by determining the closed loop system’s state space

realization and applying MATLAB’s stepinfo command to find 2% settling

time. A different σ was chosen for the standard ESC and combined ESC and

SOC approaches to achieve equal perturbation frequencies and account for

the discrepancy in τCL. The LTI filter cutoff frequencies were chosen to be

identical.

Table 5.4: Extremum seeking controller parameters.

Parameter Standard ESC Combined ESC and SOC

ω1[rad/s] 0.007 0.007

a1 5[%] 0.4 [◦C]

ωHPF [rad/s] 0.001 0.001

ωLPF [rad/s] 0.001 0.001

Kg 3.8[kW/%] 0.1[kW/◦C]

Jvv(0.8kW ) 0.96e-4 [kW/%2] 0.007 [kW/◦C2]

Jvv(1.0kW ) 1.12e-4 [kW/%2] 0.005 [kW/◦C2]

Jvv(1.2kW ) 1.58e-4 [kW/%2] 0.003 [kW/◦C2]

τRTO(0.8kW )[s] 11,456 8,022

τRTO(1.0kW )[s] 9,913 5,568

τRTO(1.2kW )[s] 7,211 13,192

Similar to the simulation results, the ucf perturbation amplitude could

be specified exactly for the standard ESC. The perturbation amplitude, a1,

was chosen for the combined ESC and SOC’s reference in order to produce

ucf oscillations similar in magnitude to the standard ESC’s perturbation

signal. However, the system nonlinearity makes the actual ucf perturbations

subject to change for the combined ESC and SOC. The Kg values were chosen

so that improving ESC convergence time could be ruled out as a source of

RTO performance improvement. Hessian values were taken from the columns

labeled c3 and d3 in Table C.6 and Table C.7 respectively. Because these

Hessian values change as a function of disturbances, the convergence rates of
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each ESC can vary. Compared to the simulation from the previous section,

the ESC parameters were more aggressively tuned to shorten the experiment

time. A faster ESC meant less noticeable performance improvement for the

combined ESC and SOC approach.

5.3.2 Controlled Variable Selection

The same procedure from Section 5.2.2.2 for selecting the self-optimizing

measurement combination in simulation was employed here. Table 5.5 shows

the U , Σ, and H derived from the experimental data.

Table 5.5: Results from singular value decomposition of the centered
process data, ∆Y = [∆T4 ∆T2−3]T . H is a scaled and transposed version of
the second column of U .

Variable Value

U

[
−0.5062 0.8624

0.8624 0.5062

]

Σ

[
194.3 0 0 ... 0

0 33.57 0 ... 0

]

H [1.7 1]

ySOC 1.7T4 + T2−3

5.3.3 Experimental Results

In both tests, the steady state optimization problems were satisfactorily

solved. Figure 5.9 demonstrates that the Q̇evap,ref and TSH,ref constraints

were met by the linear quadratic controllers. At steady state, power con-

sumption values remain close to the calibrated minimum values from Ap-

pendix B. Although the optimal ucf at Q̇evap,ref = 1.2kW varies between
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tests, the extremum seeking controllers provide adequate compensation. Fig-

ure 5.11 shows that other disturbances likely do not have a significant effect

on the system’s power consumption, validating the assumption that Q̇evap,ref

is the only meaningful disturbance.

Figure 5.10 shows that the combined ESC and SOC improves upon the

standard ESC’s transient performance following the second Q̇evap,ref step.

In the first transient, the ESCs recover from suboptimal initial conditions

equally well and at similar rates. Following the change in Q̇evap,ref from

1.0kW to 0.8kW , both the standard ESC and the combined ESC and SOC

show equally good tracking of the minimum power consumption, a phe-

nomenon observed in the simulation case study. The step from 0.8kW to

1.2kW leads to a power consumption spike in the standard ESC test, but

the spike is absent from the combined ESC and SOC test. This can be at-

tributed to the self-optimizing controller increasing the condenser fan speed

to maintain rESC , resulting in a faster convergence to the combined ESC

and SOC’s eventual steady state value of ucf . By contrast, the dip in ucf

chosen by the standard ESC corresponds to the spike in Ẇsys. Figure 5.10

also shows that the optimal value of 1.7T4 + T2−3 is nearly invariant to heat

load disturbances for both experiments, though its value spikes in the stan-

dard ESC test. This fact illustrates the main advantage of using SOC for

optimization: the combined ESC and SOC approach converts the standard

ESC’s gradient descent problem to a regulation objective for 1.7T4 + T2−3.
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Figure 5.9: On average, the controllers are able to meet their desired
Q̇evap,ref and TSH,ref values in experiment. Oscillations about reference
values are the result of ESC perturbations.
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Figure 5.10: The feedforward action of the combined ESC and SOC is
apparent from the fact that its ucf signal leads the standard ESC’s during
the steps in Q̇evap,ref . At steady state the trajectories are similar but
slightly offset from each other because of run to run variations in the
optimal inputs.
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Figure 5.11: Tamb and RH remain within the upper and lower bounds
indicated by the gray boxes during each controller test and the calibration.
These disturbances could account for the slight difference in the optimal ucf
between tests, but do not seem to affect the overall result.

5.4 Conclusions

Both simulation and experimental results showed that combining SOC and

ESC can improve the RTO’s transient performance. While the settling times

for each RTO were similar during the initial convergence transients, the com-

bined ESC and SOC approaches appeared to shorten the RTO settling time

by removing the requirement for ESC to update its set point. Before imple-

menting SOC, assumptions about the number of important disturbances and

the linear relationship between the disturbance and the optimal input were
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invoked. Combined ESC and SOC could be implemented using the system

model in simulation, but process data generated using closed loop extremum

seeking control was necessary to achieve a model free combined ESC and

SOC in experiment. One disadvantage of the combined ESC and data SOC

approach is that controller parameters needed to be changed to accommodate

the self-optimizing measurement combination. While augmenting extremum

seeking control with self-optimizing control can improve transient perfor-

mance, the experiments suggest that the standard ESC performs just as well

for disturbances that are small in magnitude. Prior work in the HVAC field

shows that standard ESC effectively handles slowly varying disturbances as

well.

Finally, although the combined ESC and SOC approach using T4 and

T2−3 leads to transient performance improvement, it is not recommended as

a suitable control strategy for all VCSs and operating scenarios. Instead, the

case studies in this chapter demonstrated the following design approach:

- Determine significant process disturbances.

- Use either model based or data based nullspace SOC to choose a com-

bination of measurements that are sufficient to reject the process dis-

turbances.

- Use an ESC to change the SOC set point in order to compensate for

unmodeled disturbances and set point errors.

The most important consideration is finding significant disturbances. In

this chapter, the cooling capacity was the sole disturbance considered. In

practice, a self-optimizing measurement combination meant to reject a cool-

ing capacity disturbance might perform poorly for other disturbance changes.

Analyzing a system model can help flag these issues.
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CHAPTER 6

CONCLUSION

6.1 Summary of Research Contributions

This thesis covered several aspects of extremum seeking control design for

vapor compression systems including physics based modeling and simula-

tion; algorithms, tuning guidelines, and performance of control algorithms;

and comparisons between simulation and experimental results of algorithm

applications.

Chapter 2 reviewed the operational aspects of the four component vapor

compression cycle, validated a system model against experimental data, and

connected system operation to a steady state optimization problem. Of par-

ticular importance was the power consumption model, which captured the

vapor compression system’s performance index dynamics. Fast electrome-

chanical dynamics could be ignored and it was easy to represent the total

power consumption a summation of component subsystem power consump-

tions. Calibrations in simulation and experiment showed that power con-

sumption could be approximated as a convex quadratic function.

Chapter 3 focused on overviews of two real-time optimization approaches:

extremum seeking control and self-optimizing control. Their respective ben-

efits and drawbacks could be seen from simulation case studies involving

simple systems with quadratic performance indices. The most noteworthy

takeaways were:

- Time varying extremum seeking algorithms generally outperform ex-

tremum seeking using LTI filters with demodulation.

- Gradient descent extremum seeking is favorable to Newton descent ex-

tremum seeking when information about the performance index’s cur-

vature is available.
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- Newton descent extremum seeking is more sensitive to noise than gra-

dient descent extremum seeking, but is not reliant on prior knowledge

of the performance index’s curvature.

- Combining self-optimizing control and extremum seeking control can

reduce the optimal input’s sensitivity to known, but unmeasured dis-

turbances.

- The development process of obtaining optimal operation data, using it

to choose a self-optimizing measurement combination, and redesigning

an extremum seeking controller can improve the real-time optimizer’s

transient performance.

These results proved to be valuable in Chapters 4 and 5, where both

simulation and experimental tests of these strategies applied to vapor com-

pression systems supported many of the above assertions. Because the vapor

compression performance indices considered in this thesis were quadratic,

they share many properties with even the simple simulation examples from

Chapter 3.

Chapters 4 and 5 had unique contributions of their own. Chapter 4’s com-

parison of simulation and experimental gradient descent extremum seeking

results showed that Chapter 2’s system modeling effort could provide reliable

information about the performance index’s curvature. This is significant be-

cause many of the results in this thesis are difficult to predict without the help

of a physics based model. Even though a model might not have exceptional

predictive capability, there is a chance that it could provide helpful informa-

tion for gradient descent extremum seeking design. Another contribution of

Chapter 4 was a novel and definitive demonstration of time varying, New-

ton descent extremum seeking’s ability to recover a desired gradient descent

gain by estimating the inverse of the performance index’s curvature. Finally,

Chapter 5 took the novel step of applying the combined extremum seeking

and data based self-optimizing control design process to the experimental

test stand described in Chapter 2.

144



6.2 Future Work

Extremum seeking has significant potential as a practical tool for steady state

vapor compression system optimization. However, its implementation could

be limited by a lack of model knowledge and slow convergence rates. The

lack of model knowledge could be addressed by devising ways to make the

extremum seeking process more “model free”. An example of this is how

Newton descent extremum seeking could be used to implement a controller

without prior knowledge of the performance index’s curvature. The second

concern could be addressed using alternative ways to represent the plant for

extremum seeking control. An example of this can be found in [8], where the

authors use an input affine nonlinear system (a special case of a nonlinear

system) to represent the vapor compression system’s dynamics. Such rep-

resentations can lead to convergence rates that are significantly faster than

those observed in this thesis.

Finally, this thesis focused on unconstrained real-time optimization prob-

lems. This focus could be relaxed to include constraints on the controller

inputs and states. While penalty function additions to the cost function

have been proposed to allow ESC to avoid loosing feedback after encoun-

tering a constraint [46], predictive algorithms are more adept at constraint

handling. An interesting study could examine how ESC interacts with pre-

dictive control algorithms when the system is near its operating limits.
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automatisés, 2013.

[37] M. Großbichler, R. Schmied, P. Polterauer, H. Waschl, and L. Re, “A
robustified Newton based Extremum Seeking for Engine Optimization,”
pp. 3280–3285, 2016.

[38] A. Ghaffari, S. Seshagiri, and M. Krstić, “Multivariable maximum power
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APPENDIX A

FEEDBACK CONTROL DESIGN
PROCEDURE

The RTO algorithms implemented in Chapters 4 and 5 required a feedback

control layer to regulate cooling capacities and superheat to reference values.

The design of these regulators involved identification of the plant model using

the n4sid black box method followed by discrete time linear quadratic reg-

ulator (LQR) or linear quadratic Gaussian (LQG) feedback control design.

Before control design, the plant models were reformulated to penalize high

actuator slew rates and steady state offset between reference and output.

Section A.1 gives the standard procedure for subspace based system identi-

fication and Section A.2 gives the controller design and analysis procedure

given the identified system model.

A.1 System Identification

The case studies in chapters 4 and 5 use black box state space system identi-

fication to elicit discrete time models that are useful for control design. Each

controller implementation follows a standard system identification procedure:

1. Inputs and Outputs Identify the inputs that will be manipulated by

the feedback controller and the outputs that will be measured for linear

feedback control.

2. Input Sequence Apply a pseudorandom binary input sequence, ∆u,

with appropriate amplitude about a nominal input, ū. Large amplitude

perturbations will give a high signal to noise ratio, but will result in

poor linear model fits if the perturbations stray too far from nominal

conditions.
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3. Data Centering and Scaling Center the data for each output, ydata,i,

about a mean value, ȳi, normalizing the output data by its maximum

amplitude, Ay,i = max(ydata,i) − min(ydata,i), using (A.1). This gives

yid,i, which can be used for identification.

yid,i =
ydata,i − yi

Ay,i
(A.1)

4. Model Order Selection Apply the n4sid algorithm to the first half of

the data and select the lowest model order that results in an acceptable

normalized root mean square error for each output, NRMSEi, from

(A.2).

NRMSEi = 100(1− ‖yid,i − ŷi‖
‖yid,i‖

) (A.2)

5. Cross Validation Calculate the NRMSE for the model given the

second half of the data to protect against the inclusion of weakly con-

trollable or observable dynamics in the system model. If this step does

not yield satisfactory results, then repeat the model order selection.

The identification procedure above produces a discrete LTI state space

matrix triple, (A,B,C), with sample time Ts. D is not included in the state

space formulation because it is typically zero for vapor compression systems.

For cases where the number of outputs is equal to the number of states,

C can be used as a similarity transformation as in (A.3) to allow full state

measurement with the new matrix triple, (Ã, B̃, I).

ÃD = CDADC
−1
D , B̃ = CDBD

x̃k+1 = ÃDxk + B̃Duk

yk = x̃k

(A.3)
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A.2 Linear Quadratic Controller Design

The linear quadratic controller was selected because it is simple to imple-

ment and it considers coupling between system inputs and outputs. The

controller design procedure employed the state space triple, (A,B,C), from

the previous section to design a state feedback regulator with knowledge of

the system rate limits and with zero steady state sensitivity to changes in the

reference input. Eq. (A.4) shows the state space system and cost function

resulting from the addition of integral and delayed input states, ηk and uk−1,

to generic (A,B,C) system matrices. The modified input is defined as the dif-

ference between the current input and the delayed input, ∆uk = uk − uk−1.

The following two sections give the dynamic controllers used in each case.

min
∆uk

JLQR(x0) =
∞∑
k=0

 xk

ηk

uk−1


T C

TC 0 0

0 ρηI 0

0 0 ρuI


 xk

ηk

uk−1

 + ∆uTk ρ∆uI∆uk

s.t.

xk+1

ηk+1

uk

 =

A 0 B

C 0 0

0 0 I


 xk

ηk

uk−1

 +

B0
I

∆uk

(A.4)

Controller gains from solving the discrete time optimal control problem

are represented by the partitioned matrix, [Kx Kη Ku], whereKx, Kη, andKu

are the system state, integral, and delayed input gain matrices respectively.

These gains are adjusted using the tuning weights, ρη, ρu, and ρ∆u. For

the case where a direct measurement of xk is unavailable, a discrete time,

static gain Kalman filter was designed using covariance matrices, γnI and

γxI. The sole step in designing the LQR/LQG regulators is to adjust the

tuning weights until satisfactory closed loop performance is achieved.

For implementation of extremum seeking control, knowledge of the sys-

tem’s settling time was desired to ensure time scale separation between the

extremum seeking controller and the closed loop plant. To achieve this,

the controllers were first expressed as dynamic systems. Incidentally, these

forms are convenient for implementation of controllers in simulation and ex-

periment.
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For the general case where a LQG controller is used, (A.5) describes

the controller dynamics. For the special case of a plant model with a full

state measurement available, (A.6) gives the controller dynamics. Below, rk

represents a time varying reference input, yk represents the current output

measurement, and L is the observer gain obtained from the Kalman filter

design.

x̂k+1

ηk+1

uk

 =

(A−BKx − LC) −BKη B(I −Ku)

0 I 0

−Kx −Kη (I −Ku)


 x̂k

ηk

uk−1



+

 L 0

−TsI TsI

0 0

[
yk

rk

]

uk =
[
−Kx −Kη (I −Ku)

] x̂k

ηk

uk−1

 +
[
0 0

] [yk
rk

]
(A.5)

[
ηk+1

uk

]
=

[
I 0

−Kη (I −Ku)

][
ηk

uk−1

]
+

[
−TsI TsI

−Kx 0

][
yk

rk

]

uk =
[
−Kη (I −Ku)

] [ ηk

uk−1

]
−
[
Kx 0

] [yk
rk

] (A.6)

Given that the plant’s matrices are known and part of the controller

dynamics, closed loop equations can be written where the sole input is rk.

Eq. (A.7) represents the closed loop dynamics for the LQG controllers, while

(A.8) represents the closed loop dynamics for the LQR.
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
xk+1

x̂k+1

ηk+1

uk

 =


A −BKx −BKη B(I −Ku)

LC (A−BKx − LC) −BKη B(I −Ku)

−TsC 0 I 0

0 −Kx −Kη (I −Ku)



xk

x̂k

ηk

uk−1



+


0

0

TsI

0

 rk

yk =
[
C 0 0 0

]

xk

x̂k

ηk

uk−1

 + 0rk

(A.7)

xk+1

ηk+1

uk

 =

(A−BKx) −BKη B(I −Ku)

0 I 0

−Kx −Kη (I −Ku)


 xk

ηk

uk−1

 +

 0

TsI

0

 rk

yk =
[
I 0 0

] xk

ηk

uk−1

 + 0rk

(A.8)

Assembling the state space representations of these systems in MATLAB

and using the stepinfo command gives the settling times from the input to

output step responses. The longest input to output step response settling

time, τCL, is the closed loop plant’s representative time scale.
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APPENDIX B

SIMULATION DETAILS

B.1 System Identification

Table B.1: Nominal input values employed in the simulation case studies.

Input Nominal Value [%]

ukp 55

ucf 65

uv 40

uef 100
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B.1.1 Standard ESC

Figure B.1: Pseudorandom binary inputs of 4% magnitude were applied to
the ukp and uv inputs to identify a two input two output system model for
Q̇evap and TSH .The relationship between the ukp and uv inputs and Q̇evap

and TSH outputs in simulation can be approximated by a fourth order
linear system model.

157



Table B.2: System identification results from simulation for the standard
ESC’s linear model.

Output Q̇evap TSH

y 0.9912[kW ] 14.91[◦C]

Ay 0.0829[kW ] 3.2578[◦C]

NRMSE 90[%] 98[%]

AC =

 0.8341 0.0235 0.0292

−0.2683 0.7080 −0.2498

−0.1419 −0.2729 0.7479



BC =

 0.0005 0.0060

−0.0256 0.0048

−0.0235 0.0005



CC =

[
4.9584 −2.1864 0.1411

−4.3714 −1.1025 −0.2238

]

Sample T ime : 4s
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B.1.2 Combined ESC and Local SOC

Figure B.2: The relationship between the ukp, ucf , and uv inputs and Q̇evap,
TSH , and 1.44T4 + T2−3 outputs can be approximated by a fourth order
linear system model.

159



Table B.3: System identification results for the combined ESC and SOC’s
linear model.

Output Q̇evap TSH 1.7T4 + T2−3

y 0.9912[kW ] 14.9054[◦C] 33.5424[◦C]

Ay 0.0838[kW ] 3.4732[◦C] 4.2208[◦C]

NRMSE 88.22[%] 95.12[%] 95.71[%]

AC =


0.8195 0.1591 −0.0641 −0.0721

0.0906 0.8935 −0.0311 0.0064

0.0580 0.1672 0.6832 −0.4343

−0.0145 0.2411 −0.2097 0.6253



BC =


−0.0071 0.0084 −0.0005

0.0000 −0.0041 −0.0003

−0.0268 0.0050 −0.0014

−0.0212 0.0073 −0.0007



CC =

 4.7643 −1.4510 −1.5172 −0.7570

−3.2599 2.5076 −1.3753 0.1346

3.7827 −0.9994 1.4728 −0.3746


Sample T ime : 4s
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B.1.3 Combined ESC and Data SOC

Figure B.3: The relationship between the ukp, ucf , and uv inputs and Q̇evap,
TSH , and 1.6T4 + T2−3 outputs can be approximated by a fourth order
linear system model.
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Table B.4: System identification results for the combined ESC and data
SOC’s linear model.

Output Q̇evap TSH 1.7T4 + T2−3

y 0.9912[kW ] 14.9054[◦C] 33.5424[◦C]

Ay 0.0838[kW ] 3.4732[◦C] 4.2208[◦C]

NRMSE 88.44[%] 95.08[%] 95.93[%]

AC =


0.8216 0.1512 −0.0676 0.0799

0.0822 0.9086 −0.0334 −0.0070

0.0669 0.1228 0.6412 0.4386

0.0168 −0.1943 0.2102 0.6475



BC =


−0.00690.0084− 0.0005

−0.0005− 0.0036− 0.0003

−0.02700.0050− 0.0015

0.0189− 0.00700.0006



CC =

 4.8226 −1.3515 −1.4224 0.7039

−3.2663 2.4442 −1.4385 −0.1034

3.6744 −1.0136 1.5785 0.3797


Sample T ime : 4s

162



B.2 Controller Design

B.2.1 Standard ESC

Table B.5: Quadratic weights, feedback gains, and closed loop poles for the
standard ESC’s LQR.

Tuning Weights

ρη = 0.3

ρu = 0

ρ∆u = 50

γn = 1

γx = 1

Controller Gains

Kx =

[
2.3832 −3.1352 2.1819

8.5376 −1.0985 1.6273

]

Kη =

[
−0.0485 −0.0476

−0.0466 0.0464

]

Ku =

[
0.2300 −0.0085

−0.0085 0.2794

]

L = 0.001

 0.3381 −0.5349

−0.8205 −0.5713

−0.9632 −0.1783


Closed Loop Poles

eig(Acl) = {0.4963, 0.4980, 0.8547± 0.1583i,

0.7533, 0.7946, 0.8748± 0.1170,

0.9928, 0.9933}
τCL : 240s
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B.2.2 Combined ESC and Local SOC

Table B.6: Quadratic weights, feedback gains, and closed loop poles for the
combined ESC and local SOC’s LQG regulator.

Tuning Weights

ρη = 0.3

ρu = 0

ρ∆u = 50

γn = 1

γx = 1

Controller Gains

Kx =

−1.4905 1.5746 −3.2647 3.0446

7.0772 −0.5909 −0.8367 −0.8335

−3.5163 −7.4783 2.4538 −2.0016


Ku =

 0.2388 −0.0346 0.0125

−0.0346 0.2900 −0.0058

0.0125 −0.0058 0.0567


Kη =

−0.0386 −0.0414 0.0370

−0.0553 0.0260 −0.0229

0.0004 0.0509 0.0554



L = 0.001


0.3557 −0.5894 0.5623

−0.2266 0.2305 −0.2109

−0.3381 −0.5528 0.5751

−0.0994 −0.6039 0.6057


Closed Loop Poles

eig(Acl) = {0.3528, 0.3561, 0.8361± 0.1667i,

0.7186, 0.7465, 0.8572± 0.1144i, 0.9118, 0.9172

0.9734± 0.0286i, 0.9962, 0.9931}
τCL : 660s
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B.2.3 Combined ESC and Data SOC

Table B.7: Quadratic weights, feedback gains, and closed loop poles for the
combined ESC and data SOC’s LQG regulator.

Tuning Weights

ρη = 0.3

ρu = 0

ρ∆u = 50

γn = 1

γx = 1

Controller Gains

Kx =

−1.4713 2.0612 −3.0498 −3.0643

7.2543 −0.3621 −0.6722 1.1133

−3.3979 −8.2431 2.2930 1.9299


Ku =

 0.2388 −0.0349 0.0128

−0.0349 0.2887 −0.0052

0.0128 −0.0052 0.0531


Kη =

−0.0379 −0.0410 0.0381

−0.0558 0.0258 −0.0221

0.0015 0.0515 0.0550



L = 0.001


0.3799 −0.5749 0.5479

−0.2144 0.1839 −0.1652

−0.2884 −0.5829 0.6138

0.0151 0.5676 −0.5718


Closed Loop Poles

eig(Acl) = {0.3543, 0.3586, 0.8369± 0.1660i,

0.7220, 0.7505, 0.8767± 0.1144i, 0.9119, 0.9191

0.9757± 0.0261, 0.9954, 0.9910}
τCL : 716s
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APPENDIX C

EXPERIMENT DETAILS

C.1 System Identification

Table C.1: Nominal input values employed for every test.

Input Nominal Value [%]

ukp 52

ucf 65

uv 52

uef 100
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C.1.1 Standard ESC

Figure C.1: Pseudorandom binary inputs of 4% magnitude were applied to
the ukp and uv inputs to identify a two input two output system model for
Q̇evap and TSH .The relationship between the ukp and uv inputs and Q̇evap

and TSH outputs can be approximated by a second order linear system
model.
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Table C.2: System identification results for the standard ESC’s linear
model.

Output Q̇evap TSH

y 0.9765[kW ] 15.54[◦C]

Ay 0.1239[kW ] 4.0859[◦C]

NRMSE 65[%] 57[%]

ÃD =

[
0.6330 0.0477

−0.0448 0.9511

]

B̃D =

[
0.0203 0.0286

−0.0087 −0.0034

]

C̃D =

[
1 0

0 1

]

Sample T ime : 4s
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C.1.2 Combined ESC and SOC

Figure C.2: The relationship between the ukp, ucf , and uv inputs and Q̇evap,
TSH , and 1.7T4 + T2−3 outputs can be approximated by a fifth order linear
system model.
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Table C.3: System identification results for the combined ESC and SOC’s
linear model.

Output Q̇evap TSH 1.7T4 + T2−3

y 0.9695[kW ] 15.7986[◦C] 36.2852[◦C]

Ay 0.1407[kW ] 6.2970[◦C] 100[◦C]

NRMSE 62[%] 33[%] 65[%]

AC =


0.9688 0.0130 0.0066 0.0433 0.0092

−0.0523 0.8934 0.0776 −0.1747 0.1124

−0.0291 −0.0092 0.9606 −0.6589 −0.0152

−0.1721 −0.2963 0.6283 0.1791 0.4550

0.1325 0.2831 −0.1404 −0.0849 0.5565



BC =


0.0004 0.0000 −0.0002

−0.0008 0.0000 0.0004

0.0027 0.0007 −0.0031

0.0016 −0.0009 0.0085

0.0079 0.0014 −0.0018



CC =

 0.1976 −2.1482 −2.7799 0.7015 0.1388

5.0597 −0.8184 0.3534 0.1299 −0.1588

−5.5462 −1.8548 0.3655 0.1016 −0.0897


Sample T ime : 4s
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C.2 Controller Design

C.2.1 Standard ESC

Table C.4: Quadratic weights, feedback gains, and closed loop poles for the
standard ESC’s LQR.

Tuning Weights

ρη = 0.3

ρu = 1

ρ∆u = 250

Controller Gains

Kx =

[
0.0904 1.2357

0.3565 −0.9069

]

Kη =

[
0.1620 −0.0057

−0.0057 0.1657

]

Ku =

[
−0.0211 −0.0237

−0.0238 0.0209

]
Closed Loop Poles

eig(Acl) = {0.6393, 0.8865, 0.9151± 0.0711i,

0.9372± 0.0792i}
τCL : 392s
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C.2.2 Combined ESC and SOC

Table C.5: Quadratic weights, feedback gains, and closed loop poles for the
combined ESC and SOC’s LQG regulator.

Tuning Weights

ρη = 0.3

ρu = 0

ρ∆u = 50

γn = 1

γx = 1

Controller Gains

Kx =

 23.2013 0.0817 0.5597 0.8104 1.2446

3.5084 13.8154 −2.3205 −1.1815 2.4636

−14.1495 −6.4066 −1.6824 2.0347 0.4410


Ku =

 0.1956 0.0139 −0.0006

0.0139 0.0749 −0.0196

−0.0006 −0.0196 0.1995


Kη =

−0.0390 −0.0455 0.0350

0.0018 0.0456 0.0589

−0.0573 0.0326 −0.0214



L = 0.001


0.0309 0.0600 −0.0656

−0.1564 −0.0099 0.0188

−0.5498 −0.0337 0.0743

−0.4076 0.0190 0.0256

0.0546 0.0387 −0.0363


Closed Loop Poles

eig(Acl) = {0.4663± 0.5170i, 0.4669± 0.5172i,

0.6820, 0.6835, 0.8895± 0.1033i, 0.9341± 0.0994i,

0.8817, 0.9737± 0.0384,

0.9700± 0.0108i, 0.9487}
τCL : 604s
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C.3 System Calibration

The system was swept over the range of ucf and Q̇evap,ref values depicted

in Figure C.3 to map the system’s power consumption and optimal inputs.

The calibration results were used as a benchmark to evaluate the RTO per-

formance of the candidate controllers. During the calibration, the linear

quadratic regulator from the standard ESC approach was in the loop to en-

sure that the Q̇evap,ref and the TSH,ref values were satisfied. Figure C.3 gives

a time history of the calibration. The ucf input was rate limited stepped

by 5% increments over 10min intervals. Assuming that it took the system

7.5min to reach steady state, the power consumption value, Ẇsys value was

averaged over the last 2.5min of the step to determine the steady state power

consumption. For each Q̇evap,ref , the two quadratic least squares regressions

given by (C.1) and (C.2) were performed for Ẇsys. Table C.6 gives the co-

efficients of the least squares regressions as well as the calibrated minimum

values.

Ẇsys = c1 + c2ucf + c3u
2
cf (C.1)

Ẇsys = d1 + d2(1.7T4 + T2−3) + d3(1.7T4 + T2−3)2 (C.2)
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Figure C.3: Calibration inputs and outputs.
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Figure C.4: Calibration of power consumption as a function of Q̇evap and
ucf .

Table C.6: Regression coefficients and resulting minimum and optimal
values.

Q̇evap,ref [kW ] c1 c2 c3 u∗cf [%] Ẇsys,min[kW ]

0.8 0.4718 -0.00456 4.85e-5 47 0.3646

1.0 0.6255 -0.00616 5.60e-5 55 0.4562

1.2 0.8856 -0.00985 7.70e-5 64 0.5705
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Figure C.5: Calibration of power consumption as a function of Q̇evap and
1.7T4 + T2−3.

Table C.7: Regression coefficients and resulting minimum and optimal
values.

Q̇evap,ref [kW ] d1 d2 d3 (1.7T4 + T2−3)∗[◦C] Ẇsys,min[kW ]

0.8 5.8361 -0.2805 0.0036 39.0 0.3618

1.0 4.3424 -0.1970 0.0025 39.5 0.4517

1.2 2.7695 -0.1154 0.0015 38.1 0.5736
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